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Robust Network Design:
Formulations, Valid Inequalities, and Computations

Arie M.C.A. Kostert Manuel Kutschka Christian Raack

Abstract

Traffic in communication networks fluctuates heavily ovardi Thus, to avoid capacity bottlenecks,
operators highly overestimate the traffic volume duringmoek planning. In this paper we consider
telecommunication network design under traffic uncengiatapting the robust optimization approach
of [21]. We present three different mathematical formwlasi for this problem, provide valid inequalities,
study the computational implications, and evaluate thézezhrobustness.

To enhance the performance of the mixed-integer progragaiver we derive robust cutset in-
equalities generalizing their deterministic counterpatinstead of a single cutset inequality for every
network cut, we derive multiple valid inequalities by exfileg the extra variables available in the ro-
bust formulations. We show that these inequalities definetfaunder certain conditions and that they
completely describe a projection of the robust cutset padybn if the cutset consists of a single edge.

For realistic networks and live traffic measurements we amhe formulations and report on the
speed up by the valid inequalities. We study the “price ofusthess” and evaluate the approach by
analyzing the real network load. The results show that thasboptimization approach has the potential
to support network planners better than present methods.

1 Introduction

Dimensioning or expanding capacity networks is a complsk ith many applications in transportation,
energy supply, and telecommunications. Doing it carefuliih respect to expenditures and expected
network demand is crucial for the behavior and flexibilityttoé resulting network.

In this work we mainly focus on aspects from telecommundgatietworks but our methods are gen-
eral enough to be applied also in different contexts. Teteoanication network design typically involves
decisions about the network topology, link and node cajgaciaind traffic routing. It can be considered
as a long-term to mid-term strategic planning process.d#& § to minimize the capital expenditures for
network equipment guaranteeing a routing for all considédata) traffic demands. In the classical com-
binatorial network design problem integer capacitiesr@spgonding to batches of bit rates, e. g., 40 Gbps)
have to be installed on the network links at minimum cost ghahall traffic demands can be realized by
flow simultaneously without exceeding the link capaciti@ven a single traffic matrix, this problem has
been studied extensively in the literature, see [8, 10, 2332, 49, 61] and the references therein.

In practice, telecommunication networks are typicallyigieed without the knowledge of actual traffic.
In most approaches each demand is estimated in the desigesst@.g., by using traffic measurements or
population statistics [25, 31, 40, 65, 66]. To handle futtiranges in the traffic volume and distribution and
to guarantee robust network designs, these values (andaquoastly capacities) are (highly) overestimated.
Obviously, this approach leads to a wastage of network dtgscinvestments, and energy. In order to
create and operate more resource- and cost-efficient tefacmication networks the uncertainty of future
traffic demand has to be already taken into account in theegitacapacity design process.

Incorporating uncertainty within the mathematical analysf operational research has been an ef-
fort since its very first beginnings. In the 1950s, Dantzi§][itroduced Stochastic Programming using
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probabilities for the possible realizations of the underttata. The main limitation of such probabilistic
approaches is that the distribution of the uncertain datst tmeiknown a priori which is often not the case
for “real-world” problems. Stochastic programming mayoakssult in extremely hard to solve optimization
problems.

In 1973, Soyster [63] suggested another approach based mititty describing the uncertain data
introducing so-called uncertainty sets and establishirggdoncept of Robust Optimization. Using this
framework we do not need any information about the probstiildistribution of the uncertainty. Instead
a solution is said to be robust if it is feasible for all reatipns of the data in the given uncertainty set. In
Robust Optimization we aim at finding the cost-optimal rdlsgdution. This approach has been further
developed by Ben-Tal and Nemirovski [15, 16, 17], Bertsiraad Sim [21], and others using different
convex and bounded uncertainty sets. They introduce theegbiof robust counterparts for uncertain linear
programs. In [15] it is shown that these can be solved by detdstic linear programs or deterministic
conic quadratic programs if the uncertainty set is polyhkedr ellipsoidal, respectively. Bertsimas and
Sim [21] introduced a polyhedral uncertainty set that gaalilows to control the price of robustness by
varying the numberF' of coefficients in a row of the given linear program that ateveéd to deviate from
its nominal values simultaneously. By changing this pataniethe practitioner is enabled to regulate the
trade-off between the degree of uncertainty taking intmantand the cost of this additional feature.

Robust optimization is also a well known method in telecomioation network design. We distin-
guish between robust network design using static or dynamuiting which refers to the flexibility of flow
to respond to the realization of the demand (while the capaemains fixed). Static routing means that
for every node pair the same paths are used with the samtngplitdependent of the realization of de-
mand. Contrary, dynamic routing allows for full flexibility rerouting the traffic if the demand changes.
The concept of different routing schemes is strongly relatedifferent levels of recourse in multi-stage
stochastic and robust optimization [18]. We refer to Mudatangsuk et al. [53] and Poss and Raack [60]
for a discussion on how to embed the two classical routings&s in these more general frameworks.
For general two-stage robust network design check [9]. We abte that recently there has been some
progress in defining routing schemes in between static andrdic, see for instance [13, 59, 60, 62].

In multi-period or multi-hour network design [46, 64], anpéikit finite set of demand matrices is
given, and the network is designed in such a way that eacheofiéimand matrices can be routed non-
simultaneously within the installed capacities (potdhtexpanding the network capacity in every period).
In this context, Oriolo [57] introduces the concept of doated demand matrices. Matrices are dominated
if they can be removed from the uncertainty set without clragnthe problem. Oriolo [57] classifies dom-
ination for pairs of demand matrices and static as well asdya routing. Ben-Ameur and Kerivin [14]
consider static routing and demands that may vary withinggoe given in the space of the commodities.
The resulting infinite set of capacity constraints is haddig separation.

For telecommunication network design problems this concepolyhedral demands has mainly been
applied using thénose mode[30]. In its symmetric version, the hose model defines upmemids on
the sum of the incoming and outgoing node traffic for all nelwmoodes. This model has attracted a lot
of attention in recent years, in particular, due to its nlveoretical and algorithmic properties assuming
continuous capacities (e.g., polynomial solvable cages|26, 34, 38]). For algorithmic and computational
studies using the hose model the reader is referred to Alltal. ¢4, 6] (static routing )and Mattia [50]
(dynamic routing).

Another compact but less studied description of uncestaiftraffic in telecommunication networks
is obtained by applying the framework of Bertsimas and Sitj {& network design problems. As demand
uncertainty essentially arises in the coefficients of theaciy constraints of network design formulations,
a restriction on the number of coefficients to deviate siemébusly translates to a restriction on the num-
ber of individual commodity-demands to deviate simultarsiyp The corresponding polyhedral demand
uncertainty set, which we call tHé-model, hence provides a meaningful alternative to the nosdel.
Given that in realistic traffic scenarios it is unlikely toveaall demands at their peak at the same time,
the number of simultaneous peaks is restricted to a (smat)nmegative valué'. AdjustingI’ relates to
adjusting the robustness and the level of conservatismedfatutions which provides additional flexibility.
Altin et al. [4] apply theI’-model to the classical VPN problem with single-path flows @ontinuous
capacities. Belotti et al. [11] use a simplification of tfienodel for the special cade = 1 and solve a
robust network design problem by Lagrangian relaxatioopfénstein and Nace [42] consider bandwidth



packing using thé@-model focusing on the robust knapsack problem given by diaacity constraints.
Poss and Raack [60] and Ouorou and Vial [59] study varianth@f’-model in the context of network
design and affine routing as alternative to the static anduayo routing schemes. Finally Belotti et al.
[12] solve real-world network design problems taking inte@unt demand uncertainty using thenodel.
They computationally compare different layer architeesuwith respect to equipment cost for different
values off".

Contributions of this paper In this paper, we consider the robust network design prolvigin static
routing following Bertsimas and Sim [21]. We enhance in ¢hdéferent ways the classical flow formula-
tion for network design to include demand uncertaintiesstFive derive a straightforward exponential-size
mixed-integer programming (MIP) formulation. Next, we ukslity theory to obtain a compact reformu-
lation, and finally, we project out the flow variables. A cortgiional evaluation reveals that the compact
formulation outperforms the other models.

To improve the performance of the MIP solver we study the sblmounterpart of the well-known
cutset polyhedron for network design. Instead of a singleatinequality for every network cut, we derive
multiple classes of facet-defining cut-based inequalltigexploiting the extra variables available in two
of the robust formulations. Computations show that the sbbut-based inequalities significantly reduce
the computation times.

Finally, we analyze the robustness for realistic networks @ demand forecast based on live traffic
measurements by comparing the cost savings using robustipgtion instead of an overestimation. The
designs are evaluated on “future” traffic matrices. Thipes demonstrates how robust optimization can
support network planning.

Outline This paper is structured in three parts: formulations,dvalequalities, and computations. In
Section 2.2 we introduce three different formulations favust network design using themodel. Sec-
tion 3 is devoted to cut-based valid inequalities to imprheeformulations. In Section 4, we report on the
computational comparison of the formulations and an ev@aoaf the robust network designs. We close
with concluding remarks.

Some of the results in this paper are based on drafts anddedebstracts presented in [43, 44, 45].

2 Formulationsfor Robust Network Design

2.1 Modding Alternatives

We consider the following robust network design problem. ak& given an undirected connected graph
G = (V, E) representing a potential network topology. On each of thiesk € E capacity can be installed
in integral units and costs, per unit. A set of commoditieX represents potential traffic demands. More
precisely, a commodity € K corresponds to node pais*, t*) and a demand* > 0 for traffic from
s* € Vtot® € V. The actual demand values are considered to be uncertaithéemoment we assume
that the demand vectar € R‘f‘ corresponding to the demand valuBsk € K lies in a given polytope
DcC R‘f‘ without explicitly specifyingD.

The traffic for commodityk is realized by a splittable multi-path flow betweehandt*. Of course,
the actual multi-commaodity flow depends on the realizatibthe demandi € D. In this context the
literature roughly distinguishes two main routing prifefa We either choose an arbitrary flow for every
realization of the demand i, which is known aglynamic routingor we fix arouting templateor every
commodity, that is, every realization of a commodity dembaad to use the same set of paths between
s® € V andt® € V with the same percentual splitting of flow among the pathsis Fiter principle is
known asoblivious routing(or static routing and is considered in this paper. We refer the reader to [50]
for solution approaches considering dynamic routing pypilec

The robust network design problem using oblivious roufiRgv D) is to find a minimum-cost installa-
tion of integral capacities and a routing template for ewenymodity such that actual flow does not exceed



the link capacities independent of the realization of destisanD. This problem can be formulated as the
following integer linear program.

min Z KeTe (1a)

c€E
1 i=sk
st Y (Wh—yh) ={-1 i=th VieVkeK (1b)
JEN() 0 else

> dye <z, Vee E,deD (1c)
kEK
Y, T >0 (1d)
T e 7!F! (1e)

Here N (i) denotes the set of neighboring nodes .ofConstraints (1b) describe a multi-commodity flow
using a link-flow formulation. The flow for commodityis directed from (its source) to (its target)}t*
without loss of generality. Constraints (1c) are link capaconstraints. Variables. denote the number
of capacity batches installed enc E at costx. per batch.

