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Abstract:

In this article we present a method to implement orthogonal polynomials and many other special
functions in Computer Algebra systems enabling the user to work with those functions appropriately,
and in particular to verify different types of identities for those functions. Some of these identities
like differential equations, power series representations, and hypergeometric representations can even
dealt with algorithmically, i. e. they can be computed by the Computer Algebra system, rather than
only verified.

The types of functions that can be treated by the given technique cover the generalized hypergeometric
functions, and therefore most of the special functions that can be found in mathematical dictionaries.

The types of identities for which we present verification algorithms cover differential equations, power
series representations, identities of the Rodrigues type, hypergeometric representations, and algorithms
containing symbolic sums.

The current implementations of special functions in existing Computer Algebra systems do not meet

these high standards as we shall show in examples. They should be modified, and we show results of

our implementations.

� Introduction

Many special functions can be looked at from the following point of view: They represent functions
f(n, x) of one “discrete” variable n ∈ D defined on a set D that has the property that n ∈ D ⇒
n + 1 ∈ D (or n ∈ D ⇒ n − 1 ∈ D), e. g. D = IN0,ZZ, IR, or C, and one “continuous” variable
x ∈ I where I represents a real interval, either finite I = [a, b], infinite (I = [a,∞), I = (−∞, a], or
I = IR), or a subset of the complex plane C.

In the given situation we may speak of the family (fn)n∈D of functions fn(x) := f(n, x).
In this paper we will deal with special functions and orthogonal polynomials of a real/complex

variable x. Many of our results can be generalized to special and orthogonal functions of a discrete
variable x which we will consider in a forthcoming paper.

Many of those families, especially all families of orthogonal polynomials, have the following
properties:
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1. (Derivative rule)
The functions fn are differentiable with respect to the variable x, and satisfy a derivative rule
of the form

f ′
n(x) =

∂

∂x
fn(x) =

m−1∑
k=0

rk(n, x) fn−k(x) or f ′
n(x) =

m−1∑
k=0

rk(n, x) fn+k(x) , (1)

where the derivative with respect to x is represented by a finite number of lower or higher
indexed functions of the family, and where rk are rational functions in x. If rm−1(n, x) �≡ 0
then the number m is called the order of the given derivative rule. We call the two different
types of derivative rules backward and forward derivative rule, respectively.

2. (Differential equation)
The functions fn are m times differentiable (m ∈ IN) with respect to the variable x, and
satisfy a homogeneous linear differential equation

m∑
k=0

pk(n, x) f
(k)
n (x) = 0 , (2)

where pk are polynomials in x. If pm(n, k) �≡ 0 then the number m is called the order of the
given differential equation.

3. (Recurrence equation)
The functions fn satisfy a homogeneous linear recurrence equation with respect to n

m∑
k=0

qk(n, x) fn−k(x) = 0 , (3)

where qk are polynomials in x, and m ∈ IN. If q0(n, k), qm(n, k) �≡ 0 then the number m is
called the order of the given recurrence equation.

Some of those families, especially all “classical” families of orthogonal polynomials, have the fol-
lowing further property:

4. (Rodrigues representation)
The functions fn have a representation of the Rodrigues type

fn(x) =
1

Kn g(x)

∂n

∂xn
hn(x) (4)

for some functions g depending on x, and hn depending on n and x, and a constant Kn

depending on n.

From an algebraic point of view these properties read as follows: Let K[x] denote the field of
rational functions over K where K is one of Q, IR, or C. Then if the coefficients of the occurring
polynomials and rational functions are elements of K,

1. the derivative rule states that f′n is an element of the linear space overK[x] which is generated
by {fn, fn−1, . . . , fn−(m−1)} or {fn, fn+1, . . . , fn+m−1}, respectively;
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2. the differential equation states that the m + 1 functions f
(k)
n (k = 0, . . . , m) are linearly

dependent over K[x]; moreover, by an induction argument, any m+1 functions f
(k)
n (k ∈ IN0)

are linearly dependent over K[x];

3. the recurrence equation states that the m + 1 functions fn−k (k = 0, . . . , m) are linearly
dependent over K[x]; moreover, by an induction argument, any m+ 1 functions fn (n ∈ D),
are linearly dependent over K[x].

One important question when dealing with special functions is the following: Which properties of
those functions does one have to know to be able to establish various types of identities that those
functions satisfy? With respect to the implementation of special functions in Computer Algebra
systems this question reads: Which properties should be implemented for those functions, and in
which form should this be done such that the user is enabled to verify various types of identities,
or at least to implement algorithms for this purpose?

Nikiforov and Uvarov [18] gave a unified introduction to special functions of mathematical
physics based primarily on the Rodrigues formula and the differential equation. They dealt, how-
ever, only with second order differential equations, which makes their treatment quite restricted,
and moreover their development does not have algorithmic applications.

Truesdell [25] gave a unified approach to special functions based entirely on a special form of
the derivative rule. His development has some algorithmic content, which, however, is difficult
or impossible to implement in Computer Algebra. Truesdell’s approach—although nice—has the
further disadvantage that one can obtain only results of a very special form, see [13].

From the algorithmic point of view another approach is better: We will base our treatment of
special functions on the derivative rule (1) in combination with the recurrence equation (3). We will
show that an implementation of special functions in Computer Algebra systems based on these two
properties gives a simplification mechanism at hand which, in particular, enables the user to verify
many kinds of identities for those functions. Some of these identities like differential equations, and
power series representations can even be dealt with algorithmically, i. e. they can be computed by
the Computer Algebra system.

Our treatment is connected with the holonomic system approach due to Zeilberger [27]–[29]
which is based on the valididy of partial differential equations, mixed recurrence equations, and
difference-differential equations. This connection will be made more precise later.

The class of functions that can be treated this way contains the Airy functions Ai (x), Bi (x)
(see e. g. [2], § 10.4), the Bessel functions Jn(x), Yn(x), In(x), and Kn(x) (see e. g. [2], Ch. 9–11),

the Hankel functions H
(1)
n (x) and H

(2)
n (x) (see e. g. [2], Ch. 9), the Kummer functions M(a, b, x) =

1F1

(
a
b

∣∣∣∣ x
)

and U(a, b, x) (see e. g. [2], Ch. 13), the Whittaker functions Mn,m(x) and Wn,m(x)

(see e. g. [2], § 13.4), the associated Legendre functions Pb
a(x) and Qb

a(x) (see e. g. [2], § 8), all kinds
of orthogonal polynomials: the Jacobi polynomials P

(α,β)
n (x), the Gegenbauer polynomials C

(α)
n (x),

the Chebyshev polynomials of the first kind Tn(x) and of the second kind Un(x), the Legendre

polynomials Pn(x), the Laguerre polynomials L
(α)
n (x), and the Hermite polynomials Hn(x) (see

[23], [24], and [2], § 22), many more special functions, and furthermore sums, products, derivatives,
antiderivatives, and the composition with rational functions and rational powers of those functions
(see [22], [27], [21] and [15]).

In the case of the classical orthogonal polynomials the properties above can be made much more
precise (see e. g. [24], Kapitel IV). Therefore let fn : [a, b] → IR (n ∈ IN0) denote the family of
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orthogonal polynomials
fn(x) = kn x

n + k′n x
n−1 + . . .

with respect to the weight function w(x) ≥ 0, i. e. with the property that

b∫
a

w(x) fn(x) fm(x) dx = 0 (n �= m)

and
b∫

a

w(x) f2
n(x) dx = hn �= 0 .

Then we have the properties:

1. (Derivative rule)
The functions fn satisfy a derivative rule of the form

X f ′
n = βn fn−1 +

(
n

2
X ′′x+ αn

)
fn

(see e. g. [24], p. 135, formula (4.8)) where

αn = nX ′(0)− 1

2
X ′′ k′n

kn
, βn = −hn kn−1

hn−1 kn

(
K1 k1 − 2n− 1

2
X ′′
)

,

and

X(x) =

⎧⎪⎨
⎪⎩

(b− x)(x− a) if a, b are finite
x− a if b = ∞
1 if −a, b = ∞

. (5)

Especially is the order of the derivative rule 2.

2. (Differential equation)
The functions fn satisfy the homogeneous linear differential equation with polynomial coeffi-
cients

X f ′′
n(x) + K1 f1 f

′
n(x) + λn fn(x) = 0

(see e. g. [24], p. 133, formula (4.1)) where

λn = −n

(
K1 k1 − n− 1

2
X ′′
)

,

and X(x) is given by (5). Especially is the order of the differential equation 2.

3. (Recurrence equation)
The functions fn satisfy the recurrence equation

fn+1(x) = −Cn fn−1(x) + (An x+ Bn) fn(x) (6)

(see e. g. [24], p. 126, formula (2.1)) with

An =
kn+1

kn
, Bn =

kn+1

kn

(
k′n+1

kn+1
− k′n

kn

)
, and Cn =

kn+1 kn−1 hn
k2n hn−1

.

Especially is the order of the recurrence equation 2.
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4. (Rodrigues representation)
The functions fn have a representation of the Rodrigues type

fn(x) =
1

Knw(x)

∂n

∂xn

(
w(x)X(x)n

)
(7)

(see e. g. [24], p. 129, formula (3.2)), where X(x) is given by (5), i. e. (4) is valid with
g(x) = w(x), and hn(x) = w(x)X(x)n. Especially: The order of the polynomial X(x) is ≤ 2.

Further it turns out that in the case of classical orthogonal polynomials all coefficient functions of
fn−k are rational also with respect to the variable n, a fact that depends, however, on the special
normalizations that are used in these cases.

We mention that no system of orthogonal polynomials besides the classical ones satisfies a
Rodrigues representation of type (7) with a polynomial X (see e. g. [24], Kapitel IV, §3).

We note that using the recurrence equation (6), which is valid also for non-classical orthogonal
polynomials, or any recurrence equation of type (3) of order two (also called three-term recursion),
recursively, each (backward or forward) derivative rule (1) is equivalent to a derivative rule

f ′
n(x) = k(n, x) fn(x) + l(n, x) fn+1(x) (8)

(k, l rational functions with respect to x) of order two. In general, the order of the derivative rule
can always be assumed to be less than or equal to the order of the recurrence equation. In some
nice work [25] Truesdell presented a treatment of special functions entirely based on the functional
equation (8). He showed that this difference-differential equation is independent of the differential
equation (2) and the recurrence equation (3), i. e. it does not imply the existence of one of these.

