
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

ANASTASIOS GIOVANIDIS1

JONAD PULAJ1

The Multiperiod Network Design Problem:
Lagrangian-based Solution Approaches2

1Zuse Institute Berlin (ZIB), Discrete Optimization, Takustr. 7 D-14195, Berlin-Dahlem, Germany, { giovanidis, pulaj }@zib.de
2This research has been supported by the Deutsche Forschungsgemeinschaft DFG

ZIB-Report 11-31 (July 2011)



1

The Multiperiod Network Design Problem:
Lagrangian-based Solution Approaches

Anastasios Giovanidis, Jonad Pulaj

Abstract

We present and prove a theorem which gives the optimal dual vector for which a Lagrangian dual problem
in the Single Period Design Problem (SPDP) is maximized. Furthermore we give a straightforward generalization
to the Multi-Period Design Problem (MPDP). Based on the optimal dual values derived we compute the solution
of the Lagrangean relaxation and compare it with the lagrangean relaxation and optimal IP values.

I. MODEL AND NOTATION

We consider a network represented by a strongly connected digraph G = (V,A) over a finite time
horizon T = {1, . . . , T}. We are given a finite set C = {c1, . . . , cM} with M = {1, . . . ,M}, where
c1 ≤ c2 ≤ . . . ≤ cM and cm ∈ Z+, ∀m ∈ M hold. For each time period t ∈ T and each arc a ∈ A
we relate a total of M integer design variables x

(t)
a = {x(t)a,1, . . . , x

(t)
a,M}, each with a cost κ(t)m ∈ R+,

∀m ∈ M. Thus x(t)a,m ∈ Z+, m ∈ M is interpreted as the number of capacities of size cm used on arc
a at a given time period t.

Also, for each time period, a set of commodities denoted by P should be routed throughout the
network. Each p ∈ P is related to a fixed demand per time period that should be routed from a single
source node s(p) ∈ V to a single destination node t(p) ∈ V and w.l.o.g we consider s(p) 6= t(p), ∀p.
The flow of commodity p over arc a at a given time period t is denoted by f

(t)
a,p ∈ R+. We make use

of the following additional notation and assumptions:
• d(t): |P|-dimensional real vector of the demands at a given time period t. It is possible that a

commodity has a zero entry at period t and a positive one at t + 1, meaning that the demand
may appear at a later time period. We always denote the set of commodities - including the ones
with possibly zero demand - by P . It is important to note that the current model only considers
non-decreasing demands, that is

d(t)p ≤ d(t+1)
p ⇒ ∆d(t)p := d(t+1)

p − d(t)p , d(0)p := 0, ∀t ∈ T , ∀p ∈ P (1)

• Um: Upper bound for each x(t)a,m which satisfies the total demand of all source destination pairs for
the last time period T , that is

Um :=


∑
p∈P

dTp

cm

 , ∀m ∈M (2)

• r
(t)
m : Unit cost per capacity type at a given period t, i.e r

(t)
m := κ

(t)
m

cm
, ∀m ∈ M. For simplicity of

notation and w.l.o.g we assume the following ordering:

0 < r
(t)
M ≤ . . . ≤ r

(t)
2 ≤ r

(t)
1 , ∀t ∈ T (3)
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• ∆r
(t)
M : The difference in unit cost for cM from period t to period t+ 1, that is

∆r
(t)
M := r

(t)
M − r

(t+1)
M , r

(T+1)
M := 0, ∀t = 1, . . . , T − 1 (4)

• We assume that the costs of each capacity type are non-increasing over time, that is

κ(t)m ≥ κ(t+1)
m , ∀t = 1, . . . , T − 1, ∀m ∈M (5)

• µ : |A| · |T | dimensional Lagrangian dual vector. Every entry of the vector is denoted by µ(t)
a for

every a ∈ A and every t ∈ T .
• ρ : Rearranged |A| · |T | dimensional Lagrangian dual vector. Each entry of the vector is a sum of
µ
(τ)
a from t to T , that is

ρ(t)a :=
T∑
τ=t

µ(τ)
a , ∀t ∈ T , ∀a ∈ A (6)

• Z(ρ)(t): The contribution of period t to the objective function of the Lagrangian problem, that is

Z(ρ)(t) :=
∑
a∈A

∑
m∈M

(
κ(t)a,m − cmρ(t)a

)
· x(t)a,m +

∑
p∈P

∑
a∈A

ρ(t)a fa,p (7)

• Asterisk superscripts denote optimal values or vectors.
The model under study considers persistent routing. This means that if a portion of a commodity’s

demand is routed through a specific edge set at time period t, then this will remain true for future time
periods. In particular, re-routing is not allowed.

