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Abstract

The aim of this paper is to compute all isolated solutions to symmetric poly-
nomial systems. Recently, it has been proved that modelling the sparse structure
of the system by its Newton polytopes leads to a computational breakthrough in
solving the system. In this paper, it will be shown how the Lifting Algorithm,
proposed by Huber and Sturmfels, can be applied to symmetric Newton polytopes.
This symmetric version of the Lifting Algorithm enables the efficient construction
of the symmetric subdivision, giving rise to a symmetric homotopy, so that only the
generating solutions have to be computed. Efficiency is obtained by combination
with the product homotopy. Applications illustrate the practical significance of the
presented approach.
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� Introduction

Most polynomial systems coming from practical applications give rise to systems which
often have a symmetric structure. Computing all isolated solutions of polynomial systems
can be done efficiently by homotopy continuation methods, see [18] for an introduction.
This paper deals with methods for constructing symmetric homotopies.

In contrast to the problem class in [11], [12] the parameter is introduced by the ho-
motopy. Secondly one is interested in all complex solutions which can not be assured by
the approach in [12].

Recently, by a paper of Canny and Rojas [6], attention has been drawn on a root
count for the number of solutions in Cn

0 , C0 = C\{0}, for systems of polynomials, where
also negative exponents are allowed, the so-called Laurent polynomial systems. This
root count has been developed by Bernshtěın [3], Kushnirenko [16] and Khovanskǐı [15],
therefore it is also named the BKK bound.
First, the following definitions are needed:

Definition 1.1 Given a Laurent polynomial, denoted by f =
∑
q∈ZZn cqxq, where cq ∈ C

and xq = xq1
1 x

q2
2 · · ·xqn

n . Its support is the set A = { q | cq �= 0 }. The Newton polytope is
defined as the convex hull of its support.

Then the BKK bound can be defined by the following combinatorial formula:

Definition 1.2 The BKK bound of a Laurent polynomial system F is defined as the
mixed volume Vn(P) of an n-tuple of Newton polytopes P = (P1, P2, . . . , Pn):

Vn(P) =
∑

I⊂{1,2,...,n}
(−1)n−#I vol(

∑
i∈I

Pi), (1)

where vol(P ) stands for the volume of a polytope P in IRn.

When all polytopes are the same: Vn(P, P, . . . , P ) = n!vol(P ). The mixed volume has
some interesting properties: it is multilinear and invariant under a shift of the polytopes.

The main theorem proved in [3] can be stated as follows:

Theorem 1.3 Let F be a system of Laurent polynomials, with Newton polytopes P =
(P1, P2, . . . , Pn). Then the number of isolated solutions in Cn

0 is bounded by the mixed
volume Vn(P). For almost all choices of the coefficients of F , the number of isolated
solutions equals Vn(P).

Verschelde, Verlinden and Cools presented in [23] an implementation of Bernshtěın’s proof.
Independently of their work, Huber and Sturmfels developed in [14] another constructive
proof of Theorem 1.3, based on the mixed subdivisions induced by lifting of the Newton
polytopes. This approach, called the Lifting Algorithm in [9], has been applied for the
calculation of mixed resultants by Canny and Emiris in [7, 9]. See [13] for more on the
relation between resultants and Newton polytopes. In applications it turns out to be
useful to combine this algorithm with the homotopy approach in [22] and [21].

There are at least two reasons to consider the symmetry of the given system of equa-
tions. On the one hand the approach in [14] works generically for almost all choices of
coefficients, but symmetry may force the exceptional situation, see Section 3. On the
other hand the use of symmetry makes the algorithm much more efficient, see Example
4.14. So the aim of this paper is to investigate the influence of symmetry.
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This paper is structured as follows. We start by recalling the idea behind the Lifting
Algorithm. Terminology and notation concerning symmetry groups applied to Laurent
polynomial systems is the topic of the third section. In the fourth section, symmetric
Newton polytopes and subdivisions are discussed. The symmetric lifting function, which
leads to the construction of a symmetric mixed subdivision and to a symmetric homotopy,
is explained in the fifth section. Applications such as the cyclic n-roots problem [5], the
four-bar problem [19], and a problem from neurofysiology show the practical significance
of our method.

� Homotopy de�ned by coherent subdivision

In this section we recall the notations from the theory of polytopes used in the approach
by Huber and Sturmfels [14]. Summarizing their algorithm we give a sketch of their proof
of Thm. 1.3. A lifting is used which defines a homotopy and generically gives a fine mixed
subdivision. For more on polytopes see [24].

We are interested in systems of equations F = (F (1), F (2), . . . , F (r)), where r equals the
number of different supports. When r = 1, the system is called to be unmixed, i.e. there
is only one polytope. For r = n it is called fully mixed and for 1 < r < n semi-mixed,
see [14]. The system can then be denoted as

0 = F (ij)(x) =
∑

q∈A(i)

c(ij)q xq,
i = 1, . . . , r
j = 1, . . . , ki

,
r∑

i=1

ki = n, (2)

where c
(ij)
q ∈ C , A(i) ⊂ ZZ

n, which is the support of the polynomials F (i1), . . . , F (iki).

Definition 2.1 (i) A cell C of A = (A(1), . . . ,A(r)) is a tuple C = (C (1), . . . , C (r)) of
subsets S(i) ⊂ A(i), i = 1, . . . , r.

(ii) A face F of A is a cell such that some linear functional α(x) =< γ,x >∈ IRn
0

attains its minimum over A(i) at F (i), i = 1, . . . , r. The vector γ is called the inner
normal of F .

The following conventions are used. The convex hull of a cell C is denoted by conv(C).
Its volume is written as vol(C) = vol(conv(C)).

type(C) = (dim(conv(C (1))), . . . , dim(conv(C (r)))) ∈ IN r

conv(C) = conv(C (1) + · · ·+ C (r)) ⊂ IRn

The proof of Theorem 1.3 in [14] is based on cells of A with special properties.

Definition 2.2 ([14])

(i) A subdivision of A is a collection S = {C1, . . . , Cm} of m cells Cj = (C
(1)
j , . . . , C

(r)
j )

such that

(a) dim(conv(Cj))= n for j = 1, . . . , m,

(b) Cj ∩ Ck is a common face of Cj and of Ck for all pairs Cj, Ck ∈ S,

(c) ∪m
j=1conv(Cj) = conv(A).

(ii) The subdivision is called mixed if the additional property
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(d)
∑r

i=1 dim(conv(C
(i)
j )) = n for all cells Cj ∈ S holds.

(iii) The subdivision is called fine mixed if

(e)
∑r

i=1(#(C
(i)
j )− 1) = n for all cells Cj ∈ S.

This definition is consistent with definitions by Lee [17]. In the case r = 1 the fine mixed
subdivisions are usually called triangulations. To compute the mixed volume of a tuple
of polytopes, Betke [4] proposed to embed the polytopes in (n+1)-dimensional space. In
[14], this is called the lifting of the polytopes.

Definition 2.3 An r-tuple of functions ω = (ω(1), . . . , ω(r)), ω(i) : A(i) → IR, i = 1, . . . , r
is called a lifting function on A.

The embedding of the tupleA goes in the following way: A(i) is lifted to Â(i) = {(q, ω(i)(q)) :
q ∈ A(i)} ⊂ IRn+1 and A is lifted to Â = (Â(1), . . . , Â(r)). Then one denotes Q̂(i) =
conv(Â(i)) and Q̂ =

∑r
i=1 Q̂

(i). Then the lower hull of Q̂ gives a subdivision of A.

Definition 2.4 Let Sω be the set of cells C of A which satisfy

(a) dim(conv(Ĉ)) = n,

(b) Ĉ is a face of Â whose inner normal γ ∈ IRn+1
0 has positive last coordinate, γn+1 > 0.

Lemma 2.5 ([14]) Sω is a subdivision of A.

Definition 2.6 Sω is called the subdivision induced by ω and is said to be coherent.

Huber and Sturmfels [14] discuss that for a generic choice of ω the induced subdivision
Sω is fine mixed. They give a combinatorial algorithm for the computation of the cells
of type (k1, . . . , kr) of the subdivision, which are needed in Algorithm 2.7. But there is a
more efficient way, see Canny and Emiris [7].