In contrast to this work, our main notion is the

Definition (Admissible family of special functions) We call a family fn of special functions
admissible if the functions fn satisfy a recurrence equation of type (3) and a derivative rule of type
(1). We call the order of the recurrence equation the order of the admissible family fn. �

Note that the recurrence equation (3) together with m initial functions fn0 , fn0+1, . . . , fn0+m−1

determine the functions fn (n ∈ D) uniquely.
So an admissible family of special functions (with given initial functions) is overdetermined by

its two defining properties, i. e. the recurrence equation and the derivative rule must be compatible.
This fact, however, gives our notion a considerable strength:

Theorem 1 For any admissible family fn of order m the linear space Vfn over K[x] of functions

generated by the set of shifted derivatives {f(j)n±k | j, k ∈ IN0} is at most m-dimensional. On the

other hand, if the family {f(j)n±k | j, k ∈ IN0} spans an m-dimensional linear space, then fn forms an
admissible family of order m.

Proof: By the recurrence equation and an induction argument it follows that the linear space V
spanned by {fn±k | k ∈ IN0} is at most m-dimensional. Using the derivative rule, by a further

induction it follows that the derivative of any order f
(k)
n (k ∈ IN0) is an element of V . Therefore

Vfn = V .

If on the other hand for a family fn the set of derivatives {f(j)n±k | j, k ∈ IN0} is m-dimensional,
then the existence of a recurrence equation and a derivative rule of order m are obvious. �

5



From the algebraic point of view this is the main reason for the importance of admissible families:
Any m+ 1 distinguished elements of Vfn are linearly dependent, i. e. any arbitrary element of Vfn
can be represented by a linear combination (with respect to K[x]) of any m of the others. This
is the algebraic background for the fact that so many identities between the members and their
derivatives of an admissible family exist.

In particular we have

Corollary 1 Any admissible family fn of order m satisfies a simple differential equation of order
m. �

In § 8 we give an algorithm which, in particular, generates this differential equation of fn.
With regard to Zeilberger’s approach Corollary 1 can be interpreted as follows: Any admissible

family fn(x) forms a holonomic system with respect to the two variables n, and x, whose defining
recurrence equation, and the differential equation corresponding to Corollary 1 together with the
initial conditions

f
(k)
0 (0) , and fk(0) (k = 0, . . . , m− 1) (9)

yield the canonical holonomic representation of fn(x) (see [27], Lemma 4.1).
On the other hand, not all holonomic systems fn(x) form admissible families so that our notion

is stronger: Let fn(x) := Ai (x) for all n ∈ ZZ, then obviously fn(x) is the holonomic system
generated by the equations

f ′′
n(x) = x fn(x) , fn+1(x) = fn(x) ,

and some initial values, that does not form an admissible family as the derivative f′n is linearly
independent of {fn | n ∈ ZZ} over K[x], see § 5, and thus no derivative rule of the form (1) exists.

A further advantage of our approach is the separation of the variables, i. e. the work with
ordinary differential equations, and one-variable recurrence equations rather than partial differential
equations, mixed recurrence equations, and difference-differential equations. So our approach—if
applicable—seems to be more natural.

To present an example of an admissible family that cannot be found in mathematical dictio-
naries, we consider the functions

kn(x) :=
2

π

π/2∫
0

cos (x tan θ − n θ) dθ ,

that Bateman introduced in [4], see also [14]. He verified that ([4], formula (2.7))

Fn(x) := (−1)n k2n(x) = (−1)n e−x
(
Ln(2x)− Ln−1(2x)

)
. (10)

We call Fn the family of Bateman functions which turns out to be an admissible family of order
two.

Bateman obtained the property ([4], formula (4.1))

(n− 1)
(
Fn(x)− Fn−1(x)

)
+ (n+ 1)

(
Fn(x)− Fn+1(x)

)
= 2 xFn(x)

leading to
nFn(x)− 2 (n− 1− x)Fn−1(x) + (n− 2)Fn−2(x) = 0 (11)
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which is a recurrence equation of type (3) and order two that determines the Bateman functions
uniquely using the two initial functions

F0(x) = e−x and F1(x) = −2 x e−x

which follow from (10).
Bateman obtained further a difference differential equation ([4], formula (4.2))

(n+ 1)Fn+1(x)− (n− 1)Fn−1(x) = 2 xF ′
n(x) , (12)

which can be brought into the form

F ′
n(x) =

1

x

(
(n− x)Fn(x)− (n− 1)Fn−1(x)

)
(13)

using (11). This is a derivative rule of the form (1) and order two. Therefore Fn(x) form an
admissible family of order two.

We note that the functions Fn satisfy the differential equation

xF ′′
n (x) + (2n− x)Fn(x) = 0 , (14)

(see [4], formula (5.1)), and the Rodrigues type representation

Fn(x) =
x ex

n!

dn

dxn

(
e−2x xn−1

)
, (15)

(see [4], formula (31)).

� Properties of admissible families

Theorem 2 Let fn form an admissible family of order m. Then

(a) (Shift) fn±k (k ∈ IN) forms an admissible family of order m;

(b) (Derivative) f′n forms an admissible family of order ≤ m;

(c) (Composition) fn ◦ r forms an admissible family of order ≤ m, if r is a rational function,
and of order ≤ mq, if r(x) = xp/q (p, q ∈ IN).

If furthermore gn forms an admissible family of order ≤ l, then moreover

(d) (Sum) fn + gn forms an admissible family of order ≤ m+ l;

(e) (Product) fn gn forms an admissible family of order ≤ ml.

Proof: (a): This is an obvious consequence of Theorem 1.
(b): Let gn := f ′n. We start with the recurrence equation for fn and take derivative to get

m∑
k=0

q′k(n, x) fn−k(x) +
m∑

k=0

qk(n, x) f
′
n−k(x) = 0 . (16)
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From Theorem 1, we know that each of the functions fn−j (j = 0, . . . , m) can be represented as a
linear combination of the functions f′n−k (k = 0, . . . , m−1) overK[x], which generates a recurrence
equation for gn. Similarly a derivative rule for gn is obtained.
(c): For the composition hn := fn ◦r with a rational function r, the recurrence equation is obtained
by substitution, and the derivative rule is a result of the chain rule. If r(x) = x1/q, then, by [15],

Lemma 1, the family {h(j)n | j ∈ IN0} is spanned by themq functions xr/qf
(j)
n (x1/q) (j = 1, . . . , m−1,

r = 0, . . . , q − 1), and since {f(j)n±k | j, k ∈ IN0} has dimension m, the linear space spanned by

{h(j)n±k | j, k ∈ IN0} has dimension ≤ mq, implying the result. If finally r(x) = xp/q, then a
combination gives the result.
(d): By a simple algebraic argument, we see that fn−k + gn−k (k ∈ ZZ) span the linear space
V := Vfn+gn = Vfn + Vgn of dimension ≤ m+ l over K[x]. Therefore fn + gn satisfies a recurrence
equation of order ≤ m+ l. If we add the derivative rules for fn and gn, we see that f ′

n + g′n ∈ V ,
and thus can be represented in the desired way.
(e): By a similar algebraic argument (see e. g. [22], Theorem 2.3) we see that fn−k · gn−k (k ∈ ZZ)
span a linear space V of dimension ≤ ml over K[x], hence fn gn satisfies a recurrence equation of
order ≤ ml. By the product rule, and the derivative rules for fn and gn we see that the derivative
of fn gn is represented by products of the form fn−k gn−j (k, j ∈ ZZ), and as those span the linear
space V (see e. g. [15], Theorem 3 (d)), we are done. �

As an application we again may state that the Bateman functions form an admissible family: Using
the theorem, this follows immediately from representation (10).

Next we study algorithmic versions of the theorem. The following algorithm generates a repre-
sentation of the members fn±k (k = 0, . . . , m−1) of an admissible family in terms of the derivatives
f ′
n±j (j = 0, . . . , m− 1). By Theorem 1 we know that such a representation exists. Without loss of
generality, we assume that the admissible family is given by a backward derivative rule. In case of
a forward derivative rule, a similar algorithm is valid.

Algorithm 1 Let fn be an admissible family of order m, given by a backward derivative rule

f ′
n(x) =

m−1∑
k=0

rk(n, x) fn−k(x) .

Then the following algorithm generates a list of backward rules (k = 0, . . . , m− 1)

fn−k(x) =
m−1∑
j=0

Rk
j (n, x) f

′
n−j(x) (17)

(Rk
j rational with respect to x) for fn−k (k = 0, . . . , m− 1) in terms of the derivatives f′n−j (j =

0, . . . , m− 1):

(a) Shift the derivative rule m− 1 times to obtain the set of m equations

f ′
n−j(x) =

m−1∑
k=0

rk(n− j, x) fn−j−k(x) (j = 0, . . . , m− 1) .
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(b) Utilize the recurrence equation to express all expressions on the right hand sides of these
equations in terms of fn−k (k = 0, . . . , m− 1) leading to

f ′
n−j(x) =

m−1∑
k=0

rjk(n, x) fn−k(x) (j = 0, . . . , m− 1 , rjk rational with respect to x) .

(c) Solve this linear equations system for the variables fn−k (k = 0, . . . , m − 1) to obtain the
representations (17) searched for. �

The proof of the algorithm is obvious. It is also clear how the method can be adapted to obtain
forward rules in terms of the derivatives. As an example, the algorithm generates the following
representations for the Bateman functions

Fn(x) =
1− n+ x

2n− 1− x
F ′
n(x) +

n− 1

2n− 1− x
F ′
n−1(x) ,

and

Fn(x) =
1 + n− x

1 + 2n− x
F ′
n(x)−

1 + n

1 + 2n− x
F ′
n+1(x)

in terms of their derivatives.
We note that by means of Algorithm 1 and the results of [15] (see also [27], p. 342, and [21]),

we are able to state algorithmic versions of the statements of Theorem 2.

Algorithm 2 The following algorithms lead to the derivative rules and recurrence equations of
the admissible families presented in Theorem 2:

(a) (Shift) Direct use of derivative rule and recurrence equation lead to the derivative rule and
the recurrence equation for fn±1; a recursive application gives the results for fn±k (k ∈ IN).

(b) (Derivative) By Algorithm 1 we may replace all occurrences of fn−k (k = 0, . . . , m) in (16),
resulting in the recurrence equation for f′n; similarly the derivative rule is obtained.

(c) (Composition) If r is a rational function, then an application of the chain rule leads to the
derivative rule and the recurrence equation of fn ◦ r; an approach similar to the algorithmic
version of Theorem 2 in [15] yields the derivative rule and the recurrence equation of fn ◦x1/q
by an elimination of the expressions xr/q f

(j)
n (x1/q) (r = 1, . . . , q− 1, j = 1, . . . , m− 1).

