
The Steiner Tree Packing Problem

in VLSI�Design

M. Grötschel A. Martin R. Weismantel

Abstract

In this paper we describe several versions of the routing problem aris-
ing in VLSI design and indicate how the Steiner tree packing problem can
be used to model these problems mathematically. We focus on switch-
box routing problems and provide integer programming formulations for
routing in the knock-knee and in the Manhattan model. We give a brief
sketch of cutting plane algorithms that we developed and implemented for
these two models. We report on computational experiments using stan-
dard test instances. Our codes are able to determine optimum solutions in
most cases, and in particular, we can show that some of the instances have
no feasible solution if Manhattan routing is used instead of knock-knee
routing.

� Introduction

The design of electronic circuits is a hierarchical process consisting of several
phases. The beginning is a description of the task the circuit to be designed must
perform. Such a task can be viewed as a complex logical function that consists
of many elementary logic operations. Usually several of these elementary logic
operations are combined into a logical unit (for example an adder). In the logical
design phase chip designers specify which of these predefined logical units are to
be used, and determine which of the chosen logical units must be connected by
wires so that the chip performs in the way it should.

The logical units are also called cells. Each cell is characterized by its width,
its height, its contact points (so-called terminals) and its electric properties. A
net is a set of terminals that must be connected by a wire (as specified in the
logical design phase). The list of cells and the list of nets are the input of the
second phase, the physical design. Here, the task is to assign the cells to a
certain rectangular area and connect (route) the nets by wires. The physical
design problem is, of course, more complicated than the sketch above suggests,
since certain design rules have to be taken into account, an objective function is
to be minimized, etc. The design rules strongly depend on the given layout style

1

and specify, for instance, the distance two nets must stay apart, whether certain
cells are preassigned to certain locations and so on. This applies especially to the
objective function. Usually, the primary goal is to minimize the whole area of
the chip or, if the chip area is fixed in advance, to guarantee routability, i. e., to
solve the problem of placing the cells on the chip such that there exists a feasible
solution to the routing problem.

However, routability can hardly be measured and expressed in terms of an ob-
jective function. Thus, minimizing the total length of all routes is very often
used instead. Another reason for minimizing the routing length is that an elec-
tronic circuit with small routing length usually needs little area on the whole.
Thus, minimizing the overall area is (somehow) implicitly taken into account by
minimizing the routing length.

Any reasonably precise version of the physical design problem is NP-hard, even
very simple models are. Moreover, most real world problem instances involve
several thousands of cells and nets, so that today’s algorithmic knowledge makes
it very improbable that they can be solved to optimality. Therefore, the phys-
ical design problem is (heuristically) decomposed into subproblems. The first
subproblem typically consists of finding appropriate locations for the cells (place-
ment problem). Subsequently, the nets must be realized by wiring the appro-
priate terminals (routing problem) and finally, a compaction step is performed if
required. This process is iterated with different parameters if the final result is
not satisfactory.

In this paper we will focus on the routing problem in more detail. We survey in
Section 2 different types of routing models used in practice and relate them to
the packing of Steiner trees in certain graphs. In Section 3 we state an integer
programming formulation of the Steiner tree packing problem and describe sev-
eral classes of valid and facet-defining inequalities for the associated Steiner tree
packing polyhedron. Specializing this model to switchbox routing we distinguish
between routing in knock-knee and Manhattan style by using an additional class
of inequalities (the Manhattan inequalities) to meet the requirements of the latter
routing style.
In Section 4 we report on our computational experiments with a cutting plane
algorithm that we designed and implemented for switchbox routing in Manhattan
style; and we compare these in Section 5 with our results for the same instances
when knock-knees are allowed.

2

� The Routing Problem in VLSI Design� A

Short Survey

We assume in this section that the placement problem has been solved. We seek
for a solution of the routing problem. In technical terms, we are given a list of
nets. Each net consists of a set of terminals. The terminals specify the points
at which wires have to contact the cells. The routing problem is to connect the
nets by wires on the routing area subject to certain technical side constraints. As
mentioned above, the objective usually is to minimize the overall wiring length.

We say a net is routed if its terminals are connected by (electric) wires. We speak
of a k-terminal net, if k is the number of terminals of the net. If k > 2, the term
multiterminal net is often used. In the following we will not distinguish between
a net and the route of a net unless this may lead to confusion.

The routing itself takes place on so-called layers. If some net changes a layer, a
hole, called via, must be “drilled”. Usually, each layer is subdivided into hori-
zontal and vertical lines, so-called tracks to which the wires of the nets must be
assigned. If there does not exist such a division into tracks we speak of a free or
grid-free routing. Further side constraints include, for instance, the distance two
wires must stay apart from each other, how long two different nets may run on
top of each other on two different layers, or that some wires must not exceed a
certain length.

In practice, the routing problem itself is also decomposed because of its inherent
complexity and large scale. In the global routing phase the homotopy of the nets
is determined, i. e., it is determined how the wires “maneuver around the cells”.
Thereafter, in the detailed routing phase the wires are assigned to the layers and
tracks according to the homotopy specified in the global routing step.

The routing problems arising in both phases are usually expressed in graph-
theoretic terminology. To describe these models precisely, we introduce some
graphtheoretic notation.

