
Konrad-Zuse-Zentrum für Informationstechnik Berlin

Jens Lang

High–Resolution Selfadaptive Computations

on Chemical Reaction–Diffusion Problems

with Internal Boundaries

Preprint SC 94–9 (May 1994)

Jens Lang

High–Resolution Selfadaptive Computations

on Chemical Reaction–Diffusion Problems

with Internal Boundaries

Abstract. Large chemical computations show the need for full adaptivity
supporting the development of robust and highly efficient programs. For
solutions possessing sharp moving spatial transitions, as travelling wavefronts
or emerging boundary and internal layers, an automatic adjustment of both
the space and the time stepsize is generally accepted to be more successful
in efficient resolving critical regions of high spatial and temporal activity. In
contrast to the widespread discretization sequence first space then time the
reversed sequence first time then space is employed. Full adaptivity of the
proposed algorithm is realized by combining embedded time discretization
and multilevel finite element space discretization. In this paper the algorithm
is described for one–dimensional problems. The numerical results show the
significantly new perspectives opened by this approach.

Keywords: initial boundary value problem, adaptive Rothe method, em-
bedded Runge–Kutta method, multilevel finite element method

AMS Classification: 65J15, 65M30, 65M50

Chapter �

Introduction

Many chemical phenomena are governed by reaction–diffusion processes. The
resulting initial boundary value problems consist of parabolic differential
equations that are coupled through a highly nonlinear source term, often
representing the reaction process of the chemical components.
One widespread approach to solve such a kind of partial differential equations
is the method of lines (MOL). It involves the discretization sequence first
space then time. In order to get a simple and therefore “fast implementable”
discretization, two rather popular strategies are in use: uniform finite differ-
ences in space and implicit Euler discretization in time. Sometimes even an
explicit Euler discretization is applied. However, with increasing complexity
of the above problems these schemes can easily give disastrous results that
are obviously – or sometimes not so obviously – incorrect.
One of the remarkable features of large chemical models being composed
of various subsystems, is the different character of the arising differential
equations. For example, the transport of chemical substances can be caused
by convection, diffusion or reaction mechanism. Here, special conditions on
internal boundaries have to be used to couple all these subsystems. Further-
more, in frequent cases algebraic conditions, possibly in differential form,
enter into the problem formulation. Of course, these features require some
care when aiming to devise reliable numerical methods to solve such a prob-
lem. Adaptive techniques are characterized by the fact that the numerical
approximation changes and evolves with the solution. They are often the
only way to provide the computational codes necessary to solve some of the
difficult problems arising in chemical computations.
Employing the MOL approach the whole power of time integrators such as
LSODE, DASSL and LIMEX ([16], [9], [6]) developed in a long research
tradition is available to solve the semi–discrete problem accurately and effi-
ciently, see e.g. [8], [19] for a thorough overview. Adaptivity in the context
of ordinary differential equations (ODE’s) means a stepsize control with re-
spect to the time discretization. It turns out that this control is not enough
for a class of challenging chemical problems such as problems with travelling
reaction zones and internal boundary layers, which additionally require a
time–dependent adaption of the spatial discretization. Two different strate-
gies are well–known: the static and the dynamic regridding. Static regridding
aims at finding a better space grid after an appropriate number of time steps
using some information about the estimated spatial discretization error. It is
clear, that this approach introduces an element of discontinuity into the time
integration process and leads to a space grid which generally comes “too late”

1

[3]. In opposite, dynamic regridding is a possibility to include the current
spatial nodes into the solution process making them time–dependent. That
means, they now become additional unknowns of the whole system. Such
moving–grid techniques have been used successfully for one space dimension
[13], [1]. In two space dimensions, however, their application is less trivial,
and it is not always clear how to extend the underlying grid selection proce-
dure [21]. Therefore, 2D moving–grid methods have hardly been applied to
real–life problems. For further information, the interested reader is referred
to [7] and [15], where several real–life examples from chemical computing are
reported.
Another possibility is the discretization sequence first time then space –
classically known as Rothe method [18]. This sequence allows to compute
the space discretization during the time integration process. Therefore, the
Rothe method should be preferred to overcome the above difficulties. A fur-
ther advantage is the fact, that the theory of the whole adaptive process can
be formulated independently of the space dimension. First basic investiga-
tions have been done for linear parabolic PDEs in [4] and later extended to
diffusion–reaction systems in [12].
In this paper an implementation of the fully–adaptive Rothe method for

one–dimensional reaction–diffusion problems with internal boundaries is de-
scribed. The time discretization is based on a special embeddedRunge–Kutta
method of order 3(2), which is designed to keep its accuracy even in the case
of differential–algebraic equations. The occurring elliptic subproblems are
solved by a multilevel finite element method (MFEM) with linear elements
using fundamental ideas of [5]. In consequence, a space grid well suited to the
problem under consideration is obtained in order to assure a desired accu-
racy. The resulting algorithm represents a significant improvement over the
previous one developed in [11] since it is now possible to handle differential–
algebraic equations with internal boundaries. The program used for the
above computations is based on the code KARDOS implemented by the au-
thor [10]. The excellent behavior of the proposed approach is demonstrated
on some real life chemical problems such as a chemical catalytic process and
a vertical bubble reactor.
Finally, it should be mentioned that in principle an extension to the higher
dimensional case can be done without any difficulties. Clearly, the corre-
sponding realizations are much more expensive.

