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Robust Network Design:
Formulations, Valid Inequalities, and Computations

Arie M.C.A. Koster∗ Manuel Kutschka∗ Christian Raack†

Abstract

Traffic in communication networks fluctuates heavily over time. Thus, to avoid capacity bottlenecks,
operators highly overestimate the traffic volume during network planning. In this paper we consider
telecommunication network design under traffic uncertainty, adapting the robust optimization approach
of [21]. We present three different mathematical formulations for this problem, provide valid inequalities,
study the computational implications, and evaluate the realized robustness.

To enhance the performance of the mixed-integer programming solver we derive robust cutset in-
equalities generalizing their deterministic counterparts. Instead of a single cutset inequality for every
network cut, we derive multiple valid inequalities by exploiting the extra variables available in the ro-
bust formulations. We show that these inequalities define facets under certain conditions and that they
completely describe a projection of the robust cutset polyhedron if the cutset consists of a single edge.

For realistic networks and live traffic measurements we compare the formulations and report on the
speed up by the valid inequalities. We study the “price of robustness” and evaluate the approach by
analyzing the real network load. The results show that the robust optimization approach has the potential
to support network planners better than present methods.

1 Introduction

Dimensioning or expanding capacity networks is a complex task with many applications in transportation,
energy supply, and telecommunications. Doing it carefullywith respect to expenditures and expected
network demand is crucial for the behavior and flexibility ofthe resulting network.

In this work we mainly focus on aspects from telecommunication networks but our methods are gen-
eral enough to be applied also in different contexts. Telecommunication network design typically involves
decisions about the network topology, link and node capacities, and traffic routing. It can be considered
as a long-term to mid-term strategic planning process. Its goal is to minimize the capital expenditures for
network equipment guaranteeing a routing for all considered (data) traffic demands. In the classical com-
binatorial network design problem integer capacities (corresponding to batches of bit rates, e. g., 40 Gbps)
have to be installed on the network links at minimum cost suchthat all traffic demands can be realized by
flow simultaneously without exceeding the link capacities.Given a single traffic matrix, this problem has
been studied extensively in the literature, see [8, 10, 23, 24, 37, 49, 61] and the references therein.

In practice, telecommunication networks are typically designed without the knowledge of actual traffic.
In most approaches each demand is estimated in the design process, e.g., by using traffic measurements or
population statistics [25, 31, 40, 65, 66]. To handle futurechanges in the traffic volume and distribution and
to guarantee robust network designs, these values (and consequently capacities) are (highly) overestimated.
Obviously, this approach leads to a wastage of network capacities, investments, and energy. In order to
create and operate more resource- and cost-efficient telecommunication networks the uncertainty of future
traffic demand has to be already taken into account in the strategic capacity design process.

Incorporating uncertainty within the mathematical analysis of operational research has been an ef-
fort since its very first beginnings. In the 1950s, Dantzig [28] introduced Stochastic Programming using
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probabilities for the possible realizations of the uncertain data. The main limitation of such probabilistic
approaches is that the distribution of the uncertain data must be known a priori which is often not the case
for “real-world” problems. Stochastic programming may also result in extremely hard to solve optimization
problems.

In 1973, Soyster [63] suggested another approach based on implicitly describing the uncertain data
introducing so-called uncertainty sets and establishing the concept of Robust Optimization. Using this
framework we do not need any information about the probabilistic distribution of the uncertainty. Instead
a solution is said to be robust if it is feasible for all realizations of the data in the given uncertainty set. In
Robust Optimization we aim at finding the cost-optimal robust solution. This approach has been further
developed by Ben-Tal and Nemirovski [15, 16, 17], Bertsimasand Sim [21], and others using different
convex and bounded uncertainty sets. They introduce the concept of robust counterparts for uncertain linear
programs. In [15] it is shown that these can be solved by deterministic linear programs or deterministic
conic quadratic programs if the uncertainty set is polyhedral or ellipsoidal, respectively. Bertsimas and
Sim [21] introduced a polyhedral uncertainty set that easily allows to control the price of robustness by
varying the numberΓ of coefficients in a row of the given linear program that are allowed to deviate from
its nominal values simultaneously. By changing this parameterΓ the practitioner is enabled to regulate the
trade-off between the degree of uncertainty taking into account and the cost of this additional feature.

Robust optimization is also a well known method in telecommunication network design. We distin-
guish between robust network design using static or dynamicrouting which refers to the flexibility of flow
to respond to the realization of the demand (while the capacity remains fixed). Static routing means that
for every node pair the same paths are used with the same splitting independent of the realization of de-
mand. Contrary, dynamic routing allows for full flexibilityin rerouting the traffic if the demand changes.
The concept of different routing schemes is strongly related to different levels of recourse in multi-stage
stochastic and robust optimization [18]. We refer to Mudchanatongsuk et al. [53] and Poss and Raack [60]
for a discussion on how to embed the two classical routing schemes in these more general frameworks.
For general two-stage robust network design check [9]. We also note that recently there has been some
progress in defining routing schemes in between static and dynamic, see for instance [13, 59, 60, 62].

In multi-period or multi-hour network design [46, 64], an explicit finite set of demand matrices is
given, and the network is designed in such a way that each of the demand matrices can be routed non-
simultaneously within the installed capacities (potentially expanding the network capacity in every period).
In this context, Oriolo [57] introduces the concept of dominated demand matrices. Matrices are dominated
if they can be removed from the uncertainty set without changing the problem. Oriolo [57] classifies dom-
ination for pairs of demand matrices and static as well as dynamic routing. Ben-Ameur and Kerivin [14]
consider static routing and demands that may vary within a polytope given in the space of the commodities.
The resulting infinite set of capacity constraints is handled by separation.

For telecommunication network design problems this concept of polyhedral demands has mainly been
applied using thehose model[30]. In its symmetric version, the hose model defines upper bounds on
the sum of the incoming and outgoing node traffic for all network nodes. This model has attracted a lot
of attention in recent years, in particular, due to its nice theoretical and algorithmic properties assuming
continuous capacities (e.g., polynomial solvable cases, see [26, 34, 38]). For algorithmic and computational
studies using the hose model the reader is referred to Altin et al. [4, 6] (static routing )and Mattia [50]
(dynamic routing).

Another compact but less studied description of uncertainty of traffic in telecommunication networks
is obtained by applying the framework of Bertsimas and Sim [21] to network design problems. As demand
uncertainty essentially arises in the coefficients of the capacity constraints of network design formulations,
a restriction on the number of coefficients to deviate simultaneously translates to a restriction on the num-
ber of individual commodity-demands to deviate simultaneously. The corresponding polyhedral demand
uncertainty set, which we call theΓ-model, hence provides a meaningful alternative to the hosemodel.
Given that in realistic traffic scenarios it is unlikely to have all demands at their peak at the same time,
the number of simultaneous peaks is restricted to a (small) non-negative valueΓ. AdjustingΓ relates to
adjusting the robustness and the level of conservatism of the solutions which provides additional flexibility.
Altin et al. [4] apply theΓ-model to the classical VPN problem with single-path flows and continuous
capacities. Belotti et al. [11] use a simplification of theΓ-model for the special caseΓ = 1 and solve a
robust network design problem by Lagrangian relaxation. Klopfenstein and Nace [42] consider bandwidth
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packing using theΓ-model focusing on the robust knapsack problem given by linkcapacity constraints.
Poss and Raack [60] and Ouorou and Vial [59] study variants oftheΓ-model in the context of network
design and affine routing as alternative to the static and dynamic routing schemes. Finally Belotti et al.
[12] solve real-world network design problems taking into account demand uncertainty using theΓ-model.
They computationally compare different layer architectures with respect to equipment cost for different
values ofΓ.

Contributions of this paper In this paper, we consider the robust network design problemwith static
routing following Bertsimas and Sim [21]. We enhance in three different ways the classical flow formula-
tion for network design to include demand uncertainties. First, we derive a straightforward exponential-size
mixed-integer programming (MIP) formulation. Next, we useduality theory to obtain a compact reformu-
lation, and finally, we project out the flow variables. A computational evaluation reveals that the compact
formulation outperforms the other models.

To improve the performance of the MIP solver we study the robust counterpart of the well-known
cutset polyhedron for network design. Instead of a single cutset inequality for every network cut, we derive
multiple classes of facet-defining cut-based inequalitiesby exploiting the extra variables available in two
of the robust formulations. Computations show that the robust cut-based inequalities significantly reduce
the computation times.

Finally, we analyze the robustness for realistic networks and a demand forecast based on live traffic
measurements by comparing the cost savings using robust optimization instead of an overestimation. The
designs are evaluated on “future” traffic matrices. This process demonstrates how robust optimization can
support network planning.

Outline This paper is structured in three parts: formulations, valid inequalities, and computations. In
Section 2.2 we introduce three different formulations for robust network design using theΓ-model. Sec-
tion 3 is devoted to cut-based valid inequalities to improvethe formulations. In Section 4, we report on the
computational comparison of the formulations and an evaluation of the robust network designs. We close
with concluding remarks.

Some of the results in this paper are based on drafts and extended abstracts presented in [43, 44, 45].

2 Formulations for Robust Network Design

2.1 Modeling Alternatives

We consider the following robust network design problem. Weare given an undirected connected graph
G = (V,E) representing a potential network topology. On each of the linkse ∈ E capacity can be installed
in integral units and costsκe per unit. A set of commoditiesK represents potential traffic demands. More
precisely, a commodityk ∈ K corresponds to node pair(sk, tk) and a demanddk ≥ 0 for traffic from
sk ∈ V to tk ∈ V . The actual demand values are considered to be uncertain. For the moment we assume
that the demand vectord ∈ R

|K|
+ corresponding to the demand valuesdk, k ∈ K lies in a given polytope

D ⊂ R
|K|
+ without explicitly specifyingD.

The traffic for commodityk is realized by a splittable multi-path flow betweensk andtk. Of course,
the actual multi-commodity flow depends on the realization of the demandd ∈ D. In this context the
literature roughly distinguishes two main routing principles. We either choose an arbitrary flow for every
realization of the demand inD, which is known asdynamic routingor we fix arouting templatefor every
commodity, that is, every realization of a commodity demandhas to use the same set of paths between
sk ∈ V andtk ∈ V with the same percentual splitting of flow among the paths. This latter principle is
known asoblivious routing(or static routing) and is considered in this paper. We refer the reader to [50]
for solution approaches considering dynamic routing principle.

The robust network design problem using oblivious routing(RND) is to find a minimum-cost installa-
tion of integral capacities and a routing template for everycommodity such that actual flow does not exceed
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the link capacities independent of the realization of demands inD. This problem can be formulated as the
following integer linear program.

min
∑

e∈E

κexe (1a)

s.t.
∑

j∈N(i)

(ykij − ykji) =











1 i = sk

−1 i = tk

0 else

, ∀i ∈ V, k ∈ K (1b)

∑

k∈K

dkyke ≤ xe, ∀e ∈ E, d ∈ D (1c)

y, x ≥ 0 (1d)

x ∈ Z
|E| (1e)

HereN(i) denotes the set of neighboring nodes ofi. Constraints (1b) describe a multi-commodity flow
using a link-flow formulation. The flow for commodityk is directed from (its source)sk to (its target)tk

without loss of generality. Constraints (1c) are link capacity constraints. Variablesxe denote the number
of capacity batches installed one ∈ E at costκe per batch.

The flow variablesykij , y
k
ji denote the fraction of demand (independent of its realization) routed on

e = {i, j} away from nodei, j, respectively. We setyke := ykij + ykji. Since the cost for link capacity is
minimized we may ignore cycle flows and hence assume that eitherykij = 0 or ykji = 0 andyke ≤ 1 in any
optimal solution. The vectoryk ∈ R

E
+ is called a routing template for commodityk ∈ K. Given a capacity

allocationx ∈ R
|E|
+ , and routing templatesyk for all k ∈ K, we say that(x, y) supportsd ∈ D in case (1c)

is satisfied ford. Notice that while flow and demands are directed, the actual direction is arbitrary since we
sum up the two flows in (1c).