The flow variablesyfj, yfl denote the fraction of demand (independent of its reatimytiouted on
e = {i,j} away from node, j, respectively. We sef’ := yf; + y%. Since the cost for link capacity is
minimized we may ignore cycle flows and hence assume thatrgith= 0 or y%; = 0 andy! < 1in any
optimal solution. The vectay® ¢ Rf is called a routing template for commodity= K. Given a capacity

allocationz € R'f', and routing templateg® for all k € K, we say thafz, y) supports! € D in case (1c)
is satisfied forl. Notice that while flow and demands are directed, the aciuadiibn is arbitrary since we
sum up the two flows in (1c).

Fixing d € D, the realized flowf* (d) for commodityk on edge: amounts to

FE(d) o= dFys. )

This means that we allow the flow to change with the demandufticinsd but we restrict the flow
dynamics to the linear functions given by (2). Notice thaig$2xs a special case of so-calkffine recourse
introduced by Ben-Tal et al. [18] in the context of adjustabdbust solutions of linear programs with
uncertain data. Ouorou and Vial [59] apply affine recourseetwork design introducing affine routing.
Poss and Raack [60] provide a conceptual discussion of the tlouting schemes: oblivious, affine, and
dynamic.

Domination In its general form, formulation (1) is semi-infinite. It hewer by convexity suffices to
claim (1c) for every vertex of the polytog. Moreover, using the concepts of domination of demand
vectors introduced by Oriolo [57] we may remove vectors fribi uncertainty set that are dominated
without changing the problem. A vectdi € D is said tototally dominatea second vectod, € D
if any pair (x,y) supportingd; also supportsl;. In this case we may remove the capacity constraints
corresponding tals from the formulation which refers to removing from D. By removing totally
dominated demand vectors franthe set of feasible solutioris, y) to (1) remains unchanged. Since there
is no cost for flow in (1) we can even use a weaker dominatiorcepnin order to remove a potentially
larger set of demand realizations frabn Following Oriolo [57], a vectorl; € D is said tostrongly
dominatea second vectod, € D if for every (z,y) supportingd; there exists a routing templage
such tha(z, y*) supports botll; andd,. Total domination implies strong domination. Removingsgly
dominated! € D might change the set of feasible solutidmsy) but the set of feasible capacity allocations
x is not changing. Oriolo [57] shows hat totally dominatesl, if and only if &% > d5 for all k € K and
provides a similar characterization for strong domination

Whenever we speak of domination in the sequel we allow to vendemand vectors from the uncer-
tainty set without distinguishing total or strong domieati From the discussion above it follows that (1)
can be reduced to a compact formulation if the number of mamidated vertices oD is polynomial in
the number of nodes and arcs.



Dualization Using linear programing duality it is however easy to shoat there exists also a compact
formulation for the problem if the number of non-dominatedtices is exponential but the number of facets
of D is polynomial. Dualization of constraints is a central teicfue in robust optimization, see [16, 17, 19]
and [20, 21]. For probleriR N D) we observe that the data uncertainty only affects the cgpamnstraints
(1c) which we rewrite as
k, k

Igleagléd Yo < xe,Ve € E. 3)
SinceD is a polytope the maximization in (3) refers to a linear pevgiwhich maximizes the link flow
f¥(d) over all demand realizations it using the linear recourse (2). Dualizing the linear desicripof
D by introducing a dual variable for every (non-redundargjjmality describin@ and removing thenin
in the dualization (which can be done since we are minimiziagacities anyway) we obtain a so-called
robust counterpart fofRN D). The robust counterpart for general polytof@ss provided in [6]. It is
compact if the linear description f@ c RI¥| is compact, that is, the number of facetgbis polynomiall.
In the next section we discuss the dualization using a paaticincertainty set.

We may of course exploit domination to derive a formulation® that has either polynomial vertices
or facets. From the computational point of view it can be ewése to extendD by adding dominated
vectors. Moreover, instead of a formulation fBrin RI%! it is also possible to use compact extended
formulations ofD to derive compact robust counterparts(&N D), see the next section. We denote by
DuALIzE any algorithmic approach that is based on solving the radmustterpart given in [6] obtained by
dualizing the capacity constraints (1c) as described above

Separation Instead of dualizing the capacity constraints we can algothis original formulation (1)
after reducing it to the (hon-dominated) verticesIdf In case this number is exponential the resulting
exponential number of capacity constraints (1¢) are hahlojeseparation. This approach which we refer
to as algorithm 8PARATE has been used by Ben-Ameur and Kerivin [14] to sql®eV D) for the hose
model. We remove the capacity constraints (1c) from theesydqtl) (or keep a subset) and add them
dynamically. For this we have to solve the separation prahie(3) in every iteration and for every edge.
More precisely, given a solutiofx*, y*) to (1) or its linear programming relaxation containing oaly
subset of the constraints (1c), for every edge F, we solve the problem

max Z d*y** st.deD
keK

obtaining an optimal solutiod, € D. The vectord, refers to the worst case demand realizatio®ifor
edgee given flow template/*. In case}", . d¥y:* > z% we add the corresponding capacity constraint
> rer d¥yY < . to formulation (1) and resolve.

Replacement  Altin et al. [6] propose a third way to solMé& N D) that is based on projecting out the flow
variables in the dualized reformulation which we refer téhesReEPLACE approach. The projection results
in an exponential formulation in the space of the capacitjatdes and the variables used to dualize the
capacity constraints. The formulation does not rely on gdmeetric inequalities [41, 52, 56] but is solely
based on network cuts such that the corresponding sepacatidoe handled by standard max-flow-min-cut
[3].

In Section 2.2 we show how to use the three approaches| 2, SEPARATE, and REPLACEt0 solve
(RN D) using a particular demand uncertainty, ienodel.

Uncertainty Sets The design of uncertainty sets has a strong impact on thatyjaald robustness of

the solution. There are many criteria for selecting undetfasets for a particular application. We believe
that the following should receive particular attentionrsEiany uncertainty set should reflect real data
uncertainty as much as possible, that is, in our c@eshould contain the observed (non-dominated)
demand fluctuations that happen with high probability, drsthould not contain demand realizations that
are highly unlikely. Secondly, data to formulate and paraire the uncertainty set should be available.
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Figure 1: Traffic fluctuations of three source-destinatiairgpin the US Abilene Internet2 network [1] in
time intervals of 5 minutes during one week

Moreover, the uncertainty set with these parameters in aimgful way. And last but not least, a criterion
often neglected, the resulting formulation or reformuatshould be computationally tractable.

One such uncertainty set is the already mentioned hose m@derefer to Altin et al. [6] and Ben-
Ameur and Kerivin [14] solving network design problems gsihe hose model and algorithmsuBLIzE
and SPARATE, respectively. Theoretical results can be found in [26,384, Introduced in the context of
virtual private networks (VPNSs) [30, 32], the hose modeldiees feasible traffic realizations by bounds on
single nodes only. This data is typically available to thiwmek practitioner [30, 32]. However, describing
traffic by node demands strongly simplifies the notion offitahatrices since the traffic fluctuations are
aggregated at the network nodes. Whenever point-to-gaifittdata is available or can be calculated from
real-life measurements in networks [58, 65, 66] or from pafion statistics [31], it becomes desirable to
work with more flexible uncertainty sets that reflect the otxse characteristics and dynamics of the point-
to-point traffic to allow for more accurate network designs.

2.2 T-uncertainty

For general linear and integer programs, Bertsimas and 1] propose a polyhedral uncertainty set
together with a simple way to adjust the price for robustr(ess, increase of the objective value of a
robust solution compared to its non-robust counterpartubjng the shape of the set. In their model the
coefficients of the constraint matrix may vary around a gimeminal value but the number of deviating
coefficients is bounded by a (small) numtigrfor every rows: of the matrix. Adjustingl’; means to
control the price for robustness. Because of its simplitity concept has been used extensively in robust
optimization for many different applications [4, 9, 20, 22, 42].

We already observed that data uncertainty (fBfV D) only appears in the capacity constraints (1c)
with uncertain coefficientd”, k € K. Applying the framework of Bertsimas and Sim [20] & N D)
means to restrict the number of commodity demands that tefriam a given nominal demand valde,
simultaneously. In particular, the number of simultanedeimand peaks is bounded. This assumption has
again a strong relation to telecommunications since incglraffic patterns, in particular in IP (Internet
Protocol) networks, traffic peaks do not occur simultangous. Figure 1. Note also that the main
justifications for a meaningful application of tiiemodel to our problem is the huge number of coefficients
in the uncertain capacity constraints (1c). The situatemlze different for other applications.

In the following we introduce th&-model for(RN D) in detail. Similar uncertainty models have been
used in [4], [5] and [42] applied to different versions ofwetk design and demand packing problems. We
assume that the demand for commoditg K varies around a givenominal demand”* with a maximal
possibledeviationof 0 < d*, that is,

d* e [d¥ —d*, d* +d*]forallk € K. (4)



Now we limit the number of possible deviations from the noahivalue:

d* —d*
>t ®)
keK d
wherel’ € {0,...,|K|}. We use the samie for all capacity constraints (1c) since the coefficients (k-

mand scenarios) are independent of the edges. The cordisgamcertainty polytop® can be described
in RI%| using exponential many inequalities or alternatively gsincompact extended formulation. For
the latter, we rewrite* = d* + (¢% — o* )d* and considefo,o_) > 0 satisfying

Ji+af§1fork€Kand Z(JiJrJf)SF.
keK

However, tha'-model can also be described in the original sgace with polynomial inequalities if we
exploit the concept of domination. Since only the worstecadge-flow determines the edge-capacity, the
problem remains the same if the actual demand is assumedrtdtizeintervald®, d* + d*], instead of the
interval[d* — d*, d* + d¥] for k € K. Demand vectors containing downward deviations from thainal

are totally dominated. We may hence assume d#fiat= 0 for all k¥ € K without changing the problem.
The set of possible deviations scenarios can be defined as

DF::{aeRf:akglforkeKandZang}
keK

and the correspondirig-model capacity constraints (1c) reduce to

E Jkyf + max E akcikyf <z, Ve e k. (6)
oceDl
keK keK

Remark 2.1. By domination we might even forcg, ., * = I which removes the all-nominal demand
vector (and vertexj from DT, This observation however is notimproving on the robusnterpart below
such that we stick to the full-dimensional decription®f. Settingl’ = 0, the polytopeD! reduces to
a singleton, the origin. Hence there is no deviation 8R& D) reduces to the deterministic problem of
optimizing against the all-nominal vectdr Similarily, in casel’ = |K| (RN D) reduces to the problem
of optimizing against the worst-case all-peak scendriod. By varyingT' in {0, ..., |K|} we may adjust
the level of robustness.

