TakustraBe 7
D-14195 Berlin-Dahlem
Germany

Konrad-Zuse-Zentrum
fur Informationstechnik Berlin

STEFAN HEINZ* J. CHRISTOPHER BECK**

Solving Resource Allocation/Scheduling Problems with
Constraint Integer Programming

* Supported by the DFG Research Center MATHEON Mathematics for key technologies in Berlin.
** Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Canada

ZIB-Report 11-14 (May 2011)

Solving Resource Allocation/Scheduling Problems with
Constraint Integer Programming

Stefan Heinz*
Zuse Institute Berlin
Berlin, Germany
heinz@zib.de

Abstract

Constraint Integer Programming (CIP) is a generalization of
mixed-integer programming (MIP) in the direction of con-
straint programming (CP) allowing the inference techniques
that have traditionally been the core of CP to be integrated
with the problem solving techniques that form the core of
complete MIP solvers. In this paper, we investigate the ap-
plication of CIP to scheduling problems that require resource
and start-time assignments to satisfy resource capacities.
The best current approach to such problems is logic-based
Benders decomposition, a manual decomposition method.
We present a CIP model and demonstrate that it achieves
performance competitive to the decomposition while out-
performing the standard MIP and CP formulations.

Introduction

Constraint Integer Programming (CIP) (Achterberg 2007b;
2009) is a generalization of both finite domain constraint
programming (CP) and mixed integer programming (MIP)
that allows the native integration of core problem solv-
ing techniques from each area. With a CIP solver, such as
SCIP (Achterberg 2009), it is possible to combine the tradi-
tional strengths of MIP such as strong relaxations and cut-
ting planes with global constraint propagation and conflict
analysis. Indeed, SCIP can be seen as a solver framework
that integrates much of the core of MIP, CP, and SAT solv-
ing methodologies.

Our primary goal in this paper is to start a broad investi-
gation of CIP as a general approach to scheduling problems.
While CP tends to be very successful on a variety of schedul-
ing problems, it is challenged by problems that exhibit weak
propagation either due to their objective functions (Kovacs
and Beck 2011) or to the need for a cascading series of in-
terdependent decisions such as encountered in combined re-
source allocation and scheduling problems (Hooker 2005).
We are interested to see if CIP techniques can address these
challenges.

Our investigations in this paper focus on problems which
combine resource allocation and scheduling. Given a set of

*Supported by the DFG Research Center MATHEON Mathe-
matics for key technologies in Berlin.
Copyright (© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

J. Christopher Beck

Department of Mechanical & Industrial Engineering

University of Toronto
Toronto, Canada
jcb@mie.utoronto.ca

jobs that require the use one out of a set of alternative re-
sources, a solution will assign each job to a resource and
schedule the jobs such that the capacity of each resource
is respected at all time points. We address this problem in
CIP by the optcumulative global constraint in SCIP,
extending the cumulative constraint to allow each job to
be optional. That is, a binary decision variable is associated
with each job and resource pair and the corresponding cumu-
lative constraint includes these variables in its scope. This
approach is not novel in CP, dating back to at least (Beck
and Fox 2000). We handle the requirement that exactly one
resource must be chosen for a job in standard MIP fashion
by specifying that the sum of the binary variables for a given
job, across all resources, must be one.

Our experimental results demonstrate that our preliminary
implementation of the opt cumulative constraint is suf-
ficient to allow a CIP model to be competitive with the state-
of-the-art logic-based Benders decomposition (LBBD) on
two problems sets with unary and discrete resource capac-
ity, respectively.

In the next section, we formally define the scheduling
problems and provide necessary background on CIP, LBBD,
and the cumulat ive global constraint which forms the ba-
sis for the optcumulative constraint. We then present
four models of our scheduling problems: MIP, LBBD, CP,
and CIP. The following section contains our empirical inves-
tigations, both initial experiments comparing the four mod-
els and a detailed attempt to develop an understanding of the
impact of primal heuristics for the CIP performance. In the
final section, we conclude.

Background

In this section we introduce the scheduling problem under
investigation and give background on CIP, LBBD, and the
cumulative constraint.

Problem Definition

We study two classes of scheduling problems referred to as
UNARY and MULTI (Hooker 2005; Beck 2010). Both prob-
lems are defined by a set of jobs 7, and a set of resources K.
Each job has a release date, R, a deadline, D, a resource-
specific processing time, p;z, a resource assignment cost,
¢k, and a resource requirement, 7. Each job, 7, must be
assigned to one resource, k, and scheduled to start at or after

its release date, end at or before its due date, and execute for
pjk time units. Each resource, & € I, has a capacity, Cy,
and an associated resource constraint which states that for
each time point, the sum of the resource requirements of the
executing jobs must not exceed the resource capacity. A fea-
sible solution is an assignment where each job is placed on
exactly one resource and no resource is over capacity. The
goal is to find an optimal solution, a feasible solution which
minimizes the total resource assignment cost.

In the UNARY problem, the capacity of each resource and
the requirement of each job is one. In the MULTI problem,
capacities and requirements may be non-unary.

Constraint Integer Programming

Mixed integer programming (MIP) and satisfiability testing
(SAT) are special cases of the general idea of constraint pro-
gramming (CP). The power of CP arises from the possibility
to model a given problem directly with a large variety of dif-
ferent, expressive constraints. In contrast, SAT and MIP only
allow for very specific constraints: Boolean clauses for SAT
and linear and integrality constraints for MIP. Their advan-
tage, however, lies in the sophisticated techniques available
to exploit the structure provided by these constraint types.

