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ON THE CONVERGENCE OF
CASCADIC ITERATIONS FOR ELLIPTIC PROBLEMS

FOLKMAR A. BORNEMANN

Abstract. We consider nested iterations, in which the multigrid method is replaced
by some simple basic iteration procedure, and call them cascadic iterations. They were
introduced by Deuflhard, who used the conjugate gradient method as basic iteration
(CCG method). He demonstrated by numerical experiments that the CCG method works
within a few iterations if the linear systems on coarser triangulations are solved accurately
enough. Shaidurov subsequently proved multigrid complexity for the CCG method in the
case of H2-regular two-dimensional problems with quasi-uniform triangulations. We show
that his result still holds true for a large class of smoothing iterations as basic iteration
procedure in the case of two- and three-dimensional H1+�-regular problems. Moreover
we show how to use cascadic iterations in adaptive codes and give in particular a new
termination criterion for the CCG method.

Key Words. Finite element approximation, cascadic iteration, nested iteration,
smoothing iteration, conjugate gradient method, adaptive triangulations
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Introduction. Let Ω ⊂ Rd be a polygonal Lipschitz domain. We con-
sider an elliptic Dirichlet problem on Ω in the weak formulation:

u ∈ H1
0 (Ω) : a(u, v) = (f, v)L2 ∀v ∈ H1

0 (Ω).

Here f ∈ H−1(Ω) and a(·, ·) is assumed to be a H1
0(Ω)-elliptic symmetric

bilinear form. The induced energy-norm will be denoted by

‖u‖2a = a(u, u) ∀u ∈ H1
0 (Ω).

Given a nested family of triangulations (Tj)
�
j=1 the spaces of linear finite

elements are

Xj = {u ∈ C(Ω̄) : u|T ∈ P1(T ) ∀T ∈ Tj , u|∂Ω = 0},

where P1(T ) denotes the linear functions on the triangle T . We have

X0 ⊂ X1 ⊂ . . . ⊂ X� ⊂ H1
0 (Ω).

The finite element approximations are given by

uj ∈ Xj : a(uj, vj) = (f, vj)L2 ∀vj ∈ Xj.
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For fine meshes T� the direct computation of u� is a prohibitive expensive

computational task, so one uses iterative methods. With the choice of some
basic iterative procedure I, the following cascadic iteration makes use of the
nested structure of the spaces Xj :

(i) u∗0 = u0

(ii) j = 1, . . . , � : u∗j = Ij,mju
∗
j−1.

(1)

Here Ij,mj denotes mj steps of the basic iteration applied on level j. This

kind of iteration is known in the literature under different names, depending
on the choice of the basic iteration and the parameter mj:

• Nested iteration: the basic iteration is a multigrid-cycle, the param-
etersmj are chosen a priori as a small constant number of iterations,

cf. Hackbusch [5].
• Cascade: the basic iteration is a multilevel preconditioned cg-me-
thod, the mj are chosen a posteriori due to certain termination
criteria. This method was named and invented by Deuflhard, Leinen

and Yserentant [4].
• CCG-iteration: the basic iteration is a plain cg-method, the mj are
chosen a posteriori. CCG stands for cascadic conjugate gradient
method and was introduced by Deuflhard [3].

We call a cascadic iteration optimal for level �, if we obtain accuracy

‖u� − u∗�‖a ≈ ‖u− u�‖a,
i.e. if the iteration error is comparable to the approximation error, and if
we obtain multigrid complexity

amount of work = O(n�),

where n� = dimX�. The optimality of the nested iteration and of Cascade
are well known [5, 4], at least for certain situations. The optimality of the

CCG method has been demonstrated by several numerical examples [3]. This
has been considered as rather astonishing, since only a plain basic iteration
is used.

Shaidurov [10] has recently shown for H2-regular problems and quasi-
uniform triangulations in two dimension, that the CCG method is optimal

for a certain choice of the parameters mj.

Since he shows in essence, that the cg-method has some smoothing prop-
erties, we were lead to consider rather general smoothers as basic iterations.
The main result of Section 1 is as follows: For H1+α-regular problems with

0 < α ≤ 1 and quasi-uniform triangulations it is possible to choose the
parameters mj, that
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• for d = 3: the cascadic iteration is optimal for level �.

• for d = 2: the cascadic iteration is accurate and has complexity
O(n� logn�).

This result holds for a large class of smoothing iterations. In Section 2 we
show how Shaidurov’s result fits in our frame. Finally in Section 3 we show

for adaptive grids how to choose the mj a posteriori by certain termination
criteria. Under some heuristically motivated assumptions on the adaptive
grids we are able to show optimality for the cg-method as basic iteration.