We remark that a simple compact alternative to the definedodel which is also described in the
original space is to use (4) plus a relaxation of (5):

kE_ gk
> =t
keK d

In this case there might be more thAmany upward deviations if compensated by an appropriatéeum
of downward deviations and vice versa. This results in axeglauncertainty set potentially giving more
conservative solutions.

We now continue with the three modelling alternatives inecafl'-uncertainty. We will assume <
I' < |K| in the following. In this case the polyto@@! is full-dimensional and haé‘f‘) + 1 many
vertices. The capacity of a link has to be determined sulipeat mostl' commodities deviating from the
nominal demand value. For each deviating commodity, thé& pelued® + d* describes the worst-case
(capacity-wise). Hence, the complete model reads

(1a) (1b), (1d), (1e)

SEPARATE: _ N
Sodiyb+ > diyE <2, VQCK,|QI=T. (7a)
keK kEQ



and we denote its convex hull of feasible solutions®§”*. As mentioned above we may handle the
exponential number of capacity constraints (related ttices of D) by separation. In the corresponding
SEPARATE approach we have to solve the problem

max{ZakJ’“ygk  0<o"<1VkeK, Zakgf} (8)

keEK keK

for every edge given a solution(z*, y*). This problem can be solved directly by sorting the comnieslit
with respect to the valué’“yg"’. TheT largest values determine the worst-case commodity supseti’
with |@| = T for edgee € E maximizing the left hand side of the capacity constraint (6)case violated
by (z*, y*) we add the corresponding capacity constraint.

In our implementation of SPARATE the initial formulation already contains one capacity ¢oaiat
per edge corresponding to the all-nominal scenario, thatésstart with (1) where (1c) is used fér= d
only.

The linear program (8) bounded and (integral) feasible fovectorsy, every edge: € FE, and all
considered values df. Hence, by strong duality, its optimal objective value ciites with

min Y pf+ el st me,pl > 0Vk € K, pf + 7 > d"'yf Vk e K (9)
keK

for every edge: € E. With this relation we can reformulate the exponential m¢tleas:

(1a) (1b), (1d), (1e)

I'me + Z dy* + Z p¥ <z, VecE (10a)
keK keK
DUALIZE: .
—Te + dkyf —p’g <0, Vee E,ke K (10b)
p,m >0 (10c)

The DuaLIzE approach to solvéRN D) using thel’-model is based on solving the compact model (10).
Compared to the (singleton scenario) deterministic ndtwiessign model obtained by settifi| = 1 in
(1) we havg E| + | E|| K| additional variables an(E || K| additional constraints.

We denote by

Pr := conv {(x,y, T,p) € ZLFE‘ X R%F‘EHK‘ X R'f' X RLFEHK‘ | (z,y,,p) satisfies (10}

the convex hull of all feasible solutions of model (10) qmi»j(w,,r)(Pp) as the projection on thér, 7)
space. Since this model is at the center of this paper, weegthevdimension of its polyhedron.

Proposition 2.2. The dimension ofr equals2|E| + 3|E||K| — (|V| — 1)| K| whereasproj, . (Fr) is
full-dimensional.

Proof. For Pr, there ar@|E| + 3| E|| K| variables and|V'| — 1)| K| linearly independent flow conservation
constraints (1b). We show that there are no additional imapdiquations. Let

Yooewet Y Beme+ Y Y b4+ DY Y (bbbl = (A1)

e€4(S) e€8(S) e€5(S) kEK e={i,j}€5(S) keK

be an equation satisfied by all pointsia and letp = (&, ¢, 7,p) € Pr. Foralle € E we can modify

p by increasing the capacity without leavidg. Hence,a. = 0 for all e € E. Once we increased the
capacity we can also increase variabtesandp” for everye € E andk € K which gives3. = 6* =0
foralle € E andk € K. Now we choose a spanning tréeC £ in G which exists sincé& is connected.
By adding a linear combination of the flow conservation caists (1b) to (11) we can assume that either
;ij orué?i =0foralle = {i,5} € T,k € K. Sending a small flow in both direction on everin T gives
ufj = Nfi = 0. Now choosing an arbitrary edgec E there is a unique circuit consisting efand edges



in T'. Sending small circulation flows (in both direction) on thigcuit finally results iruf; = ¥ = 0 for
alle = {i,j} € E,k € K. It follows that (11) is a linear combination of flow consetiea constraints
which gives the desired results. By projecting all congedgoints we also conclude thatoj(IJ)(Pp)
has dimensiog|E|.

Altin et al. [6] propose a projection of robust counterpaftshe form (10) to the space of the design
and dual variables. A similar projection has been studiddrbeby Mirchandani [52] in the context of
deterministic network design and can be applied to the cetpadel (10) as well. For this, we introduce
slack variableg”® corresponding to inequalities (10b). Hence, flow variabfeg (10a) can be replaced
by ﬁ(”e + pF — ¢%). Now the flow for different commodities is no longer bundldthe existence of a

flow from s* to t* can be guaranteed by a minimum-cut condition replacing tvefibrmulation (1b) and
resulting in the following exponential model

(1a) (1d), (1e)

d" d* 4 d* e dF o
(F + Z ﬁ) Te + Z < dAk Pe — ﬁqe S Te, Veec E (12a)
keK keK
REPLACE: .
S @ tme—df)2d, VReK,SCV:shesttgs
e€d(S)
(12b)
p,¢,m >0 (12¢c)

with P.?" the convex hull of its feasible solutions. A minimum cut \&of at leasti* for everyk € K
between source” and target” with respect to the edge weighs. + p* — ¢%) is necessary and sufficient
for the exisistence of a flow templagesatisfying (1b). The RPLACE approach for solvingRN D) using
theI'-model is based on solving this model. The exponential setagfualities (12b) is handled implicitly
by separation using a max-low-min-cut algorithm. Noticattihe number of variables remai@$| K || E|).

3 Valid Inequalities

In deterministic network design, cutset inequalities hlagen proven to be of particular importance [8,
23, 27, 48, 61]. This is true from the theoretical point ofwias they define facets but also from the
computational point of view as they are known and proven orove on the performance of branch-and-
cut based approaches to solve network design problems.idrseltion, we generalize the well-known
class of cutset inequalities to robust network design.

To obtain strong inequalities based on network cuts we kltiie two shores of a network cut and study
the convex hull of solutions to general two-node problenmsthis respect we study a structure which is
known as a cutset polyhedron, see [8, 61]. As by linear deparydwe can save the flow conservation
constraints for one of the two nodes, the structure is aléernerl to as a single node flow set in the
literature, mainly in the context of bounded capacity alea and so-called flow-cover inequalities, see
[7, 35, 36, 47].

TheI'-robust cutset polyhedron is introduced in Section 3.1. Wehewever further simplify and
project the feasible region to the and = space. The resulting two-variable set is studied in detail i
Section 3.2 providing a complete description and all fateftning inequalities.

These inequalities are then lifted in Section 3.3 to the spd@ll variables for the two-node problem
and eventually to the original space which establishest{fdefining cutset inequalities for the original
problem under certain conditions. These conditions ar&k&out following the line of projecting and
lifting.

3.1 TheI-Robust Cutset Polyhedron

We consider a proper and nonempty sulssef the noded” and the corresponding cutg€1S) and denote
by Qs C K the subset of commodities with sourgeand target” not in the same shore of the cut. Since



we may always reverse single demands without changing thaehvee may assume in this description
s* € Sforallk € Qs. We denote byls := 3, ., d" the aggregatedominal cut-demandiith respect
to S. We will throughout assume th&®s| > I" > 1. Notice that we can always reduEdo |Qs| without
changing the problem on the cut. It follows > 0. Contracting both shores of the ai(tS), we consider
the followingI'-robust two-node formulation corresponding to (10):

>oowh-uk) =1 VkeQs (13a)
{i,j}€8(S)

Y wh-vh) =0 VkeK\Qs (13b)
{i.j}€s(S)

I're + Z dyk + Z Pk < z. Vee€d(9) (13c)

keK keK
—me+d"yF —pF < 0 Veed(S), ke K (13d)
z,y,p,m > 0 (13e)

We define theobust cutset polyhedroRr(.S) with respect toS to be
Pr(S) := conv {(m,y,ﬂ,p) € Z'f(s)' X Ri“;(s)”m X R‘f(s)‘ X RE(S)HK‘ | (z,y,m,p) satisfies (13}.

such that the following follows from Lemma 2.2 &% (.S) defines a two-node robust network design
problem. We sefir(S) := proj(, » (Fr(S)).

Corollary 3.1. The dimension of’r(S) equals2|§(S)| + 3|6(S)||K| — | K| whereasRr(S) is full-
dimensional.

In the sequel we will make use of the well-known mixed integmmding (MIR) technique several
times, see [54]. For some real numldewe definer(d) := d — ([d] — 1) as the fractional part of with
r(d) = 1if dis integral.

Lemma 3.2 (Nemhauser and Wolsey [54]Lonsider the two variable mixed integer set defined by asingl
base inequality:
Y ={(z,7) €Zy xRy : cx+im >d}.

The inequality
re 4+ max(0,i)m > r [2]

C

is valid for Y, where: := cr(d/c).

Note thater(d/c) gives the remainder of the division @by c if d/c is fractional. Otherwise, ifl/c is
integral thenr = c. Given any vector and a subset of indicdswe abbreviate (1) := ) __; ve.

3.2 Robust Cutset Inequalities.

Independent of the realization of demand all cut commaslifie have to be realized across the 6(5),
that isy*(5(S)) > 1 for all k € Qs. It follows that we have to provide sufficient cut capaciti(S))
resulting in the following base cutset inequality to hold:

x(6(S)) > dp := Z d* + max Z UidwC (14)

Dl
kEQs THET keqs

It states that the capacity on the cut should be at least timénadcut demand plus thie largest deviations
among@s. Natice that the right hand side is independent of the redlffow. The valuel, only depends
on the cuty(S) and the value of’. As the left hand side is integral we may round up the rightthside
giving

2(6(8)) > [do] (15)

10
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Figure 2: Example ofXr with T' = 3, |Qs| = 6,ds = 2,d = (&,§,8, 8,2, 1). The upper convex
envelope inequalities (23) for= —3, j = —2 (22 — 57 > 6) and fori = —2, j = —1 (3x — 57 > 14),
the lower convex envelope inequalities (22)fet 1, j = 2 (7x + 10w > 59), the MIR inequality (20) for
1 =0 (z > T7), the MIR inequality (20) foti = 2 (3z + 107 > 27), the base inequality — I'r > % and
m > 0, completely describe the convex hull.