(d) (Sum) Applying a discrete version of Theorem 3 (c) in [15] to fn + gn (see also [27], p. 342,
and [21], Maple function rec+rec) results in the recurrence equation, and a similar approach
gives the derivative rule.

(e) (Product) Applying a discrete version of Theorem 3 (d) in [15] to fn gn (see also [27], p. 342,
and [21], Maple function rec*rec) yields the recurrence equation, and a similar approach
gives the derivative rule. �

A Mathematica implementation of the given algorithms generate e. g. for the derivative F′
n(x) of

the Bateman function Fn(x) the derivative rule

F ′′
n (x) =

2n− x

x− 2nx+ x2

(
(n− 1)F ′

n−1(x) + (1− n+ x)F′
n(x)

)
,
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and the recurrence equation

F ′
n+1(x) =

1

(1+n)(1−2n+x)

(
(n−1)(x−2n−1)F′

n−1(x) + 2 (1−2n2+3nx−x2)F ′
n(x)

)
,

and for the product An(x) := F2
n(x) the derivative rule

A′
n(x) =

(1− n) (n− 2)2

2nx (1− n+ x)
An−2(x)

+
2 (n− 1) (1− n+ x)

nx
An−1(x)

+

(
3n− 3n2 − 4 x+ 8nx− 4 x2

)
2 x (1− n+ x)

An(x) ,

and the recurrence equation

An+1(x) =
1

(1 + n)2

(
(n− 2)2 (n− 1) (x− n)

n (1− n+ x)
An−2

+
(n− 1) (3n− 3n2 − 4 x+ 8nx− 4 x2)

n
An−1

+
(x− n) (−3n+ 3n2 + 4 x− 8nx+ 4 x2)

1− n+ x
An

)

are derived.

� Derivative rules of special functions

Many Computer Algebra systems like Axiom [3], Macsyma [16], Maple [17], Mathematica [26],
or Reduce [8] support the work with special functions. On the other hand, there are so many
identities for special functions that it is a nontrivial task to decide which properties should be used
by the system (and in which way) for the work with those functions.

Since all Computer Algebra systems support derivatives, as a first question it is natural to ask
how the current implementations of Computer Algebra systems handle the derivatives of special
functions. Here are some examples: Mathematica (Version 2.2) gives

In[1]:= D[BesselI[n,x],x]

BesselI[-1 + n, x] + BesselI[1 + n, x]

Out[1]= --------------------------------------

2

In[2]:= D[LaguerreL[n,a,x],x]

Out[2]= -LaguerreL[-1 + n, 1 + a, x]

We note that in Mathematica the derivatives of all special functions symbolically are imple-
mented. On the other hand, we notice that, given the function In (x), Mathematica’s derivative

introduces two new functions: In−1 (x), and In+1 (x). Given the Laguerre polynomial L
(α)
n (x), the
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derivative produced introduces a new function where both n, and α are altered. The representation
used is optimal for numerical purposes, but is not a representation according to our classification.

With Maple (Version V.2) we get

> diff(BesselI(n,x),x);

n BesselI(n, x)

BesselI(n + 1, x) + ---------------

x

> diff(L(n,a,x),x);

d

---- L(n, a, x)

dx

Thus Maple’s derivative for the Bessel function In (x) introduces only one new function In+1(x),
and is of type (1), whereas (even if orthopoly is loaded) no symbolic derivative of the Laguerre

polynomial L
(α)
n (x) is implemented.

Obviously there is no unique way to declare the derivative of a special function. However, we
note that if we declare the derivative of a special function by a derivative rule of type (1) of order
m then we can be sure that the derivative of the special function fn(x) introduces at most m new
functions, namely fn−k(x) (k = 1, . . . , m). Moreover, if the family of special functions depends on
several parameters, then the given representation of the derivative does not use any functions with
other parameters changed.

Here we give a list of the backward derivative rules of the form (1) for the families of special
functions that we introduced in § 1 which all turn out to be of order two (see e. g. [2], (9.1.27)
(Bessel and Hankel functions), (9.2.26) (Bessel functions), (13.4.11), (13.4.26) (Kummer functions),
(13.4.29)–(13.4.33) (Whittaker functions), (8.5.4) (associated Legendre functions), and § 22.8 (or-
thogonal polynomials)):

J ′
n (x) = Jn−1 (x)− n

x
Jn (x) ,

Y ′
n (x) = Yn−1 (x)− n

x
Yn (x) ,

I ′n (x) = In−1 (x)− n

x
In (x) ,

K ′
n (x) = −Kn−1 (x)− n

x
Kn (x) ,

∂

∂x
H(1)

n (x) = H
(1)
n−1 (x)−

n

x
H(1)

n (x) ,

∂

∂x
H(2)

n (x) = H
(2)
n−1 (x)−

n

x
H(2)

n (x) ,

∂

∂x
M(a, b, x) =

1

x

(
(b− a)M(a− 1, b, x)− (b− a− x)M(a, b, x)

)
,

∂

∂x
U(a, b, x) =

1

x

(
− U(a− 1, b, x)+ (a− b+ x)U(a, b, x)

)
,
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M ′
n,m (x) =

1

2x

(
(1 + 2m− 2n)Mn−1,m (x) + (2n− x)Mn,m (x)

)
,

W ′
n,m (x) =

1

4x

(
(1− 4m2 − 4n+ 4n2)Wn−1,m (x) + (4n− 2x)Wn,m (x)

)
,

∂

∂x
P b
a(x) =

1

1− x2

(
(a+ b)P b

a−1(x)− a xP b
a(x)

)
,

∂

∂x
Qb

a(x) =
1

1− x2

(
(a+ b)Qb

a−1(x)− a xQb
a(x)

)
,

∂

∂x
P (α,β)
n (x) =

1

(2n+α+β)(1−x2)

(
2(n+α)(n+β)P

(α,β)
n−1 (x) + n(α−β−(2n+α+β)x)P(α,β)

n (x)
)
,

∂

∂x
C(α)
n (x) =

1

1− x2

(
(n+ 2α− 1)C

(α)
n−1 (x)− nxC(α)

n (x)
)
,

T ′
n (x) =

1

1− x2

(
nTn−1 (x)− nxTn (x)

)
,

U ′
n (x) =

1

1− x2

(
(n+ 1)Un−1 (x)− nxUn (x)

)
,

P ′
n (x) =

1

1− x2

(
nPn−1 (x)− nxPn (x)

)
,

∂

∂x
L(α)
n (x) =

1

x

(
−(n+ α)L

(α)
n−1(x) + nL(α)

n (x)
)
, (18)

H ′
n(x) = 2nHn−1(x) .

� Recurrence equations of special functions

Whenever in any expression subexpressions of the form rk fn−k (rk rational, k ∈ ZZ) occur, in an
admissible family of order m with the recursive use of the recurrence equation we may replace so
many occurrences of those expressions rk fn−k that finally only m successive terms of the same type
remain.

This allows for example to eliminate the number of occurrences in any linear combination (over
K[x]) of derivatives of fn to m, a fact with which we will deal in more detail in § 8.

We show how Mathematica and Maple work with regard to this question. Whereas Math-
ematica does not have any built-in capabilities to simplify the following linear combinations of
Bessel and Laguerre functions,

In[3]:= BesselI[n+1,x]+2*n/x*BesselI[n,x]-BesselI[n-1,x]

2 n BesselI[n, x]

Out[3]= -BesselI[-1 + n, x] + ----------------- + BesselI[1 + n, x]

x

12



In[4]:= Simplify[%]

2 n BesselI[n, x]

Out[4]= -BesselI[-1 + n, x] + ----------------- + BesselI[1 + n, x]

x

In[5]:= LaguerreL[n+1,a,x]-(2*n+a+1-x)*LaguerreL[n,a,x]+(n+a)*LaguerreL[n-1,a,x]

Out[5]= (a + n) LaguerreL[-1 + n, a, x] -

> (1 + a + 2 n - x) LaguerreL[n, a, x] + LaguerreL[1 + n, a, x]

In[6]:= Simplify[%]

Out[6]= (a + n) LaguerreL[-1 + n, a, x] -

> (1 + a + 2 n - x) LaguerreL[n, a, x] + LaguerreL[1 + n, a, x]

with Maple we get

> BesselI(n+1,x)+2*n/x*BesselI(n,x)-BesselI(n-1,x);

n BesselI(n, x)

BesselI(n + 1, x) + 2 --------------- - BesselI(- 1 + n, x)

x

> simplify(");

0

> L(n+1,a,x)-(2*n+a+1-x)*L(n,a,x)+(n+a)*L(n-1,a,x);

L(n + 1, a, x) - (2 n + a + 1 - x) L(n, a, x) + (n + a) L(n - 1, a, x)

> simplify(");

L(n + 1, a, x) - 2 L(n, a, x) n - L(n, a, x) a - L(n, a, x) + L(n, a, x) x

+ L(n - 1, a, x) n + L(n - 1, a, x) a

i. e. Maple’s simplify command supports simplification with the aid of the recurrence equations
for the Bessel functions. On the other hand, for the orthogonal polynomials (even if orthopoly is
loaded) no simplifications occur.

In the rest of this section we give a list of the recurrence equations of the given type for the
families of special functions that we consider which all turn out to be of order two (see e. g. [2],
(9.1.27), (9.2.26), (13.4.1), (13.4.15), (13.4.29), (13.4.31), (8.5.3), and § 22.7). We list them in the
form explicitly solved for Fn+1 as this is the usual form found in mathematical dictionaries.