Remark. With respect to the CCG method, we decided to call the algorithm

(1) cascadic iteration. Since the interesting case here is the use of plain basic
iterations, we had to choose a name different from nested iteration.

1. General smoothers as basic iteration. In this and the following
section we consider quasi-uniform triangulations with meshsize parameter

1

c
2−j ≤ hj = max

T∈Tj
diamT ≤ c 2−j .

In the following we use the symbol c for any positive constant, which only
depends on the bilinear form a(·, ·), on Ω and the shape regularity as well

as the quasi-uniformity of the triangulations. All other dependencies will be
explicitly indicated.

A general assumption on the elliptic problem will be H 1+α-regularity for
some 0 < α ≤ 1, i.e.,

‖u‖H1+α ≤ c ‖f‖Hα�1 ∀f ∈ Hα−1(Ω).

The approximation error of the finite element method is then given in energy

norm as

‖u− uj‖a ≤ c hαj ‖f‖Hα�1 j = 0, . . . , �,(2)

cf. [6, Lemma 8.4.9]. By the well-known Aubin-Nitsche lemma and an
interpolation argument one gets the approximation property

‖uj − uj−1‖H1�α ≤ c hαj ‖uj − uj−1‖a j = 1, . . . , �,(3)

cf. [6, Theorem 8.4.14].

We consider the following type of basic iterations for the finite-element

problem on level j started with u0
j ∈ Xj :

uj − Ij,mju
0
j = Sj,mj(uj − u0j )
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with a linear mapping Sj,mj : Xj → Xj for the error propagation. We call

the basic iteration a smoother, if it obeys the smoothing property

(i) ‖Sj,mjvj‖a ≤ c
h−1
j

mγ
j

‖vj‖L2

(ii) ‖Sj,mjvj‖a ≤ ‖vj‖a
∀vj ∈ Xj ,(4)

with a parameter 0 < γ ≤ 1. As is shown in [5] the symmetric Gauß-Seidel-,
the SSOR- and the damped Jacobi-iteration are smoothers in the sense of

(4) with parameter

γ = 1/2.

Lemma 1.1. A smoother in the sense of (4) fulfills

‖Sj,mjvj‖a ≤ c
h−α
j

mαγ
j

‖vj‖H1�α ∀vj ∈ Xj .

Proof. This can be shown be an usual interpolation argument using dis-

crete Sobolev norms like those introduced in [1] and their equivalence to the
fractional Sobolev norms.

We are now able to state and prove the main convergence estimate for
the cascadic iteration (1).

Theorem 1.2. The error of the cascadic iteration with a smoother as basic

iteration can be estimated by

‖u� − u∗�‖a ≤ c
�∑

j=1

1

mαγ
j

‖uj − uj−1‖a ≤ c
�∑

j=1

hαj
mαγ

j

‖f‖Hα�1.

Proof. For j = 1, . . . , � we get by the linearity of Sj,mj

‖uj − u∗j‖a = ‖Sj,mj (uj − u∗j−1)‖a
≤ ‖Sj,mj (uj − uj−1)‖a + ‖Sj,mj(uj−1 − u∗j−1)‖a.

The first term can be estimated by Lemma 1.1 and the approximation prop-
erty (3):

‖Sj,mj(uj − uj−1)‖a ≤ c
h−α
j

mαγ
j

‖uj − uj−1‖H1�α

≤ c
1

mαγ
j

‖uj − uj−1‖a.

4



If we estimate the second term by property (4(ii)) of a smoother, we get

‖uj − u∗j‖a ≤
c

mαγ
j

‖uj − uj−1‖a + ‖uj−1 − u∗j−1‖a.

Using u∗0 = u0 we get by induction

‖u� − u∗�‖a ≤ c
�∑

j=1

1

mαγ
j

‖uj − uj−1‖a.

Galerkin orthogonality gives

‖uj − uj−1‖a ≤ ‖u− uj−1‖a,

so that the error estimate (2) yields the second assertion.

We choose mj as the smallest integer, such that

mγ
j ≥ mγ · 2(γd+1)(�−j)/2.(5)

The integer m = m� is therefore the number of iterations on level �. With

this choice the cascadic iteration can be shown to be optimal.

Lemma 1.3. Let the number mj of iterations on level j be given by (5).
The cascadic iteration yields the error

‖u� − u∗�‖a ≤ c(γ)
hα�
mαγ

‖f‖Hα�1,

if γ > 1/d, and

‖u� − u∗�‖a ≤ c
hα� (1 + | log h�|)

mα/d
‖f‖Hα�1

if γ = 1/d.