2

Chapter �

Problem Formulation

Let u = (u1, u2, ..., ur) be a vector function and Ω = Ω1 ∪ Ω2 the union of
two open bounded domains in R, that have a common boundary point. The
boundary ∂Ω of Ω is splitted into two subsets Γint and Γext, see Figure 2.1.

�

Ω1 Ω2

Γext Γint Γext
R

Fig. 2.1: Decomposition of the computational domain

We consider the system of parabolic initial boundary value problems

P (x)ut − (D(x)ux)x = F (u), x ∈ Ω ⊂ R, t ∈ (0, te],

u(0, x) = u0(x),

α(x)u+ β(x)ux = γ(t, x), x ∈ Γext ⊂ ∂Ω,(2.1)

α1
L(x

−)u(x−) + β1
L(x

−)ux(x
−) = α1

R(x
+)u(x+) + β1

R(x
+)ux(x

+),

α2
R(x

+)u(x+) + β2
R(x

+)ux(x
+) = α2

L(x
−)u(x−) + β2

L(x
−)ux(x

−),

x−, x+ ∈ Γint ⊂ ∂Ω

as a model of reaction–diffusion processes with one internal boundary. On the
external boundary Γext Dirichlet or Cauchy boundary conditions are given,
where the function γ may be time–dependent to handle external heat–up
processes. The internal boundary conditions on Γint realize the coupling
between the processes in Ω1 and Ω2. The matrices P (x) and D(x) may
vanish on subsets of Ω. In the case P (x) = 0 for some x ∈ Ω, we get algebraic
equations, possibly in differential form if simultaneouslyD(x) �= 0. It is clear,
that the special situation of one internal point can be easily extended to more
internal points.
Note, that the solution u need not be continuous on Γint, for the identity
x− = x+ does not imply u(x−) = u(x+). That means, a standard continuous
discretization method has to be significantly modified to handle such kind of

3

internal boundary conditions.

4

Chapter �

Adaptive Time Discretization

In order to discretize the time first and then the space, we consider the
reaction–diffusion equations (2.1) as a pure time problem. That means, for
the moment we only deal with u(t) satisfying the equation

Put = f(u), t ∈ (0, te],

u(0) = u0,
(3.1)

where

f(u) = F (u)−Au .(3.2)

The operator A denotes the weak representation of the diffusion operator in
(2.1) with weakly imposed boundary conditions.
We can use a highly efficient time integrator to solve this problem. In general,
chemical reaction systems are characterized by the coexistence of fast and
slow reactions, making the whole system very stiff. An explicit integration
is therefore often inappropriate since it may lead to wrong solutions. The
use of an implicit method promises better results. However, a fully implicit
discretization requires the solution of nonlinear systems. This is avoided by
a method, which replaces nonlinear systems by a fixed sequence of linear
systems. These algorithms are often called linearly implicit Runge–Kutta
methods. Among them, Rosenbrock methods have shown to give very sat-
isfactory results for stiff equations. We use the following 3–stage embedded
Rosenbrock method:

(P − γiiτfu(u0))ki = τf(u0 +
i−1∑
j=1

αijkj) + τfu(u0)
i−1∑
j=1

γijkj , i = 1, 2, 3,

u1 = u0 +
3∑

j=1

bjkj ,

û1 = u0 +
3∑

j=1

b̂jkj ,

(3.3)

where τ is the (variable) time step. The solutions u1 and û1 should have
different order using the same intermediate values kj, j = 1, 2, 3, but with
different coefficients. Yet this form is not suited to be implemented directly,
because along with function evaluations there are still matrix∗vector products

5

on the right–hand side, that are too costly. They can be avoided by the
transformation

li :=
i∑

j=1

γijkj , i = 1, 2, 3,(3.4)

leading to the new system

(
1

τγii
P − fu(u0)

)
li = f(u0 +

i−1∑
j=1

aijlj) + P
i−1∑
j=1

cij
τ
lj , i = 1, 2, 3,

u1 = u0 +
3∑

j=1

mjlj ,

û1 = u0 +
3∑

j=1

m̂jlj .

(3.5)

Setting γ11 = γ22 = γ33 := γ only one matrix computation on the left–hand
side is needed. Furthermore, the equation (3.5) can then be solved in three
successive stages of smaller dimension than the whole system. The traditional
problem of choosing the remaining coefficients leads to a nonlinear algebraic
system. We use a special set of coefficients (see Table 3.1), which guarantees
the order 3 and 2 of the solutions u1 and û1 respectively, and L–stability
in (3.5). The corresponding method without the above transformation was
given in [17], where further results on convergence and consistency can be
found.

