
Randomized simplex algorithms

on Klee�Minty cubes

Bernd Gärtner
Institut für Informatik
Freie Universität Berlin

Günter M. Ziegler
Konrad-Zuse-Zentrum für

Informationstechnik Berlin (ZIB)

Abstract

We investigate the behavior of randomized simplex
algorithms on special linear programs.

For this, we develop combinatorial models for the
Klee-Minty cubes [16] and similar linear programs
with exponential decreasing paths. The analysis of two
randomized pivot rules on the Klee-Minty cubes leads
to (nearly) quadratic lower bounds for the complexity
of linear programming with random pivots. Thus we
disprove two bounds conjectured in the literature.

At the same time, we establish quadratic upper
bounds for random pivots on the linear programs un-
der investigation. This motivates the question whether
some randomized pivot rules possibly have quadratic
worst-case behavior on general linear programs.

1 Introduction

Linear programming is the problem of minimizing
a linear objective function over a polyhedron P ⊆ IRn

given by a system of m linear inequalities.
Without loss of generality [22] we may assume that

the problem is primally and dually nondegenerate,
that the feasible region is full-dimensional and boun-
ded, and that the objective function is given by the
last coordinate. In other words, we consider the prob-
lem of finding the “lowest vertex” (minimizing xn) of a
simple n-dimensional polytope P ⊆ IRn with at most
m facets, where the last coordinate xn is not constant
on any edge, and thus the lowest vertex is unique.

In this setting, the (geometric interpretation of the)
simplex algorithm proceeds from some starting vertex
of P along edges in such a way that the objective func-
tion decreases, until the unique lowest vertex of P is
found. The (theoretical and practical) efficiency of the
simplex algorithm [23] depends on a suitable choice of
decreasing edges that “quickly leads to the lowest ver-
tex”. Connected to this are two major problems of
linear programming: the diameter problem “Is there
a short path to the lowest vertex?”, and the algorithm

problem “Is there an algorithm which quickly finds a
(short) path to the lowest vertex?”.

The diameter problem is closely related to the
“Hirsch conjecture” (from 1957) and its variants [5,
14, 26]. Currently there is no counterexample to the
“Strong monotone Hirsch conjecture” [26] that there
always has to be a decreasing path, from the vertex
which maximizes xn to the lowest vertex, of length at
most m− n. On the other hand, the best arguments
known for upper bounds establish paths whose length
is roughly bounded by mlog2 2n [11].

The algorithm problem includes the quest for
a strongly polynomial algorithm for linear program-
ming. Klee & Minty [16] showed in 1972 that linear
programs with exponentially long decreasing paths ex-
ist, and that the “steepest descent” pivot rule can be
tricked into selecting such a path. Using variations of
the Klee-Minty constructions, it has been shown that
the simplex algorithm may take an exponential num-
ber of steps for virtually every deterministic pivot rule
[14]. (A notable exception is Zadeh’s rule [25, 14], lo-
cally minimizing revisits, for which Zadeh’s $1,000.–
prize [14, p. 730] has not been collected, yet.)

No such evidence exists for some extremely natu-
ral randomized pivot rules, among them the following
three rules:

random-edge: At any nonoptimal vertex x of P , fol-
low one of the decreasing edges leaving x with
equal probability.

random-facet: If x admits only one decreasing
edge, then take it. Otherwise restrict the pro-
gram to a randomly chosen facet containing x.
This yields a linear program of smaller dimension
in which x is nonoptimal, and which can be solved
by recursive call to random-facet.

random-shadow: Start at the unique vertex y ∈ P
which maximizes xn. Choose a random unit vec-
tor c orthogonal to en. Now take the path from
y to the lowest vertex given by {x ∈ P : cx ≤ cz
for all z ∈ P with zn = xn}.

1

random-facet is a randomized version, due to
Kalai [11], of Bland’s procedure A [2], which as-
sumes that the facets are numbered, and always re-
stricts to the facet with the smallest index. Inter-
estingly enough, very elementary arguments imply a
recursion

f(n,m) ≤ f(n − 1, m− 1) +
1

n

n∑
i=1

f(n,m− i)

for the maximal expected number of steps f(n,m)
on an n-dimensional linear program with m inequal-
ities. From this one can get subexponential upper

bounds of roughly eO(
√

n logm) for the number of steps
of random-facet — see Kalai [11], and (in a very
similar dual setting) Matoušek, Sharir & Welzl [19].

The random-shadow rule is a randomized ver-
sion of Borgwardt’s shadow vertex algorithm [1]
(a. k. a. the Gass-Saaty rule [15]), for which the
auxiliary function c is deterministically obtained in
such a way that it is minimized on the starting vertex.
Borgwardt [1] has successfully analyzed this algorithm
under the assumption that P is random in a suitable
model (where the secondary objective function c can
be fixed arbitrarily), and obtained polynomial upper
bounds for the expected number of simplex steps.

None of the available evidence contradicts the pos-
sibility that the expected running time of all three
randomized algorithms we consider is bounded from
above by a polynomial, even a quadratic function, in n
and m. In this connection, we report investigations of
the performance of such algorithms on infinite fami-
lies of “test problems”: specific linear programs which
have decreasing paths of exponential length.

It is not generally believed that polynomial upper
bounds can be achieved; it is equally conceivable that
subexponential bounds such as those by Kalai [11] are
essentially best possible. An interesting open problem
in this context is to find linear programs on which the
algorithms in [11, 19] actually behave superpolynomi-
ally; Matoušek [18] has constructed abstract optimiza-
tion problems — more general than linear programs
— for which the subexponential analysis is tight.

