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INTERPOLATION SPACES AND
OPTIMAL MULTILEVEL PRECONDITIONERS

FOLKMAR A. BORNEMANN

Abstract. This paper throws light on the connection between the optimal condi-
tion number estimate for the BPX method and constructive approximation theory.
We provide a machinery, which allows to understand the optimality as a conse-
quence of an approximation property and an inverse inequality inH1+ε, ε > 0. This
machinery constructs so-called approximation spaces, which characterize a certain
rate of approximation by finite elements and relates them with interpolation spaces,
which characterize a certain smoothness.

1. Introduction

For simplicity we consider the following elliptic boundary problem of second order
on a polygonal domain Ω ⊂ R2:

−Δu+ u = f, ∂nu|∂Ω = 0,

where f ∈ L2(Ω). The weak solution u ∈ H1(Ω) is given by the variational problem

a(u, v) := (∇u,∇v)L2 + (u, v)L2 = (f, v)L2 ∀v ∈ H1(Ω),

where we use a suggestive notation of the scalar products in L2(Ω)2 and L2(Ω). Let
(Tj)j be a sequence of nested regular quasi-uniform triangulations of Ω with mesh-size
parameter

hj := max
T∈Tj

diam(T ) h 2−j .

Throughout this paper we use the notation a � b iff there is a constant c > 0, such
that a ≤ cb and a h b iff a � b and a � b. Those constants c will be independent
of everything, with the only exception that they might depend on Ω and the shape
regularity of the triangulations.

Introducing the spaces of linear finite elements

Xj = {u ∈ C(Ω̄) : u|T ∈ P1(T ) ∀T ∈ Tj},
where P1(T ) denotes the linear functions on the triangle T , we get

X0 ⊂ X1 ⊂ . . . ⊂ Xj ⊂ . . . ⊂ H1(Ω).
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The finite element operator Aj : Xj → Xj defined by

(Aju, vj)L2 = a(u, vj) ∀vj ∈ Xj

deserves to be preconditioned for the actual efficient computation. Thus we are look-
ing for an easily invertible operator Bj : Xj → Xj such that Aj h Bj, i.e.,

(Aju, u)L2 h (Bju, u)L2 ∀u ∈ Xj.

Bramble, Pasciak and Xu [3] constructed the preconditioner

Bj = A0Q0 +
j∑

k=1

4k(Qk −Qk−1),

where Qk : L
2(Ω) → Xk are the L

2-orthogonal projections. They were originally able
to prove

1

j + 1
(Bju, u)L2 � (Aju, u)L2 � (j + 1) (Bju, u)L2 ∀u ∈ Xj .(1.1)

Their prove was based on the observation that

(Aku, u)L2 h 4k‖u‖2L2 ∀u ∈ (Qk −Qk−1)L
2(Ω),

which is a fairly easy consequence of the approximation property

‖u−Qku‖L2 � hk‖u‖H1 ∀u ∈ H1(Ω)(1.2)

and the inverse inequality

‖uk‖H1 � h−1
k ‖uk‖L2 ∀uk ∈ Xk.(1.3)

Oswald [10] was the first who observed a strong link of this method of precondi-
tioning to approximation theory, a link, which in fact immediately supplies a prove
for the optimal result

Aj h Bj .(1.4)

Since then several authors contributed to that result within one of the following two
respects: generalization or construction of more or less elementary proofs [2, 6, 7, 14,
15]. The aim of this paper is to clarify the link to approximation theory by making
available an easily accessible framework. Moreover it will turn out, that the main
ingredients of the proof are inequalities like (1.2) and (1.3).
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2. Approximation Spaces are Interpolation Spaces

The optimality result (1.4) would be a straightforward consequence of the following
norm equivalence with scaling exponent θ = 1:

‖u‖2H1 h ‖u‖2L2 +
∞∑
k=0

(
2kθEk(u)

)2 ∀u ∈ H1(Ω),(2.1)

where Ek(u) denotes the error of best approximation in L2(Ω)

Ek(u) = inf
vk∈Xk

‖u− vk‖L2 = ‖u−Qku‖L2.

We now ask the rather abstract question: Which sequences (Xj)j of nested finite-
dimensional subspaces of L2(Ω) allow for some scaling exponent θ such that the norm
equivalence (2.1) holds?