Tab. 3.1: Special coefficients

γ = γ11 = γ22 = γ33 = 0.435866521508459

γ21 = 0.1685887625570998
γ31 = 4.943922277836421
γ32 = 1.000000000000000

m1 = 2.236727045296589 m̂1 = 2.059356167645941
m2 = 2.250067730969645 m̂2 = 0.169401431934653
m3 = -0.209251404439032 m̂3 = 0.0

a21 = 1.605996252195329 c21 = 0.8874044410657823
a31 = 1.605996252195329 c31 = 23.98747971635035
a32 = 0.0 c32 = 5.263722371562130

Due to the difference of the approximated values of order 3 and 2 we have a
good estimator of the main error term describing the local error of the second
order method

6

εt := ‖u1 − û1‖ .(3.6)

Given a tolerance tolt for the time discretization, the usual proposal for the
new step size is

τnew := ρ

(
tolt
εt

) 1
3

τ ,(3.7)

where ρ denotes a safety factor. The norm in (3.6) has to be chosen very
carefully to reflect accurately the scale of the problem. We use a weighted
root–mean–square norm, given by

‖u1 − û1‖0,w :=

(
1

r

r∑
i=1

‖u1,i − û1,i‖20
w2

i

) 1
2

,(3.8)

where ‖ · ‖0 stands for the usual L2–norm over Ω, that means

‖u1,i‖0 :=
⎛
⎝ ∫

Ω

u2
1,i dx

⎞
⎠

1
2

.

Recall, that here the index i = 1, . . . , r denotes the i–th component of the
function u1, consequently, (3.8) permits to scale each component of the error
εt individually by a time–dependent weight which is determined as follows.
Setting two threshold factors

ηri := RTOLi ∗maxt‖u1,i‖0 ,
ηai := ATOLi ∗ |Ω|1/2 ,(3.9)

the weights wi are

wi :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ηai if ‖u1,i‖0 < ηai

ηri if ηai ≤ ‖u1,i‖0 < ηri , i = 1, . . . , r

‖u1,i‖0 if ‖u1,i‖0 ≥ ηri .

(3.10)

The tolerance ATOLi should indicate the absolute value at which the i–th
component is essentially insignificant. On the other hand, the value RTOLi

affects the relative accuracy of the i–th component with respect to its maxi-
mal value taken over all the time. This control turns out to be quite efficient
and robust for a wide class of problems.
Now a discussion of the boundary conditions related to the different stages
of the above Rosenbrock method is appropriate. The first stage reads

7

(
1

τγ
P − fu(u0)

)
l1 = f(u0).(3.11)

Replacing the function f according to (3.2), we get

(
1

τγ
P − Fu(u0)

)
l1 − ∂

∂x

(
D
∂l1
∂x

)
= F (u0) +

∂

∂x

(
D
∂u0

∂x

)
.(3.12)

The other two equations can be derived analogously. The boundary condi-
tions of all the intermediate values li, i = 1, 2, 3, have to be chosen in such a
way, that the solution u1 fulfills the boundary conditions in (2.1). Inserting
the final terms of equation (3.5) for the solution u1 into these conditions and
using the consistency relation for the method (3.3)

3∑
j=1

bj = 1 ,(3.13)

a simple computation leads to the corresponding boundary conditions

α(x)li + β(x)
∂li
∂x

= (γ(t0 + τ, x)− γ(t0, x))
i∑

j=1

γij ,

x ∈ Γext,(3.14)

α1
L(x

−)li(x
−) + β1

L(x
−)

∂li
∂x

(x−) = α1
R(x

+)li(x
+) + β1

R(x
+)

∂li
∂x

(x+) ,

α2
R(x

+)li(x
+) + β2

R(x
+)

∂li
∂x

(x+) = α2
L(x

−)li(x
−) + β2

L(x
−)

∂li
∂x

(x−) ,

x−, x+ ∈ Γint, i = 1, 2, 3.

8

Chapter �

Adaptive Space Discretization

To implement one time step, one elliptic problem has to be solved approxi-
mately at each stage of the Rosenbrock method. In the spirit of full adap-
tivity, a self–adaptive spatial discretization method is the appropriate choice
to solve these problems with high accuracy. We use a MFEM, which is
an excellent tool to ensure that a prescribed tolerance tolx for the spatial
discretization error is achieved. The general principle of the multilevel tech-
nique mainly consists of replacing the solution space by a sequence of discrete
spaces with successively increasing dimension to improve the approximation
accuracy [5]. Self–adaptivity here calls for an efficient criterion optimizing
this sequence in order to minimize the space discretization error. Summing
up these parts, an adaptive MFEM is characterized by four modules: the fi-
nite element assembling code, the error estimation technique, the refinement
strategy, and last but not least the solver of the linear equations. These steps
are now described in detail.
The starting point for the use of the FEM is the weak formulation of

the corresponding boundary value problem. The stage problems (3.5) are
equivalent to the variational formulations

Bτ (li, v) = ri(v) for all v ∈ V, i = 1, 2, 3,(4.1)

where

Bτ (li, v) =
∫
Ω

((
1

τγ
P − Fu(u0)

)
liv +D

∂li
∂x

∂v

∂x

)
dx−

∫
∂Ω

D
∂li
∂n

v ds

denotes the time–dependent bilinear form associated with the operator on
the left–hand side of (3.12), ri stands for the corresponding right–hand side
operator of the i–th stage, and

V :=
{
v = (v1, . . . , vr) ∈ [H1(Ω)]r vanishing on the Dirichlet boundary

}
.