Application to solving systems of Laurent polynomials

Considering the system (2) a solution process is described based on the following
homotopy

H(ij)(x, t) =
∑

q∈A(i)

c(ij)q xqtω
(i)(q),

i = 1, . . . , r
j = 1, . . . , ki

,
r∑

i=1

ki = n. (3)

The homotopy H is defined by the r-tuple of lifting functions ω on the supports A which
yieldsH(x, 1) = F (x). For polynomial continuation, w(i) must be an integer valued lifting
function, which will be assumed for the following.

A generic choice of the lifting function implies that the induced subdivision is fine
mixed. For the proof we only need to assume that the subdivision is mixed. The advan-
tages of fine mixed are discussed after the proof.

Proof of Thm. 1.3:
The proof of Thm. 1.3 starts in [14] with the observation that for generic choices of
coefficients the solutions of H(x, t) = 0 corresponds to the solutions at t very close to
zero. The solutions for t ≈ 0 are approximated by Puiseux series

x(t) = (x10t
γ1, . . . , xn0t

γn) + higher order terms, (4)
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where the γi are rational numbers. For an introduction to Puiseux series see [20, Chapter
2]. Substituting (4) into (3) gives

∑
q∈A(i)

c(ij)q xq0 t
<γ,q>+ω(i)(q) + higher order terms = 0,

i = 1, . . . , r,
j = 1, . . . , ki.

(5)

The lower order terms in (5) give approximations of solutions. If we assume that (γ, 1)
is the inner normal of a cell Cγ of type (k1, . . . , kr) of the coherent subdivision Sω this
system is

F (ij)
γ = initγ+ω(i)(F (ij)) =

∑
q∈C(i)

γ

c(ij)q xq = 0,
i = 1, . . . , r,
j = 1, . . . , ki.

(6)

We call it the initial form system. For almost all choices of coefficients c
(ij)
q the homotopy

(3) has only solutions of the form (5) for a mixed subdivision Sω , where (γ, 1) denotes the
inner normal of cells Cγ of type (k1, . . . , kr).

The system Fγ(x) = 0 has generically k1! · · · kr! · vol(Cγ) solutions. Since the mixed
volume of the Newton polytopes (Thm. 2.4 in [14]) satisfies

Vn(P) =
∑

C ∈ Sω

type(C) = (k1, . . . , kr)

k1! · · · kr! · vol(C). (7)

Theorem 1.3 is proved. �

For generic choices ω the subdivision is even fine mixed. Then the initial form system
Fγ(x) = 0 in (6) can easily be solved in the following way.

(a) For each i = 1, . . . , r the subsystem F (i)
γ (x) = 0 consists of ki equations and ki +

1 terms in each equation. Thus by multiplication with monomials and Gaussian
elimination one generically obtains for each i = 1, . . . , r a system

c̃(ij)xqi = 1, j = 1, . . . , ki. (8)

(b) Then the Smith normal form decomposition UAV = diag(m1, . . . , mn), mi ∈ ZZ can
be used, where the vectors qi form the columns of the matrix A = (qij), see [14].
For the computation of a Smith normal form see e.g. [1].

Altogether the following algorithm was derived:

Algorithm 2.7 [14] The Lifting Algorithm solves a system (2) of type (k1, . . . , kr):

1.) Choose a generic lifting function ω = (ω(1), . . . , ω(r)) and
compute the cells Cγ of type (k1, . . . , kr) of the fine mixed subdivision Sω.

2.) For each computed cell Cγ solve Fγ(x0) = 0 by
2a.) for i = 1, . . . , r do Gaussian elimination for F (i)

γ (x0)
2b.) compute the Smith normal form
2c.) compute the solutions xν

γ, ν = 1, . . . , k1! · · · kr! · vol(Cγ) of Fγ(x0) = 0.
3.) For each cell Cγ do

for each ν do
path tracking of H(x, t) starting at (xν

γ, ε) giving a solution for t = 1,
after xi → x̃it

γi, i = 1, 2, . . . , n has been transformed in H(x, t)
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The computation of the subdivision in Step 1) includes the determination of the BKK
bound with (7). Huber and Sturmfels describe how to compute the volume of a fine mixed

cell C of type (k1, . . . , kr). Then C = (C (1), . . . , C (r)) with C (i) = {q(i)
0 , . . . ,q

(i)
ki
}. The

determinant of the matrix with columns q
(i)
0 − q(i)

ν , i = 1, . . . , r, ν = 1, . . . , ki is equal to
k1! · · · kr !vol(C).

Remark 2.8 The numerical continuation in Step 3) is done by standard procedures, see
e.g. [2], [8]. In view of easy evaluation of H(x, t) and good numeric properties in the
beginning of the path tracking in Step 3), the lifting function ω should be chosen as
simple as possible.

Useful ideas and combinations with other methods

(i) By Theorem 1.3, a generic choice of the coefficients will lead to a system with as
many regular solutions as its BKK bound. Consider a system F ′(x) with the same

support as F (x) but with randomly chosen complex coefficients d
(ij)
q ∈ C0. The

homotopy
H̃(x, t) = (1− t)F ′(x) + tF (x), t ∈ [0, 1] (9)

defines continuation paths between the solutions of F ′ at t = 0 to the solutions of F
at t = 1. The generic choice of the coefficients implies that the systems F ′

γ(x) = 0
have exactly k1! · · · kr! · vol(Cγ) regular solutions.
In order to avoid this intermediate stage of solving F ′, Huber and Sturmfels propose
to use

H(ij)(x, t) =
∑

q∈A(i)

(d(ij)q + (c(ij)q − d(ij)q ) t )xqtω
(i)(q), (10)

which defines another homotopy with H(x, 1) = F (x) such that the Puiseux series

leads to initial form systems with the coefficients d
(ij)
q of F ′.

However, it can often be desirable to know all solutions of F ′, as it can then be used
as start system for a whole family of problems. Secondly, the numerical experience
shows that it is better to proceed in two steps. Solving F ′ can be done with any
standard path tracker, as the generic choice of the coefficients implies the homotopy
(9) to be well conditioned, whereas several numerical difficulties can occur when it
comes to solving F . Such as paths leading to singularities or diverging to infinity,
which force the use of special path trackers. Additionally, often F ′ may possess
more symmetry properties than F which can be exploited.

(ii) Observe that the mixed volume Vn(P) does not depend on points in the middle of
the Newton polytopes. Even more one often notices that subdivisions do not contain
points in the middle. This can be forced by giving these points q a sufficiently high
lifting value ω(i)(q). We call this lifting out a point.

(iii) In contrast to (ii) it may be helpful to have an additional middle point which does
not change the volume. This may help to find a subdivision or may help to exploit
symmetry. This is applied in combination with (i).

(iv) Verschelde and Cools [22] introduced a product homotopy. If the system contains a
lot of terms, a combination of this method with the Lifting Algorithm is promising.
Apply the product homotopy first on the system as a whole, and then apply the
Lifting algorithm to the subsystems of the constructed start systems, which are
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in general much sparser than the original problem. While in [22] the subsystems
are assumed to be linear, the combination with the Lifting Algorithm extends the
product approach to nonlinear subsystems. This advantage makes the product
homotopy even more efficient, i.e. with fewer paths to follow.

Recursion makes any subdivision worthy

For randomly chosen lifting functions, the subdivision is fine mixed. However, this
random choice is often prohibitive for the exploitation of the symmetry as will become
clear in the following sections. Therefore, Algorithm 2.7 will be applied recursively. To
explain this, we proceed by reading the proof of Theorem 1.3 backwards.

Formula (7) can be written as

Vn(P) =
m∑
j=1

k1! · · · kr! · vol(Cγ(j)), (11)

as each cell Cγ(j) is characterized by its inner normal γ(j), j = 1, 2, . . . , m. Only when the
subdivision is mixed, one can compute the mixed volume by (11), whereas the following

Vn(P) =
m∑
j=1

Vn(Cγ(j)) (12)

holds for any subdivision Sω = {Cγ(1), Cγ(2), . . . , Cγ(m)}. Construct for each cell Cγ(j) a

subdivision S(j)
ω , which is now assumed to be fine mixed (otherwise, apply the recursion

again). Then

Vn(P) =
m∑
j=1

∑
C ∈ S

(j)
ω

type(C) = (k1, . . . , kr)

k1! · · · kr ! · vol(C) (13)

can be used to compute the mixed volume. By Steps 2) and 3) in Algorithm 2.7, the
initial form systems Fγ(j) induced by the cells Cγ(j) in the subdivision Sω can be solved,

by the use of the fine mixed subdivision S(j)
ω . The solutions of Fγ(j)(x) = 0 will serve

as start solutions in Step 3) of Algorithm 2.7, but now for the homotopy defined by the
subdivision Sω.
Note that (12) generalizes both the recursion formula used by Bernshtěın [3] and the
non-recursive approach of Huber and Sturmfels [14].