This already generalizes the classical cutset inequalityétwork design [48]. Since no dual variables
T, appear in this inequality, it is also valid for the exponahtbrmulation (1). We use inequality (15) to
tighten all three formulations during branch-and-cut. Aswill prove in Corollary 3.16, inequality (15)
defines a facet oPr(S) if dy < [do] and either§(S)| = 1 ordy > 1. It also defines a facet df: if
additionally the graphs defined by the two shofeandV \ S are connected. In the rest of this section
we will generalize this essential result to a more geneedscbf inequalities in the space of thend
variables.

Let us start by generalizing the base inequality (14). @dte an arbitrary but nonempty subset of the
cut-commaoditie€)s. From the flow-conservation constraints (13a) follows that

S dH6(5)) > d(Q) and 3 dhyF(3(S)) > d(Q). (16)

keQ keQ

Aggregating all capacity constraints (13c), adding allstaaints (13d) foe € §(S) andk € @, using (16),
and relaxing the backward flow variables results in

2(6(8)) + (1QI = T)w(5(S)) > ds + d(Q) . 17)

The left hand side of (17) is not changing as long as the calithirof the subsef) is constant. Hence among
all subsets of) with cardinality|Q| the one maximizingZ(Q) gives the strongest inequality (17). To state
this inequality we have to sort the commodities nonincreglgiwith respect to the maximum deviatidfi
and define subsets §fs corresponding to large deviations. This needs some neviootdetp : Qg —
{0,...,|Qs|} be a permutation of the commoditiesy such thatle () > ¢~ (2 > > dr '(IQsD
andletJ = {-T,...,|Qs| — T'}. Fixing the cut we defin€; := {k € Qs : p(k) <i+T}forie J
as the commodities corresponding to the T' Izirges,t(i’c values with respect t@)s. Hence the demand
di == dg + &(Qi) denotes the total nominal demand plus the I largest peak demands across the cut.
This definition is consistent with the definition @f in (14) since|Qs| > T and hencels = >°,., . d*
andd(Qo) = max,, epr D _keq. ok d.

Using this notation inequality (17) reduces to

2(5(9)) + in(5(9)) > d. (18)
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Itis valid for all: € J and by setting = 0 we get inequality (15). In the sequel we consider the polybwed
Xr(S) = conv{(:z:, ) € ZPO < RIVO | (4, 1) satisfies (18Yi ¢ J}

Every valid inequality forX(.S) is also valid for thd'-robust formulations (10) and (12). In the following
we will completely describ&r(S) providing all facet-defining inequalities. Since all coeifints in (18)
are identical for all edges i6(.S) it suffices to study the two-dimensional case with base inkiigs

T +im > d; (19)
and the polyhedron
Xr = conv {(z,7) € Zy x Ry | (z, ) satisfy (19) foralk € J},

also see Figure 3.2.

Notice thatX(.5) is obtained fromX by copying variables and forcing non-negativity for the ieap
variables. It follows that every facet foXr translates into a facet fokr(S) and vice versa except for
the non-negativity constraints. In fact a complete desioripof X1 determines a complete description of
Xr(S) and vice versa.

Lemma 3.3. Every facet-defining inequalityx + gm > ~ for Xr with «, 8,y € R different from a non-
negativity constraint translates into a facet-definingdoality ax(6(S)) 4+ B (6(S)) > ~ for Xr(S). All
facets ofX(.S) defined by inequalities different from non-negativity ¢aaists are of the fornava:(6(.5))+
Bm(6(S)) >~ fora, 8,y € R and correspond to a facet-defining inequality + s7 > ~ for Xr.

Of course, we hav&r = X1 (S) ifand only if |§(S)| = 1.

In the following we will not distinguish facet-defining ineglities of X and X (.5) as long as different
from non-negativity constraints.

Let us divide the index seftinto the sets/_ = {-T,...,—1}andJ; :={1,...,|Qs| —T'} such that
J = J_ U{0} U Jy. Accordingly, theupper envelopef X corresponds to indices i and thelower
envelopeof X corresponds to indices i, , see Figure 3.2. More precisely, the upper envelope is given
by Xr N {m > dy — d_1} whereas we define the lower envelopeXaf asXr N {r < d; — dy}. Notice
that the upper envelope is always non-empty. The lower epeek non-empty if and only iiQs| > T
andd; > do.

We call valid inequalities foX trivial if they are non-negativity constraints or if theyeasf type (19).
In the following we are only interested in non-trivial fasedf X1 as these will translate to facets Bf.
Lower and upper envelope are similar in structure. The leavmelope, however, is cut by > 0 which
leads to one additional type of facet. We will see that besttie vertical facet > [dy] there are two
classes of non-trivial inequalities describing the lowevedope and one class of non-trivial inequalities
describing the upper envelope facets.

Settingr; := r(d;) and apply mixed integer rounding to (19) yields

rix +max(0,4)m > r; [d;] (20)

valid for X1, see Lemma 3.2. In particular, for= 0 this inequality reduces to > [d,| which is (15).
Fori € J_, inequalities (20) are obvioulsy dominated by (15). Far.J,. inequality (20) connects the two
points(|d;],r;/i) and([d;],0) in caser; < 1. If r;, = 1 inequality (20) reduces to the base inequality
x +im > d;. We get

Lemma 3.4. Inequality(20)defines a facet ok if i = 0 andr; < 1.

Proof. Consider > 0 and the two affinely independent poirtfely] , do —d_1) and([do] ,do —d—_1 +¢€)
which both satisfy (20) with equality. To see feasibilitytice thatdy, — d_; > 0 gives thel largest
deviation demand amor@g. Setting

ze = [do] e =do —d_1,pF = rnax(czk — Te, 0), andyfj =1fork € Qg (22)

for some edge = {i,j} € §(S) gives a feasible point faPr (S) which has a slack af —r in the capacity
constraint (13c) sinCEme + Y, cx PE D i yE = do. Hence([do],do — d_1) is feasible forXp. As
ro < 1 it follows also that the second poifitdy] ,do — d—1 + €) is feasible forXt fore < 1 — ry. O
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Lemma 3.5. Assume/, # () and [djq -1 | > [do]. Seti = argmax(ry/k : k € J4 with [d] =
[d|gs|-r])- Inequality(20) defines a facet ok if r; < 1.

Proof. Let 7’ := max(ri/k : k € Jy). Since|d;| > [dy]| the two points(|d;]| ,#') and([d;],0) are
feasible. They satisfy (20) with equality and are affinelygépendent. O

In general, the two inequalities from Lemma 3.4 and Lemmad8.50t suffice to provide a complete
description ofXt. To get a complete description of the lower envelope&kgfwe have to consider two
arbitrary base inequalities+ im > d; andz + jm > d; with ¢, j € J4,4 < j. Its intersection has-value

bij = (jdi —id;)/(j — ).

Now we have to connect the two poirlts; ;| , (d; — [b:;])/7) and([b; ;1,(d; — [bi;1)/4) Letr; ; =
(j —)r(bi ;). Recall that; ; defined this way is the remainder of the divisionjdf — id; by (j — ¢) with
ri; = (j — t) in caseb, ; is not fractional, see Lemma 3.2.

Lemma3.6. Fori,j € J4 withi < 7, the following inequality is valid foX:
(i 471 ) +ijm > 1 [b ;] +id; (22)
Proof. We scale the two base inequalities wjthndi, respectively:
jr+gir > jd; and iz +ijm > id;.

Introducing the slack; := iz +ijm — d; > 0 of the second constraint and combining the two inequalities
gives

(j — z)ac +s; = jd; — ’L'dj,
Applying MIR and re-substituting results in (22). O

In a similar way we combine two base constraintsifgr € J_ to get valid inequalities for the upper
envelope ofXt.

Lemma3.7. Fori,j € J_ withi < 7, the following inequality is valid foXr:
(—j+rij)x—ijn > rij[bij] — jd; (23)
Proof. We multiply the base constraints foandj by —j and—i, respectively:
—jx —jir > —jd; and —ix —ijm > —id;.
Introducing the slack; := —jx — jiw + jd; > 0 for the first constraint and combining gives
(j—i)xr+s > jdi —idy,
Applying MIR and resubstituting results in (23). O

In case; ; is fractional inequalities (22) resp. (23) defined abovefithe fractional intersection point
(bi,j, ™) with m = (d; — b; ;)/i of the two base inequalities (19) corresponding tmdj. Note that by
construction of the demand valuésit holds thatb; ;1 > b;t1,i+2 for0 > i € J_ andb; ;41 < bi11,i+2
for 0 < ¢ € J;. Also note that if(j — ¢) dividesd, ; then inequality (22) resp. (23) reduces to the base
inequality fori resp.j. Of course not every pait, j) results in a facet. In fact, only linearly many of the
inequalities (22) and (23) are non-redundant. Let us deffiedunction

dr —
w(k,x) = kk a forallk € J_ U Jy andzx € Ry.

We now consider an arbitrary intervial, a + 1] with a € Z,a > [dy] and easily determine the indices
i, j that yield an inequality of (22) resp. (23) dominating alhets of this type on the chosen interval by
simply maximizing (resp. minimizing) the valugk, a) and=(k, a + 1). Doing so for all relevant values
of a we get all (non-trivial) facets of the lower resp. upper doge:
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Lemma3.8. Assume/; # () and [d|g.|-r| > [do] + 1. Fora € Z with [dy] < a < [d|gg)-r| — 1 let
i = argmaxyc;, m(k,a) andj := argmaxyc;, 7(k,a+1). Ifi # j, then inequality22) defines a facet
of Xr. If otherwisei = j, then the base inequalif}t9) defines a facet oXr.

Proof. If i # j resp.i = j then inequality (22) resp. (19) connects the two affinelyeehdent points
(a,m(i,a)) and (a + 1,7 (j,a + 1)), that is, they satisfy inequality (22) resp. (19) at eqyalifo see
feasibility of the first point check that for € J, it holdsa + kn(i,a) > kn(k,a) = dj, by definition of

i. Fork € J_ we havea + km(i,a) > do + k(d; — do)/i > do + k(d, — dp)/k = di, where the first
inequality follows froma > dy and the second inequality follows froln< 0 < 7 and the definition of
the demandd;. The differencel; — d;_; is non-increasing with. Feasibility of the second point can be
shown in a similar way. O

Notice that for the lower envelope afd g |-r| — 1 < z < [d|g4—r | We get a facet of type (20) by
Lemma 3.2. For > [d|o.|-r| We haver > 0 as a facet. These inequalities together completely describ
the lower envelope. A complete description of the upper lepesof X1 is obtained with the following
Lemma which is proved similar to the proof of Lemma 3.8.