We denote graphs by G = (V,E), where V is the node set and E the edge set.
All graphs we consider are undirected and finite. For a given edge set F ⊆ E,
we denote by V (F) all nodes that are incident to an edge in F . We call a
sequence of nodes and edges K = (v0, e1, v1, e2, . . . , vl−1, el, vl), where each edge
ei is incident with the nodes vi−1 and vi for i = 1, . . . , l, and where the edges
are pairwise different and the nodes distinct (except possibly v0 and vl), a path
from v0 to vl, if v0 �= vl, and a cycle, if v0 = vl and l ≥ 2. We call a graph G
a complete rectangular h × b grid graph, if it can be embedded in the plane by
h horizontal lines and b vertical lines such that the nodes of V are represented
by the intersections of the lines and the edges are represented by the connections
of the intersections. A grid graph is a graph that is obtained from a complete
rectangular grid graph by deleting some edges and removing isolated nodes (i. e.,

3

nodes that are not incident to any edge).

Let G = (V,E) be a graph and T ⊆ V a node set of G. An edge set S is called
a Steiner tree for T in G, if the subgraph (V (S), S) contains a path from s to t
for all pairs of nodes s, t ∈ T, s �= t. Following the notation in VLSI-design, we
call T a terminal set or a net and each t ∈ T a terminal. “Routing some net T in
a graph G” means in graphtheoretic terms, “finding a Steiner tree for T in G”.
We will use both phrases in the following.

Note that our definition of a Steiner tree differs from the standard terminology
used in the literature. A Steiner tree is usually supposed to be a tree. For our
purposes, however, the above definition is more convenient for our polyhedral
investigations. A Steiner tree that is a tree and whose leaves are terminals is called
edge-minimal. Observe that, since objective functions in practice are positive,
every shortest Steiner tree is edge-minimal.

There are many ways to model the global routing problem as a graphtheoretic
problem. Usually, the routing area is subdivided into subareas. This is done in a
way such that the resulting subareas have certain special properties, for instance,
they contain no holes (i. e., there are no cells located within the areas) or they
have simple shapes (for example, rectangles). These subareas are represented by
the nodes or the edges of some graph. We describe the node representation. Here,
two nodes are connected by an edge, if the corresponding subareas are adjacent.
Additionally, a capacity is assigned to an edge limiting the number of nets that
may run between the subareas associated with the two endnodes of this edge.
The weight of an edge corresponds to the distance between the two midpoints of
the according subareas. Every terminal of a net is assigned to that node, whose
corresponding subarea contains the terminal or is closest to the position of the
terminal. The global routing problem consists in routing all nets in the graph
contructed this way (or in graphtheoretic terms, finding a Steiner tree for each
terminal set) such that the capacity constraints are satisfied and the total wiring
length (that is the sum of the weights of the Steiner trees) is as small as possible.

After having solved the global routing problem every subarea that corresponds
to a node in the global routing graph must be routed in detail. The number of
different detailed routing models which are studied in the literature or which are
used in practice is tremendous. Usually, the problems coming up are formulated
in a grid graph. We restrict ourselves to this case, too. The detailed routing
problems can be classified according to two criteria (see 1. and 2. below) which
are independent of each other. We introduce these classifications now and discuss
o few important subcases. For a more complete and detailed treatment we refer
to [L90].

1. The detailed routing problems are distinguished according to the shape of
the routing area and the locations of the terminals. As mentioned before,

4

the nodes in the global routing graph represent subareas of the whole rout-
ing area. Depending on the subdivision, different shapes of detailed routing
areas arise. At the end of the global routing phase it is known which nets
go across which subareas. Suppose, some net crosses the border of two
adjacent subareas. Of course, from the information of the global routing
solution it is not clear at which point the net meets the border. Each
such crossing point is interpreted as a “pseudo”-terminal. In order to solve
the routing problems for each of these subareas independently, locations for
the pseudo-terminals must be determined. This usually is done by applying
heuristics. Concerning the shape of the routing area and the locations of
the terminals the following detailed routing models are of particular interest
in practice.

(a) (Channel routing) Here, we are given a complete rectangular grid
graph. The terminals of the nets are exclusively located on the lower
and upper border (see Figure 1). It is possible to vary the height (=
number of horizontal tracks) of the channel. Hence, the size of the
routing area is not fixed in advance.

17 16 4 7 6 5 9 9 12 15 15

18151415138967

1

1211 10 2 4 5 13 17 2 1 16 1

18 101417111082 23

3

Figure 1:

(b) (Switchbox routing) Again, we are given a complete rectangular grid
graph. The terminals may be located on all four sides of the grid graph
(see Figure 2). Thus, the size of the routing area is fixed.

(c) (General routing) In this case, an arbitrary grid graph is considered.
The terminals are located at any hole of the grid (see Figure 3). Here,
the homotopy of the nets must be taken into account (which is trivial
in (a) and (b)).

2. The detailed routing problems are distinguished by the extent to which the
layers are taken into account when the wires of the nets are assigned to the
tracks.