Non-generic systems

If the Gaussian elimination in Step 2a.) of Algorithm 2.7 fails then this is a signal
that the system has less solutions than indicated by the BKK bound. In this situation
the system may be non-generic. But this is only a hint and the system may have as well
as many solutions as stated by the BKK bound. The following theorem states explicitly
when the BKK bound is sharp, see Canny, Rojas [6] and Bernshtěın [3].

Theorem 2.9 If for all faces C of P with inner normal γ ∈ IRn the corresponding initial
form systems F (ij)

γ have no solutions in Cn
0 then the system F (x) = 0 has exactly Vn(P)

solutions, counting multiplicities.

Due to a symmetric choice of the coefficients, the actual number of solutions can be lower
than the BKK bound, as illustrated below in Example 3.6.
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� Laurent systems with symmetry

This section demonstrates which problems arise when the concept of Section 2 is applied
to symmetric systems. We start with summarizing the well-known solution structure of
systems with symmetry and continue with an example.

Let F = (f1, . . . , fn) be a systems of Laurent polynomials as in (2) and let A =
(A(1), . . . ,A(r)) denote its tuple of supports. Let G denote a finite group and assume
D1, D2 : G → Gl(Cn) are two matrix representations, i.e.

Di(g1)D
i(g2) = Di(g1g2), ∀ g1, g2 ∈ G, i = 1, 2. (14)

Definition 3.1 If

D2(g)F (x) = F (D1(g)x), ∀ g ∈ G, ∀x ∈ Cn, (15)

then the system F is said to be (G,D1, D2)-symmetric.

Of course we assume that D1(G) and G are isomorphic as groups. Otherwise one would
consider a subgroup of G.

Example 3.2 We give a simple example where G = Z2(s1) × Z2(s2) = {id, s1, s2, s1s2}
and D1 is a representation with

D1(id) =

(
1 0
0 1

)
, D1(s1) =

(
0 1
1 0

)
, D1(s2) =

( −1 0
0 −1

)
, (16)

D1(s1s2) = D1(s1)D
1(s2) and D2(s1) = D1(s1), D

2(s2) = D1(id). The system

F (x) =

(
x2
1x

2
2 + 3x2

1 + x2
2 + x1x2 + 5

x2
1x

2
2 + x2

1 + 3x2
2 + x1x2 + 5

)
= 0 (17)

is (Z2(s1) × Z2(s2), D
1, D2)-symmetric. Since Z2(s2) does not transport to the Newton

polytopes (drawn in Figure 1) we consider F also as (Z2(s1), D
1, D1)-symmetric.

Remark 3.3 Symmetric systems with D2 = D1 are usually called equivariant.

Example 3.4 Let G = Z2(s1) × Z2(s2) and D1 as in Example 3.2. Let D2 be given by
D2(s1) = D2(s2) = D1(id). Then

F (x) =

(
x2
1x

2
2 + x2

1 + x2
2 + x1x2 + 3

x2
1x

2
2 + 3x2

1 + 3x2
2 + x1x2 + 5

)
= 0 (18)

is (Z2(s1)× Z2(s2), D
1, D2)-symmetric and consists of two invariant polynomials.

Solutions of symmetric systems have a special structure: If x is a solution then it
generates also conjugate solutions D1(g)x which form the orbit Ox. It suffices to know
one generator of an orbit. The cardinality of Ox depends of course on the isotropy
Gx = {g ∈ G|D1(g)x = x} of x. So one distinguishes different types of orbits. Usually
one determines solutions with special isotropy H by restricting to the fixed point space
of H

Fix(H,D1) = {x ∈ Cn|D1(g)x = x} (19)
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and considering the reduced system F red(x) = 0,

F red : Fix(H,D1) → Fix(H,D2), x → F (x). (20)

Generically, the reduced system is expected to have solutions, if the dimensions satisfy
dim(Fix(H,D1)) ≥ dim(Fix(H,D2)).

The system (17) may have solutions with trivial isotropy (x1, x2), x1 �= x2, x1 �= 0, x2 �=
0 with conjugates D1(s1)x = (x2, x1), D

1(s2) = (−x1,−x2), D
1(s1s2) = (−x2,−x1) and

solutions with isotropy Z2(s1) of type (x1, x1), x1 �= 0 with conjugateD1(s2)x = (−x1,−x1)
and solutions with isotropy Z2(s1s2) of type (x1,−x1) with conjugateD1(s2)x = (−x1, x1).
But this structure is not automatically exploited by Algorithm 2.7 which is demonstrated
in the following.

Example 3.5 (Example 3.2 continued.) We discuss three different lifting functions for
the system (17) with corresponding induced subdivisions and systems for initial solutions
to start the homotopy.
Since the two polynomials in (17) have the same support we have r = 1, k1 = 2, ω = (ω(1))
and A = (A(1)) with

A(1) =
{(

�

�

)
,
(

�

�

)
,
(

�

�

)
,
(

�

�

)
,
(

�

�

)}
. (21)

Choosing ω(1)(A(1)) as ω1 = [1, 7, 7, 8, 1], ω2 = [7, 1, 1, 8, 7] or ω3 = [7, 7, 7, 1, 7] three
different triangulations Sωi = �i are induced which are shown in Figure 1. They are

�� �

{{(
�

�

)
;

(
�

�

)
;

(
�

�

)}
;

{(
�

�

)
;

(
�

�

)
;

(
�

�

)}}
;

�� �

{{(
�

�

)
;

(
�

�

)
;

(
�

�

)}
;

{(
�

�

)
;

(
�

�

)
;

(
�

�

)}}
;

�� �

{{(
�

�

)
;

(
�

�

)
;

(
�

�

)}
;

{(
�

�

)
;

(
�

�

)
;

(
�

�

)}
;

{(
�

�

)
;

(
�

�

)
;

(
�

�

)}
;

{(
�

�

)
;

(
�

�

)
;

(
�

�

)}}
:

(22)

In �1 and �2 the point (1, 1)t does not appear because the lifting value is greater than
the others and it is in the middle. We say that this point was lifted out.

The two cells of subdivision �2 are both of type (k1, . . . , kr) = (2) and thus contribute
solutions. The induced initial form systems are

Fγ1(x) =

(
3x2

1 + x2
2 + 5

x2
1 + 3x2

2 + 5

)
= 0 Fγ2(x) =

(
x2
1x

2
2 + 3x2

1 + x2
2

x2
1x

2
2 + x2

1 + 3x2
2

)
= 0. (23)

Each equation of the second system Fγ2 will be divided by x2
2. After Gaussian elimination

the following systems are obtained

F ′
γ1
(x) =

(
8x2

1 + 10
8x2

2 + 10

)
= 0 F ′

γ2
(x) =

(
2x2

1x
−2
2 − 2

2x2
1 + 8

)
= 0. (24)

They have 4 solutions each. These solutions are used as start solutions of a homotopy
leading to 8 solutions of (17). For practical computations one would use random complex
coefficients of a start system F ′ as described in Section 2.
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Figure 1: The Newton polytope P1 of system (17) with three possible subdivisions (tri-
angulations) �1, �2 and �3 which are induced by different lifting functions ω1, ω2, ω3.

But the two other subdivisions contain cells leading to initial form systems without
solutions because Step 2a.) in Algorithm 1 fails. For example the first cell of �3 leads to
a system without solutions:

(
x1x2 + 3x2

1 + 5
x1x2 + x2

1 + 5

)
= 0. (25)

This is no contradiction to Thm. 1.3 and to Algorithm 2.7 because they work for almost all
choices of coefficients. But system (17) is (Z2(s1), D

1, D1)-symmetric putting restrictions
on the coefficients and forcing them to be among the exceptions. This is also shown by
observation of system (18) which has the same support as (17). Here the first cell of �3

gives the initial form system

(
x1x2 + x2

1 + 3
x1x2 + 3x2

1 + 5

)
= 0 (26)

which has two solutions.