Jn+1 (x) = −Jn−1 (x) +
2n

x
Jn (x) ,

Yn+1 (x) = −Yn−1 (x) +
2n

x
Yn (x) ,
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In+1 (x) = In−1 (x)− 2n

x
In (x) ,

Kn+1 (x) = Kn−1 (x) +
2n

x
Kn (x) ,

H
(1)
n+1 (x) = −H

(1)
n−1 (x) +

2n

x
H(1)

n (x) ,

H
(2)
n+1 (x) = −H

(2)
n−1 (x) +

2n

x
H(2)

n (x) ,

M(a+ 1, b, x) =
1

a

(
(b− a)M(a− 1, b, x)+ (2a− b+ x)M(a, b, x)

)
,

U(a+ 1, b, x) = − 1

a (1 + a− b)

(
U(a− 1, b, x)+ (b− 2a− x)U(a, b, x)

)
,

Mn+1,m (x) =
1

1 + 2m+ 2n

(
(1 + 2m− 2n)Mn−1,m (x) + (4n− 2x)Mn,m (x)

)
,

Wn+1,m (x) =
1

4

(
(−1 + 4m2 + 4n− 4n2)Wn−1,m (x)− (8n− 4x)Wn,m (x)

)
,

P b
a+1 (x) =

1

a− b+ 1

(
− (a+ b)Pb

a−1 (x) + (2a+ 1) x Pb
a−1 (x)

)
,

Qb
a+1 (x) =

1

a− b+ 1

(
− (a+ b)Qb

a−1 (x) + (2a+ 1) x Qb
a−1 (x)

)
,

P
(α,β)
n+1 (x) =

1

2 (n+1) (n+α+β+1) (2n+α+β)

(
−2(n+α)(n+β)(2n+α+β+2)P

(α,β)
n−1 (x)

+
(
(2n+α+β+1)(α2 − β2) + (2n+α+β)3 x

)
P (α,β)
n (x)

)
,

C
(α)
n+1 (x) =

1

n+ 1

(
−(n+ 2α− 1)C

(α)
n−1 (x) + 2(n+ α) xC(α)

n (x)
)
,

Tn+1 (x) = −Tn−1 (x) + 2 x Tn (x) ,

Un+1 (x) = −Un−1 (x) + 2 xUn (x) ,

Pn+1 (x) =
1

n+ 1

(
− nPn−1 (x) + (2n+ 1) xPn (x)

)
,

L
(α)
n+1(x) =

1

n+ 1

(
−(n+ α)L

(α)
n−1(x) + (2n+ α+ 1− x)L(α)

n (x)
)
,

Hn+1(x) = −2nHn−1(x) + 2xHn(x) .

Note that (a)k (which is used in the recurrence equation for the Jacobi polynomials P
(α,β)
n (x))
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denotes the Pochhammer symbol (or shifted factorial) defined by (a)k :=
k∏

j=1
(a+j−1).

We note further that for functions with several “discrete” variables it may happen that for each
of them there exists a recurrence equation. As an example we consider the Laguerre polynomials
for which we have ([2] (22.7.29), in combination with (22.7.30))

L(α+1)
n (x) =

1

x

(
−(n+ α)L(α−1)

n (x) + (α+ x)L(α)
n (x)

)
. (19)

In § 7 we will demonstrate that generalized hypergeometric functions satisfy recurrence equations
with respect to all their parameters.

To be safely enabled that the algorithms of § 9–§ 11 apply, all of those recurrence equations
should be implemented and applied recursively for simplification purposes.

� Embedding of one�variable functions into admissible families

In this section we consider first, how the elementary transcendental functions are covered by the
given approach.

Consider the exponential function f(x) = ex. This function can be embedded into the admissible
family fn, defined by the properties

f ′
n(x) = fn(x) , fn+1(x) = fn(x) and f0(x) = ex ,

i. e. the family of iterated derivatives of ex.
Obviously this is a representation of an admissible family of order one.
Moreover in the given case it turns out that fn(x) = ex = f0(x) for all n ∈ ZZ, so there is no

actual need to give the functions numbers, and therefore we (obviously) keep the usual notation.
Similarly the functions sinx and cosx are embedded into the admissible family fn of order two

given by the properties

f ′
n(x) = fn−1(x) , fn+1(x) = −fn−1(x) , and f0(x) = cos x , f1(x) = sinx .

Again, the family of functions fn is finite, and our numbering is unnecessary:

fn(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cosx if n = 4m (m ∈ ZZ)
sin x if n = 4m+ 1 (m ∈ ZZ)

− cos x if n = 4m+ 2 (m ∈ ZZ)
− sinx if n = 4m+ 3 (m ∈ ZZ)

.

Essentially there are only the two functions cosx, and sin x involved. Note, however, that both
functions are needed as no simple first order differential equation for sin x or cos x exists.

Other nontrivial examples of essentially finite admissible families of special functions are formed
by the Airy functions. Let Ain (x) = Ai(n) (x), i. e.

Ai′n (x) = Ain+1 (x) .
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By the differential equation for the Airy functions (see e. g. [2], (10.4)) we have Ai′′(x)−x Ai(x) = 0,
so that from Leibniz’s rule it follows that

Ain+1 (x) = Ai(n+1) (x) =
(
Ai′′ (x)

)(n−1)

=
(
x Ai (x)

)(n−1)
=

n−1∑
k=0

(
n� 1
k

)
x(k)

(
Ai (x)

)(n−1−k)

= x Ai(n−1) (x) + (n− 1) Ai(n−2) (x) = x Ain−1 (x) + (n− 1) Ain−2 (x) ,

and therefore Ai (x) is embedded into the admissible family Ain of order three given by

Ai′n (x) = Ain+1 (x) , Ain+1 (x) = x Ain−1 (x) + (n− 1) Ain−2 (x) , (20)

and we have the initial functions

Ai0 (x) = Ai (x) , Ai1 (x) = Ai′ (x) and Ai2 (x) = x Ai (x) .

Similarly Bi (x) is embedded into the admissible family of order three given by

Bi′n (x) = Bin+1 (x) , Bin+1 (x) = x Bin−1 (x) + (n− 1) Bin−2 (x) , (21)

and the initial functions

Bi0 (x) = Bi (x) , Bi1 (x) = Bi′ (x) and Bi2 (x) = x Bi (x) .

Our indexed families turn out to be representable by

Ain (x) = pn(x) Ai (x) + qn(x) Ai
′ (x) and Bin (x) = pn(x) Bi (x) + qn(x) Bi

′ (x) ,

with polynomials pn and qn in x. This shows, however, that to deal with the Airy functions
algorithmically as is suggested in this paper, besides the functions Ai (x) and Bi (x) the two
independent functions Ai′ (x) and Bi′ (x) are needed, but none else. Let’s look, how Computer
Algebra systems work with the Airy functions.

Maple handles them as follows:

> Ai(x);

Ai(x)

> diff(Ai(x),x);

1/2 3/2

2 BesselK(1/3, 2/3 x )

1/4 ---------------------------

1/4

x Pi

/ 3/2 \

1/2 5/4 | 3/2 BesselK(1/3, 2/3 x )|

2 x |- BesselK(4/3, 2/3 x ) + 1/2 ----------------------|

| 3/2 |

\ x /

+ 1/3 -----------------------------------------------------------------

Pi
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> simplify(diff(Ai(x),x$2)-x*Ai(x));

1/2 3/2 1/2 3/2 3/2

1/48 (- 3 2 BesselK(1/3, 2/3 x ) - 8 2 BesselK(-2/3, 2/3 x ) x

1/2 3 3/2 9/4 / 5/4

+ 16 2 x BesselK(1/3, 2/3 x ) - 48 x Ai(x) Pi) / (x Pi)

/

> diff(Bi(x),x);

d

---- Bi(x)

dx

> diff(Bi(x),x$2);

2

d

----- Bi(x)

2

dx

So the derivative of Ai (x) is represented by Bessel functions, whereas the function Ai (x) itself is
not, and therefore the expression diff(Ai(x),x$2)-x*Ai(x) is not simplified. On the other hand
the derivative of Bi (x) is not a valid Maple function. With Mathematica we get

In[7]:= D[AiryAi[x],x]

Out[7]= AiryAiPrime[x]

In[8]:= D[AiryAiPrime[x],x]

Out[8]= x AiryAi[x]

In[9]:= D[AiryAi[x],{x,2}]-x*AiryAi[x]

Out[9]= 0

In[10]:= D[AiryBi[x],x]

Out[10]= AiryBiPrime[x]

In[11]:= D[AiryBiPrime[x],x]

Out[11]= x AiryBi[x]

In[12]:= D[AiryBi[x],{x,2}]-x*AiryBi[x]

Out[12]= 0

Thus we see that in this situation Mathematica does exactly what we suggest: It works with the
independent functions Ai (x), Ai′ (x), Bi (x), Bi′ (x), and the derivative rules (20) and (21).
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As a further example of an admissible family we consider the iterated integrals

erfcn (x) =

∞∫
x

erfcn−1 (t) dt

of the (complementary) error function erfc (x) = 1 − erf (x) = erfc0 (x) (see e. g. [2], (7.2)) that
form the admissible family with

erfc′n (x) = − erfcn−1 (x) , erfcn+1 (x) =
1

2(n+ 1)
erfcn−1 (x)− x

n+ 1
erfcn (x) ,

and the initial functions

erfc0 (x) = erfc (x) , erfc1 (x) = − 1√
π

(√
π x erfc (x)− e−x2

)

(one may also use the initial value function erfc−1 (x) = 2√
π
e−x2

). In particular, erfcx is embedded

into an admissible family.
Maple deals with these functions as suggested:

> diff(erfc(n,x),x);

- erfc(n - 1, x)

> simplify(diff(erfc(n,x),x$2)+2*x*diff(erfc(n,x),x)-2*n*erfc(n,x));

0

As a final example, we mention another family of iterated integrals, the Abramowitz functions

An(x) :=

∞∫
0

tn e−t2−x/t dt

(see [1], and [2], (27.5)) which form an admissible family with derivative rule

A′
n(x) =

∂

∂x

⎛
⎝ ∞∫

0

tn e−t2−x/t dt

⎞
⎠ =

∞∫
0

∂

∂x

(
tn e−t2−x/t

)
dt = −

∞∫
0

tn−1 e−t2−x/t dt = −An−1(x)

of order one (see [2], (27.5.2)), and recurrence formula

An+1(x) =
n

2
An−1(x) +

x

2
An−2(x)

of order three ([2], (27.5.3)).