Lemma3.9. Fora € Zwitha > [dy] leti = argmin,.; n(k,a+ 1)andj = argmin,; =(k,a). If
i # j, then inequality23) defines a facet akr. If otherwisei = j then the base inequalifL9) defines a
facet of Xr.

Notice that forz > [br_; r] the base inequality (19) far = —T' is the only facet. Also notice
that the pairgi, j} in Lemma 3.8 resp. Lemma 3.9 are not unique. However, thétimgtacet-defining
inequalities are of course unique.

We have established different classes of facet-definingualkities for Xr. It turns out that all these
inequalities together with the trivial facets completefsdribeX . This essentially follows already from
the above since we stated the dominant inequalities fonttvals(a, a + 1] with a > [dy].

Completeness also follows from a result of Miller and Wol§g¥] who study a two-dimensional set
(Model W) similar to Xr. Applying [51, Theorem 3] for the lower envelope resp. upg@relope (using
an appropriate variable transformation) we get

Corollary 3.10.

Xr ={(z,7) € R x R | (z, ) satisfies the constrain{49), (20), (22), (23), and7 > 0} .

3.3 Lifting

We have provided a complete and non-redundant descripfidfi-cand thus ofXr(.S). Next, we show
how facets ofX(.5) translate to facets of the cutset polyhed@n(.S) and the original network design
polyhedronPr-. We also prove that the sétr is identical to the projection of the cutset polyhedianto
the space of the andr variables if the cut contains a single edge. Define

Rr(S) = proj, (Pr(S)) = {(z,7) | Jy andp such thalz, y, 7, p) € Pr(S)}
Lemma3.11. Rp(S) C Xr(S). Moreover,Rr(S) = Xr(S) if and only if|§(S)| = 1.

Proof. For (xz,m) € Rr(S) let (x,y,m,p) € Pr(S). Inequalities (18) are valid foPr(S) which gives
(z,m) € Xr(S)andRr(S) C Xr(S).

Let 6(S) = {e} with e = {i,j} fori,j € V. Given(z,7) € Xp(S) we setyf, := 1,y% := 0,
andp* := max(0,d* — 7.) forall k € Qg. Now (z,y, 7, p) obviously satisfies (13a), (13d), and (13e).
Moreover it holds that

I're + Z d"yF + Z pF=Tr. + Z d” + Z max (0, d* — 7,)
keQs keQs keQs keQs
=Tr. +dg + cZ(Ql) — 1T,
< e
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for somei € {0, ..., |Qs|} using the introduced ordering of demands and (18). It fadlthat(x, y, 7, p)
satisfies (13c) and hen¢e, ) € Rr(S).

It remains to show thaRr(S) # Xt (S) if [6(S)| > 1. Letey,ex € 6(S). There is a pointz, y, 7, p)
in Pr(S) with z.,, 7, > 0 andz.,, 7., = 0. We simply route all traffic or; and setx.,, ., large
enough. For this point it hold&e, 7) € Xr(S) as already shown. We modify this point by shifting the
capacity frome; to es but keeping the value., such thatz., = 0 andrw., > 0. This gives a vector
(x,m) € Xr(S)\Rr(S) since inequalities (18) are still satisfied but (13c) is atetl fore; . O

Notice that from Lemma 3.11 follows that any poiat, =) which is defined on a single edge, that is,
there existg € 6(5) suchthatey = n, = 0forall f € §(5), f # e, is valid for X (S) if and only if it is
valid for Rp(.S). We will use this fact several times below.

Lemma 3.12. Every facet-defining inequality foX(.S) (different from a non-negativity constraint) de-
fines a facet o ().

Proof. We can assume that the facet®f(.5) is defined byax(5(S)) + Sw(6(S)) > ~ for o, B,y €

R. Consider2|5(S)| affinely independent point&®, 7¢) € Xr(S) for i = 1,...,2[6(5)| satisfying

az*(8(S)) + Bn*(5(S)) = ~. Given an arbitrary edgg € 4(.5) we construct a poirti*, 7*) for everyi =
-,2|6(8)| by shifting all entries to edgg¢, more preciselyi’; := D ecs(s) Te andwf = ces(s) Me

All other entries are set to zer@? := 7! := 0 for alle € 6(S)\{f}. The points(z‘, 7%) are valid for

Xr(S) and they satisfyvi* (§(S)) 4 87 (3(S)) = ~. Moreover, sincéi’, ') is defined on a single edge

it holds (2%, ") € Rr(S). Notice that(z?, 7*) # 0 as there is at least one cut demand. There must exist

at least two affinely independent pomts amdtig, 7¢), otherwise the pointéz?, 7*) cannot be affinely

independent. Assume these points @fg 7') and (72, 72). The proof is complete fof§(S)| = 1. In

case|d(S)| > 1 we can assume that elth;ej: > 0orz 2 > 0, and similarly elthenrf > 0 or wj% > 0.

Otherwise the original points?, ) are all contained |nthe face definedby(S)) > 0respw(5(S)) >

0 which is a contradiction as the sum of non-negativity caists cannot define a facet. Now we vary

f € 6(S) which gives2|(S)| affinely independent points, both iRr(S) and on the face defined by

az(8(5)) + Bm(8(S5)) = - O

Lemma3.13. Leta, 5,y € R. If ax(6(S)) + A (6(S)) > ~ defines a facet foRp (S) then it also defines
afacet forXr(95).

Proof. ItholdsRr(S) C Xr(S). SinceRr(.5) is full-dimensional we only have to show that(§(S)) +
Bm(6(S)) > ~ is valid for Xp(S). Assume the contrary. We take a point i (S) which violates
ax(8(S)) + pr(6(S)) > ~. Now we modify this point by shifting everything to one edgehe con-
structed point is also valid faR-(.S) as shown above but violates the facet-defining inequalitghvis a
contradiction. O

We call facet-defining inequalities fdtr (S') non-trivial if they are non-trivial fotlX(.5), that is, they
are different from non-negativity constraints and differgom (18).

Theorem 3.14. Every non-trivial facet-defining inequality
az(0(5)) + pr(6(5)) = v (24)
for Rr(S) also defines a facet df-(.5) if one of the following conditions hold

e |5(S)| = 1 and there exists a feasible poifit, y, 7, p) on the face ofPr(S) defined by24) such
that the edge capacity constrai(itOa)is not tight.

e |5(S)| > 2 and there exists a feasible poifit, y, 7, p) on the face ofPr(S) defined by24) such
that the capacity constrair{fL0a)is not tight for at least two different edges.

Proof. We assume that (24) does not define a facetFeS). Hence every pointx,y, ,p) € Pr(S)
satisfying (24) at equality must be contained in a face®efS) defined by

Z Qele + Z Bere + Z 26k + Z Z szyfj +M§1y;€z) > (25)

e€d(S e€d(S) ecd(S) keK e={1,j}€6(S) keEK
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By adding flow conservation constraints to (25) we concllltm;ufj = 0 for an arbitrary edge = ij €
4(S)and allk € K. We may hence assume that for the same edge the capacityadotistnot tight for the
point(z, y, T, p) on the face ofP(S) defined by (24). By increasing we see that* = 0 forall k € K.
Similarly, sending a small circulation flow an we conclude@ = 0. Notice that by these perturbations
we never leave the face.

Now assume thay(S)| > 2. There is a second edgé # e such that the corresponding capacity
constraint is not tight. Since we may exchange variableesabf two different edges without leaving the
face (24) edge’ # eisin fact arbitrary. By sending circulation flow using edgemde’ and by increasing
pl itturns out thav} = uf; = u¥; = 0 for all edges: € 4(S) and commodities € K.

Since (24) defines a facet &ir(5), 2|5(S)| affinely independent points exist. These points can be
lifted to points in Pr(S) remaining affinely independent in the, 7) space and satisfying (24) as well
as (25) at equality. We showed that only ®jé(.5)| coefficients in (25) corresponding to theand
variables are nonzero. Hence (25) is (24) up to scaling arid aginear combination of flow conservation
constraints. It follows that (24) defines a facetff(.S). O

We call a valid inequality fo>-(S) non-trivial if it is different from the constraints (13a)&e) defin-
ing Pr(S). The following result is a straight-forward generalizatiof the corresponding result for the
deterministic case from [61], also see [2].

Lemma 3.15. Every non-trivial facet-defining inequality &% (.5) defines a facet aPr if both cut shores
are connected.

The proof of Lemma 3.15 is based on the fact that in case batfestare connected, then the flow for
commodities inK \ Qs can be routed in the two shores without using cut edges. Taasithat we can
construct feasible points fdfr from points valid forPr(S) without changing the cut values. This is done
by assigning sufficiently large values foy, 7., andp” for edges € E \ 6(S) and then decomposing the
problem with respect to the two graphs definedSoespectivelyl \ S.

Corollary 3.16. Given a node sef C V such that the two shores of the corresponding &ift) are
connected, the cutset inequal{ys) defines a facet aPr if r(dy) < 1 and either|d(S)| = 1 ordy > 1.

Proof. By Lemma 3.4 and Lemma 3.12 inequality (15) defines a facétiqfS). In this case inequality
(15) is also non-trivial forRp(S). Fixing edgee = {i,j} € 6(S) we consider the pointz, y, 7, p) on
the face ofPr(.S) defined by (15) as defined in (21). All other variables are eetero. Recall that the
capacity constraint of has a slack of — r(dp). In case|d(S)| > 2 anddy > 1 and hencgdy] > 2 we
can shift one unit of capacity to a second edge. Also a fradifd / [dy| of all other variables is shifted to
the second edge. This way we construct a point on the facetwittedges not being tight in the capacity
constraint. Hence, using Theorem 3.14 and Lemma 3.15 wé@elgsired result. O

Coroallary 3.17. Given a node sef C V such that the two shores of the corresponding &ft) are
connected and ;. # ) as well as[d|q,|-r| > [do]. The MIR inequality

r;x(6(S)) + max(0,4)7w(6(S)) > r; [d;] (26)
defines a facet aPr if i = argmax(ri/k : k € J4 with [dy] = [djg4-r]|) andr; < 1.