Although (18) is (Z2(s1)× Z2(s2), D
1, D2)-symmetric this sort of symmetry does not

affect Algorithm 2.7. It is the existence of solutions (x1, x1) with isotropy Z2(s1) in system
(17) which needs special attention and a modification of Thm. 1.3 and a modification of
Algorithm 2.7.

Next we give an example which demonstrates that symmetry may cause the BKK
bound to be not sharp.

Example 3.6 The construction of a quadrature formula (numerical integration) leads to
a system of algebraic equations. In order that the formula w1f(y1)+w1f(y2) approximates
the integral

∫ 1
−1 f(y)dy precisely for all polynomials f up to degree 3, the unknowns

x = (w1, w2, y1, y2) have to fulfill

F (w1, w2, y1, y2) =

⎛
⎜⎜⎜⎝

w1 + w2 − 2
w1y1 + w2y2

w1y
2
1 + w2y

2
2 − 2

3

w1y
3
1 + w2y

3
2

⎞
⎟⎟⎟⎠ = 0. (27)

9



System (27) is (Z2(s1) × Z2(s2), D
1, D2)-symmetric, where D1(s1)x = (w2, w1, y2, y1),

D1(s2)x = (w1, w2,−y1,−y2), and D2(s1) = D1(id), D2(s2)(f1, f2, f3, f4) = (f1,−f2, f3,
−f4).

According to Theorem 2.9 we choose γ = (−1,−1,−1,−1)t. The corresponding face
yields the system

Fγ(x) =

⎛
⎜⎜⎜⎝

w1 + w2

w1y1 + w2y2
w1y

2
1 + w2y

2
2

w1y
3
1 + w2y

3
2

⎞
⎟⎟⎟⎠ = 0 (28)

which has solutions (w1,−w1, y1, y1), w1, y1 ∈ C, because of the symmetry. By Theo-
rem 2.9 we expect that the number of solutions of (27) is less than the BKK bound which
is 4 in this example. Indeed it is well-known that the system (27) has two solutions with
isotropy Z2(s1s2) which are conjugate to each other by D1(s1).

� Symmetric Newton Polytopes

In this section the consequences of the symmetry of systems to the Newton polytopes
and the exploitation of symmetry with symmetric lifting functions and symmetric and
conjugate cells are shown. The efficiency of using symmetry is demonstrated with an
example.

Definition 3.1 describes with matrix representations how a group G operates on a sys-
tem of equations. Obviously G operates as well on the Newton polytopes (P1, . . . , Pn). It
is important to distinguish this induced symmetry from an additional symmetry which is
present in the support A. The exploitation of this second symmetry makes the construc-
tion of a coherent subdivision more efficient even when the system is not symmetric, see
Example 4.14.

We restrict to cases where the group operation leaves the support A = (A(1), . . . ,A(r))
invariant and can be expressed by two permutation representations which are not neces-
sarily the same.

Definition 4.1 Let D3, D4 be two matrix representations of G with Di(g) ∈ Zr×r
2 , for

i = 3, 4, ∀g ∈ G, where Z2 = {0, 1}. A support A is called (G,D3, D4)-symmetric, if

D4(g)A = A ◦D3(g), ∀ g ∈ G. (29)

Here the operation on the left means permutation of supports A(i) while the operation on
the right means a permutation of vector components of all vectors q ∈ A(i), i = 1, . . . , r.

Example 4.2 (Example 3.2 continued.) Recall G = Z2(s1) × Z2(s2), D
1 and D2 from

Example 3.2. The support is A = {A(1),A(2)}, where A(1) = A(2). In order to use the
symmetry we do not use the equality. Then Z2(s1) is acting on the support with D3(s1) =
D1(s1), D

3(s2) = id,D4(s1) = D2(s1), D
4(s2) = id. The group action s1 transports

(2, 0)t ∈ A(1) to (0, 2)t ∈ A(2). The element s2 does not have any effect. Please note that
G and D3(G) are not isomorphic as groups.

Assume that A is (G,D3, D4)-symmetric for two permutation representations D3, D4. For
convenience we introduce

D̂i(g) =

(
Di(g) 0
0 1

)
, i = 3, 4, g ∈ G. (30)

10



Definition 4.3 An r-tuple of lifting functions ω is called (G,D3, D4)-symmetric if

D̂4(g)Â = Â ◦ D̂3(g), ∀ g ∈ G, (31)

where A is lifted to Â with respect to ω.

Lemma 4.4 Assume F is (G,D1, D2)-symmetric with two matrix representationsDi(g) ∈
Zr×r
2 and its supportA is (G,D3, D4)-symmetric, induced by D1, D2. If the lifting function

ω is (G,D3, D4)-symmetric, then the homotopy defined by (3) is (G,D1, D2)-symmetric,
i.e.

H(D1(g)x, t) = D2(g)H(x, t), ∀ g ∈ G, ∀x ∈ Cn, t ∈ C. (32)

Then for almost all choices of coefficients in F and almost all t ∈ [0, 1] the system
H(x, t) = 0 has at t = t0 the same solution structure with respect to G than F (x) = 0.

A proof can be given similar to techniques in [21].

This lemma has important practical relevance. If a solution x0 of an initial form
system Fγ(x) = 0 has isotropy H = Gx0 than one may restrict to the fixed point space
and do path following of Hred(x, t). Secondly one may restrict to generators of an orbit
Ox. So the question to be addressed is whether the solution structure of the initial
systems corresponding to a subdivision induced by a (G,D3, D4)-symmetric lifting equals
the solution structure of H(x, 1) = 0. The subdivision is invariant and the structure of
conjugates and isotropies transports to cells.

Proposition 4.5 Let A be (G,D3, D4)-symmetric and let ω be a (G,D3, D4)-symmetric
lifting function. Then the cells C in the subdivision Sω induced by ω satisfy:

D4(g−1)C ◦D3(g) ∈ Sω, ∀ g ∈ G, ∀C ∈ Sω. (33)

and (D3(g)γ, 1) is its inner normal, where (γ, 1) is the inner normal of Ĉ.

Proof: Let C = (C (1), . . . , C (r)) be a cell with inner normal (γ, 1). Then < γ,q >
+ ω(i)(q) attains its minimum over Â(i) at Ĉ (i). Because A is (G,D3, D4)-symmetric,
A(i) is permuted to some A(j) for some j ∈ {1, . . . , r} and C (i) is permuted to a subset
C̃ (i) of A(j). Since ω is a symmetric lifting function < γ,D3(g−1)q̃ > + ω(j)(q̃), where

q̃ = D3(g)q, q ∈ C (i), attains its minimum over Â(j) at ˆ̃C
(i)

. Condition (b) of Definition
2.4 holds because the argumentation works for each i. The permutation does not change
the dimension and thus condition (a) of Definition 2.4 holds.
This completes the proof. �

Definition 4.6 Let A and ω be (G,D3, D4)-symmetric as in Proposition 4.5.

GC := {g ∈ G|D4(g−1)C ◦D3(g) = C} (34)

is the isotropy group of a cell C ∈ Sω. If D4(g−1)C ◦ D3(g) �= C then it is called the
conjugate to C. The conjugates form the orbit OC and C is called a generator.

Observe that this structure of the cells is very similar to the solution structure.

Proposition 4.7 Assume F is (G,D1, D2)-symmetric with D2 = D1 and assume its sup-
port A is (G,D3, D4)-symmetric, where D3, D4 are induced by D1. Let Sω be a fine mixed
subdivision induced by a (G,D3, D4)-symmetric lifting ω. Then the following statements
hold.
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(a) The initial form system Fγ(x) = 0 of a cell with isotropyG is (G,D1, D1)-symmetric.

(b) If C is a cell whose isotropy is not G then for almost all choices of coefficients in F
the corresponding initial form system Fγ(x) = 0 is not (G,D1, D1)-symmetric and
thus in general has no solutions with isotropy G.

Proof: (a) The support of the initial form system Fγ is given by Cγ. Since Cγ is assumed
to be invariant with respect to D3 and F is (G,D1, D1)-symmetric, Fγ is also (G,D1, D1)-
symmetric.
(b) If the isotropy of a cell C is not G, then there is a g ∈ G with

D4(g−1)C ◦D3(g) �= C. (35)

Since C is the support of the corresponding initial form system, (35) implies that
D1(g−1)Fγ(D

1(g)x) has a different support unequal C . Thus Fγ is not (G,D1, D1)-
symmetric. In general systems without symmetry properties are not expected to have
solutions with isotropy G or to have conjugate solutions. �

A consequence of Prop. 4.7 is that the solutions in Fix(G,D1) can only be obtained
from cells with isotropy G. Secondly, for the (G,D1, D1)-symmetric initial form systems
the restriction to the fixed point space can help to solve them.