Fixing d ∈ D, the realized flowfk
e (d) for commodityk on edgee amounts to

fk
e (d) := dkyke . (2)

This means that we allow the flow to change with the demand fluctuationsd but we restrict the flow
dynamics to the linear functions given by (2). Notice that (2) is as a special case of so-calledaffine recourse
introduced by Ben-Tal et al. [18] in the context of adjustable robust solutions of linear programs with
uncertain data. Ouorou and Vial [59] apply affine recourse tonetwork design introducing affine routing.
Poss and Raack [60] provide a conceptual discussion of the three routing schemes: oblivious, affine, and
dynamic.

Domination In its general form, formulation (1) is semi-infinite. It however by convexity suffices to
claim (1c) for every vertex of the polytopeD. Moreover, using the concepts of domination of demand
vectors introduced by Oriolo [57] we may remove vectors fromthe uncertainty set that are dominated
without changing the problem. A vectord1 ∈ D is said tototally dominatea second vectord2 ∈ D
if any pair (x, y) supportingd1 also supportsd2. In this case we may remove the capacity constraints
corresponding tod2 from the formulation which refers to removingd2 from D. By removing totally
dominated demand vectors fromD the set of feasible solutions(x, y) to (1) remains unchanged. Since there
is no cost for flow in (1) we can even use a weaker domination concept in order to remove a potentially
larger set of demand realizations fromD. Following Oriolo [57], a vectord1 ∈ D is said tostrongly
dominatea second vectord2 ∈ D if for every (x, y) supportingd1 there exists a routing templatey⋆

such that(x, y⋆) supports bothd1 andd2. Total domination implies strong domination. Removing strongly
dominatedd ∈ D might change the set of feasible solutions(x, y) but the set of feasible capacity allocations
x is not changing. Oriolo [57] shows hatd1 totally dominatesd2 if and only if dk1 ≥ dk2 for all k ∈ K and
provides a similar characterization for strong domination.

Whenever we speak of domination in the sequel we allow to remove demand vectors from the uncer-
tainty set without distinguishing total or strong domination. From the discussion above it follows that (1)
can be reduced to a compact formulation if the number of non-dominated vertices ofD is polynomial in
the number of nodes and arcs.
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Dualization Using linear programing duality it is however easy to show that there exists also a compact
formulation for the problem if the number of non-dominated vertices is exponential but the number of facets
of D is polynomial. Dualization of constraints is a central technique in robust optimization, see [16, 17, 19]
and [20, 21]. For problem(RND) we observe that the data uncertainty only affects the capacity constraints
(1c) which we rewrite as

max
d∈D

∑

k∈K

dkyke ≤ xe, ∀e ∈ E. (3)

SinceD is a polytope the maximization in (3) refers to a linear program which maximizes the link flow
fk
e (d) over all demand realizations inD using the linear recourse (2). Dualizing the linear description of
D by introducing a dual variable for every (non-redundant) inequality describingD and removing themin
in the dualization (which can be done since we are minimizingcapacities anyway) we obtain a so-called
robust counterpart for(RND). The robust counterpart for general polytopesD is provided in [6]. It is
compact if the linear description forD ⊂ R

|K| is compact, that is, the number of facets ofD is polynomial.
In the next section we discuss the dualization using a particular uncertainty set.

We may of course exploit domination to derive a formulation forD that has either polynomial vertices
or facets. From the computational point of view it can be evenwise to extendD by adding dominated
vectors. Moreover, instead of a formulation forD in R

|K| it is also possible to use compact extended
formulations ofD to derive compact robust counterparts of(RND), see the next section. We denote by
DUALIZE any algorithmic approach that is based on solving the robustcounterpart given in [6] obtained by
dualizing the capacity constraints (1c) as described above.

Separation Instead of dualizing the capacity constraints we can also use the original formulation (1)
after reducing it to the (non-dominated) vertices ofD. In case this number is exponential the resulting
exponential number of capacity constraints (1c) are handled by separation. This approach which we refer
to as algorithm SEPARATE has been used by Ben-Ameur and Kerivin [14] to solve(RND) for the hose
model. We remove the capacity constraints (1c) from the system (1) (or keep a subset) and add them
dynamically. For this we have to solve the separation problem in (3) in every iteration and for every edge.
More precisely, given a solution(x⋆, y⋆) to (1) or its linear programming relaxation containing onlya
subset of the constraints (1c), for every edgee ∈ E, we solve the problem

max
∑

k∈K

dky⋆ke s.t. d ∈ D

obtaining an optimal solutiond⋆ ∈ D. The vectord⋆ refers to the worst case demand realization inD for
edgee given flow templatey⋆. In case

∑

k∈K dk⋆y
⋆k
e > x⋆

e we add the corresponding capacity constraint
∑

k∈K dk⋆y
k
e ≤ xe to formulation (1) and resolve.

Replacement Altin et al. [6] propose a third way to solve(RND) that is based on projecting out the flow
variables in the dualized reformulation which we refer to asthe REPLACEapproach. The projection results
in an exponential formulation in the space of the capacity variables and the variables used to dualize the
capacity constraints. The formulation does not rely on general metric inequalities [41, 52, 56] but is solely
based on network cuts such that the corresponding separation can be handled by standard max-flow-min-cut
[3].

In Section 2.2 we show how to use the three approaches, DUALIZE , SEPARATE, and REPLACE to solve
(RND) using a particular demand uncertainty, theΓ-model.

Uncertainty Sets The design of uncertainty sets has a strong impact on the quality and robustness of
the solution. There are many criteria for selecting uncertainty sets for a particular application. We believe
that the following should receive particular attention. First, any uncertainty set should reflect real data
uncertainty as much as possible, that is, in our case,D should contain the observed (non-dominated)
demand fluctuations that happen with high probability, and it should not contain demand realizations that
are highly unlikely. Secondly, data to formulate and parametrize the uncertainty set should be available.
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Figure 1: Traffic fluctuations of three source-destination pairs in the US Abilene Internet2 network [1] in
time intervals of 5 minutes during one week

Moreover, the uncertainty set with these parameters in a meaningful way. And last but not least, a criterion
often neglected, the resulting formulation or reformulation should be computationally tractable.

One such uncertainty set is the already mentioned hose model. We refer to Altin et al. [6] and Ben-
Ameur and Kerivin [14] solving network design problems using the hose model and algorithms DUALIZE

and SEPARATE, respectively. Theoretical results can be found in [26, 34,38]. Introduced in the context of
virtual private networks (VPNs) [30, 32], the hose model describes feasible traffic realizations by bounds on
single nodes only. This data is typically available to the network practitioner [30, 32]. However, describing
traffic by node demands strongly simplifies the notion of traffic matrices since the traffic fluctuations are
aggregated at the network nodes. Whenever point-to-point traffic data is available or can be calculated from
real-life measurements in networks [58, 65, 66] or from population statistics [31], it becomes desirable to
work with more flexible uncertainty sets that reflect the observed characteristics and dynamics of the point-
to-point traffic to allow for more accurate network designs.

2.2 Γ-uncertainty

For general linear and integer programs, Bertsimas and Sim [20, 21] propose a polyhedral uncertainty set
together with a simple way to adjust the price for robustness(i. e., increase of the objective value of a
robust solution compared to its non-robust counterpart) bytuning the shape of the set. In their model the
coefficients of the constraint matrix may vary around a givennominal value but the number of deviating
coefficients is bounded by a (small) numberΓi for every rowi of the matrix. AdjustingΓi means to
control the price for robustness. Because of its simplicitythis concept has been used extensively in robust
optimization for many different applications [4, 9, 20, 21,22, 42].

We already observed that data uncertainty for(RND) only appears in the capacity constraints (1c)
with uncertain coefficientsdk, k ∈ K. Applying the framework of Bertsimas and Sim [20] to(RND)
means to restrict the number of commodity demands that deviate from a given nominal demand valuēdk,
simultaneously. In particular, the number of simultaneousdemand peaks is bounded. This assumption has
again a strong relation to telecommunications since in typical traffic patterns, in particular in IP (Internet
Protocol) networks, traffic peaks do not occur simultaneously, cf. Figure 1. Note also that the main
justifications for a meaningful application of theΓ-model to our problem is the huge number of coefficients
in the uncertain capacity constraints (1c). The situation can be different for other applications.

In the following we introduce theΓ-model for(RND) in detail. Similar uncertainty models have been
used in [4], [5] and [42] applied to different versions of network design and demand packing problems. We
assume that the demand for commodityk ∈ K varies around a givennominal demand̄dk with a maximal
possibledeviationof 0 ≤ d̂k, that is,

dk ∈ [d̄k − d̂k, d̄k + d̂k] for all k ∈ K. (4)
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Now we limit the number of possible deviations from the nominal value:

∑

k∈K

|dk − d̄k|

d̂k
≤ Γ, (5)

whereΓ ∈ {0, . . . , |K|}. We use the sameΓ for all capacity constraints (1c) since the coefficients (the de-
mand scenarios) are independent of the edges. The corresponding uncertainty polytopeD can be described
in R

|K| using exponential many inequalities or alternatively using a compact extended formulation. For
the latter, we rewritedk = d̄k + (σk

+ − σk
−)d̂

k and consider(σ+, σ−) ≥ 0 satisfying

σk
+ + σk

− ≤ 1 for k ∈ K and
∑

k∈K

(σk
+ + σk

−) ≤ Γ.

However, theΓ-model can also be described in the original spaceR
|K| with polynomial inequalities if we

exploit the concept of domination. Since only the worst-case edge-flow determines the edge-capacity, the
problem remains the same if the actual demand is assumed to bein the interval[d̄k, d̄k + d̂k], instead of the
interval[d̄k − d̂k, d̄k + d̂k] for k ∈ K. Demand vectors containing downward deviations from the nominal
are totally dominated. We may hence assume thatσk

− = 0 for all k ∈ K without changing the problem.
The set of possible deviations scenarios can be defined as

DΓ := {σ ∈ R
K
+ : σk ≤ 1 for k ∈ K and

∑

k∈K

σk ≤ Γ}

and the correspondingΓ-model capacity constraints (1c) reduce to

∑

k∈K

d̄kyke + max
σ∈DΓ

∑

k∈K

σkd̂kyke ≤ xe, ∀e ∈ E. (6)

Remark 2.1. By domination we might even force
∑

k∈K σk = Γ which removes the all-nominal demand
vector (and vertex)̄d fromDΓ. This observation however is not improving on the robust counterpart below
such that we stick to the full-dimensional decription ofDΓ. SettingΓ = 0, the polytopeDΓ reduces to
a singleton, the origin. Hence there is no deviation and(RND) reduces to the deterministic problem of
optimizing against the all-nominal vector̄d. Similarily, in caseΓ = |K| (RND) reduces to the problem
of optimizing against the worst-case all-peak scenariod̄+ d̂. By varyingΓ in {0, . . . , |K|} we may adjust
the level of robustness.

We remark that a simple compact alternative to the definedΓ-model which is also described in the
original space is to use (4) plus a relaxation of (5):

∑

k∈K

dk − d̄k

d̂k
≤ Γ.

In this case there might be more thanΓ many upward deviations if compensated by an appropriate number
of downward deviations and vice versa. This results in a relaxed uncertainty set potentially giving more
conservative solutions.