Proof. By 2−j/c ≤ hj ≤ c 2−j we get

�∑
j=1

hαj
mαγ

j

≤ cm−αγ2−(γd+1)α�/2
�∑

j=1

2(γd−1)αj/2.

If γ > 1/d this is a geometric sum which can be estimated by

�∑
j=1

hαj
mαγ

j

≤ c(γ)m−αγ2−(γd+1)α�/22(γd−1)α�/2 = c(γ)m−αγ2−α� ≤ c(γ)m−αγhα� .

In the case γ = 1/d the sum is equal to �, such that

�∑
j=1

hαj

m
α/d
j

≤ cm−α/d2−α�� ≤ cm−α/dhα� (1 + | log h�|).
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Theorem 1.2 yields the assertion.

The complexity of the method is given by the following

Lemma 1.4. Let the number mj of iterations on level j be given by (5). If
γ > 1/d we get

�∑
j=1

mj nj ≤ c(γ)mn�,

if γ = 1/d

�∑
j=1

mj nj ≤ cmn�(1 + logn�).

Proof. We have

2dj/c ≤ nj = dimXj ≤ c 2dj .

Therefore we get

�∑
j=1

mj nj ≤ cm2(γd+1)�/2γ
�∑

j=1

2(γd−1)j/2γ.

If γ > 1/d this is a geometric sum which can be estimated by

�∑
j=1

mj nj ≤ c(γ)m2(γd+1)�/2γ2(γd−1)�/2γ = c(γ)m2d� ≤ c(γ)mn�.

In the case γ = 1/d the sum is equal to �, such that

�∑
j=1

mj nj ≤ cm 2d� � ≤ cmn�(1 + logn�).

In order that also in the case γ = 1/d the cascadic iteration has an

iteration error like the discretization error (2), we choose a special number
of final iterations.

Lemma 1.5. Let γ = 1/d. If we choose the number of iterations on level �
as the smallest integer m with

m ≥ m∗(1 + | log h�|)d/α

we get for the error of the cascadic iteration

‖u� − u∗�‖a ≤ c
hα�

m
α/d
∗

‖f‖Hα�1,
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and as complexity

�∑
j=1

mj nj ≤ cm∗n�(1 + log n�).

Proof. By observing that

c0 � ≤ (1 + | log h�|) ≤ c1 (1 + logn�) ≤ c2 �

the assertion is clear by Lemma 1.3 and Lemma 1.4.

Our results show, that the cascadic iteration with a plain Gauss-Seidel-,
SSOR- or damped Jacobi-iteration (all with γ = 1/2) as basic iteration is

• optimal for d = 3,
• accurate with complexity O(n�| log n�|) for d = 2.

2. Conjugate gradient method as basic iteration. When using
the conjugate gradient method as the basic iteration we have to tackle with
a problem: the result

Ij,mju
0
j

of mj steps of the cg-method is not linear in the starting value u0
j . Thus,

it seems that our frame up to now does not cover the cg-method. However,
there is a remedy which uses results on the cg-method well known in the
Russian literature [7, 9].

We have to fix some notation. Let 〈·, ·〉 be the euclidean scalar product

of the nodal basis in the finite element space Xj , the induced norm will be
denoted by

|vj|2 = 〈vj, vj〉 ∀vj ∈ Xj .

We define the linear operator Aj : Xj → Xj by

〈Avj, wj〉 = a(vj, wj) ∀vj, wj ∈ Xj ,

which is represented in the nodal basis by the usual stiffness matrix. The
error of the cg-method applied to the stiffness matrix can be expressed by

‖uj − Ij,mju
0
j‖a = min

p�Pmj ,

p(0)=1

‖p(Aj)(uj − u0j)‖a.

Here Pmj denotes the set of polynomials p with deg p ≤ mj.
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The idea is now, to find some polynomial qj,mj ∈ Pmj with qj,mj(0) = 1,

such that

Sj,mj = qj,mj(Aj)

defines a smoother in the sense of (4). Since the error in energy of the cg-
method is then majorized by this linear smoother, the results of Section 1
are immediately valid for the cg-method.

The choice of qj,mj depends on the following solution of a polynomial
minimization problem.

