S
I X XXX
XXX XY
XX XX XX
XX XX XXX
WA

‘V
(7YX

AaY
[X
R
A

Konrad-Zuse-Zentrum fir Informationstechnik Berlin
Heilbronner Str. 10, D-10711 Berlin - Wilmersdorf

ANDREAS HOHMANN

Object Oriented Design of Multilevel Newton
and Continuation Methods

SC-94-4 (March 1994)

OBJECT ORIENTED DESIGN OF MULTILEVEL NEWTON AND
CONTINUATION METHODS

ANDREAS HOHMANN*

Abstract. We present a set of C++ classes that realize an abstract inexact Gauss Newton
method in combination with a continuation process for the solution of parameter dependent nonlinear
problems. The object oriented approach allows the continuation of different types of solutions within
the same framework.

Key Words. inexact Gauss Newton method, tangential continuation, steplength control, param-
eter dependent nonlinear equations, dynamical systems, object oriented implementation, C+-+ class
library

Introduction. It seems beyond doubt that Newton’s method is the method of
choice for the numerical solution of nonlinear problems provided with some differentia-
bility. Combined with some (typically tangential) continuation process it also allows
the numerical investigation of parameter dependent problems. Because its idea of suc-
cessive linearization is so fundamental, this Euler-Newton process may be applied to
rather different kinds of nonlinear problems. We only refer to the numerical analysis
of (finite dimensional) dynamical systems regarding fixed points, periodic solutions,
all sorts of bifurcations, and even connecting orbits. Here, the nonlinear problems
are partly finite dimensional (fixed points and bifurcations of stationary solutions)
and partly infinite dimensional (periodic and connecting orbits) which have to be dis-
cretized in some way. Despite the different nature of the nonlinear problems and their
solutions, the basic numerical approach remains the same.

Naturally, this situation calls for an object oriented realization of the abstract
numerical method. We present a set of C++ classes which realizes an inexact Gauss
Newton continuation method for (almost) arbitrary parameter dependent nonlinear
problems including infinite dimensional problems with varying discretizations. The
crucial point is a carefully designed interface for the abstract inexact Newton method
via virtual member functions. The structure of the continuation classes allows the
continuation of different kinds of solutions (including bifurcations) within the same
framework.

As an application, we consider parameter dependent dynamical systems and ana-
lyze the typical situation of a Hopf bifurcation. Here, we first have to follow a branch of
stationary points (finite dimensional problem), detect and compute the Hopf bifurca-
tion, and then follow the emanating branch of periodic solutions (infinite dimensional
problem). The latter are computed via an adaptive multilevel Newton h-p collocation
method using variable (adaptively chosen) grids for the discretizations of the periodic
solutions.

With the abstract continuation classes at hand, it makes no difference whether
we follow a branch of stationary or periodic solutions. The inexact Newton process as
well as the adaptive steplength control for the tangential continuation apply in exactly
the same way. The classes demonstrate that the object oriented design of advanced
numerical methods allows an almost 1-1 representation of the abstract mathematical

* Konrad—Zuse—Zentrum Berlin, Heilbronner Str. 10, D-10711 Berlin-Wilmersdorf, Germany.
hohmann@sc.zib-berlin.de

setting and thus simplifies the implementation drastically.

The paper is divided into two parts, the first devoted to the abstract mathe-
matical setting and the second to its object oriented implementation. In the first
section we also provide the numerical methods for the solution of underdetermined
nonlinear problems: an inexact Gauss Newton method based on an affine contravari-
ant convergence result and a simple control mechanism for the predictor stepsize in a
continuation method.

The classes are part of a larger package for numerical computations, in particular
for ordinary differential equations, which is available via anonymous ftp from the
directory pub/code++ at elib.ZIB-Berlin.de (130.73.108.11). Here, the reader may
also find a more detailed documentation [Hoh93a] of these classes.

1. Mathematical Setting and Numerical Methods. In what follows, X, Y,
and Z denote Banach spaces and D C X an open convex subset of X. We consider a
parameter dependent nonlinear problem

(1) F(z,A) =0,

where F': D C Z x A — Y is a differentiable mapping, and A is some finite dimen-
sional parameter space, dim A = p. For convenience, we consider instead of (1) the
underdetermined nonlinear problem in X = Z x A (cf. [DFK87))

(2) F(z) =0, where F:DC X —Y.