We now continue with the three modelling alternatives in case ofΓ-uncertainty. We will assume0 <
Γ < |K| in the following. In this case the polytopeDΓ is full-dimensional and has

(

|K|
Γ

)

+ 1 many
vertices. The capacity of a link has to be determined subjectto at mostΓ commodities deviating from the
nominal demand value. For each deviating commodity, the peak valued̄k + d̂k describes the worst-case
(capacity-wise). Hence, the complete model reads

(1a), (1b), (1d), (1e)

SEPARATE: ∑

k∈K

d̄kyke +
∑

k∈Q

d̂kyke ≤ xe ∀Q ⊂ K, |Q| = Γ. (7a)
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and we denote its convex hull of feasible solutions byP sepa
Γ . As mentioned above we may handle the

exponential number of capacity constraints (related to vertices ofDΓ) by separation. In the corresponding
SEPARATE approach we have to solve the problem

max

{

∑

k∈K

σkd̂ky⋆ke : 0 ≤ σk ≤ 1 ∀k ∈ K,
∑

k∈K

σk ≤ Γ

}

(8)

for every edgee given a solution(x⋆, y⋆). This problem can be solved directly by sorting the commodities
with respect to the valuêdky⋆ke . TheΓ largest values determine the worst-case commodity subsetQ ⊂ K
with |Q| = Γ for edgee ∈ E maximizing the left hand side of the capacity constraint (6). In case violated
by (x⋆, y⋆) we add the corresponding capacity constraint.

In our implementation of SEPARATE the initial formulation already contains one capacity constraint
per edge corresponding to the all-nominal scenario, that is, we start with (1) where (1c) is used ford = d̄
only.

The linear program (8) bounded and (integral) feasible for all vectorsy, every edgee ∈ E, and all
considered values ofΓ. Hence, by strong duality, its optimal objective value coincides with

min
∑

k∈K

pke + πeΓ s.t. πe, p
k
e ≥ 0 ∀k ∈ K, pke + πe ≥ d̂kyke ∀k ∈ K (9)

for every edgee ∈ E. With this relation we can reformulate the exponential model (1) as:

(1a), (1b), (1d), (1e)

Γπe +
∑

k∈K

d̄kyke +
∑

k∈K

pke ≤ xe, ∀e ∈ E (10a)

DUALIZE :
−πe + d̂kyke − pke ≤ 0, ∀e ∈ E, k ∈ K (10b)

p, π ≥ 0 (10c)

The DUALIZE approach to solve(RND) using theΓ-model is based on solving the compact model (10).
Compared to the (singleton scenario) deterministic network design model obtained by setting|D| = 1 in
(1) we have|E|+ |E||K| additional variables and|E||K| additional constraints.

We denote by

PΓ := conv
{

(x, y, π, p) ∈ Z
|E|
+ × R

2|E||K|
+ × R

|E|
+ × R

|E||K|
+ | (x, y, π, p) satisfies (10)

}

the convex hull of all feasible solutions of model (10) andproj(x,π)(PΓ) as the projection on the(x, π)
space. Since this model is at the center of this paper, we prove the dimension of its polyhedron.

Proposition 2.2. The dimension ofPΓ equals2|E| + 3|E||K| − (|V | − 1)|K| whereasproj(x,π)(PΓ) is
full-dimensional.

Proof. ForPΓ, there are2|E|+3|E||K| variables and(|V |−1)|K| linearly independent flow conservation
constraints (1b). We show that there are no additional implied equations. Let

∑

e∈δ(S)

αexe +
∑

e∈δ(S)

βeπe +
∑

e∈δ(S)

∑

k∈K

δkep
k
e +

∑

e={i,j}∈δ(S)

∑

k∈K

(µk
ijy

k
ij + µk

jiy
k
ji) = γ (11)

be an equation satisfied by all points inPΓ and letp̂ = (x̂, ŷ, π̂, p̂) ∈ PΓ. For all e ∈ E we can modify
p̂ by increasing the capacity without leavingPΓ. Hence,αe = 0 for all e ∈ E. Once we increased the
capacity we can also increase variablesπe andpke for everye ∈ E andk ∈ K which givesβe = δke = 0
for all e ∈ E andk ∈ K. Now we choose a spanning treeT ⊆ E in G which exists sinceG is connected.
By adding a linear combination of the flow conservation constraints (1b) to (11) we can assume that either
µk
ij or µk

ji = 0 for all e = {i, j} ∈ T, k ∈ K. Sending a small flow in both direction on everye in T gives
µk
ij = µk

ji = 0. Now choosing an arbitrary edgee ∈ E there is a unique circuit consisting ofe and edges

8



in T . Sending small circulation flows (in both direction) on thiscircuit finally results inµk
ij = µk

ji = 0 for
all e = {i, j} ∈ E, k ∈ K. It follows that (11) is a linear combination of flow conservation constraints
which gives the desired results. By projecting all constructed points we also conclude thatproj(x,π)(PΓ)
has dimension2|E|.

Altin et al. [6] propose a projection of robust counterpartsof the form (10) to the space of the design
and dual variables. A similar projection has been studied before by Mirchandani [52] in the context of
deterministic network design and can be applied to the compact model (10) as well. For this, we introduce
slack variablesqke corresponding to inequalities (10b). Hence, flow variablesyke in (10a) can be replaced
by 1

d̂k
(πe + pke − qke ). Now the flow for different commodities is no longer bundled.The existence of a

flow from sk to tk can be guaranteed by a minimum-cut condition replacing the flow formulation (1b) and
resulting in the following exponential model

(1a), (1d), (1e)
(

Γ +
∑

k∈K

d̄k

d̂k

)

πe +
∑

k∈K

(

d̄k + d̂k

d̂k
pke −

d̄k

d̂k
q̄ke

)

≤ xe, ∀e ∈ E (12a)

REPLACE: ∑

e∈δ(S)

(

pke + πe − qke
)

≥ d̂k, ∀k ∈ K,S ⊂ V : sk ∈ S, tk 6∈ S

(12b)

p, q, π ≥ 0 (12c)

with P repl
Γ the convex hull of its feasible solutions. A minimum cut value of at leastd̂k for everyk ∈ K

between sourcesk and targettk with respect to the edge weights
(

πe + pke − qke
)

is necessary and sufficient
for the exisistence of a flow templatey satisfying (1b). The REPLACE approach for solving(RND) using
theΓ-model is based on solving this model. The exponential set ofinequalities (12b) is handled implicitly
by separation using a max-low-min-cut algorithm. Notice that the number of variables remainsO(|K||E|).

3 Valid Inequalities

In deterministic network design, cutset inequalities havebeen proven to be of particular importance [8,
23, 27, 48, 61]. This is true from the theoretical point of view as they define facets but also from the
computational point of view as they are known and proven to improve on the performance of branch-and-
cut based approaches to solve network design problems. In this section, we generalize the well-known
class of cutset inequalities to robust network design.

To obtain strong inequalities based on network cuts we shrink the two shores of a network cut and study
the convex hull of solutions to general two-node problems. In this respect we study a structure which is
known as a cutset polyhedron, see [8, 61]. As by linear dependency we can save the flow conservation
constraints for one of the two nodes, the structure is also referred to as a single node flow set in the
literature, mainly in the context of bounded capacity variables and so-called flow-cover inequalities, see
[7, 35, 36, 47].

TheΓ-robust cutset polyhedron is introduced in Section 3.1. We will however further simplify and
project the feasible region to thex andπ space. The resulting two-variable set is studied in detail in
Section 3.2 providing a complete description and all facet-defining inequalities.

These inequalities are then lifted in Section 3.3 to the space of all variables for the two-node problem
and eventually to the original space which establishes facet-defining cutset inequalities for the original
problem under certain conditions. These conditions are worked out following the line of projecting and
lifting.

3.1 The Γ-Robust Cutset Polyhedron

We consider a proper and nonempty subsetS of the nodesV and the corresponding cutsetδ(S) and denote
byQS ⊆ K the subset of commodities with sourcesk and targettk not in the same shore of the cut. Since
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we may always reverse single demands without changing the model we may assume in this description
sk ∈ S for all k ∈ QS . We denote bȳdS :=

∑

k∈QS
d̄k the aggregatednominal cut-demandwith respect

to S. We will throughout assume that|QS| ≥ Γ ≥ 1. Notice that we can always reduceΓ to |QS | without
changing the problem on the cut. It follows̄dS > 0. Contracting both shores of the cutδ(S), we consider
the followingΓ-robust two-node formulation corresponding to (10):

∑

{i,j}∈δ(S)

(ykij − ykji) = 1 ∀k ∈ QS (13a)

∑

{i,j}∈δ(S)

(ykij − ykji) = 0 ∀k ∈ K \QS (13b)

Γπe +
∑

k∈K

d̄kyke +
∑

k∈K

pke ≤ xe ∀e ∈ δ(S) (13c)

−πe + d̂kyke − pke ≤ 0 ∀e ∈ δ(S), k ∈ K (13d)

x, y, p, π ≥ 0 (13e)

We define therobust cutset polyhedronPΓ(S) with respect toS to be

PΓ(S) := conv
{

(x, y, π, p) ∈ Z
|δ(S)|
+ × R

2|δ(S)||K|
+ × R

|δ(S)|
+ × R

|δ(S)||K|
+ | (x, y, π, p) satisfies (13)

}

.

such that the following follows from Lemma 2.2 asPΓ(S) defines a two-node robust network design
problem. We setRΓ(S) := proj(x,π)(PΓ(S)).

Corollary 3.1. The dimension ofPΓ(S) equals2|δ(S)| + 3|δ(S)||K| − |K| whereasRΓ(S) is full-
dimensional.

In the sequel we will make use of the well-known mixed integerrounding (MIR) technique several
times, see [54]. For some real numberd we definer(d) := d − (⌈d⌉ − 1) as the fractional part ofd with
r(d) = 1 if d is integral.

Lemma 3.2 (Nemhauser and Wolsey [54]). Consider the two variable mixed integer set defined by a single
base inequality:

Y = {(x, π) ∈ Z+ × R+ : cx+ iπ ≥ d}.

The inequality
rx +max(0, i)π ≥ r

⌈

d
c

⌉

is valid for Y, wherer := cr(d/c).

Note thatcr(d/c) gives the remainder of the division ofd by c if d/c is fractional. Otherwise, ifd/c is
integral thenr = c. Given any vectorv and a subset of indicesI we abbreviatev(I) :=

∑

e∈I ve.

3.2 Robust Cutset Inequalities.

Independent of the realization of demand all cut commoditiesQS have to be realized across the cutδ(S),
that isyk(δ(S)) ≥ 1 for all k ∈ QS. It follows that we have to provide sufficient cut capacityx(δ(S))
resulting in the following base cutset inequality to hold:

x(δ(S)) ≥ d0 :=
∑

k∈QS

d̄k + max
σ+∈DΓ

∑

k∈QS

σk
+d̂

k (14)

It states that the capacity on the cut should be at least the nominal cut demand plus theΓ largest deviations
amongQS. Notice that the right hand side is independent of the realized flow. The valued0 only depends
on the cutδ(S) and the value ofΓ. As the left hand side is integral we may round up the right hand side
giving

x(δ(S)) ≥ ⌈d0⌉ (15)
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Figure 2: Example ofXΓ with Γ = 3, |QS | = 6, d̄S = 9
5 , d̂ = (115 , 85 ,

6
5 ,

6
5 ,

3
5 ,

1
5 ). The upper convex

envelope inequalities (23) fori = −3, j = −2 (2x− 5π ≥ 6) and fori = −2, j = −1 (3x − 5π ≥ 14),
the lower convex envelope inequalities (22) fori = 1, j = 2 (7x+10π ≥ 59), the MIR inequality (20) for
i = 0 (x ≥ 7), the MIR inequality (20) fori = 2 (3x+ 10π ≥ 27), the base inequalityx − Γπ ≥ 9

5 , and
π ≥ 0, completely describe the convex hull.

This already generalizes the classical cutset inequality for network design [48]. Since no dual variables
πe appear in this inequality, it is also valid for the exponential formulation (1). We use inequality (15) to
tighten all three formulations during branch-and-cut. As we will prove in Corollary 3.16, inequality (15)
defines a facet ofPΓ(S) if d0 < ⌈d0⌉ and either|δ(S)| = 1 or d0 > 1. It also defines a facet ofPΓ if
additionally the graphs defined by the two shoresS andV \ S are connected. In the rest of this section
we will generalize this essential result to a more general class of inequalities in the space of thex andπ
variables.