Conclusion 4.8 Constructing a (G,D3, D4)-symmetric lifting and an invariant subdivi-
sion one should derive as much G-symmetric cells as possible. The same holds for all
other isotropy subgroups of G.

Example 4.9 (Examples 3.2, 3.5, 4.2 continued.) Since D3(s2) = D4(s2) = id all lifting
functions are (Z2(s2), D

3, D4)-symmetric and all cells of the induced subdivision have
isotropy Z2(s2). In order to get cells with isotropy Z2(s1) we consider the following
lifting:

Â(1) =

⎧⎨
⎩
⎛
⎝ �

�

�

⎞
⎠ ,

⎛
⎝ �

�

�

⎞
⎠ ,

⎛
⎝ �

�

�

⎞
⎠ ,

⎛
⎝ �

�

�

⎞
⎠ ,

⎛
⎝ �

�

�

⎞
⎠
⎫⎬
⎭,

Â(2) =

⎧⎨
⎩
⎛
⎝ �

�

�

⎞
⎠ ,

⎛
⎝ �

�

�

⎞
⎠ ,

⎛
⎝ �

�

�

⎞
⎠ ,

⎛
⎝ �

�

�

⎞
⎠ ,

⎛
⎝ �

�

�

⎞
⎠
⎫⎬
⎭.

(36)

The cells of type (1, 1) of the induced subdivision have isotropy Z2(s1)× Z2(s2):

C1 =
{{(

�

�

)
,
(

�

�

)}
,
{(

�

�

)
,
(

�

�

)}}
, C2 =

{{(
�

�

)
,
(

�

�

)}
,
{(

�

�

)
,
(

�

�

)}}
.

(37)
The initial form systems are (Z2(s1)× Z2(s2), D

1, D2)-symmetric:

Fγ1 =

(
x2
2 + 5

x2
1 + 5

)
= 0, Fγ2 =

(
x2
2 + x2

1x
2
2

x2
1 + x2

1x
2
2

)
= 0. (38)

Both systems have the same solution structure: two orbits of different types. There are
two solutions with isotropy Z2(s1) which are conjugate to each other by D1(s2) and two
solutions with isotropy Z2(s1s2) which are conjugate to each other by D1(s1). See Figure 2
for the symmetric continuation diagram.
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Figure 2: A symmetric continuation diagram for system (17). The homotopy is defined
by H̃(x, t) = (1 − t)F ′(x) + tF (x). Paths with isotropy Z2(s1) are drawn with dotted
lines. The paths with isotropy Z2(s1s2) are drawn as a line or dashed.

Remark 4.10 One may ask the question why not first reduce to fixed point spaces and
then construct the homotopy. In order to find solutions with trivial isotropy this restric-
tion is no effort. Eventually, this restriction can be done during continuation, for tracing
the paths starting at solutions which belong to a particular fixed point space.

Genericity

It is important to note that symmetric lifting functions are often no longer generic.
This means that the induced subdivision may fail to be mixed or fine mixed. Even for
non-linear liftings this is a problem.

Example 4.11 (Examples 3.2, 3.5, 4.2, 4.9 continued.) A is (Z2(s1) × Z2(s2), D
3, D4)-

symmetric with D3 as defined in the beginning of Example 4.2. In view of Lemma 4.4
we choose a (Z2(s1) × Z2(s2), D

3, D4)-symmetric lifting function ω = (ω(1), ω(2)) with

13
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Figure 3: Minkowski sum of the lifted Newton polytopes P̂1, P̂2. The vertices with non-
unique representation are marked with a circle. This non-uniqueness implies that the cells
in the lower hull Ĉ1, Ĉ2, Ĉ3, Ĉ4 define a subdivision which is not mixed.

ω(1)(A(1)) = [7, 6, 5, 2, 4] and ω(2)(A(2)) = [7, 5, 6, 2, 4]. But the induced subdivision has
no cells of type (1, 1) and is not mixed. The problem arises because points with a low
lifting value have a non-unique representation as sum of points in A(i), see Figure 3. The
non-uniqueness results from the Z2(s1)-symmetry of the lifting. The lower hull of P1+P2

contains 8 cells, 4 of them give cells of the coherent subdivision. For the other 4, condition
(a) in Definition 2.4 is violated.

Conclusion 4.12 In order to avoid non-mixed coherent subdivisions induced by a (G,
D3, D4)-symmetric lifting functions, the points with non-unique representation should
get a sufficiently high lifting value such that they are not members of the lower hull.

Efficiency

Proposition 4.5 together with the structure described in Definition 4.6 are very helpful
for the computation of the subdivision and the computation of the mixed volume even
when the support is symmetric but the system F is not.

Proposition 4.13 Assume A = (A(1), . . . ,A(r)) where the supports have multiplicity
(k1, . . . , kr),

∑r
j=1 kj = n. Let D3 and D4 be two permutation representations of G such

that A is (G,D3, D4)-symmetric. Let ω be a (G,D3, D4)-symmetric lifting with mixed
subdivision Sω. Then

Vn(P) =
∑
OC

k1! · · · kr! · vol(C) ·#OC, (39)

where C ∈ Sω and C is of type (k1, . . . , kr) and generates the orbit OC.

Example 4.14 This example describes the treatment of a family of systems. The general
formula for generating the system F (n) is defined as

f (i)(x) =
n∏

j=1

x2
j + 2x2

i +
n∑

j=1

x2
j +

n∏
j=1

xj + 5 = 0, i = 1, 2, . . . , n. (40)
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n d B Vn(P) = # C × vol(C)

2 16 8 8 = 4 × 2
3 216 48 24 = 6 × 4
4 4096 384 64 = 8 × 8
5 10000 3840 160 = 10 × 16
6 2985984 46080 384 = 12 × 32
7 105413504 645120 896 = 14 × 64
n (2n)n n!× 2n n× 2n = 2n × 2n−1

Table 1: The total degree bound d, the n-homogeneous bound B and the BKK bound for
the number of solutions of system (40) depending on n.

The system (17) in Example 3.2 is included as case n = 2. For each n the system
(40) is (Sn, D

1, D1)-symmetric, where D1 gives the permutation of the variables. In addi-
tion the polytopes have Z2-symmetry by interchanging (2, 2, . . . , 2) ↔ (0, 0, . . . , 0). While
the polytope P1 is a square for n = 2 (see Figure 1) and has Z2 × Z2-symmetry the
symmetry for arbitrary n is Z2 × Sn. Thus one can exploit the symmetry of Z2 × Sn

for the computation of the mixed volume Vn(P). Generalizing the triangulation �3

in Example 3.5 we choose 1 as lifting value for the vertex associated with x1x2 · · · xn

and 7 for the other vertices. Then the triangulation consists of one orbit. The cell
{(0, . . . , 0)t, (1, . . . , 1)t, (2, 0, . . . , 0)t, . . . , (0, . . . , 0, 2, 0)t} has volume 2n�1

n!
. Having isotropy

Sn−1 it generates 2n − 1 other cells. By formula (39) Vn(P) = n! · 2n�1

n!
· (2n).

Table 1 demonstrates that this bound is much better than the other bounds. As n
increases, solving the problem based on the total degree bound d or the n-homogeneous
bound B becomes hopeless, where the mixed volume remains exact.

� Symmetric and Dynamic Lifting

This section gives a characterization of symmetric lifting functions and an algorithm based
on this. The principle of dynamic lifting is mentioned which combines the computation
of the subdivision with the selection of the lifting. Use of symmetry makes the dynamic
lifting more efficient.
In order to classify symmetric lifting functions (Definition 4.3) we define the orbit of
q ∈ A(i) more precisely

O(q,i) = {(a, j)| a = D3(g)q ∈ A(j), j = D̃4(g−1)i}, (41)

where D3(g) describes a permutation of vector components and D̃4(g−1) a permutation
of indices expressing the permutation of supports A(i) by D4(g−1).
The isotropy subgroup can then be described as

G(q,i) = {g ∈ G|D3(g)q = q and D̃4(g−1)i = i}. (42)

Lemma 5.1 A lifting ω is (G,D3, D4)-symmetric, if and only if for all orbits O holds:
all tuples (q, i) in O have the same lifting value ω(i)(q).
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The following algorithm makes sure that points in the same orbit receive the same lifting
value. The implementation of the lifting process consists of two steps: first the points will
be classified into orbits, then each point will be lifted.