The solution u ∈ [H1(Ω)]r has to satisfy the boundary conditions.
For Ω = Ω1 ∪ Ω2 = (ξ1, ξ2) ∪ (ξ2, ξ3) let

n := {ξ1 = x0 < x1 < · · · < xl = ξ2 = xl+1 < · · · < xn = ξ3}(4.2)

be a partition of the domain Ω into finite elements Ij := (xj−1, xj), j =
1, . . . , n, j �= l + 1. Denoting by S(
n) the set of all continuous functions
vn = (vn,1, . . . , vn,r) on Ω with components vn,i that are linear on each Ij ∈
n

9

and possibly discontinuous at x = ξ2, we define the finite element solution
and trial space by

Sn := {vn ∈ S(
n) satisfying the Dirichlet conditions} ,
Tn := {vn ∈ S(
n) vanishing on the Dirichlet boundary} .(4.3)

As parameters to describe a function vn ∈ S(
n) we choose the values vn(xj)
of vn at the nodes xj, j = 0, . . . , n, of
n. The corresponding basis functions
φj ∈ S(
n) are then componentwise defined by

φj,i(xk) = δjk ≡
⎧⎪⎨
⎪⎩

1 if j = k,

0 if j �= k, j, k = 0, . . . , n.

Each component of the function vn ∈ S(
n) has the representation

vn,i(x) =
n∑

j=0

ωjφj,i(x), ωj = vn,i(xj), x ∈ Ω ∪ ∂Ω.

The nodes on the Dirichlet boundary are excluded for all vn ∈ Tn since vn = 0
there.
We can now formulate the following FEM to solve the stage problems (3.5)
starting from the variational formulation (4.1):
Find lni ∈ Sn such that

Bτ(l
n
i , vn) = ri(vn) for all vn ∈ Tn, i = 1, 2, 3.(4.4)

We see that (4.4) is equivalent to the linear systems of equations

Bζi = ri , i = 1, 2, 3,

where B, the stiffness matrix, consists of elements bjk = Bτ(φj, φk), ζi = (ζji)
and ri = (rji) are vectors with elements ζ ji = lni (xj), r

j
i = ri(φj). During the

assembling process the computation of the stiffness matrix B and the right–
hand side vector ri is done by summing the contributions from the different
finite elements. The resulting stiffness matrix is the same for all the stages so
that the three boundary value problems differ only in their right–hand side.
Up to now we have taken into account the different external and internal
boundary conditions only for the definition of the solution and trial spaces
in (4.3). In what follows, the implementation of the boundary values will be
worked out in detail.

External Dirichlet boundary conditions.

10

lni (x) = (γ(t0 + τ, x)− γ(t0, x))
i∑

j=1

γij , x ∈ Γext.

To realize general Dirichlet boundary conditions within the FEM, the whole
system (4.4) is enlarged by the algebraic equations for the nodes on the
Dirichlet boundaries, although these values are not really unknown. There-
fore, the test space Tn is simply replaced by S(
n). The external Dirichlet
values are imposed by the explicit use of the boundary condition as seen in
the following for the stiffness matrix B and the right–hand side vector ri
considering a Dirichlet node with index j:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0

0

...

0

1

0

...

0

0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r0i − b0jl
n
i (x)

...

rj−1
i − bj−1j l

n
i (x)

lni (x)

rj+1
i − bj+1j l

n
i (x)

...

rmi − bmj l
n
i (x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Internal Dirichlet boundary conditions.
They appear in the general form

lni (x
−) = α1

R(x
+)lni (x

+),

lni (x
+) = α2

L(x
−)lni (x

−), x−, x+ ∈ Γint ,

not necessarily for both points x+ and x−. It is clear, that these algebraic
conditions have to be taken into account in the final linear system. Assuming
that the system is already enlarged by the equations for the Dirichlet nodes,
we manipulate the corresponding rows and columns in the following way:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
...

0 · · · 0 1 0 · · · 0 −α1
R(x

+) 0 · · · 0
...

...
0 · · · 0 −α2

L(x
−) 0 · · · 0 1 0 · · · 0

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
0
...
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

11

External and internal Cauchy boundary conditions.

α(x)lni + β(x)
∂lni
∂x

= (γ(t0 + τ, x)− γ(t0, x))
i∑

j=1

γij ,

x ∈ Γext,

α1
L(x

−)lni (x
−) + β1

L(x
−)

∂lni
∂x

(x−) = α1
R(x

+)lni (x
+) ,

α2
R(x

+)lni (x
+) + β2

R(x
+)

∂lni
∂x

(x+) = α2
L(x

−)lni (x
−) ,

x−, x+ ∈ Γint.

These conditions, well–known as natural boundary conditions within the
FEM theory, are very easy to include. The derivation in the normal direc-
tion ∂li/∂n in the bilinear form in (4.1) has to be replaced with the help
of the above Cauchy conditions, leading to additional entries in the stiffness
matrix and the right–hand sides.

A special set of boundary conditions.
Often the so–called transmission condition is encountered at the inner bound-
ary, i.e. continuity of the solution and of the diffusive flux is imposed. This
reads

lni (x
−) = lni (x

+),

D(x+)
∂lni
∂x

(x+) = D(x−)
∂lni
∂x

(x−), x−, x+ ∈ Γint.

Hence, a continuous FEM can be applied, that means the two different nodes
in x− and x+ coincide. Furthermore, no internal boundary integral has to be
computed, for

∫
Γint

D
∂lni
∂n

vn ds =
∫
x+

D
∂lni
∂x

vn ds −
∫
x�

D
∂lni
∂x

vn ds = 0.