A. Problem Statement and Lagrangian Relaxation
We can now provide the multicommodity flow formulation of the Multi-Period Design Problem

(MPDP) with incremental flow and persistent routing:

min
∑
t∈T

∑
a∈A

∑
m∈M

κ
(t)
m x

(t)
a,m [MPDP]

s.t
∑

a∈δ+(v)

f
(t)
a,p −

∑
a∈δ−(v)

f
(t)
a,p =

 ∆d
(t)
p if v = s(p)

−∆d
(t)
p if v = t(p)

0 otherwise
∀v, t, p [FCONS]

∑
p∈P

∑t
τ=1 f

(τ)
a,p ≤

∑
m∈M

cm
∑t

τ=1 x
(τ)
a,m ∀a, t [CAPB]

f
(t)
a,p ∈ R+, x

(t)
a,m ∈ Z+, x

(t)
a,m ≤ Um ∀a,m, p, t

(8)

The theory of Lagrangian Relaxation and its applications in solving discrete optimization problems can
be found in several survey papers and textbooks, such as [Geo74], [Sha79], [Fis04], [BW05], [Wol98].
To derive a lower bound for the MPDP, we follow the approach of relaxing the CAPB constraints.
For each arc and each time period, the CAPB constraint is related to a dual variable µ

(t)
a ≥ 0, and

consequently ρ
(t)
a ≥ 0 as defined above. After rearranging terms we have - for any vector ρ - the

following Lagrangian problem:
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Z(ρ) = min
∑
t∈T

(∑
a∈A

∑
m∈M

(
κ
(t)
m − cmρ(t)a

)
· x(t)a,m +

∑
p∈P

∑
a∈A

ρ
(t)
a f

(t)
a,p

)
[L-MPDP]

s.t.
∑

a∈δ+(v)

f
(t)
a,p −

∑
a∈δ−(v)

f
(t)
a,p =

 ∆d
(t)
p if v = s(p)

−∆d
(t)
p if v = t(p)

0 otherwise
∀v, t, p [FCONS]

f
(t)
a,p ∈ R+, x

(t)
a,m ∈ Z+, x

(t)
a,m ≤ Um ∀a,m, p, t

(9)

The minimization of the Lagrangian over primary variables decomposes into two subproblems for
each time period. The first is the Capacity Planning Problem (CPP), which further decomposes into one
subproblem for each arc and each capacity type:

min (κ
(t)
m − cmρ(t)a ) · x(t)a,m [CPP-t-a-m]

s.t x
(t)
a,m ∈ Z+, x(t)a,m ≤ Um, ∀a,m

(10)

The second subproblem is the uncapacitated multicommodity network flow problem, which we state in
the following:

min
∑
p∈P

∑
a∈A

ρ
(t)
a f

(t)
a,p [UNMCF-t]

s.t
∑

a∈δ+(v)

f
(t)
a,p −

∑
a∈δ−(v)

f
(t)
a,p =

 ∆d
(t)
p if v = s(p)

−∆d
(t)
p if v = t(p)

0 otherwise
∀v, p [FCONS-t]

f
(t)
a,p ∈ R+ ∀a, p

(11)

Furthermore, since the remaining constraints do not couple the flow variables for the individual
commodities, for each commodity p ∈ P a minimum cost flow problem should be solved. Altogether
the solution from the minimization of the Lagrangian is summarized in the following

Theorem 1 Given a Lagrangian dual vector µ, and consequently a vector ρ related to the CAPB
constraints, the primal variables which minimize the Lagrangian take the following values:

x(t)a,m(ρ) =


0 κ

(t)
m

cm
> ρ

(t)
a

Um
κ
(t)
m

cm
< ρ

(t)
a

[0,Um] κ
(t)
m

cm
= ρ

(t)
a

∀t, a,m (12)

whereas the optimal flow for each commodity p ∈ P is the solution of a shortest path problem

min
∑
a∈A

ρ
(t)
a f

(t)
a,p

s.t
∑

a∈δ+(v)

f
(t)
a,p −

∑
a∈δ−(v)

f
(t)
a,p =

 ∆d
(t)
p if v = s(p)

−∆d
(t)
p if v = t(p)

0 otherwise
∀v, t

f
(t)
a,p ∈ R+ ∀a, t

(13)



4

Since the above holds for any ρ, we are interested in the particular vector that yields the tightest lower
bound. This leads to the following Lagrangian dual problem D(ρ):

max Z(ρ) [D-MPDP]
s.t ρ

(t)
a ≥ 0 ∀a, t

Theorem 2 If ZD is the solution of D-MPDP and ZMIP , ZLP the optimal solution of the MPDP and
its solution considering a linear relaxation of the integer installation variables respectively, then it holds
that

ZD = ZLP ≤ ZMIP (14)

The equality on the left hand side is due to the integrality property [Geo74], which states that the
optimal value of the Lagrangian problem does not alter when we drop the integrality conditions on the
variables x(t)a,m. The right hand side inequality results from the weak duality theorem [BW05, Th.4.8].
Near optimal Lagrangian dual vectors are in practise obtained algorithmically, and there are several well
known methods that are widely used. In the next section we find in closed form an optimal Lagrangian
dual vector for the MPDP.