Proof. By Lemma 3.5 and Lemma 3.12 inequality (26) defines a facdtdfS) if », < 1. In this case
inequality (26) is also non-trivial foRr(S). Fixinge € §(S) we consider the following poirtz, y, 7, p)
on the face o (.5) defined by (26)

Te = (dl-l = [d|QS|,p—| , e = O,pleC = Cik, andyfj =1fork e Qs.
All other variables are set to zero. The point protects agathdemands across the cut at their peak. There
is a slack of at least — r;. It holds [d|q|—r| > 2 since[dy] > 1. If [§(S)| > 2 we can hence shift one

unit of capacity and a fraction of all other variables to aosetedge such that two edges are non-tightin
the capacity constraint. Hence, using Theorem 3.14 and Lt we get the desired result. O
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Coroallary 3.18. Given a node sef C V such that the two shores of the corresponding &ft) are
connected, the upper envelope inequality

(=J +1ij)z(8(5)) —ijm(6(S)) = rij[bis] —jds (27)

definesafacetdfrifi,j € J_,i < j, suchthat = argmin,.; w(k,a+1)andj = argmin,.; w(k,a)
withr; ; < 1anda € Z witha > [dy| having eithe§(S)| = 1 ora > 2.

Proof. By Lemma 3.9 and Lemma 3.12 inequality (27) defines a facétiqfS). Fromr; ; < 1 follows

i < j and the break poirti; ; is fractional and hence (27) is non-trivial & (S). Let ' be the face of
Pr(S) defined by (27). There is a poit, 7) with a < Z < a + 1 in the linear relaxation oKt cut off
by (27). Using a single edgewe may of course lift this point to a valid poif, y, 7, p) of the linear
relaxation of Pr(S). Setaw = (—j + ri;), B = —ij, andy = r;; [b; ;] — jd;. The point(&, 7) with
=18 ﬁ” > Z is in Xt and lies on the facet. Moreover := (1,9, 7, p) € F such that for the selected
single edgez the capacity constraint is not tight. Howeysris not feasible ag witha < & < a+1is
not integral. Consider the two poins, 7(j,a)) and(a + 1,7(¢,a + 1)) on the facet ofX+ and denote
by p2 andps the two corresponding points lifted #-(.5) on the faceF'. We can assume that andps
have nonzero values only on edgand thatp; is a convex combination gf; andps. Hence at least one
of ps or ps is not tight in the capacity constraint ef The proof is complete in cagé(S)| = 1. Assume
|6(S)| > 2. By shifting one unit of capacity to a second edgewe construct pointg, andps from po
andps similar to the proof of Corollary 3.16. As long as> 2 at least one these point is not tight in the
capacity constraint of at least two edges. By Theorem 3.814 @amma 3.15 the claim follows. O

Corollary 3.19. Let S C FE be a node set such that the two shores of the corresponding(Sutare
connected and. # ) as well as[d|q,|—r| > [do] + 1. The lower envelope inequality

(i 4 7i3)x(8(5)) +13m(3(5)) = rij [bis] +id; (28)

definesafacetafrifi,j € J4,i < j, suchthat := argmax;¢ ;, 7(k, a) andj := arg max,c ;, 7(k, a+
1) withr; ; < 1 anda € Z with [do] < a < [d|g,|-r| — 1 having eithed(S)| =1 ora > 2.

Proof. Similar to the proof of Corollary 3.18. O

4 Computations

In this section we present the results of three major contipnt@ studies. First, we compare the three
presented approachesARATE, DUALIZE, and REPLACE by evaluating the computational performance
of the corresponding models (7), (10), and (12). Secondmwestigate the impact of separating violated
inequalities (15), (26)—(28) on the solving process. Mnale evaluate the costs and realized robustness
of the optimal robust network designs for real-life traffieasurements.

Instances. We consider problem instances based on live traffic data tifierent sources: the U.S. In-
ternet2 Network (&BILENE) [1], the pan-European research backbone netwdtki@, and the national
research backbone network operated by the German DFNAVEB] mapped on the network E&-
MANY 17) defined by the NOBEL project [55], and in addition mappeddtarger network (ERMANY50)
[58]. For each network the live traffic data is given as a sehefsured traffic matrices with a granular-
ity of 5 minutes (ABILENE, GERMANY17, GERMANY50) or 15 minutes (EANT). Recently, the live
traffic measurements of these networks have also becomiataeain the SNDIib [58]. For BILENE
resp. GEANT we consider two time periods of one week resulting in twodnses BILENEL and ABI-
LENE2 resp. GANT1 and GEANT2. For GERMANY 17 and GERMANY50 we consider one day each. In
Section 4.3 we evaluate the realized robustness of optiohalst network designs. Therefore, we use ad-
ditional traffic measurements in the evaluation to simulateertain future traffic. In total four weeks of
traffic measurements are used for eaaniZ&NE and GEANT instance. Table 1 summarizes the network
and traffic properties of all considered data sets.

17



Network ABILENE GEANT GERMANY 17 GERMANY50

# nodes 12 22 17 50

# links 15 36 26 89

# demands 66 231 136 1044

available traffic period 6 months 4 months 1lday 1day

traffic granularity 5min 15min 5min 5min

# available traffic matrices 48095 10737 288 288

# traffic matrices used 2 8064 2x 2688 288 288

instances ARILENEL GEANT1 GERMANY17 GERMANY50
ABILENEZ2 GEANT2

Table 1: Network and traffic properties of considered dats se

For each data set |16t denote the considered time period andd ! be the demand for commodity
k € K attime stept € T. In a first step we scale the traffic data in such a way that suail gfeak
demandSnaxteT(d’gt)) over all commodities € K amounts to 1 Tbps. To determine the nominal value

d* respectively peak valué® + d* we calculated the arithmetic mean and 95%-percentile df damand
k € K using the scaled measurements. That is, welset= 1/|T| 3, df,) andd* + d* corresponds
to the largest deviation from the nominal value in perigdvhereT, is obtained fron” by removing the
5% largest demands. The link capacity module size, thateuaiit of capacity, is set to 40 Gbps.

General settings.  We implemented formulations (7), (10), and (12) of theobust network design prob-
lem in C++ using IBM ILOG (LEX 12.1 [39] as branch-and-cut framework. We applied tlee;d\CERT
framework of G>LEX and callbacks to implement the separation methods. The atatipns were carried
out single-threaded on a Linux machine with 2.93 GHz IntebiX®/3540 CPU and 12 GB RAM. A time
limit of 12 hours was set for solving each problem instancd. ofher solver settings were left at their
defaults if not stated differently.

4.1 Mode comparison

In our first computational study, we compare the models [0),(@@nd (12) to evaluate their computational
performance. Each of these models follows a different aggto SEPARATE (7), DuALIZE (10), and
ReEPLACE (12). For all networksI" € {0,1,...,10} is considered. This yields 66 realistic test instances.

We complement this study by an extensive evaluation of ighkies ofl" for the small ABILENE
network: for ABILENE1 and ABILENE2 we consider all possible valueslofi. e., values up to the number
of commodities = | K| = 66).

For SEPARATEand REPLACE, the exponential many inequalities (7a) resp. (12b) asgetimplicitly:
violated ones are separated as so-called lazy constraintgdhe solving process. Figure 3 visualizes the
computational behavior of the three models: First, for aaetwork a comparison of the geometric mean
of the solving times fol” = 0,1,...,10 is shown in Figure 3(a). Second, for each network the number
of optimally solved instances out of 11 is shown in Figure)3(bhird, the solving times for AILENE1
and ABILENE2 withT' € {0,1,...,66} are shown in Figure 3(c) resp. Figure 3(d). Note, the lobanit
scales of the solving time axes in Figure 3(a), 3(c), and.3(d)

Impact on the solving time.  First, we investigate the results fbr= 0, 1, ..., 10: In our computational
study, the model following the DaLIZE approach has been the fastest for 64 of 66 test instanceg. Onl
for ABILENEL withT" = 0 and ABILENE2 with I" = 1 the solving time of the BPARATE model has been
slightly faster by less than a second. The second fastestinffodI" < 10) in our study is the BPARATE
model approach.

The geometric means of its solving times range from 2.£Ar1) to 14.5 (ERMANY17) times
the geometric means obtained byA.1zE. The model following RPLACE is the slowest (fof” < 10)

18



100000

10000
1000
100
10
D S R D S R D S R D S R D S R

geometric means of solving times

D S R
abilene1 abilene2 geant! geant2 germany17 germany50
(a) Geometric means of solving times (fore {0, 1,...,10})
10
3 8
S
2 6
£ 4
£
% 27
0 — — —
D S R D s R D s R D s R D s R D S R

abilene1 abilene2 geant1 geant2 germany17 germany50

(b) Number of optimally solved instances (fore {0, 1,...,10})

100000

M
10000 2 n".“,‘
£ 1m0 At L] e
2 Ren,t ¥ WA
2 vy, & & =y
: 1048 Ig’z“(’g"""w" R R R I O
1~ £ * “em 1 -~ 3
0 5 10 15 20 25 30 35 40 45 50 55 60 66 0 5 10 15 20 2% 30 35 40 45 50 55 60 66
gamma gamma
—DUALIZE ---SEPARATE -~REPLACE
(c) Solving times of BILENE1 andI’ € {0, 1,...,66} (d) Solving times of BILENE2 andI" € {0, 1,...,66}

Figure 3: Comparison of models forddLizE (D), SEPARATE(S), and REPLACE (R) approaches

with geometric means from 2.6 €3NT1) up to 157 (ERMANY17) times the corresponding one for
DuaLIzE. For both, &PARATE and REPLACE, very often the time limit has been reached. In particular,
GERMANY50 could not been solved in any case within the time limit ohb2rs. For GRMANY50, the
optimality gap has been in the range from 51% to 71%ADzE), 43% to 59% (&PARATE), and 420%

to 736% (RePLACE). For this large instance, theeBARATE approach yields the smallest optimality gaps.

It turns that out the MIP solver obtains many solutions figlesior the incomplete formulation of the
SEPARATE and REPLACE models which are infeasible to the complete problem. Thesse solutions
are separated by additional model inequalities (lazy caims). In our studies, the amount of these non-
redundant cuts slows down the solving processes of #HEASATE and REPLACE models significantly.
These results are in contrast to those in [33] for the setrqanadblem.