In this extended abstract we concentrate on the
analysis of the “Klee-Minty cubes”, see Section 2.
These are very interesting linear programswhose poly-
tope is a deformed n-cube, but for which some pivot
rules follow a path through all the vertices and thus
need an exponential number of steps.

Our main results are quadratic, respectively nearly
quadratic, lower bounds for the expected number of
steps taken by the random-facet and the random-
edge simplex algorithms. For the random-edge rule
this seems to be the first superlinear bound.

Specifically, our analysis of random pivots on the
Klee-Minty cubes yields the following two theorems.

Theorem 1. The random-facet simplex algo-
rithm on the n-dimensional Klee-Minty cube, started
at the vertex v “opposite” (on the n cube) to the op-
timal vertex, takes a quadratic expected number of
steps Fn(v):

Fn(v) = n+ 2

n∑
k=1

(−1)k+1

k + 2

(
n− k

2

)
≈
(
π

4
− 1

2

)
n2.

Moreover, for a random starting vertex the expected
number of steps is

Fn =
n2 + 3n

8
.

We note that one easily gets a linear lower bound
and a quadratic upper bound Fn(x) ≤ (n2+3n)/4 for
the expected number of steps from an arbitrary start-
ing vertex x. Furthermore, there are starting points
for which the facet random rule will take only lin-
early many steps. The fact that for some starting ver-
tices the expected number of steps is quadratic follows
from an explicit formula for the expectation value,
given in Section 2, or from the bound for a random
starting vertex.

A result very similar to Theorem 1, in the setting
of dual simplex algorithms, was earlier obtained by
Matoušek [18, Sect. 4], who analyzed the behavior of
the Matoušek-Sharir-Welzl dual simplex algorithm on
a special class of linear programs.

Similarly, for random-edge one gets an upper
bound En(x) ≤

(
n+1
2

)
for the expected number of

steps starting at any vertex x of the n-dimensional
Klee-Minty cube, see Section 2. This was first ob-
served by Kelly [12], see also [24].

Theorem 2. The expected number En of steps that
the random-edge rule will take, starting at a ran-
dom vertex on the n-dimensional Klee-Minty cube, is
bounded by

Θ(
n2

logn
) ≤ En ≤

(
n + 1

2

)
.

This superlinear lower bound requires substantially
harder work, see Section 3. It implies that there is a
vertex x with En(x) = Ω(n2/ logn), but compared to
the case of random-facet we are not able to show
this bound for a specific starting vertex, e.g. the top
vertex.

Our proof is based on a combinatorial model for the
Klee-Minty cubes, which describes the random-edge

2

algorithm as a random walk on an acyclic directed
graph (see Section 2).

The combinatorial model also makes it possible to
do simulation experiments. Our tests in the range n ≤
1, 000 suggest that the quadratic upper bound is close
to the truth. Also, it seems that a (nearly) quadratic
lower bound is valid also if the starting vertex is chosen
to be the top vertex of the program, but as mentioned
above, our method does not prove this.

Still, our result contradicts Exercise 8.10* in [21,
p. 188], where it is claimed that En(x) = O(n). It
also disproves a conjecture of Kelly [12] that En(x) =
O(n log2 n) for all starting vertices x.

Another conjecture of Kelly [12], according to which
the expected number of random-edge pivots is max-
imal if the starting vertex is diametrically opposite
to the lowest vertex, also turned out to be false.
One finds, by explicit computation of expectation val-
ues (in rational arithmetic, using REDUCE) that the
smallest dimension in which this fails is n = 18.

The random-shadow algorithm has not yet been
studied on special programs. Goldfarb [7, 8] has con-
structed a variant of the Klee-Minty cubes for which
the deterministic shadow vertex algorithm takes
an exponential number of steps. There is hope for a
successful analysis since Borgwardt’s work [1] shows
that methods of integral geometry can be very power-
ful when applied in this context.

Besides the Klee-Minty cubes and their variants,
there are other natural classes of “test problems” for
(randomized) linear programming algorithms. They
include the deformed products of Klee & Minty [16],
for which a combinatorial model is produced in Sec-
tion 4. Also there is a natural model on polars of cyclic
polytopes, for which the actual program has not been
constructed, yet. This relates to the unsolved “upper
bound problem for linear programs”.

2 Combinatorial Models

The Klee-Minty cubes [16, 21] are the polytopes of
the linear programs in IRn with m = 2n facets given
by

min xn :
0 ≤x1≤ 1

εxi−1 ≤xi≤ 1− εxi−1

for 2 ≤ i ≤ n and 0 < ε < 1/2. Our illustration shows
the 3-dimensional Klee-Minty cube for ε = 1/3.

Considering the geometry in the limit ε → 0, one
sees that the feasible region is a (slightly) deformed
unit cube. Thus the feasible vertices of the program
are in bijection with the set {0, 1}n of all 0/1-vectors

(1, 0, 0)

(1, 1, 0)

(1, 1, 1)

(1, 0, 1)

(0, 0, 1)

(0, 0, 0)

(0, 1, 0)

(0, 1, 1)

x

x

x

2

3

1

Figure 1: Klee-Minty cube for n = 3, ε = 1/3

of length n, where we obtain the 0/1-vector for any
vertex by rounding the coordinates. Two vertices are
adjacent if the corresponding 0/1-vectors differ in ex-
actly one coordinate. (The identification of {0, 1}with
GF (2) will turn out useful in the next section, where
linear algebra overGF (2) is a key tool in our approach
to lower bounds.)