Next, the error estimator of the space discretization will be described. As-
suming that the approximated solution is given as a piecewise linear function
over a fixed grid, the aim is obviously to find critical regions with high spatial
discretization error where additional nodes should be inserted to improve the
solution. This process leads to an equidistribution of the spatial discretiza-
tion error. Unfortunately, the error is typically not precisely known and can

12

in general only be estimated. One rather popular error estimation technique
is the use of higher order local approximations. This can be done by solving
the same elliptic problems locally on each finite element imposing the current
FEM approximation of the solution as Dirichlet boundary condition [2]. In
the present case quadratic solution and trial functions instead of linear ones
are applied.
With the time integrator of the previous section, the new solution un

1 on
n

is described by three different stage problems. An estimation process includ-
ing all these problems would become too expensive. A natural way then is
the use of the first stage only. This restriction is justified by the fact, that

un
E := u0 +

ln1
γ

(4.5)

is exactly the semi–implicit Euler solution of (3.1) on the partition
n. Hence
it can be assumed, that a space grid well fitted to the solution of the first
stage problem works well for the solution u1, too. Consequently, let us con-
sider the local elliptic problem

(
1

γτ
P − Fu(u0)

)
l1 − ∂

∂x

(
D
∂l1
∂x

)
= F (u0) +

∂

∂x

(
D
∂u0

∂x

)
, x ∈ Ij,

l1(x) = ln1 (x), x ∈ ∂Ij.(4.6)

A weak formulation in terms of the local error εj := l1− ln1 ∈ [H1
0 (Ij)]

r is the
equation

Bτ(εj, v) = r1(v)− Bτ(l
n
1 , v) for all v ∈ [H1

0 (Ij)]
r.(4.7)

Denoting by Qj ⊂ [H1
0(Ij)]

r the subspace consisting only of the function φj

with components that are the quadratic bubble functions

φj,i := − 4

(xj − xj−1)2
(x− xj−1)(x− xj), x ∈ Ij, i = 1, . . . , r,

the quadratic FEM approximation ε̃j of εj then reads

Bτ (ε̃j, φj) = r1(φj)− Bτ (l
n
1 , φj), φj ∈ Qj .(4.8)

Note, that the realization of this estimation technique requires the solution of
an r× r linear system for each finite element, which can be done numerically
stable by a simple Gauss elimination. Finally, we end up with a reasonable
local error estimator δj for the semi–implicit Euler solution (4.5) that reads

13

δj :=

∣∣∣∣∣
∣∣∣∣∣ ε̃jγ
∣∣∣∣∣
∣∣∣∣∣
0,w

.

The corresponding global error estimation is

εx :=

⎛
⎝ n∑

j=0,j �=l+1

δ2j

⎞
⎠

1/2

.

According to the above remarks, this error estimation is now used to improve
the finite element solution un

1 , until a given spatial tolerance tolx is reached
in the entire domain. This is achieved by the simple refinement strategy

Refine Ij if δj > cut :=
1

n

n∑
j=1,j �=l+1

δj.

More sophisticated strategies are available. The refinement process restarts
from the coarsest mesh in each time step. Of course, this is not always nec-
essary and modifications are possible.
We conclude this section by some remarks concerning the solution of the
linear equations. In recent years clever direct sparse and band solvers have
been developed as attractive methods for the solution of certain classes of
sparse nonsymmetric linear systems arising from partial differential equa-
tions. They are very useful for solving problems with a sequence of right–
hand sides supplied in succession such as in diagonally implicit Runge–Kutta
methods. However, their application is limited to those general sparse sys-
tems in which fill–in is not a problem. If the factorization of the matrix
tends to have many more none–zero entries than the original matrix, more
storage and computational time is required. Especially, in the case of higher
space dimensions these drawbacks are often encountered. Figure 4.1 shows
the flow diagram for a direct solution of all the stage problems required for
one time step of our algorithm. One observes that during the improvement
of the spatial discretization only the first stage of the Rosenbrock method
has to be solved. On the final grid all the stage values are computed using
the same matrix factorization for three different right–hand sides.
An other possibility is the use of an iterative solver. A lot of iterative methods
solving nonsymmetric systems of linear equations have been proposed. For
a good comparative study see, e.g. [14]. Iterative methods are a practical
alternative to direct methods whenever a good starting guess is available.
This is the case for time–dependent problems, where the solution at each
step can be used as starting value for the next step.

14

k := 0
nk := nstart

�nk
:= �0

compute lnk
1

estimate error

of lnk
1

refine �nk

k := k + 1

Z
ZZ
�
��

�
��
Z
ZZ

�
�

�

�

�

�
compute lnk

i

i = 2, 3

��
�

�
�time control

YES

NO

εx < tolx

Fig. 4.1: Flow diagram for a direct solver

The rate of convergence of these methods can usually be speeded up by
preconditioning or by the exploitation of a multilevel structure. In Figure
4.2 the flow diagram for a corresponding iterative solution process is pictured.
On each refinement level all the stage problems are solved in order to get good
starting values for the iteration on the final grid.
Now what is the best choice? Several comparisons between direct and itera-
tive methods suggest that both can be applied with reliable success for the
one–dimensional problems considered below. However, the question has to
be discussed once again for higher space dimensions. In that case precondi-
tioned iterative methods seem to have the potential for reducing dramatically
the storage and computational time required by direct methods.
In the numerical examples presented below the BI–CGSTAB algorithm in-
troduced in [20] was used. Its convergence behaviour is very smooth and in
most cases it converges considerably faster than other methods. As stopping
criterion a general threshold for the residuum is applied.