Algorithm 5.2 Determination of a symmetric lifting function:

input: A = (A(1),A(2), . . . ,A(r)) supports
G,D3, D4 symmetry group with representations

output: O, Â orbits and lifted supports

m := 0; initialize counter for orbits
O := ∅; initialize set of all orbits
R := A; points to be processed
while R �= (∅, ∅, . . . , ∅) do

q ∈ R(i); pick out an element
m := m+ 1; update orbit counter
O(q,i) := orbit(q, i,R, D3, D4); compute the orbit Oq
O := O ∪O(q,i); update O
R := R \ O(q,i); update R

end while;
second step of the algorithm

w ∈ ZZ
m; choose m random integers

Â := lift(O, ω); perform the lifting

with routines:
lift(O, ω)
for k = 1, 2, . . . ,#O do

for each (a, j) ∈ O(q,i) do

Â(j) := Â(j) ∪ {(a, ωk)
t}; lift the point

end for;
end for;

return Â.

orbit(q, i,R, D3, D4) compute the orbit
H := isotropy(q, i,R, D3, D4);
O(q,i) := for each left coset g +H ∈ G/H collect

a := D3(g)q ∈ R(j), j = D̃4(g−1)i
(a, j).

isotropy(q, i,R, D3, D4) compute isotropy group
H := for each g ∈ G collect

if D3(g)q = q and D4(g−1)i = i then g.

So far no algorithms have been presented for the efficient construction of the subdivi-
sion by the exploitation of the symmetry relations between the cells. Therefore, the lifting
process has to be made more sophisticated. Here we present only the key idea, in order
not to overload this paper with technical details. These will be presented in a subsequent
paper.

The algorithms presented above is what can be defined as a static lifting, i.e. first
the points are lifted and then the lower hull, which defines the subdivision, is computed.
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Instead of this approach, the subdivision can be computed iteratively, by adding each
time to the yet computed cells in the subdivision a new point and computing the new
cells spanned by the new point and other cells. As this new point only is lifted on the
time of addition, the process is a dynamic lifting. Points which belong to the interior of
a cell will be lifted out. The process makes also use of efficient techniques in dynamic
convex hull construction methods.

This concept of dynamic lifting is flexible enough for the immediate exploitation of
the symmetry relations. Each time a new cell has been computed, also its conjugate cells
are known. The two conclusions of Section 4 have to be taken into account. This leads
to an efficient construction of the symmetric subdivision.

To ensure a good condition of the solution paths, while path tracking, the coefficients
of the start systems should be chosen randomly, of course with the preservation of the
symmetric structure. The following algorithm provides a possible implementation for
generating random coefficients for a start system F ′. The notation j = D̃2(g)i has the
same meaning as the D̃4 used above.

Algorithm 5.3 Generating a symmetric random coefficient start system:

input: A supports
G,D1, D2 symmetry group with permutation representations

output: F ′ = (f ′
1, f

′
2, . . . , f

′
n) randomized system, w.r.t. G

R := A; points to be processed
F := (∅, ∅, . . . , ∅); sets of terms
for i = 1, 2, . . . , n do

while R(i) �= ∅ do
q ∈ R(i); pick out a point
cq ∈ C; generate random coefficient
for each g ∈ G/isotropy(q, i) do compute its orbit

j = D̃2(g−1)i;

F (j) := F (j) ∪ {cqxD1(g)q};
R(j) := R(j) \ {D1(g)q}; update R

end for;
end while;

end for;
for i = 1, 2, . . . , n do

f ′
i :=

∑
cqxq ∈ F(i)

cqx
q;

end for;

In this algorithm we restrict to the case of permutation representations which imme-
diately transports to the supports. Sign symmetries such as Z2(s2) in Example 3.2 are
automatically fulfilled.

Example 5.4 (Example 4.14 continued.) As explained in Example 3.5, there is only one
subdivision of A = (A(1)) suitable for solving the system F (2), i.e. �2, with lifting defined
by ω2 = [7, 1, 1, 8, 7], for n = 2. This lifting will now be generalized to general dimensions.
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First we discuss n = 3 and use that A(1) = A(2) = A(3). According to the term
order of equation (40), choose ω3 = [7, 1, 1, 1, 8, 7], which lifts (1, 1, 1)t out. The induced
subdivision yields the following two initial form systems:

Fγ1(x) =

⎛
⎜⎝

3x2
1 + x2

2 + x2
3 + 5

x2
1 + 3x2

2 + x2
3 + 5

x2
1 + x2

2 + 3x2
2 + 5

⎞
⎟⎠ = 0 Fγ2(x) =

⎛
⎜⎝

x2
1x

2
2x

2
3 + 3x2

1 + x2
2 + x2

3

x2
1x

2
2x

2
3 + x2

1 + 3x2
2 + x2

3

x2
1x

2
2x

2
3 + x2

1 + x2
2 + 3x2

3

⎞
⎟⎠ = 0. (43)

Since the lifting function generalizes to a S3-symmetric lifting function ω = (ω3, ω3, ω3),
the two initial form systems are (S3, D

1, D1)-symmetric. While S3 describes the symmetry
of the polytopes, F (3) has another symmetry which does not operate on the polytopes, but
automatically inherits to Fγ1 and Fγ2. F (3) consists of polynomials which are invariant
under the reflections D1(s1) : x �→ (−x1,−x2, x3), D1(s2) : x �→ (x1,−x2,−x3) and
D1(s1s2) : x �→ (−x1, x2,−x3). These reflections together build the group isomorphic to
the Kleinian group, denoted by V4 = Z2(s1)×Z2(s2). Thus the symmetry group of F (3) is
S3 ×Z2

2 . The V4-symmetry is inherited to the initial form systems. Additionally, Fγ1, Fγ2

consists of even polynomials invariant w.r.t. D1(s3) : x �→ −x which is not true for F (3)

itself. The first system Fγ1 has exactly 8 solutions. Since the symmetry group of Fγ1 is
S3 × Z3

2 these 8 solutions form one S3 × Z3
2 -orbit generated by one x with isotropy S3.

Because the symmetry group of H(x, t) is S3 × Z2
2 , a proper subgroup of S3 × Z3

2 , this
orbit breaks into two S3 × Z2

2 -orbits during continuation. Two pathfollowings have to be
done starting with x and −x. The second system Fγ2 has 16 solutions, generated by 4
solutions with isotropy S3. The 16 solutions are arranged in two S3 × Z3

2 -orbits giving
rise to 4 S3 × Z2

2 -orbits of solutions of F
(3). Altogether only 6 = 2 · 3 = 2 + 4 instead of

24 continuation paths need to be traced.

For general n we state that the symmetry group of F (n) is Sn×Zn−1
2 . The liftings ω2, ω3

can be generalized into ωn = [7, 1, . . . , 1, 8, 7]. The initial form systems (43) generalize to
two systems with symmetry Sn × Zn−1

2 , where Z2(si) is given by the reflection

D1(si) : x �→ (x1, . . . , xi−1,−xi,−xi+1, xi+1, . . . , xn), i = 1, . . . , n− 1.

For n even the reflection x �→ −x is an element of Zn−1
2 . For n odd this is an additional

sign-symmetry of Fγ1 and Fγ2 which is not valid for F (n) itself. By restriction to fix point
spaces we see that for n even the solutions of Fγ1 are two Sn×Zn−1

2 -orbits: one is generated
by a solution with isotropy Sn and the other by a solution of type (−x1, x1, . . . , x1). For n
odd Fγ1 has two Sn × Zn−1

2 -orbits as solutions, generated by x and −x with isotropy Sn.
This is one Sn × Zn

2 -orbit. Analogously, Fγ2 has 2(n − 1) Sn × Zn−1
2 -orbits as solutions.

Altogether this means that the n2n solutions of F (n) are generated by 2n solutions.

� Applications

The polynomial systems considered here are all coming out of the literature. The focus
lies on symmetric systems which could not be treated well by homotopies with symmetric
random product systems, see [21].