The goal of constraint integer programming (CIP) is to
combine the advantages and compensate for the weaknesses
of CP, MIP, and SAT. It was introduced by Achterberg and
implemented in the framework SCIP (Achterberg 2009).
Formally a constraint integer program can be defined as fol-
lows.

Definition 1. A constraint integer program (CIP) (€, 1, ¢)
consists of solving

¢ =min{c’z | €(z), v € R", z; € Zforall j € I}

with a finite set € = {Cy,...,Cp, } of constraints C; : R™ —
{0,1}, ¢ ={1,...,m},asubset] C N ={1,...,n} of the
variable index set, and an objective function vector ¢ € R™.
A CIP must fulfill the following additional condition:

Vi e 28 (ALY e))
{zc e RY | €(i1,20)} = {zc e RY | Aze <V}

with C := N\ I, A’ € R**C and b’ € R for some k €
Zso.

Restriction (1) ensures that the sub-problem remaining af-
ter fixing all integer variables is a linear program. Note that
this does not forbid quadratic or other nonlinear, and more
involved expressions — as long as the nonlinearity only refers
to the integer variables.

The central solving approach for CIP as implemented in
the SCIP framework is branch-and-cut-and-propagate: as in
SAT, CP, and MIP-solvers, SCIP performs a branch-and-
bound search to decompose the problem into sub-problems.
Also as in MIP, a linear relaxation, strengthened by ad-
ditional inequalities/cutting planes if possible, is solved at
each search node and used to guide and bound search. Sim-
ilar to CP solvers, inference in the form of constraint prop-
agation is used at each node to further restrict search and

detect dead-ends. Moreover, as in SAT solving, SCIP uses
conflict analysis and restarts. In more detail, CIP solving in-
cludes the following techniques

e Presolving. The purpose of presolving, which takes place
before the tree search is started, is threefold: first, it re-
duces the size of the model by removing irrelevant infor-
mation such as redundant constraints or fixed variables.
Second, it strengthens the linear programming relaxation
of the model by exploiting integrality information, e.g.,
to tighten the bounds of the variables or to improve co-
efficients in the constraints. Third, it extracts information
from the model such as implications or cliques which can
be used later for branching and cutting plane separation.

e Propagation. Propagation is used in the same fashion as
in CP for pruning variable domains during the search.

e Linear Relaxation. A generic problem relaxation can be
defined that includes only linear constraints. The relax-
ation can be solved efficiently to optimality and used in
two primary ways: first to provide a guiding informa-
tion for the search and second as the source of the “dual
bound” a valid lower (upper) bound on the objective func-
tion for a minimization (maximization) problem.

e Conflict Analysis. The idea of conflict analysis is to rea-
son about infeasible sub-problems which arise during the
search in order to generate conflict clauses (Marques-
Silva and Sakallah 1999; Achterberg 2007a) also known
as no-goods. These conflict clauses are used to detect sim-
ilar infeasible sub-problems later in the search. In order to
perform conflict analysis, a bound change which was per-
formed during the search, due to a propagation algorithm
for example, needs to be explained. Such an explanation is
a set of bounds which imply the performed bound change.
The explanations are used to build up so-called conflict
graph which lead to derivation of valid conflict clauses.

A global constraint in the framework of CIP can, but does
not have too, contribute to all of these techniques. For ex-
ample, as in CP, it can provide propagation algorithms for
shrinking variable domains while also adding linear con-
straints to the linear programming relaxation, and supplying
explanations to the conflict analysis reasoning. The minimal
function of a global constraint is to “check” candidate solu-
tions returning whether it is satisfied or not by a given vari-
able assignment.

CIP has been applied to MIP (Achterberg 2009),
mixed-integer nonlinear programming (Berthold, Heinz, and
Vigerske 2009), nonlinear pseudo-Boolean programming
(Berthold, Heinz, and Pfetsch 2009), the verification of chip
designs (Achterberg, Brinkmann, and Wedler 2007), and
scheduling (Berthold et al. 2010). The final paper is most
relevant to the work here. Berthold et al. applied SCIP
to resource-constrained project scheduling problems and
demonstrated that CIP is competitive with the state-of-the-
art in terms of finding both high quality solutions and in
proving lower bounds on optimal solutions. This work forms
one of our motivations for a broader investigation of CIP for
scheduling problems.

Logic-based Benders Decomposition

Logic-based Benders decomposition (LBBD) (Hooker and
Ottosson 2003) is a manual decomposition technique that
generalizes classical Benders decomposition. A problem
is modeled as a master problem (MP) and a set of sub-
problems (SPs) where the MP is a relaxation of the global
problem designed such that a solution to the MP induces one
or more SPs. Each SP is an inference dual problem (Hooker
2005) that derives the tightest bound on the MP cost func-
tion that can be inferred from the current MP solution and
the constraints and variables of the SP.

Solving a problem by LBBD is done by iteratively solv-
ing the MP to optimality and then solving each SP. If the
MP solution satisfies all the bounds generated by the SPs,
the MP solution is globally optimal. If not, a Benders cut is
added to the MP by at least one violated SP and the MP is re-
solved. For models where the SPs are feasibility problems,
it is sufficient for correctness to solve the SPs to feasibility
or generate a cut that removes the current MP solution.

In order for the MP search to be more than just a blind
enumeration of its solution space, some relaxation of the SPs
should be present in the MP model and the Benders cuts
should do more than just remove the current MP solution.