15

k := 0
nk := nstart

�nk
:= �0

compute lnk
i

i = 1, 2, 3

estimate error

of lnk
1

refine �nk

k := k + 1

Z
ZZ
�
��

�
��
Z
ZZ

�

�

�

�

�

�
�
�

�
�time control

YES

NO

εx < tolx

Fig. 4.2: Flow diagram for an iterative solver

16

Chapter �

Numerical Results

In this section the capability of the described fully adaptive algorithm to solve
real–life chemical problems is demonstrated. We shall test the performance
on a class of solutions arising from reactions at phase boundaries. Obviously,
these solutions have a high degree of spatial activity which ranges from steep
moving wave fronts to emerging and dying layers.
All calculations were performed on a SPARC Workstation IPX.

Problem I: Reaction and transport by heterogeneous catalysis.
Catalysts are useful to generate porous media with transport and reaction
pores. In such systems the predominantly diffusive transport of chemical
substances is connected with adsorption/reaction processes. Figure 5.1 shows
a part of a technically relevant honeycombed medium with four quadrilateral
channels and the catalyst as wall.

Figure 5.1: Honeycomb system

To get a first impression of the different phenomena an extremely simpli-
fied one–dimensional model with only one pore coordinate is often employed.
Firstly, the adsorption/reaction mechanism in the porous catalyst is studied
intensively, assuming a laminar streaming along the wall. This leads to a
so–called 2–phase model pictured in Figure 5.2.
The according partial differential equations can be derived from the mate-
rial balances. A typical 2–component system with u = (u1, u2), including a
special reaction term reads as follows:

Material balances in the channel:

c1
∂ui

∂t
= −c2βi

(
ui − ui(b

−)
)
, x ∈ (b, b+ a), t > 0.

17

b a

x Di

t

x0 b b+a

Figure 5.2: 2–phase model

Material balances in the wall:

−Di
∂2ui

∂x2
= −c3

u2

u2 + c4
u1 , x ∈ (0, b), t > 0.

Boundary and initial conditions:

∂ui

∂x
(0) = 0,

ui(b
−)− Di

βi

∂ui

∂x
(b−) = ui(b

+),

ui(x, 0) = u0
i .

Here, Di denotes the diffusion coefficient of the i–th component, βi is its cou-
pling coefficient, which has to be determined empirically. The coefficients ci
stand for special constants depending on the used chemicals. Since we start
with a constant initial value for the domain Ω2 = (b, a + b), the solution of
the first balance equation is again a constant. To set up this equation as part
of a boundary value problem, the Cauchy boundary conditions

∂ui

∂x
(b+) =

∂ui

∂x
(a + b) = 0

will be added. Clearly, a fixed 3–point spatial discretization of a restricted Ω2

can be used to approximate the chemical components in the channel exactly.
We observe that the model consists of two partial systems – one reaction–
diffusion system (wall) and one system described by ordinary differential
equations (channel) –, which are connected through an internal coupling

18

condition. Note that the above boundary conditions will generally lead to a
solution which is discontinuous at x = ξ2.
Figure 5.3 shows the temporal evolution of a typical solution and its corre-
sponding spatial discretization for a real–life data set. At each time level an
initial 9–point discretization of the computational domain Ω = (0.0, 0.0005)∪
(0.0005, 0.0006) was used. The tolerances were set to be tolx = 0.001 and
tolt = 0.05.

0

2

4

6

x 10
-4

0

0.5

1

0

1

2

3

4

5

x 10
-4

xtime 0 2 4 6

x 10
-4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

tim
e

Figure 5.3: 2–phase model: Temporal evolution of the first chemical species
and the grid

The time–dependent internal boundary condition models a material trans-
port, which generates an initial front. With decreasing concentration of the
chemical species in the channel and continuing reaction process in the wall,
the solution becomes smoother and smoother. The main point here is that
the solution is guaranteed to be correctly resolved near the internal boundary
layer. This is important since the coupling condition is based on the values
in that region.
Next we consider the whole quadrilateral channel and replace it by a round
one having the same hydraulic diameter. The model extended in such a way
can be used to study the influence of the flow and diffusion in the channel on
the reaction in the porous catalyst. In Figure 5.4 the new situation is shown.
The corresponding equations of the cylinder–symmetric model look as fol-
lows:

Material balances in the channel:

19

x

a b
D Di i

0 a a+b x

t

Figure 5.4: Full model

c1
a2 − x2

a2
x
∂ui

∂t
− ∂

∂x

(
xDi

∂ui

∂x

)
= 0, x ∈ (0, a), t > 0.

Material balances in the wall:

− ∂

∂x

(
xDi

∂ui

∂x

)
= −c2x

u2

u2 + c3
u1 , x ∈ (a, a+ b), t > 0.

Boundary and initial conditions:

∂ui

∂x
(0) =

∂ui

∂x
(a+ b) = 0,

Di
∂ui

∂x
(a−) = Di

∂ui

∂x
(a+),

ui(a
+) = ui(a

−),

ui(x, 0) = u0
i .