18



��� The system of E�R� Speer

The following system has been given by E.R. Speer and in [10] the Gröbner basis has
been computed.

F (x) =

⎛
⎜⎜⎜⎝

4β(n+ 2a1 − 8x1)(a2 − a3)− x2x3x4 + x2 + x4

4β(n+ 2a1 − 8x2)(a2 − a3)− x1x3x4 + x1 + x3

4β(n+ 2a1 − 8x3)(a2 − a3)− x1x2x4 + x2 + x4

4β(n+ 2a1 − 8x4)(a2 − a3)− x1x2x3 + x1 + x3

⎞
⎟⎟⎟⎠ = 0, (44)

where a1 = x1+x2+x3+x4,, a2 = x1x2x3x4, a3 = x1x2+x2x3+x3x4+x4x1 and where β and
n are parameters to the system. Here we consider them as complex constants to be chosen
at random. The system is (D4, D

1, D1)-symmetric, where D4 = {id, r, r2, r3, s, sr, sr2, sr3}
represented by D1(r)x = (x4, x1, x2, x3) and D1(s)x = (x2, x1, x4, x3). We restrict to
Z2(s) × Z2(sr

2) = {id, s, sr2, r2} ⊂ D4, where D1(r2)x = (x3, x4, x1, x2), D
1(sr2)x =

(x4, x3, x2, x1).

Application of Bézout’s Theorem gives 625 as the total degree of this system. This
means that with the traditional homotopy, 625 continuation paths have to be traced.
The lowest m-homogeneous Bézout number ([22]) is obtained with a 4-homogenization,
yielding BZ = 384. In [21], a Z2(s)×Z2(sr

2)-symmetric homotopy could be constructed.
Since one restricted to non-conjugates, there were only 83 of a total of 271 paths to trace.
Theorem 1.3 gives the sharper BKK bound 96.

A symmetric lifting could be chosen, but the system has a lot of terms, which makes
the construction of the mixed subdivision quite lengthy. Therefore it is better to exploit
the product structure in the system. So we consider the start system

F ′(x) =

⎛
⎜⎜⎜⎝

(1 + 2b1(D
1(id)x)− 8x1)(a2 − b3(D

1(id)x))
(1 + 2b1(D

1(s)x)− 8x2)(a2 − b3(D
1(s)x))

(1 + 2b1(D
1(sr2)x)− 8x3)(a2 − b3(D

1(sr2)x))
(1 + 2b1(D

1(r2)x)− 8x4)(a2 − b3(D
1(r2)x))

⎞
⎟⎟⎟⎠ = 0, (45)

where b1(x) = c11x1 + c12x2 + c13x3 + c14x4

and b3(x) = c31x1x2 + c32x2x3 + c33x3x4 + c33x4x1 + c35,
with all coefficients ckl randomly chosen complex constants. Observe that F ′ is (Z2(s)×
Z2(sr

2), D1, D1)-symmetric. Since the Newton polytopes of F are contained in those of
F ′, one can be sure that the BKK bound of F ′ is greater or equal to the BKK bound of
F . That means that the useful ideas in Section 2 (i), (iii), (iv) are applied in a symmetry
preserving way.

Because of the product structure the solution of (45) simplifies to the solution of
subsystems. The subsystems are here nonlinear, but a lot sparser than the original system,
which means that the BKK bound can be computed faster. The BKK bound of F ′ is the
sum of the BKK bounds of the subsystems yielding 97. The augmentation of the BKK
bound with 1 is due to the addition of the point (0, 0, 0, 0)t to the Newton polytopes of F
in order to exploit its product structure. There are 16 subsystems, which can be divided
into five groups, according to their type. A subsystem is said to be of type k if it contains
k nonlinear equations. Only 7 subsystems need to be considered, due to symmetry. Table
2 lists the characteristics of the subsystems.

Note that the subsystems should be considered as fully mixed, in order to have non-
degenerate initial form systems which correspond to the cells in their induced subdivision.
The last subsystem deserves some special attention. Although its BKK bound equals
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#systems #generating BKK #generated
type in F ′ systems bound solutions

0 1 1 1 1
1 4 1 4 16
2 6 3 3× 8 48
3 4 1 8 32
4 1 1 0 0

Total: 16 7 37 97

Table 2: Solving the subsystems of (45): The number of nonlinear equations, number of
systems, the BKK bound of the generating system, and the number of generated solutions.

zero, it has solutions in Cn
0 , due to the symmetric choice of the coefficients. The 4-

homogeneous Bézout bound equals 24. These 3 × 8 solutions of the system can be
found by considering the restriction to the following fixed point spaces: (x1, x1, x3, x3),
(x1, x2, x1, x2) and (x1, x2, x2, x1), as each restriction yields 8 solutions. Hence, the last
subsystem only contributes to solutions in fixed point spaces, which can be computed
seperately, by directly putting the restrictions on the original system F . So, by considering
the generating solutions of F ′ which lie not in any fixed point space, only 10 instead of
96 paths need to be traced.

��� The cyclic n�roots problem

The following system belongs to a family of systems, the so-called cyclic n-roots problem,
given in [5]:

F (x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

x1 + x2 + x3 + x4 + x5

x1x2 + x2x3 + x3x4 + x4x5 + x5x1

x1x2x3 + x2x3x4 + x3x4x5 + x4x5x1 + x5x1x2

x1x2x3x4 + x2x3x4x5 + x3x4x5x1 + x4x5x1x2 + x5x1x2x3

x1x2x3x4x5 − 1

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0. (46)

It is a notorious test problem for Gröbner basis computation although the Buchberger
algorithm is not able to exploit the symmetry. The system remains invariant when the
unknowns are permuted in a cyclic way and when they are read backwards. More precisely,
the system is D5-invariant, where D5 is the dyhedral group spanned by r and s, D5 =
{id, r, r2, r3, r4, s, rs, rs2, rs3, rs4}. The generators of D5 can be represented as follows:

D1(r) : C5 → C5 : x �→ (x2, x3, x4, x5, x1) (47)

and
D1(s) : C5 → C5 : x �→ (x5, x4, x3, x2, x1). (48)

So the name n-cyclic is misleading ignoring part of the symmetry. The total degree equals
120. A generalized Bézout number based on a set structure, see [22], equals 108. The
BKK bound is 70, which matches the number of finite solutions.

The exploitation of the symmetry requires the construction of a D5-invariant homo-
topy. A problem occurs when the lifting algorithm is applied to F , as all lifting values
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for one polynomial are the same and no proper mixed subdivision is obtained. In order
to exploit this kind of symmetry we add points which are invariant w.r.t. D5 and do not
change the mixed volume, see Section 2. For the kth polynomial (x1x2x3x4x5)

k
5 is added,

k = 1, 2, 3, 4. Because the Newton polytopes are left unchanged, the BKK bound of this
new system will remain the same. However, the new system is not a polynomial system
anymore. The transformation yk = x5

k, k = 1, 2, . . . , 5, is not used because it introduces
new solutions and blows up the BKK bound.

A special trick is used which exploits the special structure of the system. From the
last equation x1x2x3x4x5 = 1 one obtains (x1x2x3x4x5)

k
5 = γ, k = 1, 2, 3, 4, where γ is the

fifth root of unity. Replacing the added terms (x1x2x3x4x5)
k
5 by γk fortunately leaves the

BKK bound unchanged.
The start system for the cyclic n-roots problem is then

F ′(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

x1 + x2 + x3 + x4 + x5 − γ
x1x2 + x2x3 + x3x4 + x4x5 + x5x1 − γ2

x1x2x3 + x2x3x4 + x3x4x5 + x4x5x1 + x5x1x2 − γ3

x1x2x3x4 + x2x3x4x5 + x3x4x5x1 + x4x5x1x2 + x5x1x2x3 − γ4

x1x2x3x4x5 − 1

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0,

(49)
where γ is not treated as a variable, but as a constant. This can be interpreted as adding
(0, 0, 0, 0, 0) to the supports A(k), k = 1, 2, 3, 4 leaving the mixed volume unchanged.

For the start system a D5-invariant mixed subdivision can be constructed. The static
lifting has been taken as follows: [17 17 17 17 17 1] for the terms is the first four equations
(1 for the constant term) and [13 7] for the last equation. The resulting mixed subdivision
contains 40 cells and is D5-invariant. Table 3 lists the generating inner normals, together
with the volume of the cell and the number of generated solutions.