II. MAIN RESULTS

We will first give a proof for an optimal Lagrangian dual vector for the Single Period Design Problem
(SPDP), then generalize this result for the MPDP. In order to recover an optimal Lagrangian dual vector
for the SPDP we make use of the second proposition, and obtain the desired result as a consequence
of the linear programming relaxation of the SPDP.

A. Single Period Results
Theorem 3 The optimal solution of the linear programming relaxation of the SPDP equals

x∗a,m =

{ ∑
p∈P

f∗a,p

cM
if m = M

0 otherwise
∀a,m (15)

where f ∗a,p solves the UNMCF with ρa = rM , ∀a ∈ A.

Proof: Consider any feasible flow fa,p ∀a, p of the linear relaxation of the SPDP. Then

xa,m =

{ ∑
p∈P

fa,p

cM
if m = M

0 otherwise
∀a,m

satisfies the CABP constraints with equality for every arc. Thus the objective function equals∑
a∈A

∑
m∈M

κmxa,m =
∑
a∈A

κMxa,M

=
∑
a∈A

∑
p∈P

κM
cM

fa,p

=
∑
a∈A

∑
p∈P

rM · fa,p (16)



5

Because of (3) we have that rM is the smallest unit cost per capacity type. If any portion of the flow
for any particular arc is satisfied by a capacity type other than that of size cM , then it can be replaced
by the appropriate ammount of capacity type cM at a smaller cost in the objective function. Hence it
is clear that for any given feasible flow, (16) is minimal. It is clear that the solution of the UNMCF,∑
p∈P

∑
a∈A

ρaf
∗
a,p with ρa = rM , ∀a ∈ A, is a feasible flow for the linear programming relaxation of SPDP.

Then,
∑
a∈A

∑
p∈P

rM · f ∗a,p ≤
∑
a∈A

∑
p∈P

rM · fa,p.

Theorem 4 An optimal vector µ∗ for the Lagrangian dual of the SPDP equals rM ·~1.

Proof: We make use of Theorem 2. By the left hand side of (14), for any optimal vector µ∗, we
have that

min
(xa,m,fa,p)

(∑
a∈A

∑
m∈M

(κm − cmµ∗a) · xa,m +
∑
p∈P

∑
a∈A

µ∗afa,p

)
=

∑
a∈A

∑
p∈P

rMf
∗
a,p

min
xa,m

∑
a∈A

∑
m∈M

(κm − cmµ∗a) · xa,m + min
fa,p

∑
p∈P

∑
a∈A

µ∗afa,p =
∑
a∈A

∑
p∈P

rMf
∗
a,p

Thus, in order to prove that a given vector µ is optimal for the Lagrangian dual of the SPND it is
sufficient to check whether the equation above holds with equality when µ is used in the left hand side.
Let µ = rM ·~1. Then,

κm − cmrM = κm − κM ≥ 0 ∀m ∈M (17)

As a consequence of Theorem 1, equation (12) and the above inequality (17), we have that

min
xa,m

∑
a∈A

∑
m∈M

(κm − cmrM) · xa,m = 0 (18)

All we have left to prove is that,

min
fa,p

∑
p∈P

∑
a∈A

rMfa,p =
∑
a∈A

∑
p∈P

rMf
∗
a,p (19)

holds with equality. But the left hand side is the solution of the UNMCF with ρa = rM . Hence, due to
Theorem 3, the equality holds.

B. Multi-Period Result
A natural question for the multi period case is the following:

When is the optimal solution of the MPDP the sum of periodwise optimal solutions?
• Given our assumptions on the monotonically decreasing capacity to price ratios it is clear that

when only one capacity type is available, the optimal solution for the MPDP will be the sum of
the optimal solutions for each period.

• When the optimal solution for each period fulfills each constraint with equality then it is also clear
that the solution of the MPDP will be the sum of optimal solutions for each period.