LBBD has been successfully applied to a wide range of
problems including scheduling (Beck 2010; Bajestani and
Beck 2011), facility and vehicle allocation (Fazel-Zarandi
and Beck 2011), and queue design and control problems
(Terekhov, Beck, and Brown 2009).

Models & Solution Approaches

In this section, we define the models used for the UNARY
and MULTI problems for MIP, LBBD, CP, and CIP.

Mixed Integer Programming

One of the standard MIP models for scheduling problems
is the so-called time-indexed formulation (Queyranne and
Schulz 1994). A decision variable, x 1, is defined, which is
equal to 1 if and only if job j, starts at time ¢, on resource
k. Summing over appropriate subsets of these variables can
then enforce the resource capacity requirement. The model
we use, taken from (Hooker 2005), is as follows:

i —Pjk

D
min E E E Cik Tkt

keK jeT t=R,

Dj —pjk
st > Y =1 VjeJ)
kek t=R,
S>3 rpagw <Cp VREK, VE (3)
JET ' €Tkt
zjke € {0,1} vk e K, VjeJ, Vt,

with Tjkt = {t — Djks--- ,t}.

The objective function minimizes the weighted resource
assignment cost. Constraints (2) ensure that each job starts
exactly once on one resource while Constraints (3) enforce
the resource capacities on each resource at each time-point.

To solve this model, we rely on the default branch-
and-bound search in the SCIP solver (Achterberg 2009).
The default search has been tuned for solving MIP mod-
els and consists of a variety of modern algorithm tech-
niques including: primal heuristics for finding feasible so-
lutions, reliability-based branching heuristics, conflict anal-
ysis, and cutting planes. Details can be found in Achterberg
and Berthold (2009).

Logic-based Benders Decomposition

The LBBD model (Hooker 2005; Beck 2010) defines two
sets of decision variables: binary resource assignment vari-
ables, x;, which are assigned to 1 if and only if job j is
assigned to resource k, and integer start time variables, S},
which are assigned to the start-time of job 7. The former
variables are in the master problem while the latter are in
sub-problems, one for each resource.

Formally, the LBBD master problem (MP) is defined as
follows:

min E E Cik Tjk

keK jeJg

ke

Z zjkpjerin < Cr Yk €K (5)
jeg

o (Q-azp)>1 VkeK, he[H-1]' (6)
JE€EIThk
zk; €4{0,1} Vke K, VjeJ,

with Ck = Ck . (manej{Dj} — minjej{’Rj}).

As in the global MIP model, the objective function mini-
mizes the total resource allocation costs. Constraints (4) en-
sure that each job is assigned to exactly one resource. Con-
straints (5) are a linear relaxation of each resource capac-
ity constraint. They state that the area of the rectangle with
height C' and width from the smallest release date to the
largest deadline must be greater than the sum of the areas of
the jobs assigned to the resource.

Constraints (6) are the Benders cuts. Let H indicate the
index of the current iteration and 73, denote the set of jobs
that resulted in an infeasible sub-problem for resource k£ in
iteration h < H. The Benders cut, then, simply states that
the set of jobs assigned to resource k in iteration h should
not be reassigned to the same resource. This is a form of
no-good cut (Hooker 2005).

Because the MP assigns each job to a resource and there
are no inter-job constraints, the SPs are independent, single-
machine scheduling problems where it is necessary to assign
each job a start time such that its time window and the ca-
pacity of its resource are respected. The SP for resource k
can be formulated as a constraint program as follows, where
Ji. denotes the set of jobs assigned to resource k:

'"For an n € N we define [n] := {1,...,n} and [0] := @.

cumulative(S,p.k, .k, Ck)
R; <85 <Dj—pjk viedy (D
Sj Sy Vj € Ji.

S, p.k, and 7. are the vectors containing the start time
variables and the processing times and demands for re-
source k with respect to subsets of jobs Jj.

The global constraint cumulative (Baptiste, Pape, and
Nuijten 2001) enforces the resource capacity constraint over
all time-points at which a job may run. Constraints (7) en-
force the time-windows for each job.

The MP and SPs are solved using the default search of
SCIP. As CIP models admit global constraints, the sub-
problems are example of where the CIP model is solved pri-
marily with CP technology.

Constraint Programming

As with MIP, we use the standard CP model for our prob-
lem (Hooker 2005). The start time of job j on resource k,
is represented by the integer variable, S;. The model is as
follows:

min E E Cik Tjk

keK jeJ
st Y wp =1 VjieJ
kek
optcumulative(S.g, €.k, Pk, Tk, Ck)
Vke K (8)
R; < S; <Dj—pjk Vi€ Tk
zji € {0,1} VieJ,VkekK
SjkGZ VjieJ,VkeK.

Except for Constraints (8), the model components are
analogous to those previously defined in the MIP and LBBD
models. The optcumulative constraint is equivalent to
the standard cumulative constraint with the addition that
the jobs are optional: the jobs do not necessarily have to ex-
ecute on this resource. The x;, variable is used to indicate
if job j executes on resource k and the optcumulative
constraint include these variables in its scope. Formally, an
assignment to the start time variables S;;; and binary choice
variables x ;1. for each job j and resource k is feasible if and
only if the following condition holds at each time-point ¢:

Z TikTik < Ch.

JET €[S jk,Sjk+Djk)

We implement this model in IBM ILOG Solver and IBM
ILOG Scheduler version 6.7. The opt cumulative con-
straint is implemented by placing the set of machines in an
alternative resource set and having each job require one re-
source from the set. The x;; variable is implemented via
the reification of the constraint stating that job j requires re-
source k.