Second, we have a closer look at the supplementary reswis gtudy for ABILENEL and ABILENE2
with I = 0,1,...,66 as visualized in Figure 3(c) and 3(d). It turns out that wencdirgeneralize our
previous evaluation of the geometric meank'to 10: We observe that S*PARATEIs faster than RPLACE
only for small valued” or | K| — T'. For example, for BILENE1 and10 < I' < 49 the REPLACE model
is up to 1000 times faster than th&\RATE model (e.g.I' = 36). This behavior can be explained
easily: The size of the (resulting) formulation foEBARATE strongly depends on the sizeldin contrast
to DuaLIzE and REPLACE. The number of capacity constraints (7a) to be considere&#eARATE is
proportional to the number of vertices B which is precisely(‘?‘) +1for0 < T < |K|. Thatis,
both forT" close to0 and forT" close to| K| the SEPARATE formulation is small. Here the EPARATE
approach might even outperfornuBLIZE. In all other cases the number of constraints to be considere
for separation can be extremely large. Notice that comjmutéimes for SPARATEIn Figure 3(c) and 3(d)
roughly follow the shape o(f'fr(l) + 1 as a function of".
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Impact on solvability. In the following, we consider the number of optimally sohiedtances within
the time limit. First, we observe theBALENE1 and ABILENEZ2 instances could be solved optimally for
all three models. The instanceeBMANY50 could not be solved optimally by any model. For all 33
remaining instances, theUdLize approach solved the most instances to optimality (88%RARATE
the second most (39%), and the R ACE model the least (3%). Every instance solved IBPSRATE or
REPLACEwas also solved by DaLIzE.

Conclusion. The model following the DALIZE approach outperforms the other two models: more in-
stances can be solved to optimality in less time indepenaofeiit Therefore, we focus on theUdLizE
model in the following studies. However, we want to remaidt dditional special purpose primal heuris-
tics might improve on the computational behavior &8RATE at least for small values dfor | K| — T'.

4.2 Valid inequalities

In our second computational study, we investigate the imnplegeparating valid inequalities on the overall
solving process. Using the callback functionality ¢fi@&x, we added a separator for the inequalities (15),
(26), (27), and (28). The separator is called at the root nbthee branch-and-cut tree. Within the separator
we implemented three separation algorithms variants: engstic (Shrinking) and two exact algorithms
(Enumeration, ILP) to separate violated inequalities. ffiiee separation algorithms are described in the
following.

Exact separation (Enumeration). To study the effectiveness of the valid inequalities we enpénted
an exact separation algorithm which enumerates all netaoik explicitly and generatedl violated in-
equalities of type (15), (26), (27), and (28). Clearly, thpproach is suited for small networks only as
the number of network cuts that must be enumerated increapesentially. Still, for small networks this
enumerative algorithm can be used to investigate the maxffectiveness of these inequalities that can
be achieved by separating all existing violated inequiin terms of improving the root node dual bound.

Exact separation (ILP). Further, we implemented another exact separation algonthich solves an
integer linear program to separate a most violated inetyuliype (15). It was introduced in Koster et al.
[44] and is computational tractable for larger networks af.w

We define binary variables; (i € V) with 5; = 1 if and only if i € S determining the cutp* with
o = 1ifand only if ¢ € Qs determining the cut-crossing commoditied, with v* = 1 if and only if
commodityk € Qg deviates from its nominal, anil; (ij € E) with §;; = 1if and only if ij € §(S)
determining the cutset. In addition, letletermine the worst-case total demand value crossing tharod
let R be the right-hand side value of the corresponding cutsejuiality (15). Given an LP solution*,
we minimize the feasibility (i. e., maximize the violatioof) inequality (15) such that a negative objective
value yields a violated cut. Then, the ILP formulation of separation problem reads

. N
min E x50 — R
ijer "W

s.t. max{&i — (Sj, 6j — 51} < gij < min{éi + (Sj, 2—6; — (Sj} Vij € B (29&)
max{dsk — Opky Op — 5sk} < ok < min{ésk + 04,2 — Ogr — 5tk} Vk € Q (29b)
A® <ak Vk e Q (29¢)
k <
2 eo? =T (200)
Tk ok Gkok _
Do (@ +d") = (29¢)
d <R <d+1-c¢ (29f)
of, 5;,7% 65 € {0,1},R€Z,,d >0 VkeQ,Vije ENVieV  (299)

where constraints (29a), (29b), and (29c) define the logieplendencies between the indicator vari-
ablesa®, 3;, andy*. Constraint (29d) limits the number of deviating commaitbyl". The total demand
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robust cutset inequalities (15) envelope inequalitie3{28)
enumeration (ex) ILP (ex) shrinking (h) enumeration (ex) rirdting (h)

strategy (i) .

strategy (ii) v : : .

strategy (iii) v : : v .
strategy (iv) . : v . v
strategy (v) . v v . v

Table 2: Considered strategies with exact (ex) and heaistiseparation algorithms

d is calculated by (29e). Constraint (29f) guarantees thadeaup of the right-hand side variable using
0 < ¢ < 1 to avoid roundingR to [d] + 1 or higher. Note, no time limit is set for solving the ILP
formulation of the separation problem.

Heuristic separation (Shrinking). Complementing the exact separation algorithms, we proghest|-
lowing heuristic separation algorithm: Violated ineqtie are separated for all single node network cuts
(i.e.,0(S) with |§(S)| = 1) as well as a set of network cuts resulting from a graph shrinkeuristic. This
graph shrinking heuristic generalizes a shrinking heigrgdting back to [24, 37] and used by [61] for the
deterministic model (1)'-robust network design.

The idea of this extended graph shrinking heuristic is thieiong: The base inequality of the robust
cutset inequality (15) is the sum of flow conservation casts (1b), capacity constraints (10a), and
constraints (10b). For violated cutset inequalities wedn@dmost) tight base inequalities. Hence we
wish to have edges in the cuté(S) that have (almost) no slack in the constraints (10a) and)(10b
the shrinking heuristic we hence shrink edges whose casreBpg model constraints have large slacks.
Technically, we try to minimize the sum of weighis for edgese on the cut: Given the solution of the

current LP relaxation, we use, := s(10 + 3~ 5% wheres(1° denotes the slack of the capacity

constraint (10a) for edge and thes(;gb) the slack of constraint (10b) for edgeand commodityk. By

contracting edges in non-increasing ordetgfve shrink the network until only nodes or no edges with
positive weight are left. Based on empirical values of ppagicomputational studies we set 5.

Let (V. €) be the remaining shrunken network with node ¥eand edge sef. Then, the set of
network cuts returned by the shrinking heuristic consi$tllmetwork cuts corresponding to single node
network cuts in\" as well as further up to|? network cuts in\" obtained by enumeration.

Strategies. We compare five different strategies to solvelfhRobust Network Design Problem: (i) solv-
ing the compact model (10) with defaulPCex and four further variants (ii)-(v) including the separatio

of violated inequalities in the root node using&x and separation callbacks. The different strategies and
separation algorithms used are summarized in Table 2 neddor the exact (Enumeration, ILP) and heuris-
tic separation algorithm (Shrinking) as introduced abad\vete, in strategy (v) the separation problem is
solved exactly only after no violated cut has been found yhiburistic.

Impact on theroot gap. First, only the root node of the cut-and-branch tree is gbteanvestigate the
effectiveness of separating violated inequalities (1834)(28). We evaluate the additional gap closed in
each strategy, i.e., the rati®B — DBcpiex )/ (PB — DBcpex) Where DB denotes the dual bound of the
corresponding strategy after the root node before bragchiBcs cx the corresponding value of default
CPLEX (strategy (i)), and PB the (overall) best known primal baufitius, an additional gap closed of
100% means the instance could be solved to optimality indberrode. Note, none of the instances could
be solved to optimality in the root node byrCex alone (strategy (i)).

A detailed view on the additional gap closed in the root namtesfrategies (ii) and (iii) is given in
Figure 4(a). Results for ERMANY50 are not shown as strategy (ii) and (iii) follow the enuntieea
exact separation approach which is not applicable to tateNaNY50 instance because of its size. For
ABILENE1 and all values of", we observe that the remaining optimality gap can be closetptetely in
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Figure 4: Effect of separating violated inequalities inagies (15), (26)—(28)

the root node by separating the considered classes of iliegiaConsidering BILENE?2, this is also the
case for most values @f. In total, for more than 90% of all instances the optimaligpgan be closed by
at least 50%. For 6ANT1 and GEANT2, the least additional gap closed is achieved.

Comparing strategies (ii) and (iii), we observe a differefar only 7 of 66 instances. In these cases,
the gap could be closed by additionally 2.5% in the geometigan in strategy (iii), ranging from 0.1%
(GEANTL,I' = 1) t0 16.4% (GANT2,I" = 3). Thisis caused by the fact that mainly violated robustetuts
inequalities (15) are found and almost no violated envelopqualities or MIR cuts. We discuss this in
the paragraph about the distribution of separated cuts.

Next, we compare all strategies but on a less detailed |&iglre 4(b) illustrates the geometric mean
(thick horizontal bar), minimal (lower end of vertical lijpend maximal values (upper end of vertical line)
of the additional gap closed for each instance and all censttlvalues of'. As strategies (iv) and (v)
primary follow an heuristic approach, the achieved adddlayap closed is less than for strategy (ii) or
(iii). But still a reasonable additional gap closed of atske20% in the geometric mean can be achieved
for all instances except \LENE2 with strategy (iv) and GRMANY50. Although due to memory limits
GERMANY50 could not be processed in strategy (ii) and (iii), it hasrbeomputational tractable in strategy
(iv) and (v). Here, the optimality gap left byrCEX can be closed by 6.8% (1.64%) in the geometric mean,
ranging from -39.5% (-39.5%) to 26.7% (20.4%) for strategy (resp. (v)) where a negative gap closed
means that actually an optimality gap larger than in stsatggemained at the time limit (hence, the root
node could not be solved in 12h).

Distribution of separated cuts. In the following, we have a closer look on the type of cuts thate
been separated in the root node in strategy (iii). In stya(@g all existing violated inequalities (15),
(26)—(28) are separated by enumeration. Table 3 shows timbderuof separated cuts for each instance,
the value of", and the class of the generated inequalities. For bettdabdlity, blanks are printed instead
of zeros and completely blank columns are omitted. ColumnsRifes the number of separated robust
cutset inequalities (15), column L the lower envelope (28 M the MIR inequalities (26). No violated
upper envelope inequalities (27) have been separated icoooputational studies. Hence these columns
are missing.
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ABILENEL ABILENEZ2 GEANT1 GEANT2 GERMANY17

gamma RC M RC M RC L M RC L M RC L M
0 45 46 49910 63732 2664

1 36 25 6668 5 7408 2 726 5 1
2 28 16 3606 7 3896 1 2 414 1 1
3 29 21 2946 3 3837 12 353

4 24 23 2428 1 7 3355 2 308

5 30 14 2697 4 3738 4 314

6 23 13 2345 4 4462 1 324 1
7 20 8 2351 4 4877 8 296 1
8 19 18 2530 4 5224 27 335 2
9 16 20 2 2367 1 3424 6 335 1
10 21 1 19 2154 4 5255 14 386

Table 3: Cut distribution. Robust cutset (RC), Lower engel{L), and MIR (M)

We observe that mostly violated robust cutset inequalitiesseparated. In particular fbr= 0, where
the robust cutset inequalities corresponds to the welisknand effective classical cutset inequalities,
many violated cuts are found. Froih= 0 to I’ = 2, we observe a significant decrease in the number of
separated robust cutset inequalities which we cannot expgfr I > 2, the number of separated robust
cutset inequalities does not fluctuate that much. No vidlaggper envelope inequalities (27) have been
found which might be explained as follows: the capacity ¢ta@ists (10b) act as (variable) upper bounds
on . because of the positive objective function coefficients of Hence, the value af, is set as small
as possible such that the other constraints are still stisBut violated upper envelope inequalities only
occur for high values of,, (cf. Figure 3.2). Only a few violated lower envelope inedfied (28) have been
found and only in 4 of 60 instances. Some more violated MIRjuradities (26) could be separated for the
larger networks GRMANY 17, GEANTL, and GEANT2.