5

21

24 17 16 4 7 6 5 9 8 9 12 15 24 15 10 23 1 22 18
18

22

2

23

18

21

11

20

18

20

24

19

3

1518119212015141513859671242
15

14

13

11

24

1

9

2

17

12

16

4

10

3

Figure 2:

21

24 16 4 6 9 8 9 15 10 1 22 18
18

22

2

23

11

20

20

19

3

1518212015141589671242
15

14

11

1

2

16

4

10

7 24 15

21

18

13

17

12

5

13

24

18

9

24

19

1

3

5

17

12 23

Figure 3:

(a) (Multiple layer model) Given a k-dimensional grid graph (that is a
graph obtained by stacking k copies of a grid graph on top of each other
and connecting corresponding nodes by perpendicular lines), where k
denotes the number of layers. The nets have to be routed in a node
disjoint fashion. The multiple layer model is well suited to reflect
reality. The disadvantage is that, in general, the resulting graphs are
very large.

(b) (Manhattan model) Given some (planar) grid graph. The nets must be
routed in an edge disjoint fashion with the additional restriction that
nets that meet at some node are not allowed to bend at this node, i. e.,
so-called knock-knees (cf. Figure 4) are not allowed. This restriction
guarantees that the resulting routing can be laid out on two layers at
the possible expense of causing long detours.

(c) (Knock-knee model) Again, some (planar) grid graph is given and the
task is to find an edge disjoint routing of the nets. In this model knock-
knees are possible. Very frequently, the wiring length of a solution in
this case is smaller than in the Manhattan model. The main drawback
is that the assignment to layers is neglected. Brady and Brown [BB84]

6

Figure 4:

have designed an algorithm that guarantees that any solution in this
model can be routed on four layers. It was shown in [Li84] that it is
NP-complete to decide whether a realization on three layers is possible.

The models coming out of these two kinds of classifications can be combined in
all possible ways. For example, combining 1 (b) and 2 (c) we obtain a switchbox
routing problem in the knock-knee model, or in graphtheoretic terms, the prob-
lem of finding edge disjoint Steiner trees in a complete rectangular grid graph,
where all terminals are located on the outer face. Moreover, depending on the
model, different objective functions are considered. Possible objective functions
are, for example, minimizing the routing area or minimizing the routing length.
Minimizing the routing area is typically the objective in channel routing prob-
lems, whereas the routing length is usually minimized, if the routing area is fixed
in advance.

It is not surprising that most of these routing problems are NP-hard. For ex-
ample, the problem of finding a (with respect to some weighting of the edges)
minimum Steiner tree in a graph G for some terminal set T is NP-hard (see
[K72], [GJ77]). Even the problem of deciding whether there exists a feasible so-
lution for the switchbox routing problem in the knock-knee model ([S87]) or in
the Manhattan model ([Sz85]), respectively, is NP-complete. In the next sec-
tion we present a model that is applicable to the global routing problem and
the switchbox routing problem in the knock-knee model and Manhattan model,
respectively, and attack it from a polyhedral point of view.

� A Polyhedral Approach to The Knock Knee

and Manhattan Routing Model

To get started let us formally introduce the Steiner tree packing problem.

Problem 3.1 (The weighted Steiner tree packing problem)

Instance:

7

A graph G = (V,E) with positive, integer capacities ce ∈ IN and nonnegative
weights we ∈ IR+, e ∈ E.
A net list N = {T1, . . . , TN}, N ≥ 1, with Tk ⊆ V for all k = 1, . . . , N .

Problem:
Find edge sets S1, . . . , SN ⊆ E such that

(i) Sk is a Steiner tree in G for Tk for all k = 1, . . . , N ,

(ii)
N∑

k=1

|Sk ∩ {e}| ≤ ce for all e ∈ E,

(iii)
N∑

k=1

∑

e∈Sk

we is minimal.

If requirement (iii) in Problem 3.1 is omitted we call the corresponding problem
the Steiner tree packing problem without the prefix “weighted”. We call an N -
tupel (S1, . . . , SN) of edge sets a Steiner tree packing or packing of Steiner trees
if the sets S1, . . . , SN statisfy (i) and (ii) of Problem 3.1. We will refer to an
instance of the weighted Steiner tree packing problem by (G,N , c, w) and to an
instance of the Steiner tree packing problem by (G,N , c).

We assume throughout the paper that every terminal set of the net list N has at
least cardinality two and that N ≥ 1.

Many routing problems introduced in the previous section can be formulated as
Steiner tree packing problems in certain graphs with, possibly, some additional
constraints reflecting the design rules. In this section we focus in detail on two
such cases

• the switchbox routing problem in the knock-knee style and

• the switchbox routing problem in the Manhattan style.

We start with modelling the switchbox routing problem in the knock-knee style
as an integer program. Before doing so let us fix some further notation.

We are given a graph G = (V,E) with capacities ce ∈ IN for all e ∈ E and a
net list N = {T1, . . . , TN}, N ≥ 1. Let IRN×E denote the N · |E| – dimensional
vector space IRE× . . .× IRE , where the components of each vector x ∈ IRN×E are
indexed by xk

e for k ∈ {1, . . . , N}, e ∈ E. Moreover, for a vector x ∈ IRN×E and
k ∈ {1, . . . , N}, we denote by xk ∈ IRE the vector (xk

e)e∈E , and, for notational
simplicity, we write x = (x1, . . . , xN) instead of x = ((x1)T , . . . , (xN)T)T . For an
edge set F ⊆ E, χF denotes the incidence vector of F . The incidence vector of a
Steiner tree packing (S1, . . . , SN) is denoted by (χS1, . . . , χSN).