Again, embedded into an admissible family, especially the function A0(x) =
∞∫
0
e−t2−x/t dt is

covered by our approach.
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� Embedding the inhomogeneous case

Some families of functions are characterized by inhomogeneous differential rules and recurrence
equations. Examples for this situation are the exponential integrals given by

En (x) =

∞∫
1

ext

tn
dt

(see e. g. [2], (5.1)), and the Struve functions Hn(x) and Ln(x) (see e. g. [2], Chapter 5), for which
we have the inhomogeneous properties

E ′
n (x) = −En−1 (x) , En+1 (x) =

e−x

n
− x

n
En (x) ,

([2], (5.1.14) and (5.1.26)),

Hn−1(x)−Hn+1(x) = 2H′
n(x)−

xn

2n
√
π Γ(n+ 3/2)

, (22)

Hn−1(x) +Hn+1(x) =
2n

x
Hn(x) +

xn

2n
√
π Γ(n+ 3/2)

([2], (12.1.9)–(12.1.10)), and

Ln−1(x) + Ln+1(x) = 2L′
n(x)−

xn

2n
√
π Γ(n+ 3/2)

, (23)

Ln−1(x)− Ln+1(x) =
2n

x
Ln(x) +

xn

2n
√
π Γ(n+ 3/2)

([2], (12.2.4)–(12.2.5)), respectively. Eliminating the inhomogeneous parts (using Γ(3/2 + n) =
(1/2 + n) Γ(1/2 + n)), these examples are made into admissible families with the derivative rules

E ′
n (x) = −En−1 (x) ,

H′
n(x) = Hn−1(x)− n

x
Hn(x) , (24)

L′
n(x) = Ln−1(x)− n

x
Ln(x) , (25)

and the recurrence equations

En+1 (x) =
1

n

(
xEn−1(x) + (n− 1− x)En(x)

)
,

Hn+1(x) =
1

2n+ 1

(
xHn−2(x) + (1− 4n)Hn−1(x) +

x2 + 2n+ 4n2

x
Hn(x)

)
,

Ln+1(x) =
1

2n+ 1

(
− xLn−2(x)− (1− 4n)Ln−1(x) +

x2 − 2n− 4n2

x
Ln(x)

)
,
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so that the exponential integrals form an admissible family of order two, and the Struve functions
Hn(x) and Ln(x) form admissible families of order three. Note that the above derivative rules
(24)–(25) are not listed in [2] although they are much simpler than the inhomogeneous relations
(22)–(23).

After bringing the inhomogeneous rules into the desired form, those families are recognized as
admissible families, and our method can be applied.

� Functions of the hypergeometric type as admissible families

All functions introduced in this paper are special cases of functions of the hypergeometric type (see
[9]). In this section we will show that the generalized hypergeometric function pFq defined by

pFq

(
a1 a2 · · · ap
b1 b2 · · · bq

∣∣∣∣∣x
)

:=
∞∑
k=0

Ak x
k =

∞∑
k=0

(a1)k · (a2)k · · · (ap)k
(b1)k · (b2)k · · · (bq)k k!x

k , (26)

and thus by Theorem 2 (c) all functions of the hypergeometric type, form admissible families.
Therefore we first deduce a derivative rule of order two for pFq.

Let us choose any of the numerator parameters n := ak (k = 1, . . . , p) of pFq as parameter n.
Further we use the abbreviations

Fn(x) = pFq

(
n a2 · · · ap
b1 b2 · · · bq

∣∣∣∣∣x
)

=
∞∑
k=0

Ak(n) x
k .

From the relation
(n+ 1)k
(n)k

=
n+ k

n

it follows that
nAk(n+ 1) = (n+ k)Ak(n) .

Using the differential operator θf(x) = x f′(x), we get by summation

nFn+1(x) = n
∞∑
k=0

Ak(n+ 1) xk = (n+ k)
∞∑
k=0

Ak(n) x
k

= nFn(x) +
∞∑
k=0

k Ak(n) x
k = nFn(x) + θFn(x) ,

and therefore we are led to the derivative rule

θFn(x) = n
(
Fn+1(x)− Fn(x)

)
, or F ′

n(x) =
n

x

(
Fn+1(x)− Fn(x)

)
. (27)

Hence we have established that for any of the numerator parameters n := ak (k = 1, . . . , p) of pFq

such a simple (forward) derivative rule is valid.
We note that by similar means for each of the denominator parameters n := bk (k = 1, . . . , q)

of pFq the simple (backward) derivative rule

θFn(x) = (n− 1)
(
Fn−1(x)− Fn(x)

)
, or F ′

n(x) =
n− 1

x

(
Fn−1(x)− Fn(x)

)
(28)
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is derived.
Next, we note that Fn satisfies the well-known hypergeometric differential equation

θ(θ + b1 − 1) · · · (θ+ bq − 1)Fn(x) = x(θ+ a1)(θ+ a2) · · ·(θ + ap)Fn(x) . (29)

Replacing all occurrences of θ in (29) recursively by the derivative rule (27) or (28), a recurrence
equation for Fn is obtained that turns out to have the same order as the differential equation (29),
i. e. max{p, q+ 1}.

We summarize the above results in the following

Theorem 3 The generalized hypergeometric function pFq

(
a1 a2 · · · ap
b1 b2 · · · bq

∣∣∣∣∣x
)

satisfies the

derivative rules
θFn(x) = n

(
Fn+1(x)− Fn(x)

)
for any of its numerator parameters n := ak (k = 1, . . . , p), and

θFn(x) = (n− 1)
(
Fn−1(x)− Fn(x)

)

for any of its denominator parameters n := bk (k = 1, . . . , q), and recursive substitution of all
occurrences of θ in the hypergeometric differential equation

θ(θ + b1 − 1) · · ·(θ + bq − 1)Fn(x) = x(θ + a1)(θ+ a2) · · · (θ+ ap)Fn(x)

generates a recurrence equation of the type (3) of order max{p, q+1} with respect to the parameter
chosen. This recurrence equation has coefficients that are rational with respect to x, and n. In
particular, pFq forms an admissible family of order max{p, q+1} with respect to all of its parameters
ak, bk. �

We note that if some of the parameters of pFq are specified, there may exist a lower order differential
equation, and thus the order of the admissible family may be lower than the theorem states. We
note further that this theorem is the main reason for the fact that so many special functions
form admissible families: Most of them can be represented in terms of generalized hypergeometric
functions.

	 Algorithmic generation of di
erential equations

In this section we show that the algorithm to generate the uniquely determined differential equation
of type (2) of lowest order valid for f which was developed in [9] (see also [15]), does apply if f is
constructed from functions that are embedded into admissible families.

Algorithm 3 (Find a simple differential equation) Let f be a function given by an expres-
sion that is built from the functions expx, lnx, sinx, cosx, arcsin x, arctanx, and any other func-
tions that are embedded into admissible families, with the aid of the following procedures: differ-
entiation, antidifferentiation, addition, multiplication, and the composition with rational functions
and rational powers.

Then the following procedure generates a simple differential equation valid for f :
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(a) Find out whether there exists a simple differential equation for f of order N := 1. Therefore
differentiate f , and solve the linear equation

f ′(x) + A0f(x) = 0

for A0; i. e. set A0 := −f ′(x)
f(x) . Is A0 rational in x, then you are done after multiplication with

its denominator.

(b) Increase the order N of the differential equation searched for by one. Expand the expression

f (N)(x) + AN−1f
(N−1)(x) + · · ·+ A0f(x) ,

apply the recurrence formulas of any admissible family Fn of order m involved recursively to
minimize the occurrences of Fn−k to at mostm successive k-values, and check, if the remaining
summands contain exactly N rationally independent expressions considering the numbers
A0, A1, . . . , AN−1 as constants. Just in that case there exists a solution as follows: Sort with
respect to the rationally independent terms and create a system of linear equations by setting
their coefficients to zero. Solve this system for the numbers A0, A1, . . . , AN−1. Those are
rational functions in x, and if there is a solution, this solution is unique. After multiplication
by the common denominator of A0, A1, . . . , AN−1 you get the differential equation searched
for. Finally cancel common factors of the polynomial coefficients.

(c) If part (b) was not successful, repeat step (b).

Proof: Theorem 3 of [15] (compare [22]) shows that for f a differential equation of type (2) exists.
We assume that differentiation is done by recursive descent through the expression tree, and an
application of the chain, product and quotient rules on the corresponding subexpressions. It is clear
that the algorithm works for members of admissible families, compare Theorem 1 and Corollary 1.
Similarly the algorithm obviously works for derivatives and antiderivatives of admissible families.
Further it is easily seen that the derivatives of sums, products, and the composition with rational
functions and rational powers form either sums, or sums of products all of which by a recursive use
of the recurrence equations involved are represented by sums of fixed lengths, compare Theorem 2.
Thus after a finite number of steps, part (b) of the algorithm will succeed (sharp a priory bounds
for the resulting orders are given in [15]). �

We note that from the implementational point of view the crucial step of the algorithm is the
decision of the rational independency in part (b). If this decision can be handled properly, then
the proof given in [9] shows that the algorithm generates the simple differential equation of lowest
order valid for f .

In our implementations, for testing whether some terms are rationally dependent, we divide
each one by any other and test whether the quotient is a rational function in x or not. This is an
easy and fast approach which never leads to wrong results, but may miss a simpler solution, which
in practice, rarely happens.

Typically this happens, however, for orthogonal polynomials with prescribed n, for which a first
order differential equation exists. In this case, the recurrence equation hides these rational depen-
dencies, and in some sense (s. [6], § 7) here it is even advantageous that the rational dependency is
not realized.

Another example where our implementations yield a differential equation which is not of lowest
order is given by
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In[13]:= SimpleDE[Sin[2 x]-2 Sin[x] Cos[x],x]

Out[13]= 4 F[x] + F’’[x] == 0

This happens because the functions sin (2x) and 2 sinx cosx algebraically cannot be verified to be
rationally dependent even though they are identical.

We note that, for elementary functions, we could use the Risch normalization procedure [20] to
generate the rationally independent terms, but this does not work for special functions.

Further we note that in case of expressions of high complexity, the use of [15], Algorithm 2,
typically is faster. This algorithm, however, in general leads to a differential equation of higher
order than Algorithm 3.