Let us start by generalizing the base inequality (14). LetQ be an arbitrary but nonempty subset of the
cut-commoditiesQS . From the flow-conservation constraints (13a) follows that

∑

k∈Q

d̄kyk(δ(S)) ≥ d̄(Q) and
∑

k∈Q

d̂kyk(δ(S)) ≥ d̂(Q). (16)

Aggregating all capacity constraints (13c), adding all constraints (13d) fore ∈ δ(S) andk ∈ Q, using (16),
and relaxing the backward flow variables results in

x(δ(S)) + (|Q| − Γ)π(δ(S)) ≥ d̄S + d̂(Q) . (17)

The left hand side of (17) is not changing as long as the cardinality of the subsetQ is constant. Hence among
all subsets ofQ with cardinality|Q| the one maximizinĝd(Q) gives the strongest inequality (17). To state
this inequality we have to sort the commodities nonincreasingly with respect to the maximum deviation̂dk

and define subsets ofQS corresponding to large deviations. This needs some new notation. Letρ : QS 7→

{0, . . . , |QS|} be a permutation of the commodities inQS such thatd̂ρ
−1(1) ≥ d̂ρ

−1(2) ≥ . . . ≥ d̂ρ
−1(|QS |)

and letJ = {−Γ, . . . , |QS | − Γ}. Fixing the cut we defineQi := {k ∈ QS : ρ(k) ≤ i + Γ} for i ∈ J

as the commodities corresponding to thei + Γ largestd̂k values with respect toQS . Hence the demand
di := d̄S + d̂(Qi) denotes the total nominal demand plus thei + Γ largest peak demands across the cut.
This definition is consistent with the definition ofd0 in (14) since|QS| ≥ Γ and hencēdS =

∑

k∈QS
d̄k

andd̂(Q0) = maxσ+∈DΓ

∑

k∈QS
σk
+d̂

k.
Using this notation inequality (17) reduces to

x(δ(S)) + iπ(δ(S)) ≥ di. (18)
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It is valid for all i ∈ J and by settingi = 0 we get inequality (15). In the sequel we consider the polyhedron

XΓ(S) = conv
{

(x, π) ∈ Z
|δ(S)|
+ × R

|δ(S)|
+ | (x, π) satisfies (18)∀i ∈ J

}

Every valid inequality forXΓ(S) is also valid for theΓ-robust formulations (10) and (12). In the following
we will completely describeXΓ(S) providing all facet-defining inequalities. Since all coefficients in (18)
are identical for all edges inδ(S) it suffices to study the two-dimensional case with base inequalities

x+ iπ ≥ di (19)

and the polyhedron

XΓ = conv {(x, π) ∈ Z+ × R+ | (x, π) satisfy (19) for alli ∈ J} ,

also see Figure 3.2.
Notice thatXΓ(S) is obtained fromXΓ by copying variables and forcing non-negativity for the copied

variables. It follows that every facet forXΓ translates into a facet forXΓ(S) and vice versa except for
the non-negativity constraints. In fact a complete description of XΓ determines a complete description of
XΓ(S) and vice versa.

Lemma 3.3. Every facet-defining inequalityαx + βπ ≥ γ for XΓ with α, β, γ ∈ R different from a non-
negativity constraint translates into a facet-defining inequalityαx(δ(S)) + βπ(δ(S)) ≥ γ for XΓ(S). All
facets ofXΓ(S) defined by inequalities different from non-negativity constraints are of the formαx(δ(S))+
βπ(δ(S)) ≥ γ for α, β, γ ∈ R and correspond to a facet-defining inequalityαx + βπ ≥ γ for XΓ.

Of course, we haveXΓ = XΓ(S) if and only if |δ(S)| = 1.
In the following we will not distinguish facet-defining inequalities ofXΓ andXΓ(S) as long as different

from non-negativity constraints.
Let us divide the index setJ into the setsJ− = {−Γ, . . . ,−1} andJ+ := {1, . . . , |QS | −Γ} such that

J = J− ∪ {0} ∪ J+. Accordingly, theupper envelopeof XΓ corresponds to indices inJ− and thelower
envelopeof XΓ corresponds to indices inJ+, see Figure 3.2. More precisely, the upper envelope is given
by XΓ ∩ {π ≥ d0 − d−1} whereas we define the lower envelope ofXΓ asXΓ ∩ {π ≤ d1 − d0}. Notice
that the upper envelope is always non-empty. The lower envelope is non-empty if and only if|QS | > Γ
andd1 > d0.

We call valid inequalities forXΓ trivial if they are non-negativity constraints or if they are of type (19).
In the following we are only interested in non-trivial facets ofXΓ as these will translate to facets ofPΓ.
Lower and upper envelope are similar in structure. The lowerenvelope, however, is cut byπ ≥ 0 which
leads to one additional type of facet. We will see that besides the vertical facetx ≥ ⌈d0⌉ there are two
classes of non-trivial inequalities describing the lower envelope and one class of non-trivial inequalities
describing the upper envelope facets.

Settingri := r(di) and apply mixed integer rounding to (19) yields

rix+max(0, i)π ≥ ri ⌈di⌉ (20)

valid for XΓ, see Lemma 3.2. In particular, fori = 0 this inequality reduces tox ≥ ⌈d0⌉ which is (15).
For i ∈ J−, inequalities (20) are obvioulsy dominated by (15). Fori ∈ J+ inequality (20) connects the two
points(⌊di⌋ , ri/i) and(⌈di⌉ , 0) in caseri < 1. If ri = 1 inequality (20) reduces to the base inequality
x+ iπ ≥ di. We get

Lemma 3.4. Inequality(20)defines a facet ofXΓ if i = 0 andri < 1.

Proof. Considerǫ > 0 and the two affinely independent points(⌈d0⌉ , d0 − d−1) and(⌈d0⌉ , d0− d−1 + ǫ)
which both satisfy (20) with equality. To see feasibility notice thatd0 − d−1 ≥ 0 gives theΓ largest
deviation demand amongQS . Setting

xe = ⌈d0⌉ , πe = d0 − d−1, p
k
e = max(d̂k − πe, 0), andykij = 1 for k ∈ QS (21)

for some edgee = {i, j} ∈ δ(S) gives a feasible point forPΓ(S) which has a slack of1−r0 in the capacity
constraint (13c) sinceΓπe +

∑

k∈K pke
∑

k∈K yke = d0. Hence(⌈d0⌉ , d0 − d−1) is feasible forXΓ. As
r0 < 1 it follows also that the second point(⌈d0⌉ , d0 − d−1 + ǫ) is feasible forXΓ for ǫ < 1− r0.
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Lemma 3.5. AssumeJ+ 6= ∅ and
⌈

d|QS |−Γ

⌉

> ⌈d0⌉. Seti = argmax(rk/k : k ∈ J+ with ⌈dk⌉ =
⌈

d|QS |−Γ

⌉

). Inequality(20)defines a facet ofXΓ if ri < 1.

Proof. Let π′ := max(rk/k : k ∈ J+). Since⌊di⌋ ≥ ⌈d0⌉ the two points(⌊di⌋ , π′) and(⌈di⌉ , 0) are
feasible. They satisfy (20) with equality and are affinely independent.

In general, the two inequalities from Lemma 3.4 and Lemma 3.5do not suffice to provide a complete
description ofXΓ. To get a complete description of the lower envelope ofXΓ we have to consider two
arbitrary base inequalitiesx+ iπ ≥ di andx+ jπ ≥ dj with i, j ∈ J+, i < j. Its intersection hasx-value

bi,j := (jdi − idj)/(j − i).

Now we have to connect the two points(⌊bi,j⌋ , (di − ⌊bi,j⌋)/i) and(⌈bi,j⌉ , (dj − ⌈bi,j⌉)/j) Let ri,j :=
(j − i)r(bi,j). Recall thatri,j defined this way is the remainder of the division ofjdi − idj by (j − i) with
ri,j = (j − i) in casebi,j is not fractional, see Lemma 3.2.

Lemma 3.6. For i, j ∈ J+ with i < j, the following inequality is valid forXΓ:

(i + ri,j)x + ijπ ≥ ri,j ⌈bi,j⌉+ idj (22)

Proof. We scale the two base inequalities withj andi, respectively:

jx+ jiπ ≥ jdi and ix+ ijπ ≥ idj .

Introducing the slacksj := ix+ ijπ− dj ≥ 0 of the second constraint and combining the two inequalities
gives

(j − i)x+ sj ≥ jdi − idj ,

Applying MIR and re-substituting results in (22).

In a similar way we combine two base constraints fori, j ∈ J− to get valid inequalities for the upper
envelope ofXΓ.

Lemma 3.7. For i, j ∈ J− with i < j, the following inequality is valid forXΓ:

(−j + ri,j)x− ijπ ≥ ri,j ⌈bi,j⌉ − jdi (23)

Proof. We multiply the base constraints fori andj by−j and−i, respectively:

−jx− jiπ ≥ −jdi and − ix− ijπ ≥ −idj.

Introducing the slacksi := −jx− jiπ + jdi ≥ 0 for the first constraint and combining gives

(j − i)x+ si ≥ jdi − idj,

Applying MIR and resubstituting results in (23).

In casebi,j is fractional inequalities (22) resp. (23) defined above cutoff the fractional intersection point
(bi,j , π) with π = (di − bi,j)/i of the two base inequalities (19) corresponding toi andj. Note that by
construction of the demand valuesdi it holds thatbi,i+1 ≥ bi+1,i+2 for 0 > i ∈ J− andbi,i+1 ≤ bi+1,i+2

for 0 < i ∈ J+. Also note that if(j − i) dividesdi,j then inequality (22) resp. (23) reduces to the base
inequality fori resp.j. Of course not every pair(i, j) results in a facet. In fact, only linearly many of the
inequalities (22) and (23) are non-redundant. Let us define the function

π(k, x) :=
dk − x

k
for all k ∈ J− ∪ J+ andx ∈ R+.

We now consider an arbitrary interval[a, a + 1] with a ∈ Z, a ≥ ⌈d0⌉ and easily determine the indices
i, j that yield an inequality of (22) resp. (23) dominating all others of this type on the chosen interval by
simply maximizing (resp. minimizing) the valueπ(k, a) andπ(k, a + 1). Doing so for all relevant values
of a we get all (non-trivial) facets of the lower resp. upper envelope:
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Lemma 3.8. AssumeJ+ 6= ∅ and
⌈

d|QS |−Γ

⌉

> ⌈d0⌉+ 1. For a ∈ Z with ⌈d0⌉ ≤ a ≤
⌈

d|QS |−Γ

⌉

− 1 let
i := argmaxk∈J+

π(k, a) andj := argmaxk∈J+
π(k, a+1). If i 6= j, then inequality(22)defines a facet

ofXΓ. If otherwisei = j, then the base inequality(19)defines a facet ofXΓ.

Proof. If i 6= j resp.i = j then inequality (22) resp. (19) connects the two affinely independent points
(a, π(i, a)) and (a + 1, π(j, a + 1)), that is, they satisfy inequality (22) resp. (19) at equality. To see
feasibility of the first point check that fork ∈ J+ it holdsa + kπ(i, a) ≥ kπ(k, a) = dk by definition of
i. For k ∈ J− we havea + kπ(i, a) ≥ d0 + k(di − d0)/i ≥ d0 + k(dk − d0)/k = dk where the first
inequality follows froma ≥ d0 and the second inequality follows fromk < 0 < i and the definition of
the demandsdi. The differencedi − di−1 is non-increasing withi. Feasibility of the second point can be
shown in a similar way.

Notice that for the lower envelope and
⌈

d|QS |−Γ

⌉

− 1 ≤ x ≤
⌈

d|QS |−Γ

⌉

we get a facet of type (20) by
Lemma 3.2. Forx ≥

⌈

d|QS |−Γ

⌉

we haveπ ≥ 0 as a facet. These inequalities together completely describe
the lower envelope. A complete description of the upper envelope ofXΓ is obtained with the following
Lemma which is proved similar to the proof of Lemma 3.8.