To solve the problem, we use two pre-defined goals
in the following order: IloAssignAlternatives,

IloSetTimesForward. The first goal assigns jobs to re-
sources in arbitrary order. When all jobs are assigned (and no
dead-ends have been found via constraint propagation), the
second goal implements the schedule-or-postpone heuristic
(Pape et al. 1994) to assign start times to each job. Chrono-
logical backtracking is done when a dead-end is encoun-
tered.

Constraint Integer Programming

The CP model above is also the CIP model we use. Un-
like the CP model, we implement and solve the CIP model
using SCIP. As noted above, in CIP a global constraint
such as optcumulative can contribute to the search
in a number of ways. The current implementation of the
optcumulative global constraint provides the follow-
ing:

e Presolving. A number of problem reductions can be made
in presolving, including normalization of the demands
and the resource capacity and a detection of irrelevant jobs
that do not influence the assignment/feasibility of remain-
ing jobs on that resource. For example, if a job has a latest
completion time which is smaller than the earliest start
time of all remaining jobs then this job is irrelevant and
can be ignored.

e Propagation. Following (Beck and Fox 2000), we adapt
the standard bounds-based cumulative propagation (Bap-
tiste, Pape, and Nuijten 2001) in a somewhat naive man-
ner: we propagate all jobs that are known to execute on the
resource. For each job j that is still optional, we perform
singleton arc-consistency (SAC) (Debruyne and Bessiere
1997): we assume that the job will execute on the resource
and trigger propagation. If the propagation derives a dead-
end, we can soundly conclude that the job cannot execute
on the resource and appropriately set the x;;, variable.
Otherwise, we retain the pruned domains for Sj. In ei-
ther case, the domains of all other variables are restored
to their states before SAC. This propagation is stronger,
but more costly, than the standard propagation of cumu-
lative constraints with optional jobs due to Vilim, Bartak,
and Cepek (2005).

e Linear Relaxation. Each optcumulative constraint
adds Constraint (5) as in the LBBD model to the linear
programming relaxation.

e Conflict Analysis. Each time the optcumulative has
to explain a bound change it first uses the cumulative
explanation algorithm to derive an initial explanation. The
explanation is extended with the the bounds of all choice
variables which are (locally) fixed to one. In case of the
SAC propagation, a valid explanation is the bounds of all
choice variables which are fixed to one in the moment of
the propagation.

The default parameters of SCIP are used to solve the CIP
model. As these settings are tuned for pure MIP problems, it
is likely that future work will be able to find more appropri-
ate settings for CIPs.

Experiments

In this section we present first experimental results which
indicate that the CIP model performs competitively with the
LBBD model while out-performing MIP and CP.

Experimental Set-up

For all computational experiments except for the CP
model we used the constraint integer programming solver
SCIP (Achterberg 2009) that includes an implementation of
the cumulative constraint (Berthold et al. 2010). As de-
scribed above, we have extended SCIP by implementing the
optcumulative global constraint. Using the same solver
helps to focus on the impact of the models and algorithms
used, controlling somewhat for different software engineer-
ing decisions made across different solvers. However, for the
CP model, we choose to use IBM ILOG Solver and IBM
ILOG Scheduler version 6.7 as they represent the commer-
cial state-of-the-art and we did not want to unfairly penal-
ize the CP approach due to using SCIP which has primarily
been developed to this point as a MIP solver.

We used the scheduling instances introduced by
Hooker (2005). Each set contains 195 problem instances.
For both problem sets the number of resources ranges is
from 2 to 4 and the number of jobs ranges from 10 to 38 in
steps of 2. The maximum number of jobs for the instances
with three and four resources is 32 while for two resources
the number of maximum number of jobs is 38. For each
problem size, we have five instances. For the MULTI prob-
lems the resource capacity is 10 and the job demands are
generated with uniform probability on the integer interval
[1,10]. See Hooker (2005) for further details.

All computations reported were obtained on Intel Xeon
E5420 2.50 GHz computers (in 64 bit mode) with 6 MB
cache, running Linux, and 6 GB of main memory. We en-
forced a time limit of 7200 seconds. For all models other
than CP, we use version 2.1.0.3 of SCIP integrated with
SoPlex version 1.5.0.3 as the underlying linear program-
ming solver (Wunderling 1996). Thus, we only used non-
commercial software, with available source code.

Results

Tables 1 and 2 present the results for the UNARY test set
and MULTI test set, respectively. The first two columns de-
fine the instance size in terms of the number of resources
|C| and the number of jobs |7 |. For each model (for now we
ignore the last four columns), we report the number of in-
stance solved to proven optimality “opt” and the number in-
stances for which we found a feasible solution “feas”, which,
of course, include the instances which are solved to optimal-
ity. We use the shifted geometric mean? for the number of
“nodes” and for the running “time” in seconds.

The shifted geometric mean has the advantage that it re-
duces the influence of outliers. The geometric mean ensures
that hard instances, at or close to the time limit, are prevented

2The shifted geometric mean of values t1, ..., %, is defined as

(TT: + s))l/n — s with shift s. We use a shift s = 10 for time
and s = 100.for nodes

of having a huge impact on the measures. Similar shifting re-
duces the bias of easy instances, those solved in less than 10
seconds and/or less than 100 nodes. For a detailed discussion
about different measures we refer to Achterberg (2007b).