In order to obtain a well defined p-dimensional solution manifold M C D, we have to
require (see e.g. Fink and Rheinboldt [FR83]) that F' is a Fredholm mapping of index
p with dimker F'(x) = p for all solutions € D, F(x) = 0. Thus, 0 € Y is a regular
value of F' and (2) defines a p-dimensional manifold M in D C X. A continuation
process for tracking the implicitly defined manifold M consists of two ingredients:

e a predictor providing an approximation of the local parametrization near an

already computed solution Z,

e a corrector which projects a given point near M onto the manifold.
The most often applied continuation process is the so-called Euler-Newton continu-
ation, where a (Gauss) Newton method as corrector is combined with a tangential
approximation of the manifold as predictor. Not surprisingly, we shall consider an
inexact Gauss Newton method as corrector.

1.1. An Inexact Gauss Newton Method. Recall that the standard Gauss
Newton method for the solution of an underdetermined nonlinear problem F(z) = 0
is given by a sequence xg, x1, . . ., where

(3) Thi1 = 2+ Az and Axy, = —F (zp) T F(xp)

Here, F'(z;)" denotes the pseudo inverse of the Jacobian which is well defined if
F: X — Y is a Fredholm mapping of Hilbert spaces. If F'(z}) is surjective, then Axy
is the only solution in (ker F'(x))* of

(4) F'(zp) Az = —F(x) .

If the nonlinear problem is very large, it is almost impossible to compute the Gauss
Newton corrections Axy, exactly. This is in particular true in the infinite dimensional

2

situation of a multilevel Newton (or quasilinearization) method. In an inezact Newton
method we compute approximate solutions s; of (4) and obtain the inezact Newton
iterates

Tht1 = Tk + Sk -
We define the inner residuals ri by
(5) TE = F’(xk)sk + F(J)k) ,

not to be confused with the outer residuals F(xj). In many applications the inexact
Newton corrections s result from an iterative solver for the Newton equation, i.e.,
an inner iteration in contrast to Newton’s method itself as the outer iteration. In
the multilevel Newton context, we have to solve the arising infinite dimensional linear
subproblems by some discretization.

Obviously, the crucial point is an appropriate matching between Newton’s method
(as the outer iteration) and the linear solver (the inner iteration). We want to spend
as little effort as possible for the linear problems, but without loosing the quadratic
convergence property of the Newton iteration. The following theorem is the basis of
a relatively simple but efficient control mechanism for the inner residuals by compu-
tationally available terms. For related approaches see [DES82], [BR81], and [BR82].

To cover the underdetermined case, we restrict the corrections s; and the direc-
tions v in the affine contravariant Lipschitz condition (6) to suitable subsets of X.
Moreover, we introduce a parameter 0 < § < 1 describing the “exactness” of the
method. Setting 8 = 0 corresponds to the exact Newton iteration, while § = 1 dis-
tributes the error in equal parts on the Newton iteration and the inexact solution of
the Newton equation.

THEOREM 1.1. Let FF: D C X — Y be a Gateauz-differentiable mapping and
{V(z)}zrep a family of subsets V(x) C X with V(xz) Nker F'(z) = {0}. We assume
that there is a constant w > 0 such that

(6) I(F (2 + tv) = F'(2)o]| < tw||F'(x)v]|?

forallz € D, t € [0,1], and v € V() such that x +v € D. Moreover, suppose that
an inexact Newton sequence {xy}r=0.1,.. exists in D such that for all k € N and some
0<p<1

a) the corrections s, = w41 — o are in V(xy),

b) the residuals ri, = F(xy) + F'(zk)sk, are bounded by

(7) [l < gmin(LWHF'(xk)SkH) 1F" (k) skll
c) the initial guess xo satisfies
2-p
8 F < hm X = 5 -
(8) w || (o) SR e

Then the residuals F(xy) converge quadratically to zero.

The proof is simple and to be found in [Hoh93b|. As for almost all convergence
theorems for Newton-like methods, the whole key is the judicious application of the
fundamental theorem of calculus.

We call this result affine contravariant because it is invariant with respect to
affine (contravariant) transformations of the domain X. More precisely, the constant
w in (6), which characterizes the nonlinearity of the problem, remains unchanged if
we replace F' by F oT, where T : X — X is an affine transformation. The whole
formulation only involves the norm in the image space Y. That is why we can not
prove convergence of the iterates xj but only of the residuals F(zy).