As a first application of Algorithm 3 we consider the Airy functions Ain, again, for which the
Mathematica implementation of our algorithm yields

In[14]:= SimpleDE[AiryAi[n,x],x]

(3)

Out[14]= (-1 - n) F[x] - x F’[x] + F [x] == 0

i. e. the differential equation

Ai′′′n (x)− x Ai′n (x)− (n+ 1) Ain (x) = 0 . (30)

Similarly, we get for the square of the Airy function

In[15]:= SimpleDE[AiryAi[x]^2,x]

(3)

Out[15]= -2 F[x] - 4 x F’[x] + F [x] == 0

The next calculation confirms the differential equation for the Bateman functions Fn (14)

In[16]:= SimpleDE[Bateman[n,x],x]

Out[16]= (2 n - x) F[x] + x F’’[x] == 0

Other examples are given with the aid of the iterated integrals of the complementary error function,
and the Abramowitz functions:

In[17]:= SimpleDE[Erfc[n,x],x]

Out[17]= -2 n F[x] + 2 x F’[x] + F’’[x] == 0

(see [2] (7.2.2)) and

In[18]:= SimpleDE[Exp[a x]*Erfc[n,x],x]

2

Out[18]= (a - 2 n - 2 a x) F[x] + (-2 a + 2 x) F’[x] + F’’[x] == 0
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In[19]:= SimpleDE[Exp[a x^2]*Erfc[n,x],x]

2 2 2

Out[19]= (-2 a - 2 n - 4 a x + 4 a x ) F[x] + (2 x - 4 a x) F’[x] +

> F’’[x] == 0

In[20]:= SimpleDE[Abramowitz[n,x],x]

(3)

Out[20]= 2 F[x] + (1 - n) F’’[x] + x F [x] == 0

(see [2] (26.2.41)).
We note that the algorithm obviously works for antiderivatives. An example of that type is

Dawson’s integral (see e. g. [2] (7.1.17)) for which we get the differential equation

In[21]:= SimpleDE[E^(-x^2)*Integrate[E^(t^2),{t,0,x}],x]

Out[21]= 2 F[x] + 2 x F’[x] + F’’[x] == 0

For the Struve functions, our algorithm generates the differential equations

(n2 + n3 + x2 − nx2)Hn(x) + x (x2 − n− n2)H′
n(x) + (2− n) x2H′′

n(x) + x3 H′′′
n (x) = 0 ,

and

(n2 + n3 − x2 + nx2)Ln(x)− x (x2 + n+ n2)L′
n(x) + (2− n) x2L′′

n(x) + x3L′′′
n (x) = 0 ,

that are the homogeneous counterparts of the differential equation (12.1.1) in [2].
Finally we give examples involving hypergeometric functions:

In[22]:= SimpleDE[Hypergeometric2F1[a,b,c,x],x]

Out[22]= a b F[x] + (-c + x + a x + b x) F’[x] + (-1 + x) x F’’[x] == 0

In[23]:= SimpleDE[Hypergeometric2F1[a,b,a+b+1/2,x]^2,x]

Out[23]= 8 a b (a + b) F[x] + 2 (-a - 2 a - b - 4 a b - 2 b + x + 3 a x +

2 2

> 2 a x + 3 b x + 8 a b x + 2 b x) F’[x] +

> 3 x (-1 - 2 a - 2 b + 2 x + 2 a x + 2 b x) F’’[x] +

2 (3)

> 2 (-1 + x) x F [x] == 0

Here the last function considered

(
2F1

(
a b

a+b+1/2

∣∣∣∣∣x
))2

is the left hand side of Clausen’s for-

mula (31) that we will consider again in § 9.
Now we investigate the case that a derivative rule and a differential equation are given, and

show that these two imply the existence of a recurrence equation:
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Algorithm 4 If a family fn is given by a derivative rule of type (1) and a differential equation
of type (2), then it forms an admissible family for which a recurrence equation can be found
algorithmically.

Proof: We present an algorithm which generates a recurrence equation for fn: Iterative differen-
tiation of the derivative rule (1) with the explicit use of (1) at each step yields

f (j)
n (x) =

M∑
k=0

rjk(n, x) fn−k(x)

with rational functions rjk. The substitution of these derivative representations in the differential
equation gives the recurrence equation searched for. �

As an example we consider the Airy functions Ain, again, for which we have the derivative rule
(20)

Ai′n (x) = Ain+1 (x)

and the differential equation (30)

Ai′′′n (x)− x Ai′n (x)− (n+ 1) Ain (x) = 0 .

Differentiating the derivative rule successively and substituting the resulting expressions into the
differential equation immediately yields the recurrence equation (20), again.

If this family, however, is given by the backward derivative rule (compare (20))

Ai′n (x) = x Ain−1 (x) + (n− 1) Ain−2 (x) ,

then differentiation yields

Ai′′n (x) = Ain−1 (x) + x Ai′n−1 (x) + (n− 1) Ai′n−2 (x)

= Ain−1 (x)+x
(
xAin−2 (x)+(n−2) Ain−3 (x)

)
+(n−1)

(
xAin−3 (x)+(n−3) Ain−4 (x)

)
= Ain−1 (x) + x2 Ain−2 (x) + (2n− 3) x Ain−3 (x) + (n2 − 4n+ 3) Ain−4 (x) .

After a similar procedure we get

Ai′′′n (x) = 3x Ain−2 (x) + (x2 + 3n− 5) Ain−3 (x) + (3n− 6) x2 Ain−4 (x)

+(3n2 − 15n+ 15) x Ain−5 (x) + (n3 − 9n2 + 23n− 15) Ain−6 (x) ,

and the substitution into the differentiation equation gives finally

(n− 1) Ain (x)− x2 Ain−1 (x) + (4− n) x Ain−2 (x) + (3n− 5 + x3) Ain−3 (x)

+(3n−6) x2 Ain−4 (x) + (3n2−15n+15) x Ain−5 (x) + (n3−9n2+23n−15) Ain−6 (x) = 0 ,

a recurrence equation of order 6 rather than the minimal order three. This shows, that, in general,
the order of the resulting recurrence equation is not best possible.

Algebraically spoken, our result tells that if {f(j)n | j ∈ IN0} has finite dimension, and if f′n is
an element of the linear space V spanned by a finite number of the functions {fn±k}, then the
space generated by all of {fn±k} is of finite dimension, too. In contrast to Theorem 1, however,
the dimension of this space generally may be higher than the dimension of V . This shows the
advantage of the use of admissible families.

As a further result of this section we note that using our general procedure developed in [9] we
have
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Algorithm 5 (Find a Laurent-Puiseux representation) Let f be a function that is built
from the functions expx, lnx, sinx, cosx, arcsinx, arctanx, and any other functions that are
embedded into admissible families, with the aid of the following procedures: differentiation, anti-
differentiation, addition, multiplication, and the composition with rational functions and rational
powers.

If furthermore f turns out to be of rational, exp-like, or hypergeometric type (see [9]), then a

closed form Laurent-Puiseux representation f(x) =
∞∑

k=k0

ak x
k/n can be obtained algorithmically. �

We remark that there is a decision procedure due to Petkovsek [19] to decide the hypergeometric
type from the recurrence equation obtained.

With Algorithm 5, it is possible to reproduce most of the results of the extensive bibliography
on series [7], and to generate others. As an example we present the power series representation of
the square of the Airy function:

In[24]:= PowerSeries[AiryAi[x]^2,x]

1 k k 1 + 3 k

(-) 27 x (2 k)!

9

Out[24]= Sum[-(------------------------), {k, 0, Infinity}] +

Sqrt[3] Pi k! (1 + 3 k)!

k 3 k 1

12 x Pochhammer[-, k]

6

> Sum[-------------------------, {k, 0, Infinity}] +

1/3 2 2

3 3 (3 k)! Gamma[-]

3

1/3 k 2 + 3 k 5

2 3 12 (1 + k) x Pochhammer[-, k]

6

> Sum[--------------------------------------------, {k, 0, Infinity}]

1 2

(3 + 3 k)! Gamma[-]

3

Note that, moreover, this technique generates hypergeometric representations, whenever such rep-
resentations exist. The above example, e. g., is recognized as the hypergeometric representation

Ai (x)2 =
1

34/3Γ (2/3)2
1F2

(
1/6

1/3 2/3

∣∣∣∣∣ 49 x3
)

− x√
3 π

1F2

(
1/2

2/3 4/3

∣∣∣∣∣ 49 x3
)
+

x2

32/3 Γ (1/3)2
1F2

(
5/6

4/3 5/3

∣∣∣∣∣ 49 x3
)

.

As soon as a hypergeometric representation is obtained, by Theorem 3 derivatives rules and re-
currence equations with respect to all parameters involved may be obtained. As an example, we
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consider the Laguerre polynomials: The power series representation for the Laguerre polynomial

L
(α)
n (x) that our algorithm generates corresponds to the hypergeometric representation

L(α)
n (x) =

( n+ α
n

)
1F1

( −n

α+ 1

∣∣∣∣∣ x
)

from which by an application of Theorem 3 we obtain the derivative rule

∂

∂x
L(α)
n (x) =

(
n+ α
n

) −n

x

(
1F1

( −n+ 1

α+ 1

∣∣∣∣∣x
)
− 1F1

( −n

α+ 1

∣∣∣∣∣ x
))

=
−(n+ α)

x

(
n � 1 + α
n� 1

)
1F1

( −(n− 1)

α+ 1

∣∣∣∣∣x
)
+

n

x

(
n + α
n

)
1F1

( −n

α + 1

∣∣∣∣∣ x
)

=
1

x

(
−(n+ α)L

(α)
n−1(x) + nL(α)

n (x)
)
,

i. e. (18), again, but we are also led to the derivative rule with respect α:

∂

∂x
L(α)
n (x) =

(
n + α
n

) α

x

(
1F1

( −n

α

∣∣∣∣∣ x
)
− 1F1

( −n

α+ 1

∣∣∣∣∣x
))

=
α

x

n+ α

α

( n+ α� 1
n

)
1F1

( −n

α

∣∣∣∣∣ x
)
− α

x

( n+ α
n

)
1F1

( −n

α+ 1

∣∣∣∣∣ x
)

=
1

x

(
(n+ α)L(α−1)

n (x)− αL(α)
n (x)

)
.

A further application of Theorem 3 yields the recurrence equation

Fα+1 =
1 + α

(1 + α+ n) x

(
− αFα−1 + (α+ x)Fα

)

for Fα := 1F1

( −n
α+ 1

∣∣∣∣ x
)

with respect to α, and the use of the algorithm for the product ([15],

Theorem 3 (d), [27], p. 342, and [21], Maple function rec*rec), applied to L
(α)
n =

( n + α
n

)
· Fα

generates (19), again.

� Algorithmic veri�cation of identities

On the lines of [27] we can now present an implementable algorithm to verify identities between
expressions using the results of the last section.

Algorithm 6 (Verification of identities) Assume two functions fn(x) and gn(x) are given, to
which Algorithm 3 applies. Then the following procedure verifies whether fn and gn are identical:

(a) de1:=SimpleDE(f,x):
Determine the simple differential equation de1 corresponding to fn.

(b) de2:=SimpleDE(g,x):
Determine the simple differential equation de2 corresponding to gn.
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(c) (Different differential equation implies different function) If de1 and de2 have the
same order, then

- if they do not coincide besides common factors, i. e. have rational ratio, then fn and gn
do not coincide; return this, and quit.

- Otherwise fn and gn satisfy the same differential equation de1 of order l, say, and it
remains to check l initial values. Continue with (e).

(d) Let the orders of de1 and de2, i. e.

l∑
j=0

pj f
(j)
n = 0 and

m∑
k=0

qk g
(k)
n = 0

(pj (j = 0, . . . , l), qk (k = 0, . . . , m) polynomials) are different, and assume without loss of
generality that l > m. Then, differentiate de2 l −m times to get equations

Sp :=
p∑

k=0

qpk g
(k)
n = 0 (p = m, . . . , l) .