In the following, we identify the vertices of the
Klee-Minty cubes with the corresponding 0/1-vectors.
Since the simplex algorithm proceeds along decreas-
ing edges, we have to describe the edge orientations.
It is easy to see, by induction on the dimension,
that if x is a 0/1-vector with k ones, at positions
s1 < s2 < . . . < sk, then the xn-coordinate of the
corresponding vertex of the Klee-Minty cube is

εn−sk − εn−sk−1 + . . .+ (−1)k−1εn−s1

From this we obtain that if x, x′ ∈ {0, 1}n differ in
their i-th component, then the corresponding edge is
directed from x to x′ if and only if the sum xi+xi+1+
. . .+ xn is odd. We write x→ x′ in this situation.

This completes the description of the combinato-
rial model: a directed, acyclic graph with 2n vertices,
n2n−1 directed arcs, and a unique source and sink. It
can be used as a combinatorial model for the linear
program.

For instance, one can derive that the average length
Φn of a decreasing path from the highest to the lowest
vertex — taking all paths with equal probability —
satisfies Φn ≥ (1 + 1/

√
5)n−1 [10]: it is exponential.

Thus, the “average” path is exponentially long, but

3

the random-edge and random-facet pivot rules
take the long paths with low probability.

The random-edge algorithmmoves on the digraph
of the Klee-Minty cube by leaving the current vertex,
using one of the outgoing edges with equal probability,
until it reaches the unique sink in the digraph. For
example, a legal sequence of steps for n = 3, starting
at the highest vertex and ending at the lowest, is given
by⎛
⎝ 0

0
1

⎞
⎠ −→ ⎛

⎝ 1
0
1

⎞
⎠
−→

⎛
⎝ 1

0
0

⎞
⎠ −→ ⎛

⎝ 0
0
0

⎞
⎠ .

Here any coordinate that can be flipped is typeset
bold: from this one can read off that the first step
is taken with probability p = 1

3 , the second one with
p = 1

2 , and the third with probability 1. Thus this
path is taken with probability 1

6
.

The expected number of steps En(x) from a vertex x
to the lowest vertex satisfies the recursion

En(x) = 1 +
1

#{x′ : x→ x′}
∑

x′:x→x′
En(x

′).

If i(x) denotes the highest index i for which xi = 1,
then we can easily show

i(x) ≤ En(x) ≤
(
i(x) + 1

2

)
≤
(
n + 1

2

)

— this implies the upper bound of Theorem 2, but
only a linear lower bound. A complete analysis seems
to be surprisingly difficult. In Section 3 we develop
a method, based on linear algebra over GF (2), that
yields the nearly quadratic lower bounds “on average”
of Theorem 2.

The random-facet pivot rule can, however, be
completely analyzed on the Klee-Minty cubes. For
this, one first derives that

Fn(ei) = Fn(ei + ei−1) = i.

In particular, started at the highest vertex en, the
random-facet rule only needs an expected number
of Fn(en) = n steps. For an arbitrary starting vertex
x ∈ {0, 1}n, the solution of the program restricted to a
facet xi = 0 delivers the lowest vertex; restricted to a
facet xi = 1 the algorithm yields the vector ei + ei−1,
where we set e0 = 0. From this we get a recursion

Fn(x) =
1

n

(
n∑

i=1

ixi +

n∑
i=1

Fn−1(x
(i))

)
,

with x(i) := (x1, . . . , xi−2, xi−1 + xi, xi+1, . . . , xn)
t ∈

{0, 1}n−1 for 1 ≤ i ≤ n. Using this recursion, it is

easy to derive a linear lower bound and a quadratic
upper bound for Fn(x), namely

i(x) ≤ Fn(x) ≤ i(x)2 + 3i(x)

4
≤ n2 + 3n

4
.

Equality in the linear lower bound holds for the infi-
nite series of vectors ei and ei + ei−1. Surprisingly,
one can explicitly solve the above recursion. In par-
ticular, quadratic lower bounds as in Theorem 1 can
be derived from the following result.

Proposition 3. Started at a vertex x ∈ {0, 1}n of
the n-dimensional Klee-Minty cube, with

{t : xt = 1} = {s1, s2, . . . , sk}< ,
the expected number of steps of the random-facet
simplex algorithm is

Fn(x) =

k∑
i=1

si + 2
∑

1≤i<j≤k

(−1)j−isi
sj − si + 1

.

For a random starting vertex, the situation is sub-
stantially simpler: Let

Gn =
∑

x∈{0,1}n

Fn(x).

From the recursion we get

Gn = 2n−2(n+ 1) + 2Gn−1

with G1 = 1. This gives

Gn = 2n−2(

(
n+ 2

2

)
− 1),

and the second part of Theorem 1 follows.

3 A Lower Bound

Our analysis of the random-edge rule on the Klee-
Minty cubes starts with a coordinate transformation
in GF (2)n. Namely, we associate with every vertex
x ∈ GF (2)n the label

(xn, xn + xn−1, . . . , xn+xn−1+. . .+x1)
t ∈ GF (2)n.

With these new labels, the vertex set of the digraph
is again given by GF (2)n. An arc of the digraph now
corresponds to vertices x, x′ ∈ GF (2)n such that xi =
1, and x′ arises from x by replacing xj by xj+1(mod2)
for every j ≥ i. (In particular, this yields x′

i = 0.)
Thus, for any vector x ∈ GF (2)n, we consider the

game KM(x):

4

choose a random coordinate r for which xr = 1,
and flip this coordinate together with all coordi-
nates of higher index. This operation is repeated
until the zero vector is reached.