If X is a Hilbert space and 8 = 0, i.e., in the exact case, we may substitute the
orthogonal complement of the Jacobian’s kernel for the restriction space:

V(z) = (ker F'(x))*.

This results in the original Gauss Newton method (3). In the inexact case 5 # 0, this
choice is not realistic, since s is in most cases only approximately orthogonal to the
ker F'(zy). Hence, the most suitable choice for V' (z) appears to be the ‘algorithmic’
restriction

) {Asy} ifx=ay
Vie) = { 0 ifad {m).

Introducing the Kantorovitch quantities hy := w ||F"'(xy)sk||, the demand (7) on the
inner residuals reads

B .
9) 7l < ex || F'(xk)sk||, where e :=) min(1, hg) .
This may be easily transferred into a matching strategy for the relative residuals

€k
el < e [|E'(ep) |, where apy := == = ek + O(ex) ,
+ &k
which obviously implies (9). This argument also holds in what follows: Up to O(g,)
the residual norm || F(z)|| and ||F'(zk)sk|| are interchangeable.

Computational Estimates.. To arrive at an implementable control mechanism, we
have to replace the analytic quantities h; with computational available estimates.
Following Deuflhard [Deu91], it is rather easy (see [Hoh93b]) to derive the a posteriori
estimate

2 |[F(zre)ll
10 hi| == < hi + O(eg) -
1o =T) <O
and the corresponding a priori estimate
1+
(11) [hi] := Tﬁ[hk—l]Q-

Thus, we arrive at the affine contravariant matching strategy
_B
(12) [ek] ==) min(1, [hg]) .

REMARK 1. In the algorithmic realization, the accuracy requirements should be
coupled with a lower bound (depending on the prescribed accuracy for the solution of
the nonlinear problem) to avoid too strict conditions for the last Newton iteration.

4

1.2. Stepsize Control for Continuation Methods. Next we turn to the con-
tinuation process. We define a p-dimensional predictor in the affine contravariant
setting as follows.

DEFINITION 1. Let z € D be a solution of F', F(z) = 0. A predictor for the
nonlinear problem F(z) =0 at Z is a mapping

z:X—DCX,
defined in an open neighbourhood ¥ of 0 € R? such that #(0) = & and
(13) |E(2(0))]| < Cp(o) forall o e X

for some constant C' > 0 and a continuous function ¢ : ¥ — R with ¢(0) = 0. The
predictor & has order ¢ > 0, if & fulfills condition (13) for ¢(o) = ||o|f, i.e.,

[E@(@)] < Clla]l-

REMARK 2. Observe that we do not explicitly refer to the solution manifold M
or the local parametrization x. Consequently, the dimension p of the predictor may
differ from the dimension of the manifold. Thus, we can also track some submanifold

of M.
As an example, we consider the standard tangential predictor
i(o) =z + ot

for p = 1, where ¢ is a normalized tangent at z, i.e., F'(Z)t = 0 and |[|t|| = 1. For twice
differentiable mappings F’, it clearly has order ¢ = 2, since

1F(@(o)] = |[F(@) + o F (@)t +o*O(| F"(2)¢]) -

The crucial point for an effective continuation process is the coupling of the pre-
dictor and the corrector. If the stepsize o is too big, the corrector does not converge.
If o is too small, we have to solve too many nonlinear problems. Substituting the
predictor characterization (13) for the initial guess in the inexact Newton Theorem
1.1, we can derive a bound for the mazimal feasible stepsize for which we may expect
convergence of the inexact Newton iteration.

THEOREM 1.2. Let F': D C X — Y be a Gateauzx differentiable mapping such
that the restricted Lipschitz condition (6) holds for some w > 0 as in Theorem 1.1.
In addition, let T be a predictor for F(x) = 0 at a solution T € D. Then the inexact
Newton method initial guess &(o) as defined in Theorem 1.1 converges for the for all
stepsizes o € ¥ satisfying

Do
|
sy

9 _
(14) (o) < Wg Nmax, where Npax =

—_
+
=

For a predictor of order ¢, this leads in particular to the stepsize bound

2 B)h
< q (max)
lol < {/—=o0—

As for the Kantorovitch quantities h;, we have to look for computationally available
estimates for wC to get an implementable stepsize control. Using the a posteriori
estimate [hg] and inequality (14), we derive the a posteriori estimate

2 — B [h 2—08 h
WO = B [ho] <28 ho

2 ¢(o) 2 ¢(o)
For order ¢ predictors this expression simplifies to

_ 20 [h]
2 Jlolle’

wC'.