The special coupling conditions of this second problem gives us the possibility
to use a continuous version of our method due to results of the previous
section. In Figure 5.5 the evolution of one component to the steady state is
pictured for the same chemical system as used in the previous computation.
In contrast to the first problem now the real extension of the channel has to
be taken into account, that means Ω = (0.0, 0.0025) ∪ (0.0025, 0.003). The
tolerances were set to be tolt = 0.0005 and tolx = 0.001. After the formation
of an internal boundary layer, the time step can be enlarged significantly.
A uniform 13–point start grid provides a difficult test of the error estimator
in space, since the method must rapidly refine near the internal boundary

20

in order to resolve the fast reaction in the catalyst leading to a steep initial
front. One can see that the maximum density of points exactly follows the
front, ensuring good resolution and high economy.

21

0
1

2
3

x 10
-30

0.5
1

-1

0

1

2

3

4

5

6

x 10
-4

x
time

0 1 2 3

x 10
-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

tim
e

Figure 5.5: Full model: Temporal evolution of the first chemical species and
the grid

Problem II: Vertical bubble reactor.
In contrast to the above class of problems characterized by a spatially inde-
pendent phase boundary, gas–fluid–systems are generally more sophisticated.
Here, the phase boundaries change their shape and size in time. Figure 5.6
shows a vertical and cylindrical bubble reactor in section.
Different gaseous chemicals stream in at the lower end of the reactor filled
with a fluid. The bubbles rise to the top dissolving and reacting with each
other. Clearly, with decreasing bubble diameter there is a permanent de-
crease of the exchange surfaces leading to certain nonlinearities in the corre-
sponding models. To describe a synthesis process of two chemicals A and B
in such a bubble reactor, we use a 2–film model shown in Figure 5.7.
In the first film F1 the chemical A dissolves in the reactor fluid. Then it is
very fast transported through the bulk, and reacts with the second chemical
B in the other film F2, see Figure 5.8. As a result new chemicals are produced
in F2, causing further reactions.
Let us consider as an example a special 7–component system where the re-
actor length is taken as time axis:

Diffusive process in F1 only for the chemical A:

−D1
∂2u1

∂x2
= 0, x ∈ (ξ1, ξ2).

22

Figure 5.6: Vertical bubble reactor in section

FilmF F1 2

Bulk

Bubble

r r
1 2(t) (t)

x
BA

Figure 5.7: 2–film model

23

�

PPPPPPPPP
�
�
��
�
�
�
�
�

ξ1 ξ2 0 ξ3
F1 Bulk F2

R

cA

cF1
A

cBu
A

cBu
B

cF2
A

cF2
B

cB

Figure 5.8: Behaviour of the chemicals A and B on the computational domain

Transport of all the chemicals through the bulk:

c1
∂ui

∂t
= S1(t)Di

∂ui

∂x
(ξ−

2) + S2(t)Di
∂ui

∂x
(0+), x ∈ (ξ2, 0), t > 0.

Reaction and diffusion in F2:

−Di
∂2ui

∂x2
=
∑
j

ki,jujui, x ∈ (0, ξ3), t > 0.

Boundary and initial conditions:

F 1 :
β1

α1D1
u1(ξ1)− ∂u1

∂x
(ξ1) = c2

β1

D1
,

u1(ξ
−
2) = u1(ξ

+
2),

Bulk : u1(ξ
+
2) = u1(ξ

−
2),

∂ui

∂x
(ξ+2) = 0, i �= 1,

ui(0
−) = ui(0

+),

F 2 : ui(0
+) = ui(0

−),

β2

α2D2
u2(ξ3) +

∂u2

∂x
(ξ3) = c3

β2

D2
,

∂ui

∂x
(ξ3) = 0, i �= 2,

ui(x, 0) = u0
i .

Here, Di and βi denote again the diffusion and the coupling coefficient of
the i–th component. Additionally, αi represents the Henry coefficient. The

24

specific exchange areas S1 and S2 are strongly time–dependent because they
are directly influenced by the bubble radius. These radii have to be computed
in a complicated nonlinear process. A further description would go beyond
our scope.

-5

0

5

10

15

20

x 10
-6

0

0.5

1

1.5

-10

0

10

20

30

40

50

60

x reactor length

Figure 5.9: Temporal evolution of the chemical component A

Realizing the special reaction mechanism

A+B −→ C +D,

C +D −→ E,

C −→ F +G,

for a concrete numerical computation, the corresponding reaction coefficients
ki,j can be derived by the mass action law.
The resulting system of partial differential equations has various internal
boundary conditions. It is thus a challenging example for the proposed nu-
merical algorithm.

25

-5 0 5 10 15 20

x 10
-6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

re
ac

to
r

le
ng

th

Figure 5.10: Temporal grid–evolution of the bubble reactor

In Figure 5.9 and Figure 5.10 the solution of the component A and its grid is
pictured for the bulk (−0.000005, 0.0) and for the film F2 = (0.0, 0.000015).
The computation was done for the tolerances tolt = 0.001 and tolx = 0.0008.
We observe that the grid is able to follow the dynamics of the problem. The
speed of the reaction front varies drastically in time. The crucial point here
is to get the correct speed in particular at the beginning of the reaction. In
this problem the benefits of full adaptivity in time and space are evident.

26

Chapter �

Conclusion

The aim of this paper was to develop a reliable and efficient method that
can be used to solve reaction–diffusion problems with internal boundaries
in a fully adaptive way. The spatial adaption is connected with an equidis-
tribution of the estimated spatial error. The second adaptive feature is the
use of variable time stepsize in the numerical integration. The steplength is
determined in such a way that the local error per timestep is below some
tolerance.
The method was applied to several problems involving steep travelling

fronts and internal layers. In each example we have obtained high resolutions
of the solution in both space and time. The adaptive selection of grid points
led to drastic reduction of the number of points required by a uniform mesh.
The method presented in this paper could also be applied to a number of
other chemical problems.