To treat the more general case when the above do not hold, it is important to notice that the L-MPDP
decomposes into time periods. The substitution ρ

(t)
a :=

∑T
τ=t µ

(τ)
a , ∀t ∈ T , ∀a ∈ A is intended to
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make this easier to see. Thus for each time period the design and flow varibles depend only on ρ. Hence
for each time period t, we have the following Lagrangian problem:

min

(∑
a∈A

∑
m∈M

(
κ
(t)
m − cmρ(t)a

)
· x(t)a,m +

∑
p∈P

∑
a∈A

ρ
(t)
a f

(t)
a,p

)
[L-MPDP-t]

s.t.
∑

a∈δ+(v)

f
(t)
a,p −

∑
a∈δ−(v)

f
(t)
a,p =

 ∆d
(t)
p if v = s(p)

−∆d
(t)
p if v = t(p)

0 otherwise
∀v, p [FCONS-t]

f
(t)
a,p ∈ R+, x

(t)
a,m ∈ Z+, x

(t)
a,m ≤ Um ∀a,m, p

(20)

Theorem 5 An optimal vector µ∗ for the D-MPDP is equal entrywise to µ(t)
a = ∆r

(t)
M , and as a result

of telescoping sums ρ(t)∗a = r
(t)
M , ∀t ∈ T and ∀a ∈ A.

Proof: It is important to note that the theorem holds under the initial assumption (3) that the costs
of each capacity type are non-increasing over the given time horizon. This allows each ∆r

(t)
M to be

nonnegative as required. Because of the decomposition of the L-MPDP into time periods which depend
only on ρ, it is sufficient to consider the optimal vector for the Lagrangian dual of each L-MPDP-t.
But this is simply the optimal vector for the Lagrangian dual of the SPDP for each period t. Therefore
by Theorem 4 we have that ρ∗(t) = r

(t)
M ·~1.

Theorem 6 The optimal solution of the linear programming relaxation of the MPDP is given by the
solution of |P| · |T | shortest path problems.

Proof: This is an immediate consequence of the previous theorems. since a set of optimal La-
grangian duals has been provided in closed form, the CPP-t-a-m can be solved by inspection and the
UNMCFs should be solved per period and per commodity, given the optimal vector µ∗.

III. COMPUTATIONAL RESULTS

Since we have established that the Lagrangian relaxation of the CAPB constraints yields the same
lower bound as the linear programming relaxation of the MPDP, it is natural to investigate the quality of
this lower bound. Unfortunately this lower bound can be quite weak. The following example illustrates
our point:
• Consider a connected two node network with only one arc. The tail of the arc indicates the source

node, whereas the arrow indicates the sink. We have c1 = 100, κ1 = 100 and d1 = 1. The objective
function value of the linear programming relaxation of the SPDP is 1 whereas the optimal integer
solution value is 100.

Next, we present some computations for the network topology in the picture below. Prices are kept
fixed, and demands and capacity types are varied. As expected by the example given above when the
demands are relatively small compared to the capacity types the gap between the linear relaxation and
the optimal is large. This can be observed in the third row of the second table.
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Fig. 1. Example Network
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Periods d1 d2 d3 c1 c2 c3 c4 p1 p2 p3 p4
t=1 1.0 1.0 1.0 2.0 5.0 10.0 15.0 3.0 6.0 11.0 14.0
t=2 2.0 2.0 2.0 2.0 5.0 10.0 15.0 2.5 5.0 9.5 12.0
t=3 3.0 3.0 3.0 2.0 5.0 10.0 15.0 2.0 4.0 8.0 10.0
t=4 3.5 3.5 3.5 2.0 5.0 10.0 15.0 1.5 3.0 6.5 8.0
t=5 4.0 4.0 4.0 2.0 5.0 10.0 15.0 1.0 2.0 5.0 6.0
t=1 5.0 12.0 15.0 2.0 5.0 10.0 15.0 3.0 6.0 11.0 14.0
t=2 10.0 24.0 30.0 2.0 5.0 10.0 15.0 2.5 5.0 9.5 12.0
t=3 15.0 36.0 45.0 2.0 5.0 10.0 15.0 2.0 4.0 8.0 10.0
t=4 17.5 42.0 52.5 2.0 5.0 10.0 15.0 1.5 3.0 6.5 8.0
t=5 20.0 48.0 60.0 2.0 5.0 10.0 15.0 1.0 2.0 5.0 6.0
t=1 2.0 3.0 4.0 20.0 27.0 45.0 59.0 3.0 6.0 11.0 14.0
t=2 4.0 6.0 8.0 40.0 27.0 45.0 59.0 2.5 5.0 9.5 12.0
t=3 6.0 9.0 12.0 20.0 27.0 45.0 59.0 2.0 4.0 8.0 10.0
t=4 7.0 10.5 14.0 20.0 27.0 45.0 59.0 1.5 3.0 6.5 8.0
t=5 8.0 12.0 16.0 20.0 27.0 45.0 59.0 1.0 2.0 5.0 6.0

Fig. 2. Table I: 3 examples of Demads, Capacities and Prices per period for the above network

Time Periods LP Value LR Value Integer Value
T=5 715580.458 715578.341 802022.5
T=5 1049909.791 1044905.873 1128215.0
T=5 93395.063 93391.22 162615.0

Fig. 3. Table II: Comparison between the linear relaxation, lagrangean relaxation and actual integer solution