Rather than answering this question directly, we define Banach spaces Aθ ↪→ L2(Ω)
by the norms given as the right hand sides of (2.1),

‖u‖2Aθ h ‖u‖2L2 +
∞∑
k=0

(
2kθEk(u)

)2
.

These approximation spaces Aθ, which measure by θ how well their elements can be
approximated by the spaces (Xj)j, were introduced by Peetre [5, 11] in the early six-
ties and have been intensively studied in approximation theory since then. It should
be mentioned that the results, which will follow, had been known in a somewhat
different form to the Russian school around Nikol’skĭı as early as the fifties.

Our starting question reads now: Is there a θ such that Aθ = H1(Ω)? But exactly
this question is a key issue of approximation theory — it requires the characterization
of the approximation spaces through smoothness spaces like the Sobolev spaces. The
answer given by Peetre [5, 11] was a relation between the approximation spaces
Aθ and the interpolation spaces (L2(Ω), X)σ,2, where X is some “nice” space with
Xk ⊂ X ⊂ L2(Ω) for all k ≥ 0.

Theorem 1. Let α > 0. An approximation property (Jackson inequality) Jα, i.e.,

‖u−Qku‖L2 � 2−kα‖u‖X ∀k ≥ 0, u ∈ X,(2.2)

implies the embedding
(
L2(Ω), X

)
σ,2

↪→ Aσα 0 < σ < 1.

Let β > 0. An inverse inequality (Bernstein inequality) Bβ, i.e.,

‖uk‖X � 2kβ‖uk‖L2 ∀k ≥ 0, uk ∈ Xk,(2.3)
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implies the embedding

Aσβ ↪→
(
L2(Ω), X

)
σ,2

0 < σ < 1.

Remark 1. Note that a standard interpolation argument applied to the Jackson
inequality Jα for X and to the trivial estimate ‖u − Qku‖L2 � ‖u‖L2 would only
reveal an approximation property for the interpolation spaces

2kασ‖u−Qku‖L2 � ‖u‖(L2(Ω),X)σ,2 0 < σ < 1.(2.4)

This result would be considerably weaker than the assertion of Theorem 1, which
states that the right hand sides of (2.4) are in fact square summable as a sequence of
k.

If we use an appropriate method for the construction of the interpolation spaces
(L2(Ω), X)σ,2, the proof of Theorem 1 is utmost simple. We demonstrate this for the
first part concerning the Jackson inequality.

Proof. Fix some 0 < λ < 1. Using the discrete version of Peetre’s K-method of
interpolation [1, 5, 13] we get

‖u‖2(L2(Ω),X)σ,2
=

∑
k∈Z

(
λ−kσK(λk, u)

)2
.

The following estimates relate the K-functional with the error of best approximation
by using the Jackson inequality Jα: For all k ≥ 0

Ek(u) ≤ inf
v∈X

‖u−Qkv‖L2

≤ inf
v∈X

(‖u− v‖L2 + ‖v −Qkv‖L2)

� inf
v∈X

(
‖u− v‖L2 + 2−kα‖v‖X

)
=: K(2−kα, u).

Thus, by making the choice λ = 2−α, we end up with

‖u‖2(L2(Ω),X)σ,2
�

∞∑
k=0

(
2kσαEk(u)

)2
+ ‖u‖2L2 = ‖u‖2Aσα.

Let us note, that the discrete version of Peetre’s J-method of interpolation [1, 5, 13]
turns out to be appropriate for the proof of the second part of the Theorem.

Corollary 1. The approximation property is restricted by the inverse inequality, i.e.,
Jα and Bβ imply α ≤ β. For α = β we get the identification

Aσα =
(
L2(Ω), X

)
σ,2
, 0 < σ < 1.
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Proof. If Jα and Bβ hold, Theorem 1 givesAσβ ↪→ Aσα for 0 < σ < 1. This embedding
is equivalent to α ≤ β, as can easily be shown.

3. Application to Linear Finite Elements

In order to answer the question from the beginning of our consideration, Corollary
1 leads us to the following strategy: Choose X and 0 < σ < 1, such that

H1(Ω) =
(
L2(Ω), X

)
σ,2
.

In any case this requires that X is smoother than H1(Ω). Interpolation theory in
Sobolev spaces [13, 1] states forminimal smooth domains Ω (i.e., Ω allows a continuous
extension operator E : Hs(Ω) → Hs(R2) for all s ≥ 0), that

H1(Ω) =
(
L2(Ω), Hs(Ω)

)
1/s,2

∀ s > 1.