Acknowledgements: This work has been carried out as part of the joint
project “Development of adaptive multilevel methods for the reaction tech-
nology” between BASF and ZIB. I would like to thank Dr. W. Ruppel and
Prof. P. Deuflhard, who encouraged me to do interdisciplinary work in Sci-
entific Computing and supervised the above mentioned project. I also thank
Dr. U. Nowak for supplying me with reference solutions obtained by his finite
difference method of lines on the bubble reactor. He and Dr. J. Fröhlich read
the entire manuscript at various stages and offered constructive suggestions.

27

Bibliography

[1] S. Adjerid, J.E. Flaherty : A Moving Finite Element Method with Er-
ror Estimation and Refinement for One–Dimensional Time Dependent
Partial Differential Equations. SIAM J. Numer. Anal. 23, pp. 778–796
(1986)

[2] I. Babuška, W.C. Rheinboldt : Error Estimates for Adaptive Finite
Element Computations. SIAM J. Num. Anal. 15, pp. 736–754 (1978)

[3] M. Bieterman, I. Babuška : An Adaptive Method of Lines with Er-
ror Control for Parabolic Equations of the Reaction–Diffusion Type.
J. Comp. Phys. 63, pp. 33–66 (1986)

[4] F.A. Bornemann : An Adaptive Multilevel Approach to Parabolic
Equations I. General Theory and 1D–Implementation. IMPACT Com-
put. Sci. Engrg. 2, pp. 279–317 (1990)

[5] P. Deuflhard, P. Leinen, H. Yserentant : Concepts of an Adaptive Hier-
archical Finite Element Code. IMPACT Comput. Sci. Engrg. 1, pp. 3–35
(1989)

[6] P. Deuflhard, U. Nowak : Extrapolation Integrators for Quasilinear Im-
plicit ODEs. In: P. Deuflhard, B. Engquist (eds.): Large Scale Scientific
Computing. Progress in Scientific Computing 7, pp. 37–50. Birkhäuser
(1987)

[7] P. Deuflhard, U. Nowak, M. Wulkow : Recent Developments In Chemical
Computing. Computers Chem. Engrg. 14, No. 11, pp. 1249–1258 (1990)

[8] E. Hairer, G. Wanner : Solving Ordinary Differential Equations II, Stiff
and Differential–Algebraic Problems. Springer Series in Computational
Mathematics 14. Springer, Berlin–Heidelberg–New York (1991)

[9] A.C. Hindmarsh : LSODE and LSODI, Two New Initial Value Ordinary
Differential Equation Solvers. ACM SIGNUM Newsletter 15, pp. 10
(1980)

[10] J. Lang : KARDOS – KAskade Reaction Diffusion One–dimensional
System. Technical Report TR 93–9 (1993), Konrad–Zuse–Zentrum für
Informationstechnik Berlin, Germany

[11] J. Lang, A. Walter : A Finite Element Method Adaptive in Space
and Time for Nonlinear Reaction–Diffusion Systems. IMPACT Com-
put. Sci. Engrg. 4, pp. 269–314 (1992)

28

[12] J. Lang, A. Walter : An adaptive Rothe method for nonlinear reaction–
diffusion systems. Appl. Numer. Math. 13, pp. 135–146 (1993)

[13] K. Miller, R.N. Miller : Moving finite elements I. SIAM J. Nu-
mer. Anal. 18, pp. 1019–1032 (1981)

[14] N.M. Nachtigal, S.C. Reddy, L.N. Trefethen : How fast are nonsymmet-
ric matrix iterations? SIAM J. Matrix Anal. Appl. 13, No. 3, pp. 778–
795 (1992)

[15] U. Nowak : Adaptive Linienmethoden für nichtlineare parabolische Sys-
teme in einer Raumdimension. Dissertation, FU Berlin, Fachbereich
Mathematik, Technical Report TR 93–14, Konrad–Zuse–Zentrum Berlin
(ZIB) (1993)

[16] L.R. Petzold : A Description of DASSL: a differential–algebraic system
solver. Proc. IMACS World Congress, Montreal, Canada (1982)

[17] M. Roche : Rosenbrock Methods for Differential Algebraic Equations.
Numer. Math. 52, pp. 45–63 (1988)

[18] E. Rothe : Zweidimensionale parabolische Randwertaufgaben als Grenz-
fall eindimensionaler Randwertaufgaben. Math. Ann. 102, pp. 650–670
(1930)

[19] K. Strehmel, R. Weiner : Linear–implizite Runge–Kutta–Methoden und
ihre Anwendungen. B.G. Teubner Verlagsgesellschaft Stuttgart–Leipzig
(1992)

[20] H.A. Van der Vorst : BI–CGSTAB: A Fast And Smoothly Converging
Variant of BI–CG For The Solution Of Nonsymmetric Linear Systems.
SIAM J. Sci. Stat. Comp. 13, No. 2, pp. 631–644 (1992)

[21] P.A. Zegeling : Moving–Finite–Element Solution of Time–Dependent
Partial Differential Equations in Two Space Dimensions. Report NM–
R9206 (1992), Centrum voor Wiskunde en Informatica (Netherlands)

29