Check if there are nontrivial rational functions Ap �≡ 0 (p = m, . . . , l) such that a linear

combination
l∑

p=m
Ap Sp is equivalent to the left hand side of de1, i. e. is a rational multiple of

it.

If this is not the case, then fn and gn do not satisfy a common simple differential equation,
and therefore are not identical; return this, and quit. Otherwise they satisfy a common simple
differential equation; continue with (e).

(e) Let l be the order of the common simple differential equation for fn and gn. For k = 0, . . . , l−1

check if f
(k)
n (0) = g

(k)
n (0). (Note that by the holonomic structure the knowledge of the initial

values (9) is sufficient to generate those.) These initial conditions may depend on n, and are
proved by application of a discrete version of the same algorithm. If one of these equations
is falsified, then the identity fn ≡ gn is disproved; return this, and quit. Otherwise, if all
equations are verified, the identity fn ≡ gn is proved.

Proof: By a well-known result about differential equations of the type considered, the solution of
an initial value problem

l∑
k=0

pk(x) f
(k)
n (x) = 0 , f(k)n (0) = ak (k = 0, . . . , l− 1)

is unique. To prove that fn and gn are identical, it therefore suffices to show that they satisfy a
common differential equation, and the same initial values. This is done by our algorithm. �

For the example expressions
fn(x) := L(−1/2)

n (x)

and

gn(x) :=
(−1)n

n! 22n
H2n

(√
x
)
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we get the common differential equation

2n f(x) + (1− 2x) f′(x) + 2 x f ′′(x) = 0 .

Therefore to prove the identity

L(−1/2)
n (x) =

(−1)n

n! 22n
H2n

(√
x
)
,

(see e. g. [2], (22.5.38)), it is enough to verify the two initial equations fn(0) = gn(0) and f ′
n(0) =

g′n(0). To establish the first of these conditions, with Mathematica, e. g., we get

In[25]:= eq = Limit[LaguerreL[n,-1/2,x],x->0]==

Limit[(-1)^n/(n!*2^(2*n))*HermiteH[2*n,Sqrt[x]],x->0]

1

Pochhammer[1 + n, -(-)] n

2 (-1) Sqrt[Pi]

Out[25]= ----------------------- == ---------------

Sqrt[Pi] 1

n! Gamma[- - n]

2

which is to be verified. In this situation, we establish the first order recurrence equations for both
sides

In[26]:= FindRecursion[Limit[LaguerreL[n,-1/2,x],x->0],n]

Out[26]= (-1 + 2 n) a[-1 + n] - 2 n a[n] == 0

In[27]:= FindRecursion[Limit[(-1)^n/(n!*4^n)*HermiteH[2*n,Sqrt[x]],x->0],n]

Out[27]= (-1 + 2 n) a[-1 + n] - 2 n a[n] == 0

that coincide, so that it remains to prove the initial statement

In[28]:= eq /. n->0

Out[28]= True

and we are done. Similarly one may prove the second initial value statement f′n(0) = g′n(0).
Applying the same method, (12) can be proved by the calculations

In[29]:= SimpleDE[(n+1)*Bateman[n+1,x]-(n-1)*Bateman[n-1,x],x]

2 2 3 2

Out[29]= (2 n - 2 x + 4 n x - 4 n x + x ) F[x] + (-2 n x + 2 x ) F’[x] +

2

> (2 n - x) x F’’[x] == 0
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In[30]:= SimpleDE[2*x*D[Bateman[n,x],x],x]

2 2 3 2

Out[30]= (2 n - 2 x + 4 n x - 4 n x + x ) F[x] + (-2 n x + 2 x ) F’[x] +

2

> (2 n - x) x F’’[x] == 0

and using the initial values Fn(0) = 0 and F ′
n(0) = −2 (see [14], (11)).

Also, one can prove Clausen’s formula

(
2F1

(
a b

a+b+1/2

∣∣∣∣∣x
))2

= 3F2

(
2a 2b a + b

a+b+1/2 2a+2b

∣∣∣∣∣ x
)

, (31)

generating the common differential equation

8 a b (a+ b) f(x) +

2 (−a− 2 a2 − b− 4 a b− 2 b2 + x+ 3 a x+ 2 a2 x+ 3 b x+ 8 a b x+ 2 b2 x) f ′(x) +
3 x (−1− 2 a− 2 b+ 2 x+ 2 a x+ 2 b x) f′′(x) +
2 (−1 + x) x2 f ′′′(x) = 0

for both sides of (31), or other hypergeometric identities like the Kummer transformation

1F1

(
a
b

∣∣∣∣∣x
)

= ex 1F1

(
b− a
b

∣∣∣∣∣− x

)

or like

0F1

(
a
∣∣∣x) · 0F1

(
b
∣∣∣x) = 2F3

(
a+b
2

a+b−1
2

a b a+ b− 1

∣∣∣∣∣ 4 x
)

and

1F1

(
a
b

∣∣∣∣∣x
)
· 1F1

(
a
b

∣∣∣∣∣− x

)
= 2F3

(
a b− a

b b
2

b+1
2

∣∣∣∣∣ x
2

4

)

corresponding to the Kummer differential equation

a f(x)− (b− x) f′(x)− x f ′′(x) = 0 ,

and to

(1− a− b) (a+ b) f(x) +
(
−a b+ a2 b+ a b2 − 2 x− 4 a x− 4 b x

)
f ′(x) +

+
(
a+ a2 + b+ 3 a b+ b2 − 4 x

)
x f ′′(x) + 2 (1 + a+ b) x2 f ′′′(x) + x3 f ′′′′(x) = 0 ,

and

4 a (a− b) x f(x) +
(
b− 3 b2 + 2 b3 − x2 − 2 b x2

)
f ′(x)

+x
(
−b+ 5 b2 − x2

)
f ′′(x) + (1 + 4 b) x2 f ′′′(x) + x3 f ′′′′(x) = 0 ,
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respectively.
Note that one can also reverse the order of the algorithm, i. e. first find common recurrence

equations for fn and gn with respect to n, and then check the initial conditions (depending on
x) with the aid of differential equations. This method should be compared with recent results of
Zeilberger ([27]–[29]).

Moreover the given algorithm is easily extended to the case of several variables, if the family
given forms an admissible family with respect to all of its variables, i. e. for each variable exists

- either a simple recurrence equation (corresponding to a “discrete” variable),

- or a simple derivative rule (corresponding to a “continuous” variable), depending on shifts
with respect to one of the discrete variables.

Note, however, that (for the moment) the algorithm only works if f and g are “expressions”, and
no symbolic sums, derivatives of symbolic order, etc. occur. In the next sections, we will, however,
extend the above algorithm to these situations.

� Algorithmic veri�cation of Rodrigues type formulas

Here we present an algorithm to verify identities of the Rodrigues type

g(n, x) = f(n)(n, x) (f, g functions , n symbolic) .

This algorithm, however, does only work if the function f is of the hypergeometric type. On the
other hand, for most Rodrigues type formulas in the literature, see e. g. [2], this condition is valid.

The procedure is based on the following

Algorithm 7 (Find differential equation for derivatives of symbolic order) Let f be of
the hypergeometric type, i. e. there is a Laurent-Puiseux type representation f(n, x) =

∑
k akx

k.
Then there is a simple differential equation for g(n, x) := f(n)(n, x) which can be obtained by the
following algorithm:

(a) de1:=SimpleDE(f,x):
Calculate the simple differential equation de1 of f , see Algorithm 3.

(b) re1:=DEtoRE(de1,f,x,a,k):
Transfer the differential equation de1 into the corresponding recurrence equation re1 for ak,
see [9], §6.

(c) If re1 is not of the hypergeometric type (or is not equivalent to the hypergeometric type [19]),
then quit.

(d) re2:=SymbolicDerivativeRE(re1,a,k,n):
Otherwise set ck := (k + 1)n ak+n. Bring re1 into the form

ak+m = R(k) ak ,

rational R, and calculate the hypergeometric type recurrence equation re2

ck+m =
(k + n+ 1)m
(k + 1)m

R(k + n) ck (32)

for ck.
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(e) de2:=REtoDE(re2,a,k,G,x):
Transfer the recurrence equation re2 into the corresponding differential equation de2 for the
nth derivative g(n, x) := f(n)(x) of f , see [9], § 11.

Proof: Parts (a), (b) and (e) of the algorithm are described precisely in [9]. Now, assume,
g(n, x) = f(n)(n, x), and that f has the representation f(n, x) =

∑
k akx

k. Then we get∑
k

ck x
k = g(n, x) = f(n)(n, x) =

∑
k

(k + 1− n)n ak x
k−n =

∑
k

(k + 1)n ak+n x
k .

Therefore we have ck = (k + 1)n ak+n, and we get the recurrence equation

ck+m = (k + m+ 1)n ak+n+m = (k + m+ 1)nR(k + n) ak+n

=
(k + m+ 1)n

(k + 1)n
R(k+ n) ck =

(k +m+ n)!

(k + m)!

k!

(k + n)!
R(k + n) ck

=
(k + m+ n)!

(k + n)

k!

(k +m)!
R(k + n) ck =

(k + n+ 1)m
(k+ 1)m

R(k+ n) ck ,

and hence (32), for ck. This finishes the proof. �

As a first example we consider the identity

erfcn(x) =
(−1)n e−x2

2n n!