A D5-invariant homotopy is constructed. In order to know the solutions of F , it
is sufficient to follow the paths in the homotopy H(x, t) = (1 − t)F ′(x) + tF (x), for
t : 0 → 1, starting at the representatives of orbits of solutions of F ′. One orbit, the
classical solution (1, γ, γ2, γ3, γ4) is already known. By a change of the right hand side of
F ′ into (1, γ, γ3, γ, 1), we have the subsystem associated with the first cell equal to

⎛
⎜⎜⎜⎜⎜⎜⎝

x1 − 1
x1x2 − γ

x1x2x3 − γ3

x1x2x3x4 − γ
x1x2x3x4x5 − 1

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0, (50)

which has already this classical solution. Hence, by exploitation of the symmetry, only 6
instead of 70 continuation paths need to be traced.
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generating normal vol(C) #OC vol(C)·#OC

(−16, 10, 0, 0, 0, 1) 1 10 10
(−16, 0, 10, 0, 0, 1) 3 10 30

(−16, 10,−10, 10, 0, 1) 1 10 10
(−16, 13,−3,−13, 13, 1) 2 10 20

Total: 7 70

Table 3: The n-cyclic root problem for n = 5. The normals of 4 cells are given, one for
each orbit of cells of the D5-invariant subdivision. Secondly, their volume, order of the
orbit, and the number of generated initial solutions are contained.

��� A symmetrized four�bar mechanism

The following application [19] leads to a system for which the supports are symmetrical,
but the system is not: F = (f1, f2, f3, f4) with

fl(x) = al1x
2
1x

2
3 + al2x

2
1x3x4 + al3x

2
1x3 + al4x

2
1x

2
4 + al5x

2
1x4

+al6x
2
1 + al7x1x2x

2
3 + al8x1x2x3x4 + al9x1x2x3 + al10x1x2x

2
4

+a11x1x2x4 + al12x1x
2
3 + al13x1x3x4 + al14x1x3 + al15x1x

2
4

+al16x1x4 + al17x
2
2x

2
3 + al18x

2
2x3x4 + al19x

2
2x3 + al20x

2
2x

2
4

+al21x
2
2x4 + al22x

2
2 + al23x2x

2
3 + al24x2x3x4 + al25x2x3

+al26x2x
2
4 + al28x2x4 + al28x

2
3 + al29x

2
4, l = 1, . . . , 4.

This polynomial system expresses the geometric constrains of the precision-point problem,
described in [19]. The total degree equals 256, the BKK bound equals 80. By the fact
that all Newton polytopes are the same, the BKK bound has been computed efficiently,
see [23]. For general choices of the parameters of the system, there are only 36 finite
nonsingular solutions and two planes of solutions which are not at infinity.

The polytopes are D2-symmetric, D2 = {id, s, r, rs}, represented by

D1(s)x = (x3, x4, x1, x2) and D1(r)x = (x4, x3, x2, x1). (51)

A symmetric start system F ′ has been chosen with the first polynomial

f ′
1(x) = a′11x

2
1x

2
3 + a′12x

2
1x

2
4 + a′13x

2
2x

2
3 + a′14x

2
2x

2
4 + a′15x

2
1 + a′15x

2
2 + a′16x

2
3 + a′16x

2
4 = 0. (52)

By application of the group actions, the other equations of F ′ can be constructed. Note
that the monomials whose corresponding vector of exponents belongs to the interior of
the polytope have been left out. They have been lifted out. The system F ′ has as many
regular solutions as the BKK bound. Not only is F ′ sparser and hence easier to solve,
but there is also the additional sign symmetry which makes it easier to solve F ′. In other
words, the group Z4

2 generated by the reflections which change the sign of one variable is
acting on F ′, but not on F . For the solution of F ′, it is helpful to consider the polytopes
to be semi-mixed, r = 2, with k1 = k2 = 2, so that the cells in the induced subdivision
lead to nondegenerate initial form systems. By the exploitation of all the symmetry,
only 3 paths were to follow to solve F ′. During continuation of the paths defined by
H̃(x, t) = (1 − t)F ′(x) + tF (x) all 80 solution paths need to be followed, as only the
supports of F have D2-symmetry and the system F is not symmetric.
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��� An application from neurofysiology

This system has been posted by Sjirk Boon to the newsgroups sci.math.num-analysis and
sci.math.symbolic:

F (x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2
1 + x2

3 − 1
x2
2 + x2

4 − 1
x5x

3
3 + x6x

3
4 − c1

x5x
3
1 + x6x

3
2 − c2

x5x
2
3x1 + x6x

2
4x2 − c3

x5x3x
2
1 + x6x4x

2
2 − c4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0. (53)

The total degree equals 1024, whereas the BKK bound equals only 20. The parameters of
the system are ck, k = 1, . . . , 4. In [23], it has been observed that for general values of the
parameters ck, only 8 finite solutions were found. This deficiency is due to the fact that
the initial form system Fγ with inner normal γ = (−1,−1,−1,−1,−1,−1)t for a face of
the Newton polytopes

Fγ(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2
1 + x2

3

x2
2 + x2

4

x5x
3
3 + x6x

3
4

x5x
3
1 + x6x

3
2

x5x
2
3x1 + x6x

2
4x2

x5x3x
2
1 + x6x4x

2
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0 (54)

has BKK bound equal to zero, but has solutions (y1, y2, iy1, iy2, y3,−y3), y1, y2, y3 ∈ C,
i =

√−1. This is an application of Theorem 2.9, analogue to Example 3.6.

We consider here the symmetric version of this problem. By taking c1 = c2 and
c3 = c4, the system F becomes D2(s1, r1) × D2(s2, r2)-symmetric, with D2(sk, rk) =
{id, sk, rk, rksk}, k = 1, 2 represented by

D1(s1)x = (x2, x4, x1, x3, x6, x5) D1(r1)x = (x3, x1, x4, x2, x5, x6), (55)

and

D1(s2)x = (−x1, x2,−x3, x4,−x5, x6) D1(r2)x = (x1,−x2, x3,−x4, x5,−x6). (56)

Application of the symmetric lifting algorithm leads to 6 orbits. The symmetric subdi-
vision has three cells with respective volumes 12, 4 and 4. The last two are conjugates,
so at most 16 paths are to be followed. By exploitation of the symmetry, only 3 paths
need to be computed for solving the randomized system F ′. It turns out that the first
subsystem has no finite solutions, while the second one has one generating solution. This
generating solution can then be used to compute the generating solution of F .

To solve the original non-symmetrical problem, one can use the symmetric system as
start system. In this sense, a parameter-homotopy has been constructed.

��� Computational Experiences

The algorithms described above have been implemented in Ada, compiled and executed
on a DECstation 5000/240. Table 4 summerizes all characteristical figures for the appli-
cations. The execution times listed in Table 5 only have a relative meaning, only meant
to compare the advantages of exploiting the symmetry.
Acknowledgments. The authors wish to thank Bernd Sturmfels for explaining the
work in [14] to the authors. The first author wishes to thank Pierre Verlinden for helpful
discussions.
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characteristics
system n d B BKK NP

Speer 4 625 271 96 10
cyclic 5 120 108 70 7

four-bar 4 256 96 80 3
Boon 6 1024 216 20 1

Table 4: Characteristics for the applications. For each system, the dimension n, total
degree d, the Bézout bound B and the BKK bound is listed. The last column contains
the number of paths to be followed for solving the start system F ′.

execution times (cpu sec.)
system method Subdiv. Solve F ′ Solve F total

Speer symmet. 109.9 51.2 67.9 229.0
no sym. 108.5 6768.6 448.4 7325.5

cyclic symmet. 84.7 10.6 1.1 96.4
no sym. 16.4 377.4 48.7 442.5

four-bar symmet. 2.5 4.4 495.6 502.5
no sym. 0.1 39.1 495.6 534.8

Boon symmet. 1.6 3.6 0.2 5.4
no sym. 1.5 17.3 110.1 128.9

Table 5: Execution times for the applications. Each system has been solved twice, once
with (symmet.) and once without (no sym.) the exploitation of the symmetry. In the
first case, F ′ is a system with random coefficients to be used as start system. The timings
are given for the construction of the subdivision (Subdiv.), the solution of F ′ and F . The
last column contains the sum of these timings.
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