For example, the flipping sequence considered in Sec-
tion 2 corresponds, after this coordinate transforma-
tion, to the sequence⎛
⎝ 1

1
1

⎞
⎠
−→

⎛
⎝ 1

1
0

⎞
⎠ −→ ⎛

⎝ 0
0
1

⎞
⎠
−→

⎛
⎝ 0

0
0

⎞
⎠ .

The version in which we prove the lower bound of The-
orem 2 in this section is the following: starting with a
random vector x ∈ GF (2)n, the expected number of
rounds played is at least cn2/ logn for some c > 0.

The flipping operation. The flip at index r (in the
new coordinate system) can conveniently be expressed
as a linear transformation over GF (2)n, i.e., there is
a matrix Ar such that

xr := (x1, ..., xr−1, 0, xr+1 + xr, ..., xn + xr)
t = Arx

for all vectors x = (x1, ..., xn).
The columns of Ar are the images of the unit vectors

under the flip at r, i.e.

Ar =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ↓ column r
. . .

1
0 ← row r
1 1
...

. . .

1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and all other entries are zero. Note that for j �= r,
ej

r = ej; in general, a flip with xr = x is called void,
and although KM(x) does not perform void flips, this
more general flipping concept is a key ingredient in
our approach.

Flip sequences. Let S be the set of all finite se-
quences (s1, ..., s|s|) with elements in {1, ..., n}. We
refer to the members of S as flip sequences. For a flip
sequence s we let x(s) be the result of ‘applying’ s to
x, i.e.

x(s) := A(s)x, with A(s) := As|s| ...As2As1 .

For a sequence s let sk denote the prefix of length
k (or s itself if k > |s|). Finally, let s∗x denote the

subsequence of indices inducing nonvoid flips when s
is applied to x.

The length Lx of game KM(x) is the number of
rounds played, i.e., the number of flips performed un-
til termination. Lx is a random variable over S∗

x, the
set of all flip sequences that may be traversed dur-
ing KM(x), and we are interested in its expectation
E[Lx].

Fixed length sequences

For any integer l, let Sl ⊆ S be the probability
space consisting of all flip sequences of length exactly l,
equipped with the uniform distribution

probSl(s) = n−l.

It is clear that we can simulate game KM by flip-
ping with a random r ∈ {1, ..., n} in each step and
ignoring the void flips. This means that the expected
length of game KM(x) is just the expected number of
nonvoid flips encountered during the simulation, and
this number can only decrease if we stop playing after
the l-th flip, for any integer l (or keep on playing until
the l-th flip if the game ends early – that only adds
void flips). This boils down to the following formula:

Fact 4. Let l be a fixed integer. Then

E[Lx] ≥ 1

nl

∑
s∈Sl

|s∗x|.

Note that in the limit (l→∞) we have equality, so
our objective will be to estimate the right hand side
for large values of l, where the appropriate choice will
be determined only at the end of the proof.

The relation to unit vector probabilities

Fact 4 leaves us with the problem of estimating the
expected number of nonvoid flips in a random fixed-
length sequence s ∈ Sl. For this, by linearity of ex-
pectation, it is sufficient to estimate the probability
that the k-th flip in such a sequence is nonvoid, for all
k ≤ l.

Fact 5.

1

nl

∑
s∈Sl

|s∗x| =

l∑
k=1

probSl (x(sk) �= x(sk−1))

=

l∑
k=1

probSk (x(sk) �= x(sk−1)).

Recall that x(sk) �= x(sk−1) if and only if the k-th flip

hits a one-entry of the current vector x(sk−1), which

5

implies that the probability for a nonvoid k-th flip

is just the expected number of one-entries in x(sk−1),
divided by n, i.e.

Fact 6.

probSk (x(sk) �= x(sk−1)) =
1

nk−1

∑
s∈Sk−1

|x(s)|
n

,

where |x| is the support size of x, i.e. its number of
one-entries. By linearity of expectation this can be
rewritten as

Fact 7.

probSk (x(sk) �= x(sk−1)) =
1

n

n∑
r=1

probSk−1 (x(s)
r = 1).

What is the probability for x(s)
r = (A(s)x)r = 1

if s runs through all sequences of some fixed length?
For an individual vector x we can give no estimate,
but averaging over all x ∈ GF (2)n (i.e. considering a
random vector) will allow us to come up with a bound
in terms of “unit vector probabilities”.

Definition 8. For r = 1...n and arbitrary k, the
numbers

pr,k := probSk (er
(s) �= 0)

are called the unit vector probabilities.

Thus pr,k tells us how likely it is that the r-th unit
vector ‘survives’ a random flip sequence of length k.

Now suppose for a moment, we were not interested
in x(s)

r = (A(s)x)r but in (xtA(s))r , which is the prod-
uct of x and the r-th column of A(s), the latter being
nothing else than er

(s). This product evaluates to 0
if er

(s) = 0; otherwise — and this is the crucial ob-
servation — it evaluates to 1 with probability exactly
1/2, if x is a random vector! This is where the unit
vector probabilities come in.

Observation 9.

1

2n

∑
x∈GF (2)n

probSk ((xtA(s))r = 1) =
1

2
pr,k.

In order to be able to apply this observation to our
original situation, we need a lemma which allows us
to relate xtA(s) and A(s)x.