Lemma 3.9. For a ∈ Z with a ≥ ⌈d0⌉ let i = argmink∈J−
π(k, a+ 1) andj = argmink∈J−

π(k, a). If
i 6= j, then inequality(23)defines a facet ofXΓ. If otherwisei = j then the base inequality(19)defines a
facet ofXΓ.

Notice that forx ≥ ⌈bΓ−1,Γ⌉ the base inequality (19) fori = −Γ is the only facet. Also notice
that the pairs{i, j} in Lemma 3.8 resp. Lemma 3.9 are not unique. However, the resulting facet-defining
inequalities are of course unique.

We have established different classes of facet-defining inequalities forXΓ. It turns out that all these
inequalities together with the trivial facets completely describeXΓ. This essentially follows already from
the above since we stated the dominant inequalities for all intervals[a, a+ 1] with a ≥ ⌈d0⌉.

Completeness also follows from a result of Miller and Wolsey[51] who study a two-dimensional set
(ModelW ) similar toXΓ. Applying [51, Theorem 3] for the lower envelope resp. upperenvelope (using
an appropriate variable transformation) we get

Corollary 3.10.

XΓ = {(x, π) ∈ R× R | (x, π) satisfies the constraints(19), (20), (22), (23), andπ ≥ 0} .

3.3 Lifting

We have provided a complete and non-redundant description of XΓ and thus ofXΓ(S). Next, we show
how facets ofXΓ(S) translate to facets of the cutset polyhedronPΓ(S) and the original network design
polyhedronPΓ. We also prove that the setXΓ is identical to the projection of the cutset polyhedronPΓ to
the space of thex andπ variables if the cut contains a single edge. Define

RΓ(S) := proj(x,π)(PΓ(S)) := {(x, π) | ∃y andp such that(x, y, π, p) ∈ PΓ(S)}

Lemma 3.11. RΓ(S) ⊆ XΓ(S). Moreover,RΓ(S) = XΓ(S) if and only if|δ(S)| = 1.

Proof. For (x, π) ∈ RΓ(S) let (x, y, π, p) ∈ PΓ(S). Inequalities (18) are valid forPΓ(S) which gives
(x, π) ∈ XΓ(S) andRΓ(S) ⊆ XΓ(S).

Let δ(S) = {e} with e = {i, j} for i, j ∈ V . Given (x, π) ∈ XΓ(S) we setykij := 1, ykji := 0,

andpke := max(0, d̂k − πe) for all k ∈ QS . Now (x, y, π, p) obviously satisfies (13a), (13d), and (13e).
Moreover it holds that

Γπe +
∑

k∈QS

d̄kyke +
∑

k∈QS

pke = Γπe +
∑

k∈QS

d̄k +
∑

k∈QS

max(0, d̂k − πe)

= Γπe + d̄S + d̂(Qi)− iπe

≤ xe
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for somei ∈ {0, . . . , |QS |} using the introduced ordering of demands and (18). It follows that(x, y, π, p)
satisfies (13c) and hence(x, π) ∈ RΓ(S).

It remains to show thatRΓ(S) 6= XΓ(S) if |δ(S)| > 1. Let e1, e2 ∈ δ(S). There is a point(x, y, π, p)
in PΓ(S) with xe1 , πe1 > 0 andxe2 , πe2 = 0. We simply route all traffic one1 and setxe1 , πe1 large
enough. For this point it holds(x, π) ∈ XΓ(S) as already shown. We modify this point by shifting the
capacity frome1 to e2 but keeping the valueπe1 such thatxe1 = 0 andπe1 > 0. This gives a vector
(x, π) ∈ XΓ(S)\RΓ(S) since inequalities (18) are still satisfied but (13c) is violated fore1.

Notice that from Lemma 3.11 follows that any point(x, π) which is defined on a single edge, that is,
there existse ∈ δ(S) such thatxf = πf = 0 for all f ∈ δ(S), f 6= e, is valid forXΓ(S) if and only if it is
valid forRΓ(S). We will use this fact several times below.

Lemma 3.12. Every facet-defining inequality forXΓ(S) (different from a non-negativity constraint) de-
fines a facet ofRΓ(S).

Proof. We can assume that the facet ofXΓ(S) is defined byαx(δ(S)) + βπ(δ(S)) ≥ γ for α, β, γ ∈
R. Consider2|δ(S)| affinely independent points(xi, πi) ∈ XΓ(S) for i = 1, . . . , 2|δ(S)| satisfying
αxi(δ(S))+βπi(δ(S)) = γ. Given an arbitrary edgef ∈ δ(S) we construct a point(x̃i, π̃i) for everyi =
1, . . . , 2|δ(S)| by shifting all entries to edgef , more preciselỹxi

f :=
∑

e∈δ(S) x
i
e andπ̃i

f :=
∑

e∈δ(S) π
i
e.

All other entries are set to zero:̃xi
e := π̃i

e := 0 for alle ∈ δ(S)\{f}. The points(x̃i, π̃i) are valid for
XΓ(S) and they satisfyαx̃i(δ(S)) + βπ̃i(δ(S)) = γ. Moreover, since(x̃i, π̃i) is defined on a single edge
it holds(x̃i, π̃i) ∈ RΓ(S). Notice that(x̃i, π̃i) 6= 0 as there is at least one cut demand. There must exist
at least two affinely independent points among(x̃i, π̃i), otherwise the points(xi, πi) cannot be affinely
independent. Assume these points are(x̃1, π̃1) and(x̃2, π̃2). The proof is complete for|δ(S)| = 1. In
case|δ(S)| > 1 we can assume that eitherx̃1

f > 0 or x̃2
f > 0, and similarly either̃π1

f > 0 or π̃2
f > 0.

Otherwise the original points(xi, πi) are all contained in the face defined byx(δ(S)) ≥ 0 resp.π(δ(S)) ≥
0 which is a contradiction as the sum of non-negativity constraints cannot define a facet. Now we vary
f ∈ δ(S) which gives2|δ(S)| affinely independent points, both inRΓ(S) and on the face defined by
αx(δ(S)) + βπ(δ(S)) ≥ γ.

Lemma 3.13. Letα, β, γ ∈ R. If αx(δ(S)) + βπ(δ(S)) ≥ γ defines a facet forRΓ(S) then it also defines
a facet forXΓ(S).

Proof. It holdsRΓ(S) ⊆ XΓ(S). SinceRΓ(S) is full-dimensional we only have to show thatαx(δ(S)) +
βπ(δ(S)) ≥ γ is valid for XΓ(S). Assume the contrary. We take a point inXΓ(S) which violates
αx(δ(S)) + βπ(δ(S)) ≥ γ. Now we modify this point by shifting everything to one edge.The con-
structed point is also valid forRΓ(S) as shown above but violates the facet-defining inequality which is a
contradiction.

We call facet-defining inequalities forRΓ(S) non-trivial if they are non-trivial forXΓ(S), that is, they
are different from non-negativity constraints and different from (18).

Theorem 3.14. Every non-trivial facet-defining inequality

αx(δ(S)) + βπ(δ(S)) ≥ γ (24)

for RΓ(S) also defines a facet ofPΓ(S) if one of the following conditions hold

• |δ(S)| = 1 and there exists a feasible point(x, y, π, p) on the face ofPΓ(S) defined by(24) such
that the edge capacity constraint(10a)is not tight.

• |δ(S)| ≥ 2 and there exists a feasible point(x, y, π, p) on the face ofPΓ(S) defined by(24) such
that the capacity constraint(10a)is not tight for at least two different edges.

Proof. We assume that (24) does not define a facet forPΓ(S). Hence every point(x, y, π, p) ∈ PΓ(S)
satisfying (24) at equality must be contained in a facet ofPΓ(S) defined by

∑

e∈δ(S)

αexe +
∑

e∈δ(S)

βeπe +
∑

e∈δ(S)

∑

k∈K

δkep
k
e +

∑

e={i,j}∈δ(S)

∑

k∈K

(µk
ijy

k
ij + µk

jiy
k
ji) ≥ γ (25)
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By adding flow conservation constraints to (25) we conclude thatµk
ij = 0 for an arbitrary edgee = ij ∈

δ(S) and allk ∈ K. We may hence assume that for the same edge the capacity constraint is not tight for the
point(x, y, π, p) on the face ofPΓ(S) defined by (24). By increasingpke we see thatδke = 0 for all k ∈ K.
Similarly, sending a small circulation flow one, we concludeµk

ji = 0. Notice that by these perturbations
we never leave the face.

Now assume that|δ(S)| ≥ 2. There is a second edgee′ 6= e such that the corresponding capacity
constraint is not tight. Since we may exchange variable values of two different edges without leaving the
face (24) edgee′ 6= e is in fact arbitrary. By sending circulation flow using edgese ande′ and by increasing
pke′ it turns out thatδke = µk

ij = µk
ji = 0 for all edgese ∈ δ(S) and commoditiesk ∈ K.

Since (24) defines a facet ofRΓ(S), 2|δ(S)| affinely independent points exist. These points can be
lifted to points inPΓ(S) remaining affinely independent in the(x, π) space and satisfying (24) as well
as (25) at equality. We showed that only the2|δ(S)| coefficients in (25) corresponding to thex andπ
variables are nonzero. Hence (25) is (24) up to scaling and upto a linear combination of flow conservation
constraints. It follows that (24) defines a facet ofPΓ(S).

We call a valid inequality forPΓ(S) non-trivial if it is different from the constraints (13a)-(13e) defin-
ing PΓ(S). The following result is a straight-forward generalization of the corresponding result for the
deterministic case from [61], also see [2].

Lemma 3.15. Every non-trivial facet-defining inequality ofPΓ(S) defines a facet ofPΓ if both cut shores
are connected.

The proof of Lemma 3.15 is based on the fact that in case both shores are connected, then the flow for
commodities inK \QS can be routed in the two shores without using cut edges. This means that we can
construct feasible points forPΓ from points valid forPΓ(S) without changing the cut values. This is done
by assigning sufficiently large values forxe, πe, andpke for edgese ∈ E \ δ(S) and then decomposing the
problem with respect to the two graphs defined byS respectivelyV \ S.

Corollary 3.16. Given a node setS ⊂ V such that the two shores of the corresponding cutδ(S) are
connected, the cutset inequality(15)defines a facet ofPΓ if r(d0) < 1 and either|δ(S)| = 1 or d0 > 1.

Proof. By Lemma 3.4 and Lemma 3.12 inequality (15) defines a facet ofRΓ(S). In this case inequality
(15) is also non-trivial forRΓ(S). Fixing edgee = {i, j} ∈ δ(S) we consider the point(x, y, π, p) on
the face ofPΓ(S) defined by (15) as defined in (21). All other variables are set to zero. Recall that the
capacity constraint ofe has a slack of1 − r(d0). In case|δ(S)| ≥ 2 andd0 > 1 and hence⌈d0⌉ ≥ 2 we
can shift one unit of capacity to a second edge. Also a fraction of 1/ ⌈d0⌉ of all other variables is shifted to
the second edge. This way we construct a point on the face withtwo edges not being tight in the capacity
constraint. Hence, using Theorem 3.14 and Lemma 3.15 we get the desired result.

Corollary 3.17. Given a node setS ⊂ V such that the two shores of the corresponding cutδ(S) are
connected andJ+ 6= ∅ as well as

⌈

d|QS |−Γ

⌉

> ⌈d0⌉. The MIR inequality

rix(δ(S)) + max(0, i)π(δ(S)) ≥ ri ⌈di⌉ (26)

defines a facet ofPΓ if i = argmax(rk/k : k ∈ J+ with ⌈dk⌉ =
⌈

d|QS |−Γ

⌉

) andri < 1.