For each resource-job combination, we display the best
running time over all four models in bold face. In case one
model could not solve any of the 5 instances for a particular
resource-job combination, we omitted to display the shifted
geometric mean of 7200.0 for the running time (instead we
state “-7).

UNARY On the UNARY problems, all four models are able
to find feasible solutions for each instance. The CIP model
finds and proves optimality for 194 out of 195 problem in-
stances (timing-out on an instance with 30 jobs and 4 re-
sources) followed by LBBD with 175, MIP at 161, and CP
with 143. The CIP model is about three times faster than
LBBD, using about half the number of nodes. However, note
that the LBBD statistic includes only the nodes in the mas-
ter problem search not the sub-problems. The time, however,
includes both master and sub-problem solving.

The LBBD results are consistent with those of an existing
implementation (not using SCIP) (Beck 2010). We found
20 time-outs for LBBD while Beck’s results had 14 time-
outs. We believe that this relatively small difference can be
attributed to the use of different solvers and different com-
puters.

Overall the CIP model dominates all other model for the
UNARY case.

MULTI The MULTI results are somewhat different. CIP is
not the dominant approach anymore. The performance of
LBBD and CIP are very similar with respect to number of
solved instances and overall running time. CIP manages 123
instances while LBBD solves 119. Both approach, however,
are superior to the MIP and CP model using the measure
of overall running time and number of solved instances to
proven optimality. MIP solves 98 instances and CP solves
only 62 instances.

This time, the LBBD results are not consistent with the
previous implementation of Beck. He solved 175 instances
which are 51 instances more than our LBBD model. We as-
sume that using SCIP for solving the sub-problems instead
of IBM ILOG Solver and IBM ILOG Scheduler leads to
this differences. We plan to further investigate this issue.

The results of the CP model coincide with those of
Hooker (2005) where it was shown that instances with 18
jobs or more could not be solved. The MIP results, in con-
trast, are substantially better than those reported by Hooker.
The reason is not clear but we tentatively attribute the differ-
ence to the advance in MIP solving technology in the past
six years.

Feasibility vs. Optimality It is of particular note that the
MIP model was able to find feasible solutions for all in-
stances in both problem sets. In fact, the optimality gap for
MIP was usually very low: on the MULTI set the largest gap
was 5.3% and 55 of the 97 instances not solved to optimality

Table 1: Results for the UNARY test set. Each resource-job combination consists of 5 instances. This adds up to a total of 195.

MIP LBBD CP CIP CIP (optimality proof)

K| |J| opt feas nodes time opt feas nodes time opt feas nodes time opt feas nodes time inst proved nodes time
2 10 5 5 1 0.0 5 5 61 0.2 5 5 96 0.0 5 5 25 0.0 5 5 1 00
12 5 5 3 0.6 5 5 115 0.5 5 5 256 0.0 5 5 58 0.0 5 5 4 00
14 5 5 93 2.4 5 5 566 1.5 5 5 741 0.1 5 5 130 0.1 5 5 4 00
16 5 5 249 5.0 5 5 80 0.3 5 5 2433 0.2 5 5 139 0.1 5 5 4 00
18 5 5 221 11.0 5 5 75 0.3 5 5 6767 0.5 5 5 216 0.1 5 5 8 00
20 5 5 222 10.4 5 5 440 2.1 5 5 11174 1.1 5 5 269 0.2 5 5 2 00
22 5 5 16898 1395 5 5 195 1.6 5 5 47460 4.8 5 5 117 0.1 5 5 1 00
24 3 5 5273 1915 5 5 22 15.9 5 5 105056 10.8 5 5 162 0.1 5 5 1 00
26 5 5 13359 17438 4 4 300 33.7 5 5 326528 34.8 5 5 439 0.5 5 5 18 0.0
28 2 5 115839 1813.9 5 5 510 28.9 5 5 497455 60.0 5 5 346 0.3 5 5 1 00
30 1 5 151780 24327 4 4 1836 74.2 5 5 4231229 490.2 5 5 2139 8.9 5 5 114 12
32 3 5 3596 285.8 5 5 287 2.3 5 5 6786880 8325 5 5 706 0.8 5 5 8 00
34 1 5 125588 2030.5 4 4 274 43.8 5 5 17724154 2239.7 5 5 897 1.2 5 5 9 00
36 3 5 46420 13229 1 1 656 2011.8 3 5 35832546 4939.0 5 5 1014 1.4 5 5 7 00
38 3 5 9506 569.6 3 3 983 425.0 3 5 35021851 5151.3 5 5 1076 0.8 5 5 1 00
3 10 5 5 1 0.1 5 5 356 0.6 5 5 584 0.0 5 5 73 0.1 5 5 15 0.0
12 5 5 1 0.2 5 5 191 0.4 5 5 2801 0.2 5 5 119 0.1 5 5 13 0.0
14 5 5 7 1.6 5 5 2759 5.0 5 5 13431 1.0 5 5 314 0.5 5 5 68 02
16 5 5 9 3.1 5 5 223 0.9 5 5 58688 4.4 5 5 322 0.4 5 5 4 00
18 5 5 7 2.6 5 5 444 0.8 5 5 236227 20.3 5 5 632 1.4 5 5 24 0.1
20 5 5 2949 28.4 5 5 1898 9.0 5 5 1277898 106.5 5 5 956 3.0 5 5 50 0.2
22 5 5 602 29.6 5 5 1106 12.2 5 5 9746557 8739 5 5 1217 35 5 5 51 02
24 5 5 2555 47.6 5 5 1745 5.7 4 5 47841477 44323 5 5 1641 6.7 5 5 48 0.3
26 4 5 18023 190.8 5 5 17639 57.5 0 5 70242148 - 5 5 5647 226 5 5 259 12
28 4 5 2715 100.4 5 5 3721 11.6 0 5 70336374 - 5 5 4591 18.5 5 5 7203
30 2 5 327576 2904.1 3 3 11963 133.8 0 5 68045013 - 5 5 18901 103.9 5 5 605 12.1
32 3 5 44141 1209.6 4 4 6228 95.6 0 5 70408953 - 5 5 10677 52.0 5 5 268 7.8
4 10 5 5 1 0.1 5 5 262 0.7 5 5 1166 0.1 5 5 29 0.0 5 5 4 00
12 5 5 1 0.1 5 5 589 1.3 5 5 9889 0.6 5 5 79 0.1 5 5 13 00
14 5 5 1 0.2 5 5 2390 5.8 5 5 44482 3.4 5 5 211 0.4 5 5 15 0.1
16 5 5 17 24 5 5 22922 41.2 5 5 155441 13.0 5 5 768 2.5 5 5 130 0.7
18 5 5 1 0.8 4 4 9857 61.4 5 5 2006248 163.8 5 5 904 29 5 5 73 04
20 5 5 967 18.9 5 5 19750 23.2 5 5 11029872 952.8 5 5 2525 8.7 5 5 118 0.7
22 5 5 10364 95.9 3 3 222873 2451 3 5 52404067 5026.7 5 5 8912 444 5 5 603 4.8
24 5 5 2343 55.4 4 4 43687 70.5 0 5 81261130 - 5 5 7355 385 5 5 209 24
26 4 5 4426 119.3 4 4 151494 256.6 0 5 76244443 - 5 5 37140 179.3 5 5 919 938
28 3 5 137997 1281.6 4 4 242117 3751 0 5 79742951 - 5 5 33422 1751 5 5 663 9.6
30 3 5 187957 2226.1 4 4 129582 1294 0 5 73680622 - 4 5 63047 3783 5 5 2236 421
32 2 5 15488 831.6 4 4 526447 4873 0 5 71281227 - 5 5 73517 491.8 5 5 642 55
161 195 2059 74.1 175 175 2177 279 143 195 620577 2049 194 195 1111 9.9 195 195 84 1.7