With every e ∈ E and k ∈ {1, . . . , N} we associate a Boolean variable xk
e with

the interpretation xk
e = 1 if edge e is used to connect terminal set Tk and xk

e = 0
otherwise. Then it is easy to see that each incidence vector of a Steiner tree
packing satisfies the constraints (3.2) (i) – (iv), and vice versa, each vector x ∈

8

IRN×E satisfying (3.2) (i) – (iv) is the incidence vector of a Steiner tree packing.
Hence, (3.2) is an integer programming formulation for the weighted Steiner tree
packing problem.

(3.2)

min
N∑

k=1

∑

e∈E
wex

k
e

(i)
∑

e∈δ(W)

xk
e ≥ 1, for all W ⊂ V, W ∩ Tk �= ∅, (V \W) ∩ Tk �= ∅,

k = 1, . . . , N.

(ii)
N∑

k=1

xk
e ≤ ce, for all e ∈ E.

(iii) 0 ≤ xk
e ≤ 1, for all e ∈ E, k = 1, . . . , N.

(iv) xk
e ∈ {0, 1}, for all e ∈ E, k = 1, . . . , N.

The inequalities (3.2) (i) are called Steiner cut inequalities, inequalities (3.2) (ii)
are called capacity inequalities and the ones in (3.2) (iii) trivial inequalities.

We define the Steiner tree packing polyhedron STP (G,N , c) as the convex hull
of all incidence vectors of Steiner tree packings, i.e.,

STP (G,N , c) := conv {x ∈ IRN×E | x satisfies (3.2) (i) – (iv)}.

If G is a complete rectangular grid graph, then every edge-minimal solution of
(3.2) is obviously a switchbox routing in the knock knee style, and vice versa.

To model the Manhattan routing style, where knock-knees are not allowed, we
have to introduce additional inequalities that make it impossible for two Steiner
trees to bend at the same node.

Let G be a grid graph and uv, vw be two consecutive horizontal (or vertical)
edges. Let N1, N2 be a partition of {1, . . . , N}. Then, the constraint

(3.3)
∑

k∈N1

xk
uv +

∑

k∈N2

xk
vw ≤ 1

is called Manhattan inequality.

Again it is easy to see that if G is a complete rectangular grid graph, then every
edge-minimal packing of Steiner trees that satisfies, for every pair of consecutive
edges and for every 2-partition of the set of nets, the corresponding Manhattan
inequality (3.3) and the constraints (3.2) (i) – (iv) corresponds to a feasible
switchbox routing in the Manhattan style. Conversely, the incidence vector of a
switchbox routing in Manhattan style satisfies the inequalities (3.2) (i) – (iv) and
all Manhattan inequalities.

9

We define the Steiner tree packing polyhedron in Manhattan style STPM (G,N , c)
as

STPM(G,N , c) := conv{x ∈ STP (G,N , c) | x satisfies all inequalities (3.3)}.

In the remainder of this section we present some inequalities that are valid for
STP (G,N , c). Since STPM (G,N , c) ⊆ STP (G,N , c), every inequality that
is valid for STP (G,N , c) is valid for STPM (G,N , c) as well. For a detailed
discussion under which conditions some of these inequalities define facets of
STP (G,N , c), we refer to [GMW92a].

The Steiner Partition Inequalities

Let a graph G = (V,E) and a set of terminals T ⊆ V, |T | ≥ 2 be given. A
partition V1, . . . , Vp, p ≥ 2, of V is called a Steiner partition (with respect to T)
if Vi ∩ T �= ∅ for i = 1, . . . , p. The inequality

x(δ(V1, . . . , Vp)) ≥ p− 1

induced by a Steiner partition V1, . . . , Vp is called a Steiner partition inequality.
(Note that a Steiner cut inequality is the special case, where p = 2.) Obviously,
each Steiner partition inequality is valid for STP (G, {T}, 1I) (cf. [GM90]).

The Alternating Cycle Inequalities

Let G = (V,E) be a graph and N = {T1, T2} a net list. We call a cycle F in G
an alternating cycle with respect to T1, T2, if F ⊆ [T1 : T2] and V (F)∩T1∩T2 = ∅
(see Figure 5). Moreover, let F1 ⊆ E(T2) and F2 ⊆ E(T1) be two sets of diagonals
of the alternating cycle F with respect to T1, T2. The inequality

(χE\(F∪F1), χE\(F∪F2))Tx ≥ 1
2
|F | − 1

is called an alternating cycle inequality.

T

T

1

2

1

2

F

F

F

Figure 5:

It is not difficult to see that the basic form of an alternating cycle inequality, i. e.,
F1 = F2 = ∅, is valid for STP (G,N , 1I), but in general, it is not facet-defining.

10

The sets F1 and F2 are used to strengthen the basic form; in fact, choosing
them appropriately we can obtain valid and even facet-defining inequalities (see
[GMW92a] for details).

The next type of inequalities to be considered here are the so-called grid inequal-
ities.