Lemma 10. Let T be the n×nmatrix with 1-entries
on the co-diagonal and below, i.e.,

Tij =
{
1 if i+ j ≥ n+ 1,
0 otherwise.

Then

(i) |Tx| ≥ |x|/2 for all x ∈ GF (2)n.

(ii) ArT = (An+1−rT)t.

Note that T is exactly the matrix corresponding to
the coordinate transformation introduced at the be-
ginning of this section.

Proof. (i) We have (Tx)r =
∑

j≥n+1−r xj, so (Tx)r
just gives the parity of the last r positions of x, and
consequently (Tx)r−1 �= (Tx)r if and only if xr−1 = 1.
This means that by scanning x from bottom to top the
parity (starting from 0) changes whenever a one-entry
is encountered, so at least
|x|/2� of the parities must
be one.

(ii) Let E be the unit matrix. Then we can write
the i-th row Ar

i of A
r as

Ar
i = Ei + Er[i ≥ r].

Therefore

ArT = T +

⎛
⎜⎜⎜⎜⎜⎜⎝

0...
0
Er...
Er

⎞
⎟⎟⎟⎟⎟⎟⎠

T.

The product evaluates to a matrix with a block of
one entries in rows r through n and columns n+ 1−
r through n, and exactly the transpose is obtained
when we start with An+1−rT . By observing that T is
symmetric, the claim follows.

Recall that in order to estimate the probability of a
nonvoid k-th flip, we would like to bound the expected
support size after k−1 flips, i.e. the expected number
of one-entries in A(s)x for a random flip sequence s of
length k − 1 (Fact 6). First of all, it is an immediate
consequence of part (ii) of Lemma 10 that

A(s) = T (A(s′))tT−1,

where

s′ = (n + 1− s|s|, ..., n+ 1− s1),

i.e., s′ arises from s by reversion and replacement of
every entry r with n+1−r. Obviously, if s is random,
this also holds for s′. Furthermore, if x is random, so
is T−1x. Consequently, the expected support size of

A(s)x

equals the expected support size of

T (A(s))tx

when averageing over all sequences and all vectors.

6

Furthermore, by Lemma 10(i) we have

|T (A(s))tx| ≥ |(A
(s))tx|
2

=
|xtA(s)|

2
.

This line of argumentation together with Observa-
tion 9 gives

∑
x∈GF (2)n

n∑
r=1

probSk−1 (x(s)
r = 1)

=
∑

x∈GF (2)n

n∑
r=1

probSk−1 ((T (A(s))tx)r = 1)

≥ 1

2

∑
x∈GF (2)n

n∑
r=1

probSk−1 ((xtA(s))r = 1)

= 2n−2
n∑

r=1

pr,k−1.

Via Fact 7 we get the main result of this subsection.

Lemma 11.

1

2n

∑
x∈GF (2)n

probSk (x(sk) �= x(sk−1)) ≥ 1

4n

n∑
r=1

pr,k−1.

This shows in particular that as long as the expected
number of unit vectors that are ‘alive’ is linear, the
expected probability (over all vectors) for a nonvoid
flip will be at least constant; this again means that if
linearly many unit vectors ‘survive’ a random flip se-
quence of length l, we can expect Θ(l) nonvoid flips on
a random vector. To prepare the choice of a suitable
l, the next subsection will investigate the unit vector
probabilities; actually, the analysis will be more gen-
eral and establish bounds for arbitrary vectors.

General vector probabilities

Let x ∈ GF (2)n, x �= 0 be fixed. The objective of
this subsection will be to find the values of k, for which
the general vector probabilities

probSk (x(s) �= 0)

are at least some constant. Obviously, for k = 0 the
probability is 1, while for k → ∞ it tends to zero,
and our goal will be to determine k asymptotically as
large as possible (depending on n and x) such that
we still can find some constant bounding the above
probability from below.

To this end we will analyze how x evolves when
applying a random flip sequence s ∈ Sk to it. Actu-
ally, the analysis will only trace the leading dimension,
which records the one-entry with lowest index. There-
fore, the considerations for x are valid as well for any
other vector y with the same lowest one-entry.

Definition 12. For a nonzero vector y ∈ GF (2)n,
the leading dimension is the number

d(y) := n+ 1−min{r | yr = 1}.
Furthermore, d(0) := 0.

During the traversal of a flip sequence, the leading
dimension of the vector under consideration can only
decrease, and we will show that it does not decrease
too fast on the average.

With respect to x, any flip sequence s subdivides
into phases, where a flip terminates a phase if it de-
creases the leading dimension of the current vector, or
if it is the last flip in s. Obviously there are at most n
phases, and every single phase makes some progress,
which is the decrease in leading dimension during the
phase.

Definition 13. For p ≤ n and s ∈ Sk let sj be the
flip terminating phase p (if it exists). We define dp(s)
as the leading dimension during phase p, i.e.,

dp(s) := d(x(sj−1)).

The progress in phase p is defined by

Δp(s) := dp(s) − d(x(sj)).

Δp is a random variable over Sk. The progress in
the last phase may be 0, and to a nonexisting phase
we assign progress 0 in any case. The next lemma
shows that the expected progress in a single phase is
no more than logarithmic in the leading dimension;
this will be the basis of the final bound derived in this
subsection.

Lemma 14.
E[Δp] ≤ Hd(x),

where Hi := 1+ 1
2
+...+ 1

i
is the i-th harmonic number.