had gaps of less than 2%. From another perspective, there-
fore, there is an argument that MIP is performing best on the
MULTI problems.

In general MIP solving, it is know that “good” primal so-
lutions which are detected early in the search can signifi-
cantly increase performance. A more detailed examination
of the MIP runs shows that the primary reason for the ability
of the MIP model to find feasible solutions is the use of such
primal heuristics. In case of CIP, the default primal heuris-
tics in SCIP are able to occasionally find feasible solution
for the UNARY instances but never for MULTI.

To evaluate the viability of future research to develop CIP
primal heuristics, we ran an additional experiment by pro-
viding the CIP model with the optimal value for all the
instances in which it is known: all 195 instances for the
UNARY problems and 176 instances for MULTI. The solver,
then, has only to prove that the instance has no better solu-

tions. If we are able to show that the proofs are short, we
have an indication that, if we were able to develop strong
primal heuristics for CIP, we would be able to substantially
improve the problem solving performance. The final four
columns in Tables 1 and 2 display the results. The “inst”
columns is the number of instances where an optimal solu-
tion is known and the column “proved” is the number of in-
stances that the CIP model was able to prove optimality hav-
ing been given the optimal cost as an upper bound. The other
two columns state again the shifted geometric mean of the
number of search “nodes” and the running “time”. For the
UNARY instances, we are able to solve all problems, proving
optimality in on average about a quarter of the time required
to find and prove optimality. On the MULTI instances, how-
ever, the picture is different. Some instances (e.g., two re-
sources and 30 or more jobs) show the same effect as for the
UNARY case. On other instances it was possible to find and

Table 2: Results for the MULTI test set. Each resource-job combination consists of 5 instances. This adds up to a total of 195.

MIP LBBD CP CIP CIP (optimality proof)