The Grid Inequalities

Let G = (V,E) be a graph and N = {T1, T2} a net list. Furthermore, let Ĝ =
(V̂ , Ê) be a subgraph of G such that Ĝ is a complete rectangular h×2 grid graph
with h ≥ 3. Assume that the nodes of V are numbered such that V̂ = {(i, j) |
i = 1, . . . , h, j = 1, 2}. Moreover, let (1, 1), (h, 2) ∈ T1 and (1, 2), (h, 1) ∈ T2. We
call the inequality

(χE\Ê, χE\Ê)Tx ≥ 1

an h× 2 grid inequality (see Figure 6). In [GMW92a] we derived (very technical)
conditions for an h × 2 grid inequality to define a facet. The following theorem
characterizes the conditions under which an h× 2 grid inequality is valid.

T

T

1

2

1

2

F

F

F

Figure 6:

Theorem 3.4 Let Ĝ = (V̂ , Ê) be a complete rectangular h × 2 grid graph with
h ≥ 3. Let N = {T1, T2} be a net list where T1 = {(1, 1), (h, 2)} and T2 =
{(1, 2), (h, 1)}. Furthermore, let G = (V,E) be a graph with V̂ ⊆ V, Ê ⊆ E such
that the following set of horizontal edges {uv ∈ Ê | there exists an i ∈ {1, . . . , h}
with u = (i, 1) and v = (i, 2)} is a cut in G. Set F := Ê and let F1, F2 ⊂ E \ F ,
then the inequality

(χE\(F∪F1), χE\(F∪F2))Tx ≥ 1

is valid for STP (G,N , 1I) if and only if F1 and F2 satisfy the following properties:

(i) For all u, v ∈ V (F), u �= v there does not exist a path from u to v in (V, Fk)
for k = 1, 2.

(ii) F1 and F2 are maximal with respect to property (i).

11

The Critical Cut Inequalities

Finally, we recall the so-called critical cut inequalities introduced in [GMW92a].
Let G = (V,E) be a graph with edge capacities ce ∈ IN, e ∈ E. Moreover, let
N = {T1, . . . , TN} be a net list. For a node set W ⊆ V , we define S(W) := {k ∈
{1, . . . , N} | Tk ∩W �= ∅, Tk ∩ (V \W) �= ∅}. We call a cut induced by a node
set W critical for (G,N , c) if s(W) := c(δ(W))− |S(W)| ≤ 1, i. e., if the sum of
the capacities of the edges leaving W exceeds the number of nets that must use
at least one edge leaving W by at most 1.

Suppose that V1, V2, V3 is a partition of V such that δ(V1) is a critical cut. More-
over, assume that, for some j ∈ {1, . . . , N}, Tj ∩ V1 = ∅ and Tj ∩ Vi �= ∅ for
i = 2, 3. Then, the inequality

xj([V2 : V3]) ≥ 1

is called a critical cut inequality with respect to Tj.

It is easy to see that the critical cut inequality with resepct to Tj is valid for
STP (G,N , c).

� Computational Results for the Manhattan

Model

In this section we present the computational results we obtained with our cutting
plane algorithm for the switchbox routing problem in Manhattan mode. The
Steiner partition inequalities, the alternating cycle inequalities, the grid and the
critical cut inequalities together with the Manhattan inequalities form the basis
of our cutting plane algorithm.
Our code is an extension and modification of the cutting plane algorithm for
switchbox routing in knock-knee style that we described in [GMW92b]. We could
use all separation routines for the Steiner partition inequalities, the alternating
cycle inequalities, the grid and the critical cut inequalities, all special features
(preprocessing, . . .) and implementational tricks (perturbation, . . .) developed
for the routing problem in the knock-knee model. In addition, we designed and
implemented a separation routine for the Manhattan inequalities (3.3), and some
(minor) changes were needed or useful to apply the code to Manhattan routing
problems.

Our procedure for separating Manhattan inequalities works as follows. Let us
assume that that the capacity inequalities are satisfied (of course, this can be
checked in linear time). Let uv ∈ E and vw ∈ E be two horizontal edges that are
incident to node v ∈ V (the same arguments apply to the case of two consecutive
vertical edges). For every net k ∈ {1, . . . , N}, we determine max{xk

uv, x
k
vw}. Set

N1 := {k ∈ {1, . . . , N} | xk
uv > xk

vw} and N2 := {k ∈ {1, . . . , N} | xk
uv ≤ xk

vw}. If

12

N1 = ∅ or N2 = ∅, we can conclude that no violated Manhatten inequality exists,
since the capacity inequalities are all satisfied. Otherwise, N1, N2 is a partition
of {1, . . . , N} and the inequality

∑
k∈N1

xk
uv +

∑
k∈N2

xk
vw ≤ 1 is a Manhattan

inequality with maximal left hand side. This procedure obviously solves the
separation problem for the class of Manhattan inequalities.

We also modified the LP-based primal heuristic described in [GMW92b] to guar-
antee that only Steiner tree packings are feasible that contain no knock-knees.
We omit the technical details here.