W]

Instead of constructing an additional a priori estimate for wC' (probably using second
order information like the curvature), we simply use the a posteriori estimate of the
last continuation step. This strategy has proven to be sufficiently efficient in practice.

Thus, we arrive at a stepsize control mechanism for inexact continuation methods:
Given a solution Z and a predictor z, look for a stepsize o satisfying

(2 B /B)hmax
15 o)< ——H —
(15) o0) < 5
and start the inexact Newton iteration with initial guess (o). If the iteration fails,
contrary to expectation, use the new Kantorovitch estimate to compute [wC] and
reduce the stepsize in order to satisfy (15). For scalar parameters, p = 1, and an

order ¢ predictor this strategy reduces to the well known stepsize correction formula
[DFKS8T7])

__q hmax
UHGW - [ho] : UOld .

2. Object Oriented Implementation. We shall now translate the mathemat-
ical notions of the first section to corresponding classes in an object oriented imple-
mentation. While doing so we try to explain some of our design decisions.

2.1. Implementation of the Abstract Inexact Newton Method. The un-
derlying mathematical structure is a Banach space, i.e., objects one can add, multiply
with a scalar, and which are provided with a norm. Moreover, we see in the residual
oriented affine contravariant approach that we only need the norm in the image space.

The first idea was to define Newton’s method as a template class using the classes
of the domain X and the image space Y as parameters. Besides the fact that GNU’s
templates had still some problems last year, the alternative approach using an abstract
base class has turned out to be much more flexible. Newton’s method is no “container
class”, but makes use of the functionality of the involved objects as elements of some
Banach space (cf. [Mey92]).

The only problem is that we have to store some vectors: the right hand side F'(xy),
the correction si, and the solution x;. Since Newton’s method as an abstract class
does not know the types of the domain and image space, the “user”, i.e., the derived
Newton method, has to provide these objects in some way.

So, what do we need to perform the iteration?

6

the function evaluation F'(x) and the norm [|F(x)||

the evaluation of the Jacobian F'(x)

the approximate solution of F'(x)s = —F(x)

the update of the solution z :=x + s

Exactly these four functions are to be found as abstract virtual methods in the base
class.

class Newton {
public:
Newton() ;

void SetAccuracy(Real tol);
void SetExactness(Real beta);
void SetInitialResidual (Real f);

Real ConvergenceFactor() const;
protected:
virtual Bool Function(Bool first, Real& norm) = O;
virtual Bool Jacobian() = 0;
virtual Bool Solver() = 0;
virtual void AddCorrection() = 0;

Bool Start();
Bool Step();
Bool Solve();

Real RelativeAccuracy() const { return eps; }
Real AbsoluteAccuracy() const { return delta; }
private:

Real tol, beta, eps, delta;

Real hMin, hMax, hFac, hFirst, fFirst, rhoEnd;
Int k, kMax, red, redMax;

Bool converged;

RealVec f, h;

void PrepareNextStep() ;
};

We separate the Jacobian evaluation from the solver since in some variants of Newton’s
method (e.g., in its affine covariant formulation) the solver is used more than once with
the same Jacobian.

These functions may be realized in very different ways. So, the multilevel Newton
h-p collocation for boundary value problems of ordinary differential equations (see
[Hoh93b]) realizes the linear solver as an adaptive h-p collocation operating on grids,
whereas the Newton method for small finite dimensional problems simply uses an LR
or QR decomposition. On the other hand, the user supplied functions may employ the
relative and absolute accuracy requirements RelativeAccuracy and AbsoluteAccuracy
provided by the abstract method.

The implementation of the inexact Newton method looks like the following:

Newton: :Newton() :
kMax(30), r(0, kMax-1), h(-1, kMax+1), redMax(10),
beta(1l), tol(sqrtEpsMach), hMin(1le-3), fFirst(1), hfirst(0.1), rho(0.5)

hMax
hFac

(2-beta)/(1+beta);
2/ (1+beta) ;

}

Bool Newton::Start() {
k=0;
h.Clear();
f.Clear();
h(0) = hFirst;
£(0) = fFirst;

eps = beta * h(0) / 2; // first required relative accuracy
delta = eps * £(0); // first required absolute accuracy
Bool done = Function(true, £(0));
if (dome) {

PrepareNextStep();

if (converged) h(0) = hMin;
}

return done;

}

Bool Newton::Solve() {
Bool done = Start();
while (done && !converged) done = Step();
return done;