Proof. By Lemma 3.5 and Lemma 3.12 inequality (26) defines a facet ofRΓ(S) if ri < 1. In this case
inequality (26) is also non-trivial forRΓ(S). Fixing e ∈ δ(S) we consider the following point(x, y, π, p)
on the face ofPΓ(S) defined by (26)

xe = ⌈di⌉ =
⌈

d|QS |−Γ

⌉

, πe = 0, pke = d̂k, andykij = 1 for k ∈ QS .

All other variables are set to zero. The point protects against all demands across the cut at their peak. There
is a slack of at least1 − ri. It holds

⌈

d|QS |−Γ

⌉

≥ 2 since⌈d0⌉ ≥ 1. If |δ(S)| ≥ 2 we can hence shift one
unit of capacity and a fraction of all other variables to a second edge such that two edges are non-tight in
the capacity constraint. Hence, using Theorem 3.14 and Lemma 3.15 we get the desired result.
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Corollary 3.18. Given a node setS ⊂ V such that the two shores of the corresponding cutδ(S) are
connected, the upper envelope inequality

(−j + ri,j)x(δ(S)) − ijπ(δ(S)) ≥ ri,j ⌈bi,j⌉ − jdi (27)

defines a facet ofPΓ if i, j ∈ J−, i < j, such thati = argmink∈J−
π(k, a+1) andj = argmink∈J−

π(k, a)
with ri,j < 1 anda ∈ Z with a ≥ ⌈d0⌉ having either|δ(S)| = 1 or a ≥ 2.

Proof. By Lemma 3.9 and Lemma 3.12 inequality (27) defines a facet ofRΓ(S). Fromri,j < 1 follows
i < j and the break pointbi,j is fractional and hence (27) is non-trivial forRΓ(S). Let F be the face of
PΓ(S) defined by (27). There is a point(x̄, π̄) with a < x̄ < a + 1 in the linear relaxation ofXΓ cut off
by (27). Using a single edgee we may of course lift this point to a valid point(x̄, ȳ, π̄, p̄) of the linear
relaxation ofPΓ(S). Setα = (−j + ri,j), β = −ij, andγ = ri,j ⌈bi,j⌉ − jdi. The point(ẋ, π̄) with
ẋ = γ−βπ̄

α
> x̄ is in XΓ and lies on the facet. Moreoverp1 := (ẋ, ȳ, π̄, p̄) ∈ F such that for the selected

single edgee the capacity constraint is not tight. Howeverp1 is not feasible aṡx with a < ẋ < a + 1 is
not integral. Consider the two points(a, π(j, a)) and(a + 1, π(i, a + 1)) on the facet ofXΓ and denote
by p2 andp3 the two corresponding points lifted toPΓ(S) on the faceF . We can assume thatp2 andp3
have nonzero values only on edgee and thatp1 is a convex combination ofp2 andp3. Hence at least one
of p2 or p3 is not tight in the capacity constraint ofe. The proof is complete in case|δ(S)| = 1. Assume
|δ(S)| ≥ 2. By shifting one unit of capacity to a second edgee2 we construct pointsp4 andp5 from p2
andp3 similar to the proof of Corollary 3.16. As long asa ≥ 2 at least one these point is not tight in the
capacity constraint of at least two edges. By Theorem 3.14 and Lemma 3.15 the claim follows.

Corollary 3.19. Let S ⊂ E be a node set such that the two shores of the corresponding cutδ(S) are
connected andJ+ 6= ∅ as well as

⌈

d|QS |−Γ

⌉

> ⌈d0⌉+ 1. The lower envelope inequality

(i + ri,j)x(δ(S)) + ijπ(δ(S)) ≥ ri,j ⌈bi,j⌉+ idj (28)

defines a facet ofPΓ if i, j ∈ J+, i < j, such thati := argmaxk∈J+
π(k, a) andj := argmaxk∈J+

π(k, a+

1) with ri,j < 1 anda ∈ Z with ⌈d0⌉ ≤ a ≤
⌈

d|QS |−Γ

⌉

− 1 having either|δ(S)| = 1 or a ≥ 2.

Proof. Similar to the proof of Corollary 3.18.

4 Computations

In this section we present the results of three major computational studies. First, we compare the three
presented approaches SEPARATE, DUALIZE , and REPLACE by evaluating the computational performance
of the corresponding models (7), (10), and (12). Second, we investigate the impact of separating violated
inequalities (15), (26)–(28) on the solving process. Finally, we evaluate the costs and realized robustness
of the optimal robust network designs for real-life traffic measurements.

Instances. We consider problem instances based on live traffic data fromdifferent sources: the U.S. In-
ternet2 Network (ABILENE) [1], the pan-European research backbone network GÉANT, and the national
research backbone network operated by the German DFN-Verein [29] mapped on the network (GER-
MANY 17) defined by the NOBEL project [55], and in addition mapped on a larger network (GERMANY50)
[58]. For each network the live traffic data is given as a set ofmeasured traffic matrices with a granular-
ity of 5 minutes (ABILENE, GERMANY17, GERMANY50) or 15 minutes (ǴEANT). Recently, the live
traffic measurements of these networks have also become available in the SNDlib [58]. For ABILENE

resp. ǴEANT we consider two time periods of one week resulting in two instances ABILENE1 and ABI-
LENE2 resp. GEANT1 and GEANT2. For GERMANY17 and GERMANY50 we consider one day each. In
Section 4.3 we evaluate the realized robustness of optimal robust network designs. Therefore, we use ad-
ditional traffic measurements in the evaluation to simulateuncertain future traffic. In total four weeks of
traffic measurements are used for each ABILENE and ǴEANT instance. Table 1 summarizes the network
and traffic properties of all considered data sets.
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Network ABILENE GÉANT GERMANY17 GERMANY50

# nodes 12 22 17 50
# links 15 36 26 89
# demands 66 231 136 1044

available traffic period 6 months 4 months 1 day 1 day
traffic granularity 5 min 15 min 5 min 5 min
# available traffic matrices 48 095 10 737 288 288
# traffic matrices used 2× 8 064 2× 2 688 288 288

instances ABILENE1 GEANT1 GERMANY17 GERMANY50
ABILENE2 GEANT2

Table 1: Network and traffic properties of considered data sets

For each data set letT denote the considered time period and letdk(t) be the demand for commodity
k ∈ K at time stept ∈ T . In a first step we scale the traffic data in such a way that sum ofall peak
demandsmaxt∈T (d

k
(t)) over all commoditiesk ∈ K amounts to 1 Tbps. To determine the nominal value

d̄k respectively peak valuēdk + d̂k we calculated the arithmetic mean and 95%-percentile of each demand
k ∈ K using the scaled measurements. That is, we setd̄k := 1/|T |

∑

t∈T dk(t) andd̄k + d̂k corresponds
to the largest deviation from the nominal value in periodT ′

k whereT ′
k is obtained fromT by removing the

5% largest demands. The link capacity module size, that is one unit of capacity, is set to 40 Gbps.

General settings. We implemented formulations (7), (10), and (12) of theΓ-robust network design prob-
lem in C++ using IBM ILOG CPLEX 12.1 [39] as branch-and-cut framework. We applied the CONCERT

framework of CPLEX and callbacks to implement the separation methods. The computations were carried
out single-threaded on a Linux machine with 2.93 GHz Intel Xeon W3540 CPU and 12 GB RAM. A time
limit of 12 hours was set for solving each problem instance. All other solver settings were left at their
defaults if not stated differently.

4.1 Model comparison

In our first computational study, we compare the models (7), (10), and (12) to evaluate their computational
performance. Each of these models follows a different approach: SEPARATE (7), DUALIZE (10), and
REPLACE (12). For all networks,Γ ∈ {0, 1, . . . , 10} is considered. This yields 66 realistic test instances.

We complement this study by an extensive evaluation of higher values ofΓ for the small ABILENE

network: for ABILENE1 and ABILENE2 we consider all possible values ofΓ, i. e., values up to the number
of commodities (Γ = |K| = 66).

For SEPARATEand REPLACE, the exponential many inequalities (7a) resp. (12b) are treated implicitly:
violated ones are separated as so-called lazy constraints during the solving process. Figure 3 visualizes the
computational behavior of the three models: First, for eachnetwork a comparison of the geometric mean
of the solving times forΓ = 0, 1, . . . , 10 is shown in Figure 3(a). Second, for each network the number
of optimally solved instances out of 11 is shown in Figure 3(b). Third, the solving times for ABILENE1
and ABILENE2 with Γ ∈ {0, 1, . . . , 66} are shown in Figure 3(c) resp. Figure 3(d). Note, the logarithmic
scales of the solving time axes in Figure 3(a), 3(c), and 3(d).

Impact on the solving time. First, we investigate the results forΓ = 0, 1, . . . , 10: In our computational
study, the model following the DUALIZE approach has been the fastest for 64 of 66 test instances. Only
for ABILENE1 with Γ = 0 and ABILENE2 with Γ = 1 the solving time of the SEPARATE model has been
slightly faster by less than a second. The second fastest model (for Γ ≤ 10) in our study is the SEPARATE

model approach.
The geometric means of its solving times range from 2.1 (GEANT1) to 14.5 (GERMANY17) times

the geometric means obtained by DUALIZE . The model following REPLACE is the slowest (forΓ ≤ 10)
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(a) Geometric means of solving times (forΓ ∈ {0, 1, . . . , 10})

(b) Number of optimally solved instances (forΓ ∈ {0, 1, . . . , 10})

(c) Solving times of ABILENE1 andΓ ∈ {0, 1, . . . , 66} (d) Solving times of ABILENE2 andΓ ∈ {0, 1, . . . , 66}

Figure 3: Comparison of models for DUALIZE (D), SEPARATE (S), and REPLACE (R) approaches

with geometric means from 2.6 (GEANT1) up to 157 (GERMANY17) times the corresponding one for
DUALIZE . For both, SEPARATE and REPLACE, very often the time limit has been reached. In particular,
GERMANY50 could not been solved in any case within the time limit of 12hours. For GERMANY50, the
optimality gap has been in the range from 51% to 71% (DUALIZE ), 43% to 59% (SEPARATE), and 420%
to 736% (REPLACE). For this large instance, the SEPARATE approach yields the smallest optimality gaps.

It turns that out the MIP solver obtains many solutions feasible for the incomplete formulation of the
SEPARATE and REPLACE models which are infeasible to the complete problem. Thus, these solutions
are separated by additional model inequalities (lazy constraints). In our studies, the amount of these non-
redundant cuts slows down the solving processes of the SEPARATE and REPLACE models significantly.
These results are in contrast to those in [33] for the set cover problem.

Second, we have a closer look at the supplementary results ofour study for ABILENE1 and ABILENE2
with Γ = 0, 1, . . . , 66 as visualized in Figure 3(c) and 3(d). It turns out that we cannot generalize our
previous evaluation of the geometric means toΓ > 10: We observe that SEPARATE is faster than REPLACE

only for small valuesΓ or |K| − Γ. For example, for ABILENE1 and10 ≤ Γ ≤ 49 the REPLACE model
is up to 1000 times faster than the SEPARATE model (e. g. Γ = 36). This behavior can be explained
easily: The size of the (resulting) formulation for SEPARATE strongly depends on the size ofΓ in contrast
to DUALIZE and REPLACE. The number of capacity constraints (7a) to be considered for SEPARATE is
proportional to the number of vertices ofDΓ which is precisely

(

|K|
Γ

)

+ 1 for 0 < Γ < |K|. That is,
both forΓ close to0 and forΓ close to|K| the SEPARATE formulation is small. Here the SEPARATE

approach might even outperform DUALIZE . In all other cases the number of constraints to be considered
for separation can be extremely large. Notice that computation times for SEPARATE in Figure 3(c) and 3(d)
roughly follow the shape of

(

|K|
Γ

)

+ 1 as a function ofΓ.
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Impact on solvability. In the following, we consider the number of optimally solvedinstances within
the time limit. First, we observe the ABILENE1 and ABILENE2 instances could be solved optimally for
all three models. The instance GERMANY50 could not be solved optimally by any model. For all 33
remaining instances, the DUALIZE approach solved the most instances to optimality (88%), SEPARATE

the second most (39%), and the REPLACE model the least (3%). Every instance solved by SEPARATE or
REPLACE was also solved by DUALIZE .