Lemma 2.1. Let λ > 0. The Chebyshev polynomial T2m+1 has the repre-
sentation

T2m+1(x) = (−1)m(2m + 1)xφλ,m(λx
2)

with a unique φλ,m ∈ Pm and φλ,m(0) = 1. The polynomial φλ,m solves the

minimization problem

max
x∈[0,λ]

|√xp(x)| = min!

over all polynomials p ∈ Pm which are normalized by p(0) = 1. The minimal

value is given by

max
x∈[0,λ]

|√xφλ,m(x)| =
√
λ

2m+ 1
.

Moreover we have

max
x∈[0,λ]

|φλ,m(x)| = 1.

A proof may be found in the book of Shaidurov [9]. However, Shaidurov
represents φλ,m by the expression

φλ,m(x) =
m∏

k=1

(1 − x/μk), μk = λ cos2((2k − 1)π/2(2m + 1)).

As a fairly easy consequence Shaidurov [10] proves the following

Theorem 2.2. The linear operator

Sj,mj = φλj,mj (Aj), λj = maxσ(Aj)
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satisfies

(i) ‖Sj,mjvj‖a ≤
√
λj

2mj + 1
|vj|

(ii) ‖Sj,mjvj‖a ≤ ‖vj‖a
∀vj ∈ Xj .

A little finite element theory shows that we have found a majorizing
smoother for the cg-method.

Corollary 2.3. The linear operator

Sj,mj = φλj,mj (Aj), λj = maxσ(Aj)

defines a smoother in the sense of (4) with parameter γ = 1.

Proof. The usual inverse inequality shows that the maximum eigenvalue of
the stiffness matrix can be estimated by

λj ≤ chd−2
j ,

cf. [6, Theorem 8.8.6]. The euclidean norm with respect to the nodal basis
is related to the L2-norm by

1

c
hdj |vj|2 ≤ ‖vj‖2L2 ≤ chdj |vj|2,

cf. [6, Theorem 8.8.1]. Thus Theorem 2.2 gives

‖Sj,mjvj‖a ≤ c
h
(d−2)/2
j

2mj + 1
|vj| ≤ c

h−1
j

2mj + 1
‖vj‖L2,

i.e., (4(i)) with γ = 1. Property (4(ii)) was already stated in Theorem 2.2.

With the help of this majorizing smoother it is immediately clear, that
Theorem 1.2, Lemma 1.3, Lemma 1.4 and Lemma 1.5 remain valid for the
cascadic iteration with the cg-method as basic iteration, short the CCG-

method of Deuflhard [3]. In particular the CCG method is optimal for
d = 2, 3.

3. Adaptive control of the CCG-method. In this section we de-

velop an adaptive control of the CCG method which is based on our the-
oretical considerations and some additional assumptions on the family of
triangulation.
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For adaptive triangulations we drop the assumption of quasi-uniformity.

All constants in the sequel will not depend on the quasi-uniformity, but only
on the shape regularity of the triangulations.

In order to bound the maximum eigenvalue of the involved matrix, we
compute the stiffness matrix Aj with respect to the scaled nodal basis

h
(2−d)/2
j,i ψj,i i = 1, . . . , nj,

where {ψj,i}i is the usual nodal basis of Xj and

hj,i = diamsuppψj,i.

In this section we denote by 〈·, ·〉 the euclidean scalar product with respect
to this scaled nodal basis. Xu [11] has shown the equivalence of norms

1

c
|vj|2 ≤

∑
T∈Tj

h−2
T ‖vj‖2L2(T ) ≤ c |vj|2, hT = diamT,

and the bound

λj = maxσ(Aj) ≤ c

for the maximumeigenvalue of Aj. Hence, we get for the majorizing smooth-

ing iteration of the conjugate gradient method as defined in Section 2

‖Sj,mjvj‖a ≤
c

mj

⎛
⎝∑

T∈Tj
h−2
T ‖vj‖2L2(T )

⎞
⎠

1/2

.

In order to turn this into a starting point for a theorem like Theorem 1.2 we
make the following two assumptions on the family of triangulations:

(i) h−2
T ‖uj − uj−1‖2L2(T ) ≤ c‖uj − uj−1‖2H1(T ), ∀T ∈ Tj

(ii) ‖u− uj‖ ≤ c n
−1/d
j ‖f‖L2 .

(6)

This is heuristically justified for adaptive triangulations. The first assump-
tion (i) means, that the finite element correction is locally of high frequency
with respect to the finer triangulation. In other words, the refinement re-
solves changes but not more. Thus it is a statement of the efficiency of a

triangulation. Note that quasi-uniform triangulations do not accomplish as-
sumption (ii) for problems which are notH 2-regular. The second assumption
is a statement of optimal accuracy, which is justified by results of nonlinear

approximation theory like [8]. The same proof as for Theorem 1.2 gives the
following
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Lemma 3.1. Assumption (6) implies for the error of the cascadic conjugate

gradient iteration

‖u� − u∗�‖a ≤ c
�∑

j=1

1

mj
‖uj − uj−1‖a ≤ c

�∑
j=1

1

mj n
1/d
j

‖f‖L2 .