}

Bool Newton::Step() {
if (k>kMax) return false;
if (!Jacobian()) return false;
if (!Solver()) return false;
AddCorrection();
if (!Function(false, f(k+1)) return false;
h(k) = hFac * f(k+1) / f(k);
if (h(k) < hMax) return false;
h(k+1) = sqr(h(k)) / hFac : hFirst;

k++;
PrepareNextStep() ;
return true;
}
void Newton: :PrepareNextStep() {
converged = r(k)<=tol; // check convergence
f(k+1) = £(k) * h(k) / hFac; // a priori residual
eps = beta * h(k) / 2; // required relative accuracy
delta = eps * f(k+1); // required absolute accuracy

delta = Max(delta, rhoEnd*tol); // soften requirement for last step
}

2.2. Implementation of the Continuation Process. We next sketch the
classes that realize the continuation process. As claimed in the introduction, these
classes should permit an easy handling of different types of solutions including bifurca-
tions. The resulting structures are strongly influenced by experiences with rather com-
plicated solutions occurring in the context of symmetry breaking bifurcations (code
SyMcoN [GH91]).

The first question is how to portray the solution of a continuation process. From
our point of view, the result of a pathfollowing method is a graph representing the
bifurcation diagram corresponding to the parameter dependent nonlinear problem.
This graph consists of points associated with the actually computed solutions such as
fixed points, bifurcations, or periodic orbits, which are connected by edges reflecting

8

the structure of the bifurcation diagram.

In the course of the continuation process, the predictor steps produce new points
and edges which then have to be corrected. Hence, we distinguish two types of points
and edges: predicted or imaginary points and edges which are the result of a predictor
step, and corrected or real points and edges which are already corrected (or realized),
e.g. by some Newton process. Accordingly, the basic class for a continuation graph
looks like the following:

class ContGraph : public MyObject {
friend class ContPoint;
friend class ContEdge;
public:
ContGraph();
virtual “ContGraph(Q);

Bool Start(ContPoint& p);
Bool Step(Int k=1);
Bool Continue();
Bool Finished() const;
protected:
List<ContEdge> edges, predictedEdges;
List<ContPoint> points;
};
Next we have to ask ourselves which functionality characterizes a point of a continua-
tion method. First, a point must have a corrector. In many cases this is some Gauss
Newton process as discussed above. Moreover, a point has to provide a method which
computes new edges in order to continue the pathfollowing process. In the simplest
case of a regular solution point this method produces an imaginary edge corresponding
to a tangential predictor. In more involved situation like symmetry breaking and Hopf
bifurcations, several edges of different types are created.

class ContPoint : public MyObject {
public:
virtual Bool Correct(ContGraph&) = 0;
virtual Bool NewEdges(ContEdge&, List<ContEdge>&) = 0;
};
Note that the corrector may need the whole graph as argument, since it should be
able to recover already computed solutions. The first argument of NewFEdges is the
edge leading to the current point. The resulting new edges are to be appended to the
given list of edges.
An edge has as usual two pointers to its vertices. Moreover, there is a method
Realize containing the predictor-corrector loop of the continuation method.

class ContEdge : public MyObject {
public:
ContEdge (ContPoint& pO, ContPoint& pl);

virtual Bool Realize(ContGraph&) ;
virtual Bool Predict() = 0;
virtual Bool CorrectStepsize() = 0;
protected:
ContPoint *p[2];
};

This method Realize is predefined but may also be overloaded for more complicated
continuation loops.

Bool ContEdge: :Realize(Contin& contin) {
const Int redMax = 5;
Bool done;
if (dome = Predict()) {
for (Int red=1, done = false; !done && red<=redMax; red++) {
done = p[1]->Correct(contin);
if (!done) if (!CorrectStepsize()) break;

}
if (dome) {
contin.points.AppendTail (p[1]);
contin.edges.AppendTail(this);
done = p[1]->NewEdges(this, contin.predictedEdges);
}

return done;

}

2.3. Additional Remarks. Since space is limited, we have only been able to
sketch the basic concepts and thus have mainly presented the abstract base classes
which provide the framework for the whole package. Some questions naturally arise
when deriving new continuation classes. A frequently occurring problem in C++ is
connected with the static typing. How can a point (derived from ContPoint) get the
type of a given edge (derived from ContEdge)? In our opinion, the best solution is
the “safe downcasting” (cf. [Mey92]). As an example, consider again the abstract
class ContPoint. So far, we have implemented three different kinds of points, namely
fixed points, Hopf bifurcations, and points for periodic orbits. Thus, we can deal with
the typical Hopf scenario. To handle these types of points, the base class gets three
corresponding cast operators which by default return 0.