Proof. Observing that Δp ≤ d(x), we can write the
expectation as

E[Δp] =
∑
q≥1

q probSk (Δp = q)

=

d(x)∑
q=1

probSk (Δp ≥ q).

Now we claim that

probSk (Δp ≥ q) ≤ 1

q
,

which implies the lemma.

7

To see this inequality, consider the leading one-entry
during phase p (which has index n + 1 − dp(x)) and
the next higher q−1 indices (if this is not defined, the
probability is zero anyway). It is easy to see that in
order to make progress at least q, phase p of the flip
sequence must necessarily hit the leading one-entry
before it hits any of the q− 1 higher indices (and this
may not even be sufficient). However, if any of the q
positions are flipped at all, then the probability that
the leading one comes first is only 1/q.

Let
Δ≤p :=

∑
p′≤p

Δp′

be the progress in the first p phases. By linearity of
expectation we immediately get

Corollary 15.

E[Δ≤p] ≤ pHd(x).

By setting

p = p(x) :=
d(x)

eHd(x)

we see that the expected progress in the first p(x)
phases of a random flip sequence is at most d(x)/e
when starting with x. Of course, the overall progress
is at most d(x), and Markov’s inequality shows that it
actually is d(x) with probability at most 1/e; this, on
the other hand implies that with probability at least
1 − 1/e the progress is smaller, which exactly means
that x has not been reduced to 0 within p(x) phases.

For a flip sequence s let us denote the prefix of s
that consists of the first (at most) p phases of s by

s|p.

What we have shown so far is that

probSk (x(s|p(x)) �= 0) ≥ 1− 1

e
, (1)

i.e., with probability larger than 1/2, x ‘survives’ the
first p(x) phases of a random flip sequence. What we
want, however, is that it survives the whole sequence
with constant probability. To achieve this, it will be
sufficient to ensure that with probability larger than
1/2 the whole sequence actually consists of at most
p(x) phases, and this can be done by choosing the
parameter k appropriately. To get an intuition what
the value for k should be, observe that we can expect
a phase to terminate after n flips, so for k = np(x)
a random sequence should have p(x) phases on the

average, and if k is chosen slightly smaller, with high
probability there will be no more than p(x) phases.

Formally, we go about as follows: s ∈ Sk deter-
mines a sequence B(s) of k Bernoulli trials, where
success in a trial either means that the leading dimen-
sion decreases, or — in the case that x has already
been reduced to 0 — position 1 is hit. When we tra-
verse a random sequence s, success occurs indepen-
dently in each trial with probability 1/n; moreover,
each phase (except possibly the last one) contributes
a success. This means that the number of phases in
s is bounded by the number of successes in B(s) plus
one. Let Z be a random variable counting the total
number of successes in a sequence of k Bernoulli trials,
with probability of success equal to 1/n. We have

E[Z] =
k

n

and

prob(Z ≥ k

n
+ t) ≤ e−t2n/4k(1−1/n)

for any positive integer t, by the well-known Chernoff
bound. Setting

k := n(p(x) − 2
√
p(x)) and t := 2

√
p(x)

gives

prob(Z ≥ p(x)) ≤ e−p(x)/(p(x)−2
√

p(x))(1−1/n) ≤ 1

e
.

This means, the number of phases in a random s ∈
Sk is larger than p(x) with probability at most 1/e.
Hence

probSk(s = s|p(x)) ≥ 1− 1

e
, (2)

for k ≤ n(p(x)− 2
√
p(x)).

We finally obtain the lower bounds on the general
vector probabilities.

Lemma 16. For

k ≤ n(
d(x)

eHd(x)
− 2

√
d(x)

eHd(x)
)

we have

probSk (x(s) �= 0) ≥ 1− 2

e
≈ 0.26.

Proof. Consider over Sk the events

A = (x(s|p(x)) �= 0),

B = (s = s|p(x)).

8

A ∩ B implies x(s) �= 0, and by invoking inequalities
(1) and (2) we see that probSk (x(s) �= 0) is bounded
from below by

probSk(A ∩B)

= probSk(A) + probSk(B) − probSk (A ∪B)

≥ (1− 1

e
) + (1− 1

e
) − 1 = 1− 2

e
.

Putting everything together

The previous subsections have developed all the ma-
chinery we need to prove Theorem 2, which— adapted
to the terminology of this section — reads as follows.

Theorem 2. There exists a constant c > 0 (inde-
pendent of n) such that

1

2n

∑
x∈GF (2)n

E[Lx] ≥ c
n2

logn
.

Proof. After setting

l := n(
n/2 + 1

eHn/2+1
− 2

√
n/2 + 1

eHn/2+1
) = Θ(

n2

logn
),

any k ≤ l satisfies the condition of Lemma 16 for
vectors x = e1, ..., en/2. We thus get

∑
x∈GF (2)n

E[Lx]
(4)

≥
∑

x∈GF (2)n

1

nl

∑
s∈Sl

|s∗x|

(5)
=

∑
x∈GF (2)n

l∑
k=1

probSk (x(sk) �= x(sk−1))

(11)

≥ 2n

4n

l∑
k=1

n∑
r=1

probSk−1 (er
(s) �= 0)

≥ 2n

4n

l∑
k=1

n/2∑
r=1

probSk−1 (er
(s) �= 0)

(16)

≥ 2n

4n

l∑
k=1

n/2∑
r=1

(1− 2

e
)

=
2n

8
(1 − 2

e
)l = 2nΘ(

n2

logn
),

and by dividing with 2n we see that the average ex-
pectation (over all vectors) is at least of the order

Θ(
n2

logn
).