Moreover, we exploit the fact that nets must not bend against each other in order
to fix variables at the initial phase of the code. If two terminals of different nets k
and l are located at the same corner v of the grid graph, i.e., v ∈ Tk, v ∈ Tl, then
the input data specifies which of the two edges that are incident to v is used by
which of the two nets. For example, in Figure 7 (a) edge vu must be used by net
k and edge vw must be used by net l. Since the capacities of the edges are equal
to one, all variables xi

vu (i ∈ {1, . . . , N} \ {l}) and xi
vw (i ∈ {1, . . . , N} \ {k}) can

be fixed to zero.

w

u v t

e

k
l

(b)(a)

Figure 7:

Furthermore, suppose a terminal t of net k is not located at any corner of the grid
graph. Then the edge e that is incident to t but not included in the outer face cycle
cannot be used by any net, except k. Hence, the variables xi

e, i ∈ {1, . . . , N}\{k},
can be fixed to zero. This situation is illustrated in Figure 7 (b).
Many variables can be fixed by using critical cuts and logical implications derived
from them. How these can be found is described in [GMW92b].

The problem instances to which we applied our code are taken from VLSI lit-
erature. Table 1 summarizes the data. Column 1 presents the name used in
the literature. In column 2 and 3 the height and width of the underlying grid
graph is given. Column 4 contains the number of nets. Columns 5 to 9 provide
information about the distribution of the nets; more precisely, column 5 gives
the number of 2-terminal nets, column 6 gives the number of 3-terminal nets and
so on. Finally, the last column states the reference to the paper the example is
taken from.

The standard input format for switchbox routing problems used in the literature

13

Example h b N Distribution of the Nets Ref.
2 3 4 5 6

difficult switchbox 15 23 24 15 3 4 1 1 [BP83]

more difficult 15 22 24 15 3 5 1 [CH88]
switchbox

terminal intensive 16 23 24 8 7 5 4 [Lu85]
switchbox

dense switchbox 17 15 19 3 11 5 [Lu85]

augmented dense 18 16 19 3 11 5 [Lu85]
switchbox

modified dense 17 16 19 3 11 5 [CH88]
switchbox

pedagogical switchbox 16 15 22 14 4 4 [CH88]

Table 1:

differs slightly from the representation in this paper. The input graph in the
literature is obtained from a complete rectangular grid graph by removing the
outer cycle, see Figure 8 (a). Hence, every terminal is incident to a unique edge,
and obviously, every Steiner tree must contain this edge. It is easy to see that
by contracting all pending edges an equivalent problem is obtained, see Figure
8 (b). The graph resulting this way is a complete rectangular grid graph with
terminals on the outer face. This instance is the input to our problem.

1 3 1 2

6

1

2

4

5

3

1

2

4

5

1 2 4 5 6

6,1 3 1 2,3

5,1 2 4 6,55

4

2

1 1

2

4

(a) (b)

Figure 8:

In Table 2 we present the computational results we have obtained with our branch
and cut algorithm. In Column 2 the objective function value of the best feasible
solution we found is shown. The entries in Column 3 correspond to the objective

14

function values of the linear program when no further violated constraints are
found, i. e., when branching is performed for the first time. These values are
obviously lower bounds for the whole problem. Column 4 contains the percental
derivation of the best solution from the lower bound. Column 5 (resp. 6) gives the
number of cutting plane iterations (resp. the number of nodes in the branching
tree). Finally, the last column reports on the running times. The values are
stated in minutes obtained on a SUN 4/50.

Example Best Sol. LP Value Gap Iter. B & C CPU-Time

difficult switchbox 469 469 0.0% 167 3 3452:55

more difficult 461 461 0.0% 124 5 3540:14
switchbox

terminal intensive 537 537 0.0% 29 1 480:18
switchbox

dense switchbox - ∞ - 20 1 122:29

augmented dense 469 469 0.0% 30 1 583:50
switchbox

modified dense - ∞ - 48 1 686:27
switchbox

pedagogical 343 341 0.6% 615 7 5230:35
switchbox

Table 2:

For all instances we could either find an optimal solution or prove that the prob-
lem is infeasible. The latter situation occured in the two cases “dense switchbox”
and “modified dense switchbox”. To our knowledge, it was up to now open
whether there exists a packing of Steiner trees in the Manhattan model for these
instances. Actually, the two examples “modified dense switchbox” and “aug-
mented dense switchbox” are extensions of the problem “dense switchbox” in
which additonal tracks are added (“augmented dense switchbox” has an addi-
tional vertical track on the right and “modified dense switchbox” has an addi-
tional vertical track near the middle and an additional horizontal track at the
bottom). In fact, these modifications have been introduced, because no rout-
ing algorithm could find a feasible solution for “dense switchbox” in any routing
style. Whereas a Manhattan routing is known for the problem “augmented dense
switchbox”, the heuristics described in literature were unable to find one for
“modified dense switchbox”. Our algorithm yields a mathematical proof that,

15

indeed, no routing routine can ever be successful for the latter example.

Second, the results show that except for the example “pedagogical switchbox”
the objective function value of an optimal solution, provided it exists, was found
without branching. The optimal LP-solution was, however, fractional and in two
cases it took a few branching steps to find a feasible solution with the same value.
Only for the test instance “pedagogical switchbox” the objective function value
of the root LP differed from the optimal objective function value by 0.6%. This
gap was closed by applying the enumerative phase of our code.
In all these cases the number of branch and cut nodes needed to solve the problems
is very small (below 10). This indicates that the cutting planes we use as well as
the corresponding separation routines perform quite well at least for the case of
switchbox routing problems in Manhattan style.
Of course, there is a prize to pay: the high running times. The reason for that is
that we aimed at finding an optimal solution or proving that no solution exists
at all. If we just look at the time (measured in minutes) after which the lower
bound deviates by at most 5, 2, 1 or 0 percent from the optimal value, the results
look much more friendly. Table 3 shows in particular that in all these instances
for which a feasible solution exists, the lower bound deviates at most 5% from
the optimal objective function value within 4 : 11 minutes.