Impact on the solving time.  Figure 4(c) shows the speed-up of the total solving proagss$d the time
limit of 12h, no node limit) as geometric mean of the indivadlspeed-ups fof* = 0,1,...,10. Here
speed-up refers ta00 - (1 — t/tcpex) IN percent where is the computation time for the considered
strategy andcp ex refers to the computation time ofFCex (strategy (i)). We observe in the geometric
means that the total solving process is always accelerategpefor ABILENEL with strategy (v) and
ABILENEZ2 with strategy (iv) or (v). These instances are relativetyal and solved within seconds. The
overhead caused by strategy (iv) (graph shrinking etc.)mpdrticular strategy (v) (solving an ILP) slows
down the total solving process for both instances. In géngrategies (ii) and (iii) yield large speed-ups
of up to 75% (&RMANY 17). For larger networks, the heuristic approaches usetldtegies (iv) and (v)
perform better. For example, while for the smaBIAENEL instance the speed-up is 66% in strategy (i)
and 23% in strategy (iv), for the largerEGNT2 instance we have a speedup of 38% in strategy (ii) but
51% in strategy (iv).

Impact on solvability. Finally, we address the number of instances that could beedakithin the 12
hours time limit. The large BRMANY50 instance could not be solved to optimality in any strateyyt
using the heuristic approaches in strategies (iv) and é/j¢maining optimality gap at the time limit could
be decreased by 11.6%. Further, any other instances netbswiithin the time limit by ®LEX (6 out of
55 instances) could be solved to optimality in strategigsaind (v).

Conclusion. Separating violated inequalities (15), (26)—(28) spequtha total solving process by sig-
nificantly decreasing the optimality gap in the root nodeadly. The very vast majority of separated
inequalities are of type (15).
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Figure 5: Cost savings of robusteBAENE and GEANT network design compared to classical network
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Figure 6: Realized robustness oBAENE1 andl’ = 0. Additionally, the corresponding traffic loss profile
is shown below the realized robustness diagram.

4.3 Quality of optimal robust network designs

Our third computational study focuses on the quality of ojli robust network designs. We investigate
two aspects as quality criteria: the cost of an optimal robeswork design and the realized robustness
with respect to a given set of traffic matrices.

For the latter, we only consider theBA ENE and GEANT networks because only for these networks
traffic measurements spanning several weeks are avaiaivlen the traffic measurements of one week as
input data (as described above) we include additional weelsffic measurements in our evaluation of
the realized robustness to simulate uncertain futurecraffi

Cost savings. The cost is determined as the relata@st saving®f the considered robust design com-
pared to the cost of the optimal network design obtained tiingd" to | K'|. This corresponds to the (con-
servative) classical network design where capacities ptievzed against the worst peak scenario. Note,
considering cost savings is just a different view on the aited price of robustness [21] and emphases the
potential cost savings by usiigrobustness compared to the most-conservative clasgipabach.

Figure 5 shows the relative cost savings afILENEL, ABILENE2, GEANTL, and GEANT2 forT" =
0,1,...,10. Clearly, the cost savings (comparediic= |K|) decrease with increasing valuefas the
costly additional installment of link capacity modulesnsplied. Still, forT' = 5 about 10% costs can be
saved in all considered networks. We also see that advaotag®bust design in terms of cost is relatively
small already fod" = 10. That is, allowing for 10 commodities being at the peak stam#ously gives
capacity designs at a cost similar to networks that are dediggainst the all-peak scenario.

Realized Robustness. Given a traffic matrixd, a capacity design, and a static routing of all com-
modities, theealized robustnesis determined as the maximal fraction of the total demang ,- d* that
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Table 4: Traffic loss profiles of BILENE and GEANT networks and selected valuesIofNote, the traffic
loss profile of ABILENEL andl’ = 0 is the same as in Figure 6.
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can be realized as flow within the given capacitiesnd using the routing defined gy To calculate this
value we solve a linear program that takles:, andy as input and maximizes the fraction of total demand
that can be realized. Traffic measurements of four consecwiteks are used to evaluate the realized ro-
bustness in every time step where only the measurements &éfshweek (so-called planning week) have
been analyzed and used as input tolth®bust network design problem.

Figure 6 shows the result forBALENE1 andl’ = 0. The geometric mean of the realized robustness
in this case is 88.2%, that is, on average over the considenedperiod we are able to realize 88.2% of
the demand in the given capacities using the given statiinguClearly, such a value does not catch the
change of the realized robustness over time. We observe ohdisé time a realized robustness of 85—
100%. But there exist several traffic matrices for which tbaliced robustness is as worse as 15%. To
capture this temporal aspect of robustness, we proposdeaethif visualization which we call thieaffic
loss profile The corresponding traffic loss profile oBALENEL andI’ = 0 is shown below the diagram in
Figure 6. This profile visualizes each traffic matrix by a ixitline whose gray scale value corresponds to
the relative traffic amount that cannot be routed (i. e., 100%us the realized robustness of the considered
traffic matrix). The darker the line, the more traffic is ldsk., the less robustness is realized. Hence, a
profile without lines is best and corresponds to a totallyustimetwork design.

Table 4 shows the traffic loss profiles of optimal robust nekndesigns for BILENEL, ABILENEZ2,
GEANT1, and GEANT2 and selected values Bf Notice that the traffic profiles fdr = | K| correspond to
the best robustness that can be realized for the given nbanidgpeak demand valudsandd + d. None
of these profiles are totally robust since only the 95% pdilesis used as peak demanti + d* value for
each commodity: € K.

Fixing ' = 0, we observe that the realized robustness of optimal netdesigns of the four instances
are quite different: 88.2% (BLENEL), 99.9% (ABILENEZ2), 93.2% (GEANT1), and 96.3% (BANT2).
Comparingl’ = 0to I’ = 1 already shows a significant improvement foBlIAENE1 (88.2% to 94.9%)
and GEANT2 (96.3% to 98.6%). By trend, the realized robustness of warktdesign increases whéh
increases, i. e., the corresponding traffic loss profile éssVertical lines or the Gray scales of the lines are
brighter. A decrease can only occur due to a different arebidantageous traffic routing. For example, this
can be observed for &ANT2 where the realized robustness decreases from 99.8% t#%98ompare the
traffic loss profiles. Note, for BILENE2 the classical network desigh & 0) achieves already a realized
robustness of almost 100%.

ForT' = |K]|, the realized robustness is 95.8%B(AENE1), 99.9% (ABILENEZ2), 98.0% (GEANT1),
and 99.9% (GANT2). This is best for the given choice of nominal and peak datwafues. The evaluation
of the realized robustnesses for all instances and corsldatues of" yields that fol* > 1 (ABILENEL),

I' > 0 (ABILENE2),I" > 10 (GEANT1), andl’ > 5 (GEANT2), at least 99% of the corresponding realized
robustness value fdr = | K| is achieved. The traffic loss profiles for these cases hersieddlg coincide
with the corresponding profiles f@r = | K|, compare with Table 4.

Further, by comparing the first quarter of each traffic logdilarto its remaining part, we can evaluate
the realized robustness of the planning week (the first wéekeofour-week time period) compared to
the remaining three weeks representing uncertain futaffctr For example, we observe that the network
design of GANT1 realizes high robustness during the planning week bugisfaiantly less robust in the
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following weeks. Clearly, the network load has been largéné three weeks following the planning week.

Conclusion. Optimal robust network designs provide high potential fgngicant cost savings compared
to the conservative setting where only peak demand valeesansidered. Further, the traffic loss due to
peaks drops significantly already for relatively small eswfI". In particular, forl’ < 5 a remarkable
increase in the realized robustness can be achieved. A gdoe forl" seems to depend on the size of the
instance. For RILENE a valuel' = 1 is sufficient for high robustness while forE&NT choosingl’ = 5
gives a good trade-off between cost and robustness. Wigle tredues we get almost totally robust networks
at a cost of roughly 10-20% less the cost for a network desidoethe all-peak scenario, compare with
Figure 5.

5 Concluding Remarks

In this paper we considered a robust network design problémstatic routing using a polyhedral uncer-
tainty set going back to Bertsimas and Sim [20, 21]. This nhatlews to adjust the number of point-to-
point demands that deviate from a given nominal value sameibusly by changing a parameler- 0.

We presented mathematical formulations that enhancedbksichl flow formulation for network design
to include demand uncertainties in different ways. A corapahal evaluation revealed that the compact
formulation based on dualizing the capacity constraintp@tiorms other models based on decomposition
and separation.

In a polyhedral study, we derived strong valid inequalibased on network cuts thereby generalizing
the well-known cutset inequalities for the determinisaise. Instead of a single cutset inequality for every
network cut, we derived multiple classes of facet-defininglmased inequalities by exploiting the extra
variables available in the dualized robust counterparswate able to completely describe a projection of
the robust cutset polyhedron of a single edge. We genedaliwecorresponding facet-defining inequalities
and we developed conditions for the generalized cutsetialéigs to define facets of the original model.

The separation of the developed robust cutset inequadities out to speed-up the solving process for
the compact model significantly: We save up to 66% of comjandtme compared to defaultRLEX.
Many instances could only be solved to optimality withing time limit with the new robust cutset in-
equalities enabled. In some cases we close the gap alreity inot node.

In our computational studies we used realistic networksttogr with life traffic measurements in IP
networks. This allowed us to parametrize the models in a mgar way but also to evaluate the re-
alized robustness of the resulting solutions using réaldiynamics of the demand. We also compared
the possible cost savings compared to overestimating th#bauof simultaneous peaks in deterministic
approaches. Using these results we studied the tradewfEbea the level of robustness and the needed
capital expenditures. It turns out that already small valoEl" between 1 and 5 suffice to get capacity
designs that are almost totally robust against all traffictélations. This results in cost savings of 10—
20% compared to conservative deterministic designs. Teissows that in real-life traffic dynamics the
number of simultaneous peaks is small.
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