(The constant c is rather small, about 1/165).

4 Related Models

In this final section, we provide two more combina-
torial models for classes of linear programs with ex-
ponentially long decreasing paths. A main feature of
these two classes — as compared to the Klee-Minty
cubes — is that they include polytopes with arbitrar-
ily large number of facets in any fixed dimension. In
both classes, we can prove quadratic upper bounds
for the running time of random-edge with arbitrary
starting vertex.

Deformed products. This class of linear programs
was also constructed by Klee & Minty [16]. Its poly-
topes are combinatorially equivalent to products of 1-
and 2-dimensional polytopes. For the following, we
restrict to the special case where the dimension n is
even, and P := (Ck)

n/2 is a product of k-gons: an n-
dimensional polytope with m = kn

2 facets. Such poly-
topes are now realized in IRn (“deformed”) in such a
way that they have an xn-decreasing path through all
the vertices. The geometric construction of these pro-
grams is tricky [16], but the combinatorial model is
very simple, as follows.

The vertex set of P can naturally be identified with
the set of vectors {1, . . . , k}n/2. Two vertices are ad-
jacent if their vectors x, x′ ∈ {1, . . . , k}n/2 differ in
a single coordinate, and in this coordinate the differ-
ence is either 1 or k−1. Furthermore, the directions
for these edges are given as follows: if x and x′ dif-
fer in their i-th coordinate, then we get a directed
edge x → x′ if either xi < x′

i and (x1, . . . , xi−1) con-
tains an even number of even entries, or if xi > x′

i and
(x1, . . . , xi−1) contains an odd number of even entries.
For example, for n = 4 and k = 3 (m = 6) we get
11→ 12→ 13→ 23→ 22→ 21→ 31→ 32→ 33
as the directed path through all the vertices.

This explicitly describes a digraph, on which algo-
rithms such as random-edge take a random walk.

Proposition 17. For an arbitrary starting vertex x
on a deformed product program, the expected num-
ber of steps taken by the random-edge algorithm is
bounded by a quadratic function, namely,

En,m(x) ≤ n·m.

The function En,m(x) is, however, not even com-
pletely analyzed for the case n = 4.

For the deformed products, the shortest path from
the highest to the lowest vertex visits only these two
vertices, while the longest decreasing path visits all the
kn/2 = (2mn)n/2 vertices. In constant dimension this

yields a longest decreasing path of length O(mn/2),

9

which is asymptotically sharp. However, for other in-
teresting parameter settings, like m = 2n, there might
be substantially longer paths — see the following con-
struction.

Cyclic programs. Here the construction starts with
the polars Cn(m)Δ of cyclic polytopes [9, 26]. These
simple polytopes have the maximal number of vertices
for given m and n, namely

V (n,m) =

(
m−
n2 �
�n2 �

)
+

(
m− 1−
n−1

2 �
�n−1

2 �
)
,

according to McMullen’s upper bound theorem [20,
26]. The facets of Cn(m)Δ are identified with [m] :=
{1, 2, . . . , m}; the vertices correspond to those n-
subsets F ⊆ [m] which satisfy “Gale’s evenness condi-
tion”: if i, k ∈ [m]\F , then the set {j ∈ F : i < j < k}
has even cardinality.

Now any two sets F = {i1, i2, ..., in}< and G =
{j1, j2, ..., jn}< satisfying Gale’s evenness condition
are compared by the following twisted lexicographic
order: F < G if and only if i1 < j1,
or i1 = j1, . . . , ik = jk, ik+1 < jk+1, and ik is even,
or i1 = j1, . . . , ik = jk, ik+1 > jk+1, and ik is odd.

Thus one compares the first element in which the
(sorted) sets F and G differ, and takes the natural
order if the element before that is even (or doesn’t
exist), and the reversed order if the element before is
odd. For example, for C4(8)

Δ we get the ordering
1678 < 1568 < 1458 < 1348 < 1238 < 1234 < 1245 <
1256 < 1267 < 1278 < 2378 < 2367 < 2356 < 2345 <
3456 < 3467 < 3478 < 4578 < 4567 < 5678.

Now we use this ordering to construct the digraph
model. Its vertices are the sets satisfying Gale’s even-
ness condition. There is a directed edge F → F ′ if
and only if F ′ < F and F, F ′ differ in exactly one el-
ement, that is, the corresponding vertices of Cn(m)Δ

are adjacent.
The special property of the ordering is that every

vertex is adjacent to the previous one. Thus the di-
graph is acyclic with unique source and sink, and with
a directed path through all the vertices. (The con-
struction is derived from Klee [13], where the order is
constructed and described recursively.)

It is not clear if one can realize the polytopeCn(m)Δ

such that the xn-coordinate orders the vertices ac-
cording to twisted lexicographic order. (Equivalently,
we cannot show that this order corresponds to a
Bruggesser-Mani shelling [3, 26] of some realization
of the cyclic polytope.) If such a realization is pos-
sible, then this solves the “upper bound problem for
linear programs ”:

“What is the largest possible number P (n,m) of
vertices on a decreasing path in a linear program
of dimension n with m facets?”

(a very natural unsolved problem!) by showing that
the bound P (n,m) ≤ V (m, n), from the upper bound
theorem for polytopes, holds with equality.

Even without such a realization, the twisted lexico-
graphic ordering yields an abstract objective function
in the sense of [24], and thus a shelling of the cyclic
polytope Cn(m). Thus our digraph model is a very
reasonable “worst case” (?) szenario for the perfor-
mance of randomized simplex algorithms. Both the
random-edge and the random-facet variants can,
indeed, be analyzed in terms of the digraph model,
without use of a metric realization.