Example 5% 2% 1% 0%

difficult switchbox 2:48 54:59 248:02 1383:06

more difficult 2:35 35:20 268:43 1471:21
switchbox

terminal intensive 4:11 26:52 99:48 343:00
switchbox

augmented dense 1:38 1:38 146:13 583:50
switchbox

pedagogical switchbox 2:15 84:19 199:38 5230:35

Table 3:

� Knock Knee Versus Manhattan� A Compar�

ison

From a practical point of view a very interesting question with probably never
ending discussions is the question which model should be prefered: the knock-knee

16

model or the Manhattan model. The theory says that in the knock-knee model
two layers may not suffice, whereas in the Manhattan model they do. On the other
hand, one can expect that the wiring length that is needed when Steiner trees are
packed in the knock-knee model is smaller than in case of the Manhattan model.
But, does the knock-knee model substantially provide shorter wiring lengths? We
have tried to answer these questions for the problem instances introduced in the
last section. In [GMW92b] we report in detail on our computaional experiences
for the knock-knee model. The best lower and upper bounds we have obtained
are summarized in Columns 2 and 3 of Table 4. We are able to solve all problem
instances to optimality except the examples “dense switchbox” and “augmented
dense switchbox”. For comparison, the corresponding results for the Manhattan
model are shown in Columns 4 and 5.

Example Knock-knee Model Manhattan Model
lower bound upper bound lower bound upper bound

difficult switchbox 464 464 469 469

more difficult 452 452 461 461
switchbox

terminal intensive 536 537 537 537
switchbox

dense switchbox 438 441 ∞ -

augmented dense 467 469 469 469
switchbox

modified dense 452 452 ∞ -
switchbox

pedagogical 331 331 341 343
switchbox

Table 4:

The results are quite different for different instances. For two of the examples
the wiring length in the Manhattan model is just the same as in the knock-knee
model though the solutions reported in [GMW92a] have knock-knees indeed (for
pictures of the solutions, see [M92]). For three other problem instances the wiring
length in the Manhattan model exceeds that in the knock-knee model by a small
amount (for “difficult switchbox” by 5 (= 1.1%), for “more difficult switchbox”
by 9 (= 2.0%) and for “pedagogical switchbox” by 12 (= 3.6%)). Of course,
the shorter lengths in the knock-knee model must be paid by additional layers.

17

Since the percental increase in length is quite small one may tend to prefer the
Manhattan model. However, for the examples “dense switchbox” and “modified
dense switchbox”, for which we could prove that there does not exist a feasible
solution in the Manhattan model, we are able to find feasible solutions in the
knock-knee model. This makes the knock-knee model more attractive.

Comparing the running times we observe similar phenomena (see Table 5). Some
examples are quite easy for the knock-knee model but rather hard for the Man-
hattan model, and vice versa, some are solved quite fast in the Manhattan model,
but are difficult in the knock-knee style. Based on these results we cannot decide
whether one model is superior towards the other. The issue of choosing the “cor-
rect” model must be left to practitioners and depends on the chosen fabrication
technology and the given design rules.

Example CPU Time (min:sec)
Knock Knee Manhattan

difficult switchbox 1564:15 3432:55

more difficult 983:23 3540:14
switchbox

terminal intensive 3755:44 480:18
switchbox

dense switchbox 1017:43 122:29

augmented dense 4561:41 583:50
switchbox

modified dense 387:03 686:27
switchbox

pedagogical 251:58 5230:35
switchbox

Table 5:

Finally, we have compared our results with those published in the literature. In
Table 6 we summarize the objective function values of the – to our knowledge –
best Manhattan solution reported in the literature (Column 2). No entry means
that we did not find any Manhattan solution for the corresponding problem
instance that was published in the literature. In Column 3 the objective function
value of the Manhattan solution that was obtained by our code is shown. The
values differ from those reported in Table 2 and Table 4, respectively, by the
total number of terminals of the original data due to preprocessing (see Section
4, page 13 for further explanations). For the instances “dense switchbox” and

18

“modified dense switchbox” no Manhattan solution exists which is expressed
by the symbol “∗” in Column 3. For the problem instance “augmented dense
switchbox” the solution given in [Lu85] is optimal, whereas for the two problems
“difficult switchbox” and “terminal intensive switchbox” the solution found by
our code improves the best solution reported in the literature by 2.2% and 2.7%,
respectively.

Example Best Manhattan Solution from
the Literature our Code

difficult switchbox 547 [JLSW90] 535

more difficult - 527
switchbox

terminal intensive 632 [Lu85] 615
switchbox

dense switchbox - ∗
augmented dense 529 [Lu85] 529
switchbox

modified dense - ∗
switchbox

pedagogical - 400
switchbox

Table 6:

Of course, there are further routing algorithms presented in the VLSI literature.
To our knowledge, all of them apply to the 2-layer model (i. e., the multiple layer
model on a 2-dimensional grid graph), see, for instance, [LHT88], [JS86], [CH88],
[JLSW90], [GH89], [TS88]. A comparison of the knock-knee or Manhattan model
to the 2-layer model is difficult. In the 2-layer model two different nets may run on
the same horizontal or vertical edges of the two layers. The number of consecutive
edges that are used on both layers is usually limited in order to avoid so-called
cross-talk problems. The value of this upper bound depends on the design rules
and technological constraints, but is mostly neglected by the routing algorithms.