class OdeFixpoint;
class HopfPoint;
class ColContPoint;

class ContPoint : public MyObject {
friend class Contin;
public:
virtual Bool Realize(Contin&) = 0;
virtual Bool NewEdges(ContEdge*, List<ContEdge>&) = 0;

virtual operator OdeFixpoint* () { return 0; }
virtual operator HopfPoint* () { return 0; }
virtual operator ColContPoint* () { return 0; }

};
The derived class overloads the corresponding operator returning a pointer to itself.

class OdeFixpoint : public ContPoint {
public:
virtual operator OdeFixpoint* () { return this; }
protected:
I

10

This mechanism may be viewed as a substitute for dynamic typing in C++. Unfortu-
nately, it implies that the header files of the base classes have to be changed whenever
a new type is introduced.

To convince the reader that the abstract framework really works in practice, we
include the result of a simulation of a railway bogie. The model due to Cooperrider
[CooT1] and True [Tru90] describes the motion of a bogie running with constant speed v
on a perfect, stiff, level and straight track. The resulting dynamical system consists of
14 ordinary differential equations with the speed as parameter. The method employed
for the solution of the periodic boundary value problems is described in [Hoh93b] and
will be published elsewhere. The computed bifurcation diagram is shown in Figure
1. We encounter the typical situation of a branch of periodic solutions emanating

0.03

0.025F b

0.02f b

displacement
o
o
=
(6)]
.

0.01f b

0.005F b

0 1 1 1 1 1 1
60 80 100 120 140 160 180 200
velocity

Fi1G. 1. Bifurcation diagram for the bogie model

from a trivial branch of equilibria at a Hopf bifurcation. The circles are the actually
computed periodic solutions. In Figure 2 we present a three dimensional presentation

-0.03+
-0.02

-0.01

q3
o
|

0.01+

0.02

0.03~
50

velocity ql

Fi1G. 2. Periodic solutions of the bogie model, g3 and q1 versus v

of the first branch of periodic solutions. Here, we display the components ¢ and g3
versus the velocity v.

11

[BRSI]
[BR82]
[CooT1]
[DES82]
[Deud1]
[DFK87]
[FR83]
[GHO1]
[Hoh93a]
[Hoh93b]
[Mey92]

[Tru90]

REFERENCES

R. E. Bank and D. J. Rose. Global approximate newton methods. Numer. Math., 37:279—
295, 1981.

R. E. Bank and D. J. Rose. Analysis of a multilevel iterative method for nonlinear finite
element equations. Math. Comp., 39:453-465, 1982.

N. K. Cooperrider. The Hunting Behavior of Conventional Railway Trucks. J. Eng. for
Industry, pages 1-10, 1971.

R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact newton methods. SIAM J. Numer.
Anal., 19:400-408, 1982.

P. Deuflhard. Global Inexact Newton Methods for Very Large Scale Nonlinear Problems.
Impact of Computing in Science and Engineering, 3(4):366-393, 1991.

P. Deuflhard, B. Fiedler, and P. Kunkel. Efficient Numerical Pathfollowing beyond Critical
Points. STAM J. Numer. Anal., 18:949-987, 1987.

J. P. Fink and W. C. Rheinboldt. On the discretization error of parametrized nonlinear
equations. SIAM J. Numer. Anal., 20(4):732-746, 1983.

K. Gatermann and A. Hohmann. Symbolic Exploitation of Symmetry in Numerical Path-
following. Impact of Computing in Science and Engineering, 3(4):330-365, 1991.

A. Hohmann. An Implementation of Extrapolation Codes in C++. Technical Report
TR 93-8, Konrad-Zuse-Zentrum, Berlin, 1993.

A. Hohmann. Inezact Gauss Newton Methods for Parameter Dependent Nonlinear Prob-
lems. PhD thesis, Freie Universitat Berlin, 1993.

S. Meyers. Effective C++. Addison-Wesley Professional Computing Series, Reading,
Menlo Park, New York, 1992.

H. True. Railway Vehicle Chaos and Asymmetric Hunting. Proc. 12th IAVSD Symposium,
Vehicle System Dynamics, 19:625-637, 1990.

12