We can now extend Lemma 1.3 and Lemma 1.4 to the adaptive case.
Here we have to use additionally, that the sequence of number of unknowns

belongs to some kind of geometric progression:

nj < σ0nj ≤ nj+1 ≤ σ1nj j = 0, 1, . . . .

With the choice of the iteration numbers as smallest integers for which

mj ≥ m

(
n�

nj

)(d+1)/2d

,(7)

we get for d > 1 under assumption (6) the final error

‖u� − u∗�‖a ≤
c

mn
1/d
�

‖f‖L2

and the complexity

�∑
j=1

mj nj ≤ cmn�.

However, in an adaptive algorithm we do not know at level j the number
n� of nodal points at the final level. So far our iteration is not implementable.
But with slight changes we can still operate with it. We define the final level

� as the one, for which the approximation error is below some user given
tolerance TOL. Hence assumption (6) gives us the relation

‖u− uj‖a
TOL

≈
(
n�

nj

)1/d

,

which leads us to replace (7) by the smallest integer with

mj ≥ m

(‖u− uj‖a
TOL

)(d+1)/2

.(8)

The actual approximation error ‖u − uj‖a is also not known, so we replace
this expression by

‖u− uj‖a ≈ εj−1

(
nj−1

nj

)1/d

(9)
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for some estimate εj−1 of the previous approximation error ‖u − uj−1‖a, cf.
[2].

This algorithm is nearest to the a priori choice of the parameters mj. In
practice, the basic iteration can be accurate enough much earlier than stated
in theory. The crucial relation we used for the algorithm was

‖uj − u∗j‖a ≤
c

mj
‖u− uj−1‖a + ‖uj−1 − u∗j−1‖a,

so we turn it into a termination criterion for the basic iteration by using (8).
We terminate the iteration with

‖uj − u∗j‖a ≤ ρ

(
TOL

‖u− uj‖a

)(d+1)/2

+ ‖uj−1 − u∗j−1‖a.(10)

Here 0 < ρ < 1 is some safety factor. Of course we replace ‖u− uj‖a by the

estimate (9) and ‖uj−u∗j‖a, ‖uj−1−u∗j−1‖a by some estimate of the iteration
error.

Despite the fact, that our termination criterion is different from the orig-
inal one of Deuflhard [3] we get comparable numerical results for the CCG

method. They share the essential feature that the iteration has to be more
accurate on coarser triangulations. However, the basis for (10) seems to be
a sound combination of theory and heuristics.

Example. We applied the adaptive CCG method with TOL = 10−4 to the
elliptic problem

−Δu = 0, u|Γ1 = 1, u|Γ2 = 0, ∂nu|Γ3 = 0

on a domain Ω which is a unit square with slit

Ω = {x ∈ R
2 : |x|∞ ≤ 1} ∩ {x ∈ R

2 : |x2| ≥ 0.03x1}.

The boundary pieces are

Γ1 = {x ∈ Ω : x1 = 1, x2 ≥ 0.03}, Γ2 = {x ∈ Ω : x1 = 1, x2 ≤ −0.03},

and Γ3 = ∂Ω \ (Γ1 ∪ Γ2).

Figure 1 shows a typical triangulation and isolines of the solution. In
Figure 2 we have drawn the number of iterations mj which were used for

the corresponding number of unknowns nj. We compared three different
implementations:

• CCG1 : the CCG method with termination criterion (10).
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Fig. 1. Typical adaptive triangulation with isolines of solution

• CCG2 : the CCG method with Deuflhard’s termination criterion
[3].

• CSGS : an adaptive cascadic iteration using symmetric Gauss-Seidel
as basic iteration. We implemented the termination criterion (10)
in this case also.

We observe that the CCG1 and CCG2 implementations are comparable, the

CCG1 needs one adaptive step less in order to achieve the tolerance TOL.

The performance of the CSGS implementation is a little bit smoother
and gives completely satisfactory results. In fact, if one looks at the real
CPU-time needed for the achieved accuracy ‖u − u∗

j‖a, one gets nearly in-
distinguishable curves for all three implementations!

Acknowledgement. The author thanks Rudi Beck for prompt computa-
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