Conclusion. The model following the DUALIZE approach outperforms the other two models: more in-
stances can be solved to optimality in less time independentof Γ. Therefore, we focus on the DUALIZE

model in the following studies. However, we want to remark that additional special purpose primal heuris-
tics might improve on the computational behavior of SEPARATE at least for small values ofΓ or |K| − Γ.

4.2 Valid inequalities

In our second computational study, we investigate the impact of separating valid inequalities on the overall
solving process. Using the callback functionality of CPLEX, we added a separator for the inequalities (15),
(26), (27), and (28). The separator is called at the root nodeof the branch-and-cut tree. Within the separator
we implemented three separation algorithms variants: one heuristic (Shrinking) and two exact algorithms
(Enumeration, ILP) to separate violated inequalities. Thethree separation algorithms are described in the
following.

Exact separation (Enumeration). To study the effectiveness of the valid inequalities we implemented
an exact separation algorithm which enumerates all networkcuts explicitly and generatesall violated in-
equalities of type (15), (26), (27), and (28). Clearly, thisapproach is suited for small networks only as
the number of network cuts that must be enumerated increasesexponentially. Still, for small networks this
enumerative algorithm can be used to investigate the maximal effectiveness of these inequalities that can
be achieved by separating all existing violated inequalities in terms of improving the root node dual bound.

Exact separation (ILP). Further, we implemented another exact separation algorithm which solves an
integer linear program to separate a most violated inequality of type (15). It was introduced in Koster et al.
[44] and is computational tractable for larger networks as well.

We define binary variablesβi (i ∈ V ) with βi = 1 if and only if i ∈ S determining the cut,αk with
αk = 1 if and only if k ∈ QS determining the cut-crossing commodities,γk with γk = 1 if and only if
commodityk ∈ QS deviates from its nominal, and̄δij (ij ∈ E) with δ̄ij = 1 if and only if ij ∈ δ(S)
determining the cutset. In addition, letd determine the worst-case total demand value crossing the cut, and
let R be the right-hand side value of the corresponding cutset inequality (15). Given an LP solutionx∗,
we minimize the feasibility (i. e., maximize the violation)of inequality (15) such that a negative objective
value yields a violated cut. Then, the ILP formulation of theseparation problem reads

min
∑

ij∈E
x∗
ij δ̄ij −R

s.t. max{δi − δj , δj − δi} ≤ δ̄ij ≤ min{δi + δj , 2− δi − δj} ∀ij ∈ E (29a)

max{δsk − δtk , δtk − δsk} ≤αk ≤ min{δsk + δtk , 2− δsk − δtk} ∀k ∈ Q (29b)

γk ≤αk ∀k ∈ Q (29c)
∑

k∈Q
γk ≤Γ (29d)

∑

k∈Q
(d̄kαk + d̂kγk) = d (29e)

d ≤R ≤ d+ 1− ε (29f)

αk, δi, γ
k, δ̄ij ∈ {0, 1}, R ∈ Z+, d ≥ 0 ∀k ∈ Q, ∀ij ∈ E, ∀i ∈ V (29g)

where constraints (29a), (29b), and (29c) define the logicaldependencies between the indicator vari-
ablesαk, βi, andγk. Constraint (29d) limits the number of deviating commodities byΓ. The total demand
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robust cutset inequalities (15) envelope inequalities (26)–(28)
enumeration (ex) ILP (ex) shrinking (h) enumeration (ex) shrinking (h)

strategy (i) · · · · ·
strategy (ii) X · · · ·
strategy (iii) X · · X ·
strategy (iv) · · X · X

strategy (v) · X X · X

Table 2: Considered strategies with exact (ex) and heuristic (h) separation algorithms

d is calculated by (29e). Constraint (29f) guarantees the round-up of the right-hand side variableR using
0 < ε ≪ 1 to avoid roundingR to ⌈d⌉ + 1 or higher. Note, no time limit is set for solving the ILP
formulation of the separation problem.

Heuristic separation (Shrinking). Complementing the exact separation algorithms, we proposethe fol-
lowing heuristic separation algorithm: Violated inequalities are separated for all single node network cuts
(i. e.,δ(S) with |δ(S)| = 1) as well as a set of network cuts resulting from a graph shrinking heuristic. This
graph shrinking heuristic generalizes a shrinking heuristic dating back to [24, 37] and used by [61] for the
deterministic model (1)Γ-robust network design.

The idea of this extended graph shrinking heuristic is the following: The base inequality of the robust
cutset inequality (15) is the sum of flow conservation constraints (1b), capacity constraints (10a), and
constraints (10b). For violated cutset inequalities we need (almost) tight base inequalities. Hence we
wish to have edgese in the cutδ(S) that have (almost) no slack in the constraints (10a) and (10b). In
the shrinking heuristic we hence shrink edges whose corresponding model constraints have large slacks.
Technically, we try to minimize the sum of weightswe for edgese on the cut: Given the solution of the
current LP relaxation, we usewe := s(10a)

e +
∑

k∈K s(10b)
e,k wheres(10a)

e denotes the slack of the capacity

constraint (10a) for edgee and thes(10b)
e,k the slack of constraint (10b) for edgee and commodityk. By

contracting edges in non-increasing order ofwewe shrink the network until onlyη nodes or no edges with
positive weight are left. Based on empirical values of previous computational studies we setη = 5.

Let N (V , E) be the remaining shrunken network with node setV and edge setE . Then, the set of
network cuts returned by the shrinking heuristic consists of all network cuts corresponding to single node
network cuts inN as well as further up to|V|2 network cuts inN obtained by enumeration.

Strategies. We compare five different strategies to solve theΓ-Robust Network Design Problem: (i) solv-
ing the compact model (10) with default CPLEX and four further variants (ii)-(v) including the separation
of violated inequalities in the root node using CPLEX and separation callbacks. The different strategies and
separation algorithms used are summarized in Table 2 referring to the exact (Enumeration, ILP) and heuris-
tic separation algorithm (Shrinking) as introduced above.Note, in strategy (v) the separation problem is
solved exactly only after no violated cut has been found by the heuristic.

Impact on the root gap. First, only the root node of the cut-and-branch tree is solved to investigate the
effectiveness of separating violated inequalities (15), (26)–(28). We evaluate the additional gap closed in
each strategy, i. e., the ratio(DB − DBCPLEX)/(PB− DBCPLEX) where DB denotes the dual bound of the
corresponding strategy after the root node before branching, DBCPLEX the corresponding value of default
CPLEX (strategy (i)), and PB the (overall) best known primal bound. Thus, an additional gap closed of
100% means the instance could be solved to optimality in the root node. Note, none of the instances could
be solved to optimality in the root node by CPLEX alone (strategy (i)).

A detailed view on the additional gap closed in the root node for strategies (ii) and (iii) is given in
Figure 4(a). Results for GERMANY50 are not shown as strategy (ii) and (iii) follow the enumerative
exact separation approach which is not applicable to the GERMANY50 instance because of its size. For
ABILENE1 and all values ofΓ, we observe that the remaining optimality gap can be closed completely in
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(a) additional gap closed in root for strategies (ii) and (iii)

(b) min, max, and geom. mean of additional gap closed in root (c) speed-up compared to CPLEX (strategy (i))

Figure 4: Effect of separating violated inequalities inequalities (15), (26)–(28)

the root node by separating the considered classes of inequalities. Considering ABILENE2, this is also the
case for most values ofΓ. In total, for more than 90% of all instances the optimality gap can be closed by
at least 50%. For GEANT1 and GEANT2, the least additional gap closed is achieved.

Comparing strategies (ii) and (iii), we observe a difference for only 7 of 66 instances. In these cases,
the gap could be closed by additionally 2.5% in the geometricmean in strategy (iii), ranging from 0.1%
(GEANT1,Γ = 1) to 16.4% (GEANT2,Γ = 3). This is caused by the fact that mainly violated robust cutset
inequalities (15) are found and almost no violated envelopeinequalities or MIR cuts. We discuss this in
the paragraph about the distribution of separated cuts.

Next, we compare all strategies but on a less detailed level:Figure 4(b) illustrates the geometric mean
(thick horizontal bar), minimal (lower end of vertical line), and maximal values (upper end of vertical line)
of the additional gap closed for each instance and all considered values ofΓ. As strategies (iv) and (v)
primary follow an heuristic approach, the achieved additional gap closed is less than for strategy (ii) or
(iii). But still a reasonable additional gap closed of at least 20% in the geometric mean can be achieved
for all instances except ABILENE2 with strategy (iv) and GERMANY50. Although due to memory limits
GERMANY50 could not be processed in strategy (ii) and (iii), it has been computational tractable in strategy
(iv) and (v). Here, the optimality gap left by CPLEX can be closed by 6.8% (1.64%) in the geometric mean,
ranging from -39.5% (-39.5%) to 26.7% (20.4%) for strategy (iv) (resp. (v)) where a negative gap closed
means that actually an optimality gap larger than in strategy (i) remained at the time limit (hence, the root
node could not be solved in 12h).

Distribution of separated cuts. In the following, we have a closer look on the type of cuts thathave
been separated in the root node in strategy (iii). In strategy (iii) all existing violated inequalities (15),
(26)–(28) are separated by enumeration. Table 3 shows the number of separated cuts for each instance,
the value ofΓ, and the class of the generated inequalities. For better readability, blanks are printed instead
of zeros and completely blank columns are omitted. Column RCstates the number of separated robust
cutset inequalities (15), column L the lower envelope (28),and M the MIR inequalities (26). No violated
upper envelope inequalities (27) have been separated in ourcomputational studies. Hence these columns
are missing.
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ABILENE1 ABILENE2 GEANT1 GEANT2 GERMANY17
gamma RC M RC M RC L M RC L M RC L M

0 45 46 49910 63732 2664
1 36 25 6668 5 7408 2 726 5 1
2 28 16 3606 7 3896 1 2 414 1 1
3 29 21 2946 3 3837 12 353
4 24 23 2428 1 7 3355 2 308
5 30 14 2697 4 3738 4 314
6 23 13 2345 4 4462 1 324 1
7 20 8 2351 4 4877 8 296 1
8 19 18 2530 4 5224 27 335 2
9 16 20 2 2367 1 3424 6 335 1
10 21 1 19 2154 4 5255 14 386

Table 3: Cut distribution. Robust cutset (RC), Lower envelope (L), and MIR (M)

We observe that mostly violated robust cutset inequalitiesare separated. In particular forΓ = 0, where
the robust cutset inequalities corresponds to the well-known and effective classical cutset inequalities,
many violated cuts are found. FromΓ = 0 to Γ = 2, we observe a significant decrease in the number of
separated robust cutset inequalities which we cannot explain. ForΓ > 2, the number of separated robust
cutset inequalities does not fluctuate that much. No violated upper envelope inequalities (27) have been
found which might be explained as follows: the capacity constraints (10b) act as (variable) upper bounds
onπe because of the positive objective function coefficients ofxe. Hence, the value ofπe is set as small
as possible such that the other constraints are still satisfied. But violated upper envelope inequalities only
occur for high values ofπe (cf. Figure 3.2). Only a few violated lower envelope inequalities (28) have been
found and only in 4 of 60 instances. Some more violated MIR inequalities (26) could be separated for the
larger networks GERMANY17, GEANT1, and GEANT2.