The fact that the wires can run on top of each other along arbitrary lengths
may lead to routings with shorter wiring lengths than in the Manhattan model,
because a solution in the Manhattan model is feasible for the 2-layer model.
Nevertheless, we have compared our Manhattan solutions to the best 2-layer so-
lutions reported in the literature for the instances described in Section 4. It turns
out that for all examples for which a Manhattan solution exists, the objective

19

function values are at most 1% worse than the objective function values of the
corresponding 2-layer solutions. In fact, for the two examples “terminal intensive
switchbox” and “augmented dense switchbox” the Manhattan solution provides
the same wiring length, and for the switchbox “more difficult switchbox” we even
find a better solution. For one of two examples (“modified dense switchbox”) for
which a Manhattan solution does not exist, the wiring length of the best 2-layer
solution is by a value of 2 shorter than the one of the optimal knock-knee solution.
For the instance “dense switchbox”, we are not aware of any feasible routing that
can be realized on two layers.

References

[BB84] M. L. Brady, D. J. Brown: VLSI routing: Four layers suffice, in:
F. P. Preparata (ed.): “Advances in Computing Research”, Vol. 2:
VLSI theory, Jai Press, London, 1984, 245 – 258.

[BP83] M. Burstein, R. Pelavin: Hierarchical wire routing, IEEE Transac-
tions on Computer-Aided-Design CAD-2, 1983, 223 – 234.

[GJ77] M.R. Garey, D.S. Johnson: The rectilinear Steiner tree problem is
NP-complete, SIAM J. Appl. Math. 32, 1977, 826 – 834.

[CH88] J. P. Cohoon, P. L. Heck: BEAVER: A computational-geometry-based
tool for switchbox routing, IEEE Transactions on Computer-Aided-
Design CAD-7, 1988, 684 – 697.

[GH89] S.H. Gerez, O.E. Herrmann: Switchbox routing by stepwise reshaping,
IEEE Transactions on Computer-Aided-Design CAD-8, 1989, 1350 –
1361.

[GM90] M. Grötschel, C. L. Monma: Integer polyhedra associated with certain
network design problems with connectivity constraints, SIAM Journal
on Discrete Mathematics 3, 1990, 502 – 523.

[GMW92a] M. Grötschel, A. Martin, R.Weismantel: Packing Steiner trees: poly-
hedral investigations, Konrad-Zuse-Zentrum für Informationstechnik
Berlin, Preprint SC 92-8, 1992.

[GMW92b] M. Grötschel, A. Martin, R. Weismantel: Packing Steiner trees:
a cutting plane algorithm and computational results, Konrad-Zuse-
Zentrum für Informationstechnik Berlin, Preprint SC 92-9, 1992.

[GMW93] M. Grötschel, A. Martin, R. Weismantel: Packing Steiner trees: sep-
aration algorithms, Konrad-Zuse-Zentrum für Informationstechnik
Berlin, Preprint SC 93-2, 1993.

20

[JLSW90] J.M. Jou, J.Y. Lee, Y. Sun, J.F. Wang: An efficient VLSI switch-box
router, IEEE Design and Test, 1990, 52 – 65.

[JS86] R. Joobbani, D.P. Siewiorek: WEAVER: A knowledge-based routing
expert, IEEE Design and Test, 1986, 12 – 23.

[K72] R.M. Karp: Reducibility among combinatorial problems, in: R.E.
Miller, J.W. Thatcher (eds.), “Complexity of Computer Computa-
tions”, Plenum Press, New York, 1972, 85 – 103.

[L90] T. Lengauer: Combinatorial algorithms for integrated circuit layout,
Wiley, Chichester, 1990.

[LHT88] Y.L. Lin, Y.C. Hsu, F. S. Tsai: A detailed router based on simulated
evolution, in Proc. Int. Conf. Computer-Aided-Design, 1988, 38 – 41.

[Li84] W. Lipski: On the structure of three-layer wireable layouts, F. P.
Preparata (ed.): “Advances in Computing Research”, Vol. 2: VLSI
theory, Jai Press, London, 1984, 231 – 244.

[Lu85] W. K. Luk: A greedy switch-box router, Integration 3, 1985, 129 –
149.

[M92] A. Martin: Packen von Steinerbäumen: Polyedrische Studien und
Anwendung, Ph.D. Thesis, Technische Universität Berlin, 1992.

[S87] M. Sarrafzadeh: Channel-routing problem in the knock-knee mode is
NP-complete, IEEE Transactions on Computer-Aided-Design CAD-
6, 1987, 503 – 506.

[Sz85] T. G. Szymanski: Dogleg channel routing is NP-complete, IEEE
Transactions on Computer-Aided-Design CAD-4, 1985, 31 – 40.

[TS88] P. Tzeng, C.H. Séquin: Codar: a congestion-directed general area
router, in Proc. Int. Conf. Computer-Aided Design, 1988, 30 – 33.

21