K| || opt feas nodes time opt feas nodes time opt feas nodes time opt feas nodes time inst proved nodes time
2 10 5 5 99 14 5 5 51 02 5 5 2792 0.1 5 5 152 0.0 5 5 35 0.0
12 5 5 362 42 5 5 19 04 5 5 33689 0.8 5 5 156 0.0 5 5 37 0.0
14 5 5 613 132 5 5 6 27 5 5 466774 115 5 5 342 0.2 5 5 200 1.7
16 5 5 10950 464 5 5 3 170 5 5 22812045 3280 5 5 3110 18.1 5 4 2058 30.1
18 5 5 55304 1539 5 5 7 88.1 0 3 494257496 - 5 5 9951 18.0 5 5 2563 29.0
20 5 5 197808 6215 3 3 21 1572 0 0 453120052 - 5 5 4106 2.4 5 5 886 1.3
22 3 5 971481 32890.6 2 2 10 7029 0 0 397205523 - 2 2 338309 1324.1 4 2 29718 371.6
24 1 5 1372460 6912.5 0 0 1 - 0 0 339570055 - 3 3 353667 706.1 5 2 14242 508.7
26 1 5 561690 3903.6 1 1 1 51924 0 0 302945001 - 1 1 1714440 5439.1 5 2 15689 508.5
28 0 5 755538 - 3 3 10 4410 O 0 285893897 - 3 3 90382 159.6 5 3 2799 129.1
30 0 5 537011 - 1 1 1 29711 O 0 289896816 -0 0 2389029 - 2 2 1 0.0
32 1 5 447812 55537 1 1 1 5679.1 0 0 285549706 - 3 3 494763 281.7 3 3 1 0.0
34 0 5 378116 - 1 1 1 30147 O 0 291878950 - 1 1 2729498 1396.4 1 1 1 0.0
36 0 5 459463 - 1 1 1 20440 0 0 271990663 - 2 2 1313548 699.3 2 2 1 0.0
38 0 5 202726 - 1 1 1 33683 0 0 256182585 - 3 3 6441053 1675.6 3 3 1 0.0
3 10 5 5 7 0.8 5 5 49 02 5 5 1508 00 5 5 85 0.0 5 5 19 0.0
12 5 5 891 60 5 5 267 07 5 5 42886 0.9 5 5 480 0.3 5 5 147 0.1
14 5 5 575 8.8 5 5 94 03 5 5 536284 100 5 5 1152 1.1 5 5 234 0.2
16 5 5 53582 1692 5 5 837 99 5 5 26881777 4192 5 5 14443 21.7 5 5 8949 16.6
18 4 5 312463 9525 5 5 3196 205 0 2 485036163 - 4 4 201128 138.6 5 5 75534 537
20 3 5 453808 16294 5 5 1613 58 0 1 460840309 - 5 5 37498 34.8 5 5 5612 383
22 2 5 591165 3117.1 5 5 2254 1481 0 0 431132614 - 2 2 632677 13514 5 2 793451 960.1
24 3 5 577419 51073 1 1 812 23238 0 0 410966318 - 1 1 1660912 3164.6 5 1 631291 4709.2
26 0 5 578821 - 4 4 1340 13508 O 0 370925295 - 3 3 650086 727.0 5 2 264430 1469.2
28 0 5 418861 - 0 0 8 - 0 0 337254114 - 2 3 725799 1260.3 5 2 51512 6244
30 0 5 292470 - 0 0 49 -0 0 288175928 - 0 0 1382511 - 4 1 55610 1383.1
32 0 5 95543 - 0 0 3 - 0 0 265357963 - 1 1 1747365 6917.5 3 1 26140 795.1
4 10 5 5 1 02 5 5 13 01 5 5 2055 0.1 5 5 105 0.1 5 5 13 0.0
12 5 5 544 5.1 5 5 30 01 5 5 30179 1.0 5 5 242 0.2 5 5 32 0.0
14 5 5 2004 13.9 5 5 388 11 5 5 1136699 269 5 5 1118 1.7 5 5 149 0.3
16 5 5 1539 293 5 5 251 06 5 5 6907787 111.8 5 5 1094 1.3 5 5 290 0.3
18 4 5 453646 9219 5 5 3296 35 2 3 496600144 6994.2 5 5 28359 20.1 5 5 2118 4.0
20 3 5 739750 2188.5 5 5 1298 264 O 1 479264386 - 5 5 34834 28.6 5 5 9271 39
22 3 5 432934 19576 5 5 3363 453 0 0 471200720 - 4 4 77455 166.3 5 3 7883 135.6
24 0 5 712175 - 2 2 1979 14457 0 0 413825956 - 2 2 1796900 3021.0 5 2 596525 2190.7
26 0 5 430563 - 1 1 15646 4069.6 0 0 399153422 -0 1 2436109 - 5 0 2952736 7200.0
28 0 5 479513 - 1 1 679 28032 O 0 407550307 - 1 1 1309160 6575.0 5 1 158262 1925.8
30 0 5 237592 - 1 1 186 21050 O 0 401058271 - 0 0 1781515 - 5 1 348307 19825
32 0 5 218931 - 0 0 136 - 0 0 353061759 - 0 0 1972257 - 4 0 1029999 7200.0
98 195 62568 7788 119 119 222 2273 62 70 34504645 1311.1 123 125 61323 212.0 176 125 5656 83.2

prove optimality in our previous experiment, but not here
when the optimal cost was given (e.g., an instances with 2 re-
sources and 16 jobs). Clearly, the pattern of remaining open
nodes and the conflict clauses learning in finding the optimal
solution in the previous experiment helps in also proving it.

Overall, these results indicate that strong primal heuris-
tics would be a clear benefit on the UNARY problems and for
some of the MULTI instances. However, it is also clear from
the MULTTI results that research is also needed to speed-up
the proofs of optimality (e.g., to strengthen the linear relax-
ation to improve bounding).

Summary Overall, the best performing approaches in
terms of finding and proving optimality are CIP and LBBD.
The former clearly dominates on the UNARY instances while
their performance is similar on the MULTI instances. We
conclude, therefore, that the CIP model is the best non-

decomposition based approach for solving these combined
resource allocation/scheduling problems.

The performance of MIP is not as strong as the two top
approaches but better than both CP and the MIP results re-
ported by Hooker (2005). However, only MIP is able to find
provable good feasible solutions for all instances.

The relatively poor performance of CP is surprising given
its usual success in scheduling problems. We plan to inves-
tigate more informed CP search heuristics (Beck and Fox
2000).