∂n

∂xn

(
ex

2
erfcx

)
(see e. g. [2], (7.2.9)), or equivalently

(−1)n 2n n! ex
2
erfcn(x) =

∂n

∂xn

(
ex

2
erfcx

)
. (33)

Algorithm 7 yields step by step

In[31]:= de1=SimpleDE[E^(x^2)*Erfc[x],x]

Out[31]= -2 F[x] - 2 x F’[x] + F’’[x] == 0

In[32]:= re1=DEtoRE[de1,F,x,a,k]

Out[32]= -2 (1 + k) a[k] + (1 + k) (2 + k) a[2 + k] == 0

In[33]:= re2=SymbolicDerivativeRE[re1,a,k,n]

2

Out[33]= -2 (1 + k + n) a[k] + (2 + 3 k + k ) a[2 + k] == 0

In[34]:= de2=REtoDE[re2,a,k,G,x]

Out[34]= -2 (1 + n) G[x] - 2 x G’[x] + G’’[x] == 0

thus finally the differential equation

−2 (1 + n) g(x)− 2 x g′(x) + g′′(x) = 0

for the function ∂n

∂xn

(
ex

2
erfcx

)
, which also can be obtained by the single statement
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In[35]:= RodriguesDE[E^(x^2)*Erfc[x],x,n]

Out[35]= -2 (1 + n) F[x] - 2 x F’[x] + F’’[x] == 0

For the left hand term of (33) we get

In[36]:= de3=SimpleDE[E^(x^2)*Erfc[n,x],x]

Out[36]= -2 (1 + n) F[x] - 2 x F’[x] + F’’[x] == 0

i. e. the same differential equation.
As next example we consider the Rodrigues type identity (15) for the Bateman functions, and

rewrite it as
n! e−x

x
Fn(x) =

dn

dxn

(
e−2x xn−1

)
. (34)

Our implementation yields

In[37]:= RodriguesDE[E^(-2x)*x^(n-1),x,n]

Out[37]= 2 (1 + n) F[x] + 2 (1 + x) F’[x] + x F’’[x] == 0

In[38]:= SimpleDE[E^(-x)/x*Bateman[n,x],x]

Out[38]= 2 (1 + n) F[x] + 2 (1 + x) F’[x] + x F’’[x] == 0

Algorithm 7 shows the applicability of Algorithm 6 if in the expressions involved Rodrigues type
expressions occur, as soon as we can handle the initial values. Since in Algorithm 7 the function
f is assumed to be of hypergeometric type, this, however, can be done by a series representation
using Algorithm 5 if f moreover is analytic, and if the function f of Algorithm 7 does not depend
on n: In this case Algorithm 5 generates the generic coefficient ak of the series representation

f(x) =
∞∑
k=0

ak x
k, and therefore we get the initial values by Taylor’s theorem:

(
∂n

∂xn
f

)
(0) = n! an .

In our first example we conclude

In[39]:= PowerSeries[E^(x^2)*Erfc[x],x]

2 k

x

Out[39]= Sum[----, {k, 0, Infinity}] +

k!

k 1 + 2 k

-2 4 x k!

> Sum[-------------------, {k, 0, Infinity}]

Sqrt[Pi] (1 + 2 k)!
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so that the first initial condition for identity (33) is given by the calculation (see [2] (7.2.7))

(−1)n n!

Γ
(n
2 + 1

) = (−1)n 2n n! erfcn(0) =
∂n

∂xn

(
ex

2
erfcx

)
(0) =

⎧⎪⎨
⎪⎩

(2k)!
k! if n = 2k (k ∈ IN0)

−2 k! 4k√
π

if n=2k+1 (k ∈ IN0)
,

and the second one is established similarly.
To identify the first initial values of our second example, we proceed as follows: The left hand

side of (34) yields

lim
x→0

n! e−x

x
Fn(x) = n! lim

x→0

Fn(x)

x
= n!F ′

n(0) = −2n! (35)

(see [14], (11)), whereas from the identity

(
xn
)(k)

(0) =

{
n! if k = n
0 otherwise

and Leibniz’s formula we derive for the right hand side

(
e−2x xn−1

)(n)
(0) =

(
n∑

k=0

(
n
k

)(
xn−1

)(k) (
e−2x

)(n−k)
)
(0)

=
(

n
n� 1

)
(n− 1)!

(
e−2x

)′
(0) = −2n! ,

in agreement with (35).
It is easily seen that we can always identify the initial values algorithmically by the method

given if f(n, x) = w(x)X(x)n with a polynomial X , i. e. is of the form (7).
These results are summarized by

Algorithm 8 (Verification of identities) With Algorithms 6 and 7 identities involving Ro-
drigues type expressions can be verified if only symbolic derivatives f(n) of hypergeometric type
analytic expressions f occur that have the form f(n, x) = w(x)X(x)n for some polynomial X .

�� Algorithmic veri�cation of formulas involving symbolic sums

In this section we study, how identities involving symbolic sums can be established. The results
depend on the following algorithm (compare [21], Maple function cauchyproduct):

Algorithm 9 (Find recurrence equation for symbolic sums) Let fn(x) form an admissible

family, and let sn(x) denote the symbolic sum sn(x) :=
n∑

k=0
fk(x). Then the following algorithm

generates a recurrence equation for sn:

(a) re:=FindRecursion(f,k):
Calculate the simple recurrence equation re of fk, see [9], §11.

(b) de1:=REtoDE(re1,f,k,F,z):
Transfer the recurrence equation re into the corresponding differential equation de1 valid for

the generating function F (z) :=
∞∑
k=0

fk(x) z
k, see [9], §11.
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(c) de2:=F(z)+(z-1)*F’(z)=0:
Let de2 be the differential equation corresponding to the function

G(z) :=
∞∑
k=0

gkz
k =

∞∑
k=0

zk =
1

1− z
.

(d) de:=ProductDE(de1,de2,F,z):
Calculate the simple differential equation de corresponding to the productH(z) := F (z)G(z),
see [15], Theorem 3 (d). This differential equation has the order of de1.

(e) re:=DEtoRE(de,F,z,s,n):
Transfer the differential equation de into the corresponding recurrence equation re for the
coefficient sn of H(z), see [9], § 6.

Proof: Parts (a), (b) and (e) of the algorithm are described precisely in [9]. The rest follows from
the Cauchy product representation

H(z) = F (z)G(z) =
∞∑
n=0

(
n∑

k=0

fk gn−k

)
zn =

∞∑
n=0

(
n∑

k=0

fk

)
zn

of the product function F (z)G(z). �

As an example we consider the sum
n∑

k=0
L
(α)
k (x). We get stepwise:

In[40]:= re=FindRecursion[LaguerreL[k,alpha,x],k]

Out[40]= (-1 + alpha + k) a[-2 + k] + (1 - alpha - 2 k + x) a[-1 + k] +

> k a[k] == 0

In[41]:= de1=REtoDE[re,a,k,F,z]

2

Out[41]= (-1 - alpha + x + z + alpha z) F[z] + (-1 + z) F’[z] == 0

In[42]:= de2=F[z]+(z-1)*F’[z]==0;

In[43]:= de=ProductDE[de1,de2,F,z]

2

Out[43]= (-2 - alpha + x + 2 z + alpha z) F[z] + (-1 + z) F’[z] == 0

In[44]:= DEtoRE[de,F,z,s,n]

Out[44]= (2 + alpha + n) s[n] + (-4 - alpha - 2 n + x) s[1 + n] +

> (2 + n) s[2 + n] == 0

or by a single statement
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In[45]:= re=SymbolicSumRE[LaguerreL[k,alpha,x],k,n]

Out[45]= (2 + alpha + n) a[n] + (-4 - alpha - 2 n + x) a[1 + n] +

> (2 + n) a[2 + n] == 0

and substituting n by n− 2

In[46]:= Simplify[re /. n->n-2]

Out[46]= (alpha + n) a[-2 + n] + (-alpha - 2 n + x) a[-1 + n] + n a[n] == 0

On the other hand, the calculation

In[47]:= FindRecursion[LaguerreL[n,alpha+1,x],n]

Out[47]= (alpha + n) a[-2 + n] + (-alpha - 2 n + x) a[-1 + n] + n a[n] == 0

shows that the left and right hand sides of the identity

n∑
k=0

L
(α)
k (x) = L(α+1)

n (x) (36)

(see e. g. [24], VI (1.16)) satisfy the same recurrence equation.
In our example identity two initial values remain to be considered

L
(α)
0 (x) = L

(α+1)
0 (x) = 1 and L

(α)
0 (x) + L

(α)
1 (x) = L

(α+1)
1 (x) = 2 + α− x

that trivially are established.
Thus Algorithm 9 shows the applicability of Algorithm 6 if in the expressions involved symbolic

sums occur. This is summarized by

Algorithm 10 (Verification of identities) With Algorithms 6 and 9 identities involving sym-
bolic sums can be verified. �

We like to mention that the function FindRecursion is successful for composite fn as long as
recurrence equations exist and are applied recursively. Here obviously no derivative rules are
needed.

We note further that as a byproduct this algorithm in an obvious way can be generalized to sums
n∑

k=0
ak bn−k of the Cauchy product type. As an example, the algorithm generates the recurrence

equation
2 (1 + 2n) sn − (1 + n) sn+1 = 0 (37)

for sn :=
n∑

k=0

(
n
k

)2
= n!2

n∑
k=0

1
k!2

1
(n−k)!2

,

36



In[48]:= re=ConvolutionRESum[1/k!^2,1/k!^2,k,n]

3

Out[48]= 2 (1 + 2 n) a[n] - (1 + n) a[1 + n] == 0

In[49]:= ProductRE[re,FindRecursion[n!^2,n],a,n]

Out[49]= 2 (1 + 2 n) a[n] + (-1 - n) a[1 + n] == 0

compare [27]–[29].
Algorithm 9 may further be used to find a closed form representation of a symbolic sum in case

the resulting term is hypergeometric:

Algorithm 11 (Closed forms of hypergeometric symbolic sums) Let sn :=
n∑

k=0
fk be a

hypergeometric term, i. e. sn+1

sn
be a rational function, then the following procedure generates a

closed form representation for sn:

(a) re:=SymbolicSumRE(f,k,n):
Calculate the simple recurrence equation re of sn using Algorithm 9.

(b) If re is of the hypergeometric type, then solve it by the hypergeometric coefficient formula,
else apply Petkovsek’s algorithm to find the hypergeometric solution sn of re. �

This result should be compared with the Gosper algorithm [5]. Our procedure is an alternative
decision procedure for the same purpose. Note that from the hypergeometricity of sn the hyper-
geometricity of fk follows [5], so that the first step of Algorithm 9 leads to a simple first order
recurrence equation.

Applying our algorithm to our example case sn =
n∑

k=0

(
n
k

)2
, we get from (37), and the initial

value s0 = 1 the representation

sn = 4n

(
1
2

)
n

n!
=

(2n)!

n!2
=
(
2n
n

)
.

On the other hand, for sn =
n∑

k=0

(
n
k

)3
, our procedure gives

In[50]:= re=ConvolutionRESum[1/k!^3,1/k!^3,k,n]

2

Out[50]= 8 a[n] + (1 + n) (16 + 21 n + 7 n ) a[1 + n] -

5

> (1 + n) (2 + n) a[2 + n] == 0

In[51]:= ProductRE[re,FindRecursion[n!^3,n],a,n]

2 2 2

Out[51]= 8 (1 + n) a[n] + (16 + 21 n + 7 n ) a[1 + n] - (2 + n) a[2 + n] ==

> 0
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and by Petkovsek’s algorithm it turns out that sn is no hypergeometric term.
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