Impact on the solving time. Figure 4(c) shows the speed-up of the total solving process (up to the time
limit of 12h, no node limit) as geometric mean of the individual speed-ups forΓ = 0, 1, . . . , 10. Here
speed-up refers to100 · (1 − t/tCPLEX) in percent wheret is the computation time for the considered
strategy andtCPLEX refers to the computation time of CPLEX (strategy (i)). We observe in the geometric
means that the total solving process is always accelerated except for ABILENE1 with strategy (v) and
ABILENE2 with strategy (iv) or (v). These instances are relatively small and solved within seconds. The
overhead caused by strategy (iv) (graph shrinking etc.) andin particular strategy (v) (solving an ILP) slows
down the total solving process for both instances. In general, strategies (ii) and (iii) yield large speed-ups
of up to 75% (GERMANY17). For larger networks, the heuristic approaches used in strategies (iv) and (v)
perform better. For example, while for the small ABILENE1 instance the speed-up is 66% in strategy (ii)
and 23% in strategy (iv), for the larger GEANT2 instance we have a speedup of 38% in strategy (ii) but
51% in strategy (iv).

Impact on solvability. Finally, we address the number of instances that could be solved within the 12
hours time limit. The large GERMANY50 instance could not be solved to optimality in any strategy. But
using the heuristic approaches in strategies (iv) and (v) the remaining optimality gap at the time limit could
be decreased by 11.6%. Further, any other instances not solved within the time limit by CPLEX (6 out of
55 instances) could be solved to optimality in strategies (iv) and (v).

Conclusion. Separating violated inequalities (15), (26)–(28) speeds up the total solving process by sig-
nificantly decreasing the optimality gap in the root node already. The very vast majority of separated
inequalities are of type (15).
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Figure 5: Cost savings of robust ABILENE and ǴEANT network design compared to classical network
design with peak demand values (i. e., corresponds toΓ-Robust Network Design withΓ = |K|).

Figure 6: Realized robustness of ABILENE1 andΓ = 0. Additionally, the corresponding traffic loss profile
is shown below the realized robustness diagram.

4.3 Quality of optimal robust network designs

Our third computational study focuses on the quality of optimal robust network designs. We investigate
two aspects as quality criteria: the cost of an optimal robust network design and the realized robustness
with respect to a given set of traffic matrices.

For the latter, we only consider the ABILENE and ǴEANT networks because only for these networks
traffic measurements spanning several weeks are available.Given the traffic measurements of one week as
input data (as described above) we include additional weeksof traffic measurements in our evaluation of
the realized robustness to simulate uncertain future traffic.

Cost savings. The cost is determined as the relativecost savingsof the considered robust design com-
pared to the cost of the optimal network design obtained by setting Γ to |K|. This corresponds to the (con-
servative) classical network design where capacities are optimized against the worst peak scenario. Note,
considering cost savings is just a different view on the so-called price of robustness [21] and emphases the
potential cost savings by usingΓ-robustness compared to the most-conservative classical approach.

Figure 5 shows the relative cost savings of ABILENE1, ABILENE2, GEANT1, and GEANT2 for Γ =
0, 1, . . . , 10. Clearly, the cost savings (compared toΓ = |K|) decrease with increasing value ofΓ as the
costly additional installment of link capacity modules is implied. Still, forΓ = 5 about 10% costs can be
saved in all considered networks. We also see that advantageof a robust design in terms of cost is relatively
small already forΓ = 10. That is, allowing for 10 commodities being at the peak simultaneously gives
capacity designs at a cost similar to networks that are designed against the all-peak scenario.

Realized Robustness. Given a traffic matrixd, a capacity designx, and a static routingy of all com-
modities, therealized robustnessis determined as the maximal fraction of the total demand

∑

k∈K dk that
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Γ ABILENE1 ABILENE2 GEANT1 GEANT2

0

1

5

10

|K|

Table 4: Traffic loss profiles of ABILENE and ǴEANT networks and selected values ofΓ. Note, the traffic
loss profile of ABILENE1 andΓ = 0 is the same as in Figure 6.

can be realized as flow within the given capacitiesx and using the routing defined byy. To calculate this
value we solve a linear program that takesd, x, andy as input and maximizes the fraction of total demand
that can be realized. Traffic measurements of four consecutive weeks are used to evaluate the realized ro-
bustness in every time step where only the measurements of the first week (so-called planning week) have
been analyzed and used as input to theΓ-robust network design problem.

Figure 6 shows the result for ABILENE1 andΓ = 0. The geometric mean of the realized robustness
in this case is 88.2%, that is, on average over the consideredtime period we are able to realize 88.2% of
the demand in the given capacities using the given static routing. Clearly, such a value does not catch the
change of the realized robustness over time. We observe mostof the time a realized robustness of 85–
100%. But there exist several traffic matrices for which the realized robustness is as worse as 15%. To
capture this temporal aspect of robustness, we propose a different visualization which we call thetraffic
loss profile. The corresponding traffic loss profile of ABILENE1 andΓ = 0 is shown below the diagram in
Figure 6. This profile visualizes each traffic matrix by a vertical line whose gray scale value corresponds to
the relative traffic amount that cannot be routed (i. e., 100%minus the realized robustness of the considered
traffic matrix). The darker the line, the more traffic is lost,i. e., the less robustness is realized. Hence, a
profile without lines is best and corresponds to a totally robust network design.

Table 4 shows the traffic loss profiles of optimal robust network designs for ABILENE1, ABILENE2,
GEANT1, and GEANT2 and selected values ofΓ. Notice that the traffic profiles forΓ = |K| correspond to
the best robustness that can be realized for the given nominal and peak demand values̄d andd̄+ d̂. None
of these profiles are totally robust since only the 95% percentile is used as peak demand̄dk + d̂k value for
each commodityk ∈ K.

FixingΓ = 0, we observe that the realized robustness of optimal networkdesigns of the four instances
are quite different: 88.2% (ABILENE1), 99.9% (ABILENE2), 93.2% (GEANT1), and 96.3% (GEANT2).
ComparingΓ = 0 to Γ = 1 already shows a significant improvement for ABILENE1 (88.2% to 94.9%)
and GEANT2 (96.3% to 98.6%). By trend, the realized robustness of a network design increases whenΓ
increases, i. e., the corresponding traffic loss profile has less vertical lines or the Gray scales of the lines are
brighter. A decrease can only occur due to a different and disadvantageous traffic routing. For example, this
can be observed for GEANT2 where the realized robustness decreases from 99.8% to 99.7%, compare the
traffic loss profiles. Note, for ABILENE2 the classical network design (Γ = 0) achieves already a realized
robustness of almost 100%.

ForΓ = |K|, the realized robustness is 95.8% (ABILENE1), 99.9% (ABILENE2), 98.0% (GEANT1),
and 99.9% (GEANT2). This is best for the given choice of nominal and peak demand values. The evaluation
of the realized robustnesses for all instances and considered values ofΓ yields that forΓ ≥ 1 (ABILENE1),
Γ ≥ 0 (ABILENE2),Γ ≥ 10 (GEANT1), andΓ ≥ 5 (GEANT2), at least 99% of the corresponding realized
robustness value forΓ = |K| is achieved. The traffic loss profiles for these cases hence basically coincide
with the corresponding profiles forΓ = |K|, compare with Table 4.

Further, by comparing the first quarter of each traffic loss profile to its remaining part, we can evaluate
the realized robustness of the planning week (the first week of the four-week time period) compared to
the remaining three weeks representing uncertain future traffic. For example, we observe that the network
design of GEANT1 realizes high robustness during the planning week but is significantly less robust in the
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following weeks. Clearly, the network load has been larger in the three weeks following the planning week.

Conclusion. Optimal robust network designs provide high potential for significant cost savings compared
to the conservative setting where only peak demand values are considered. Further, the traffic loss due to
peaks drops significantly already for relatively small values ofΓ. In particular, forΓ ≤ 5 a remarkable
increase in the realized robustness can be achieved. A good value forΓ seems to depend on the size of the
instance. For ABILENE a valueΓ = 1 is sufficient for high robustness while for GÉANT choosingΓ = 5
gives a good trade-off between cost and robustness. With these values we get almost totally robust networks
at a cost of roughly 10-20% less the cost for a network designed for the all-peak scenario, compare with
Figure 5.

5 Concluding Remarks

In this paper we considered a robust network design problem with static routing using a polyhedral uncer-
tainty set going back to Bertsimas and Sim [20, 21]. This model allows to adjust the number of point-to-
point demands that deviate from a given nominal value simultaneously by changing a parameterΓ > 0.

We presented mathematical formulations that enhance the classical flow formulation for network design
to include demand uncertainties in different ways. A computational evaluation revealed that the compact
formulation based on dualizing the capacity constraints outperforms other models based on decomposition
and separation.

In a polyhedral study, we derived strong valid inequalitiesbased on network cuts thereby generalizing
the well-known cutset inequalities for the deterministic case. Instead of a single cutset inequality for every
network cut, we derived multiple classes of facet-defining cut-based inequalities by exploiting the extra
variables available in the dualized robust counterparts. We were able to completely describe a projection of
the robust cutset polyhedron of a single edge. We generalized the corresponding facet-defining inequalities
and we developed conditions for the generalized cutset inequalities to define facets of the original model.

The separation of the developed robust cutset inequalitiesturns out to speed-up the solving process for
the compact model significantly: We save up to 66% of computation time compared to default CPLEX.
Many instances could only be solved to optimality withing the time limit with the new robust cutset in-
equalities enabled. In some cases we close the gap already inthe root node.

In our computational studies we used realistic networks together with life traffic measurements in IP
networks. This allowed us to parametrize the models in a meaningful way but also to evaluate the re-
alized robustness of the resulting solutions using real-life dynamics of the demand. We also compared
the possible cost savings compared to overestimating the number of simultaneous peaks in deterministic
approaches. Using these results we studied the trade-off between the level of robustness and the needed
capital expenditures. It turns out that already small values of Γ between 1 and 5 suffice to get capacity
designs that are almost totally robust against all traffic fluctuations. This results in cost savings of 10–
20% compared to conservative deterministic designs. This also shows that in real-life traffic dynamics the
number of simultaneous peaks is small.
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[26] C. Chekuri, G. Oriolo, M. G. Scutellá, and F. B. Shepherd. Hardness of robust network design.
Networks, 50(1):50–54, 2007.

[27] S. Chopra, I. Gilboa, and S. T. Sastry. Source sink flows with capacity installation in batches.Discrete
Applied Mathematics, 86:165–192, 1998.

[28] G. B. Dantzig. Linear programming under uncertainty.Management Science, pages 197–206, 1955.

[29] Deutsche Forschungsnetz (DFN).http://www.dfn.de .

[30] N. G. Duffield, P. Goyal, A. G. Greenberg, P. P. Mishra, K.K. Ramakrishnan, and J. E. van der
Merive. A Flexible Model for Resource Management in VirtualPrivate Networks. InProc. of the
ACM SIGCOMM, pages 95–108, 1999.

[31] A. Dwivedi and R. E. Wagner. Traffic model for USA long distance optimal network. InProc. of the
Optical Fiber Communication Conference, pages 156–158, 2000.

[32] J.A. Fingerhut, S. Suri, and J.S. Turner. Designing least-cost nonblocking broadband networks.Jour-
nal of Algorithms, 24(2):287–309, 1997.

[33] M. Fischetti and M. Monaci. Robustness by cutting planes and the Uncertain Set Covering Problem.
www.dei.unipd.it/ ˜ fisch/papers/Uncertain_SCP.pdf (2011-08-26), 2009.

[34] F. Grandonia, V. Kaibel, G. Oriolo, and M. Skutella. A short proof of the VPN Tree Routing Conjec-
ture on ring networks.Operations Research Letters, 36:361–365, 2008.

[35] Z. Gu, G. L. Nemhauser, and M. W. P. Savelsbergh. Lifted flow cover inequalities for mixed 0-1
integer programs.Mathematical Programming, 85:436–467, 1999.

[36] Z. Gu, G. L. Nemhauser, and M. W. P. Savelsbergh. Sequence Independent Lifting in Mixed Integer
Programming.INFORMS Journal on Computing, pages 109–129, 2000.
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network design polyhedra.Networks, 57(2):141–156, March 2011.
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