Proposition 18. For the random-edge rule,
started at an arbitrary vertex F of the cyclic program,
there is a linear lower bound and a quadratic upper
bound for the expected number of steps. For this, we
set �(F) := m+ 1−min(F), with n ≤ �(F) ≤ m, and
obtain

�(F)− n ≤ En,m(x) ≤
(
�(F) + 1

2

)
−
(
n+ 1

2

)
.

Since both the diameter problem [17, 14] and the
algorithm problem [4, 11] have upper bounds that
are linear in m, it would be interesting to know that
En,m(x) indeed grows at most linearly in m for such
problems. On the other hand, it is certainly chal-
lenging to strive for a nonlinear lower bound for these
models.

More details for the analysis of the models in this
section will appear in [6].

Thanks

We wish to thank M. Reiss, E. Welzl and M. Henk
for helpful discussions, comments and contributions,
and D. Kühl, W. Schlickenrieder, C. Betz-Haubold,
T. Takkula and W. Neun for extensive computations.

References

[1] K.H. Borgwardt: The Simplex Method. A
Probabilistic Analysis, Algorithms and Combina-
torics 1, Springer 1987.

[2] R.G. Bland: New finite pivoting rules for the
simplex method, Math. Operations Research 2
(1977), 103-107.

10

[3] H. Bruggesser & P. Mani: Shellable decom-
positions of cells and spheres, Math. Scand. 29
(1971), 197-205.

[4] K. Clarkson: A Las Vegas algorithm for lin-
ear programming when the dimension is small,
in: “Proc. 29. IEEE Symposium on Foundations
of Computer Science (FOCS)” 1988, 452-457.

[5] G.B. Dantzig: Linear Programming and Ex-
tensions, Princeton University Press, Princeton
1963.

[6] B. Gärtner, G.M. Ziegler et al.: Ran-
domized simplex algorithms on special linear pro-
grams, in preparation 1994.

[7] D. Goldfarb: Worst case complexity of the
shadow vertex simplex algorithm, preprint, Co-
lumbia University 1983, 11 pages.

[8] D. Goldfarb: On the complexity of the sim-
plex algorithm, preprint, Columbia University
1993, 21 pages; in: “IV. Workshop on Numerical
Analysis and Optimization” in Oaxaca, Mexico
(ed. S. Gomez), to appear.

[9] B. Grünbaum: Convex Polytopes, Interscience,
London 1967.

[10] M. Henk: Note on the Klee-Minty cube, man-
uscript, 1993.

[11] G. Kalai: A subexponential randomized simplex
algorithm, in: “Proc. 24th ACM Symposium on
the Theory of Computing (STOC)”, ACM Press
1992, 475-482.

[12] D.G. Kelly: Some results on random linear
programs, Methods of Operations Research 40
(1981), 351-355.

[13] V. Klee: Paths on polyhedra II, Pacific Journal
of Mathematics 17 (1966), 249-262.

[14] V. Klee & P. Kleinschmidt: The d-step con-
jecture and its relatives, Math. Operations Re-
search 12 (1987), 718-755.

[15] V. Klee & P. Kleinschmidt: Geometry of the
Gass-Saaty parametric cost LP algorithm, Dis-
crete Comput. Geometry 5 (1990), 13-26.

[16] V. Klee & G.J. Minty, How good is the sim-
plex algorithm?, in: “Inequalities III” (O. Sisha,
ed.), Academic Press, New York 1972, 159-175.

[17] D. G. Larman: Paths on polytopes, Proc. Lon-
don Math. Soc. 20 (1970), 161-178.

[18] J. Matoušek: Lower bounds for a subexpo-
nential optimization algorithm, preprint B 92-15,
FU Berlin 1992, 18 pages.

[19] J. Matoušek, M. Sharir & E. Welzl: A
subexponential bound for linear programming, in:
“Proc. 8th Annual ACM Symp. Computational
Geometry” (Berlin 1992), ACM Press 1992, 1-8.

[20] P. McMullen: The maximum numbers of faces
of a convex polytope, Mathematika 17 (1970),
179-184.

[21] C.H. Papadimitriou & K. Steiglitz: Com-
binatorial Optimization: Algorithms and Com-
plexity, Prentice-Hall, Inc., Englewood Cliffs,
NJ 1982.

[22] A. Schrijver: Theory of Linear and Inte-
ger Programming, Wiley-Interscience, Chichester
1986.

[23] R. Shamir: The efficiency of the simplex me-
thod: a survey, Management Sci. 33 (1987), 301-
334.

[24] K. Williamson Hoke: Completely unimodal
numberings of a simple polytope, Discrete Ap-
plied Math. 20 (1988), 69-81.

[25] N. Zadeh: What is the worst case behavior
of the simplex algorithm?, Technical Report No.
27, Dept. Operations Research, Stanford 1980,
26 pages.

[26] G.M. Ziegler: Lectures on Polytopes, Springer-
Verlag New York 1994, in preparation.

Bernd Gärtner
Institut für Informatik
Freie Universität Berlin
Takustr. 9
14195 Berlin, Germany
gaertner@inf.fu-berlin.de

Günter M. Ziegler
Konrad-Zuse-Zentrum für
Informationstechnik Berlin (ZIB)
Heilbronner Str. 10
10711 Berlin, Germany
ziegler@zib-berlin.de

11