Conclusion

We studied four models for solving combined resource op-
timization and scheduling using mixed integer program-
ming, constraint programming, constraint integer program-
ming, and logic-based Benders decomposition. Previous re-
sults indicated the logic-based Benders decomposition was

the dominant approach. Our results demonstrated that on
problems with unary capacity resources, constraint integer
programming is able to solve 194 out of 195 instances to
optimality compared to only 175 for logic-based Benders
decomposition. However, on problems with non-unary re-
source capacity, the picture is not as clear as logic-based
Benders and constraint integer programming showed sim-
ilar performance. The results for the logic-based Benders,
however, are weaker than previous results (Beck 2010). In-
teresting, the mixed integer programming model is able to
find feasible solutions with a small optimality gap to all
problems instances in both sets, unlike all other techniques.
The constraint programming model is the worse performing
model over both problem sets. Based on these results, we
conclude that constraint integer programming represents the
state-of-the-art for non-decomposition based approaches to
these problems.

There are a number of avenues for future work includ-
ing the investigation of primal heuristics for constraint in-
teger programming and ways to improve the search done
in constraint programming. Most significantly, we believe
that our results here demonstrate that constraint integer pro-
gramming may be a promising technology for scheduling in
general and therefore we plan to pursue its application to a
variety of scheduling problems.

References
Achterberg, T., and Berthold, T. 2009. Hybrid branching.
In van Hoeve, W.-J., and Hooker, J. N., eds., Integration of
Al and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems (CPAIOR 2009), volume
5547 of LNCS, 309-311.
Achterberg, T.; Brinkmann, R.; and Wedler, M. 2007. Prop-
erty checking with constraint integer programming. ZIB-
Report 07-37, Zuse Institute Berlin.
Achterberg, T. 2007a. Conflict analysis in mixed integer
programming. Discrete Optimization 4(1):4-20. Special is-
sue: Mixed Integer Programming.
Achterberg, T. 2007b. Constraint Integer Programming.
Ph.D. Dissertation, Technische Universitit Berlin.
Achterberg, T. 2009. SCIP: Solving Constraint Integer Pro-
grams. Mathematical Programming Computation 1(1):1-
41.
Bajestani, M. A., and Beck, J. C. 2011. Scheduling an air-
craft repair shop. In Proceedings of the Twenty-Fifth Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS2011). to appear.
Baptiste, P.; Pape, C. L.; and Nuijten, W. 2001. Constraint-
based Scheduling. Kluwer Academic Publishers.
Beck, J. C., and Fox, M. S. 2000. Constraint directed tech-
niques for scheduling with alternative activities. Artificial
Intelligence 121(1-2):211-250.
Beck, J. C. 2010. Checking-up on branch-and-check. In
Cohen, D., ed., Principles and Practice of Constraint Pro-
gramming — CP 2010, volume 6308 of LNCS, 84-98.
Berthold, T.; Heinz, S.; Liibbecke, M. E.; Mohring, R. H.;
and Schulz, J. 2010. A constraint integer programming ap-

proach for resource-constrained project scheduling. In Lodi,
A.; Milano, M.; and Toth, P., eds., Integration of Al and
OR Techniques in Constraint Programming for Combinato-
rial Optimization Problems (CPAIOR 2010), volume 6140
of LNCS, 313-317.

Berthold, T.; Heinz, S.; and Pfetsch, M. E. 2009. Nonlinear
pseudo-boolean optimization: relaxation or propagation? In
Kullmann, O., ed., Theory and Applications of Satisfiability
Testing — SAT 2009, volume 5584 of LNCS, 441-446.

Berthold, T.; Heinz, S.; and Vigerske, S. 2009. Extending
a cip framework to solve MIQCPs. ZIB-Report 09-23, Zuse
Institute Berlin.

Debruyne, R., and Bessiere, C. 1997. Some practicable fil-
tering techniques for the constraint satisfaction problem. In
Proceedings of the Fifteenth International Joint Conference
on Artificial Intelligence (IJCAI97), 412—-417.

Fazel-Zarandi, M. M., and Beck, J. C. 2011. Using logic-
based benders decomposition to solve the capacity and dis-
tance constrained plant location problem. INFORMS Jour-
nal on Computing. in press.

Hooker, J. N., and Ottosson, G. 2003. Logic-based Benders
decomposition. Mathematical Programming 96:33-60.

Hooker, J. N. 2005. Planning and scheduling to minimize
tardiness. In van Beek, P., ed., Principles and Practice of
Constraint Programming — CP 2005, volume 3709 of LNCS,
314-3217.

Kovics, A., and Beck, J. C. 2011. A global constraint for
total weighted completion time for unary resources. Con-
straints 16(1):100-123.

Marques-Silva, J. P., and Sakallah, K. A. 1999. GRASP: A
search algorithm for propositional satisfiability. IEEE Trans-
actions on Computers 48(5):506-521.

Pape, C. L.; Couronné, P.; Vergamini, D.; and Gosselin,
V. 1994, Time-versus-capacity compromises in project
scheduling. In Proceedings of the Thirteenth Workshop of
the UK Planning Special Interest Group.

Queyranne, M., and Schulz, A. S. 1994. Polyhedral ap-
proaches to machine scheduling problems. Technical Report
408/1994, Departement of Mathematics, Technische Univer-
sitat Berlin, Germany. Revised 1996.

Terekhov, D.; Beck, J. C.; and Brown, K. N. 2009. A con-
straint programming approach for solving a queueing de-
sign and control problem. INFORMS Journal on Computing
21(4):549-561.

Vilim, P.; Bartak, R.; and éepek, O. 2005. Extension of
O(nlogn) filtering algorithms for the unary resource con-
straint to optional activities. Constraints 10(4):403-425.

Waunderling, R. 1996. Paralleler und objektorientierter
Simplex-Algorithmus. Ph.D. Dissertation, Technische Uni-
versitit Berlin.