In our context it suffices to know, that a polygonal domain Ω without slits is minimal
smooth [12]. Now it turns out, that the finite element spaces fulfill

Xk ⊂ Hs(Ω) ⇐⇒ 0 ≤ s < 3/2.

For the following we fix some 1 < s = 1 + ε < 3/2 and we can apply Theorem 1 —
as soon as we have established an approximation property and an inverse inequality
in H1+ε. We obtain the approximation property Js, i.e.,

‖u−Qku‖L2 � hs
k‖u‖Hs � 2−ks‖u‖Hs ∀u ∈ Hs(Ω),(3.1)

by simple interpolation between the situations s = 0 and s = 2 as indicated in
Remark 1. A little bit deeper lies the inverse inequality Bs, i.e.,

‖uk‖Hs � h−s
k ‖uk‖L2 � 2ks‖uk‖L2 ∀uk ∈ Xk,(3.2)

which can be proved using the Sobolev-Slobodeckĭı norm

‖u‖2H1+ε h ‖u‖2H1 +
∫
Ω

∫
Ω

|∇u(x)−∇u(y)|2
|x− y|2+2ε

dx dy

of Hs(Ω), cf. [4]. Thus we have α = β = 1/σ and Corollary 1 states the equivalence,
which makes the BPX preconditioner optimal:

Theorem 2. For linear finite elements the equivalence A1 = H1(Ω) holds.

Remark 2. This Theorem and the more general equivalence “approximation space
= smoothness space”, i.e, As = Hs(Ω) for s from some interval, holds generically
for a lot of sequences (Xj)j, like higher order finite elements, spectral methods and
wavelets. Details can be found in [8, 9].
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Our considerations show, that it is reasonable to view the approximation property
(3.1) and the inverse inequality (3.2) in H1+ε(Ω), ε > 0 arbitrary small, as the “chief
cause” for the optimality of BPX. In the original proof of the weaker result (1.1) the
corresponding estimates in H1(Ω) have been the working ground. Thus, the essential
step is, to use the fact that linear finite elements are a little bit smoother than one
usually thinks. This essential step is hidden in one way or another in all proofs
[2, 6, 7, 10, 14, 15] of the optimality of the BPX preconditioner.
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1. J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin, Hei-
delberg, New York, 1976.

2. J. H. Bramble and J. E. Pasciak, New estimates for multilevel algorithms including the V-cycle,
Math. Comp. 60 (1993), 447–471.

3. J. H. Bramble, J. E. Pasciak, and J. Xu, Parallel multilevel preconditioners, Math. Comp. 55
(1990), 1–22.

4. , The analysis of multigrid algorithms with non-imbedded spaces or non-inherited
quadratic forms, Math. Comp. 56 (1991), 1–34.

5. P. L. Butzer and K. Scherer, Approximationsprozesse und Interpolationsmethoden, Bibli-
ographisches Institut, Mannheim, 1968.

6. F. A. Bornemann and H. Yserentant, A basic norm equivalence for the theory of multilevel
methods, Numer. Math. 64 (1993), 455–476.

7. W. Dahmen and A. Kunoth, Multilevel preconditioning, Numer. Math. 63 (1992), 315–344.
8. R. DeVore and G. G. Lorentz, Constructive Approximation. I, Springer-Verlag, Berlin, Heidel-

berg, New York, 1993.
9. P. Oswald, On function spaces related to finite element approximation theory, Z. Anal. Anwend.

9 (1990), 43–64
10. P. Oswald, On discrete norm estimates related to multilevel preconditioners in the finite element

method, Proc. Int. Conf. Constructive Theory of Functions, Varna, 1991.
11. J. Peetre, A Theory of Interpolation in Normed Spaces, Notes Universidade de Brasilia, 1963.
12. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univer-

sity Press, Princeton, 1970.
13. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Pub.

Comp., Amsterdam, New York, Oxford, 1978.
14. J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Review 34

(1992), 581–613.
15. X. Zhang, Multilevel Schwarz methods, Numer. Math. 63 (1992), 521–539.

Fachbereich Mathematik, Freie Universität Berlin, Germany
Current address: Konrad-Zuse-Zentrum Berlin, Heilbronner Str. 10, 10711 Berlin, Germany
E-mail address: bornemann@sc.zib-berlin.de

6


