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Chapter 1

Introduction

1.1 Problem formulation

The computer simulation of molecular systems is a research area with a fine tra-
dition. Nowadays, supercomputers like ANTON [66] are specifically designed to
generate classical molecular dynamics trajectories. Researchers are interested in
classical molecular simulations in order to understand protein folding processes
and interactions between molecules like ligands and proteins.

In classical molecular dynamics, the equations of motion of an N -atoms
molecular system are solved in configurational space (3N cartesian coordinates)
and in momenta space (3N momentum variables). One problem with the simu-
lation of molecular systems is the gap between the fastest oscillations of covalent
bonds of a molecule (some femtoseconds) and the time-scale of the interesting
processes (some microseconds for fast folding processes)[29]. Another problem
is the evaluation of forces acting on the atoms of the molecular system. This
evaluation is very expensive. ANTON can generate a trajectory of 10,000 ns
per day for a large protein structure (23,000 atoms plus explicit water) [84].
Thus, in order to simulate one second in “real life” ANTON needs about 270
years of computing time1. Even if we can generate and analyze a trajectory of
this length, it is not clear that the generated statistical data contains enough
information about the molecular processes and time-scales under consideration.
In Figure 1.1, e.g., a typical time-series plot of an observable taken from a dy-
namics simulation of a small molecule (head group of a cholestane spin-probe)
is shown.

Simply speaking, this molecule has two different conformations. The relative
position of the oxygen atom, as measured by means of an internal coordinate,
determines its conformation. Here, the internal coordinate is a dihedral angle.
In the time-series plot, one can see that the molecule jumps between two con-
formations. The conformations are indicated by blue and red coloured stripes.
Deuflhard, Schütte et al. [20, 18, 21, 63, 19] introduced this set-based approach
to conformation dynamics, which was inspired by ideas of Michael Dellnitz et al.
[17] for hyperbolic dynamical systems. The observation in Figure 1.1 is that the
molecular system stays in a conformation for a very long time compared to the

1In fact, ANTON is the first computer which can reach this efficiency. At the time ANTON
was designed, other comparable parallel computers could only simulate about 100 ns per day.
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Figure 1.1: A typical time-series plot of an observable from a molecular dynamics
simulation of a small molecule.

time-scale of simulation before it jumps to another conformation. Consequently,
Deuflhard et al. used this kind of observation in order to define(!) conforma-
tions as metastable sets in the configurational space of the molecular system.
Their approach is the theoretical framework of this thesis. The set-based con-
cept can be extended to more than two conformations. It can also be extended
to the situation of Figure 1.2. The binding process of a ligand into an active
site can be seen as a transition process between different conformations along
the binding path. An observable can, e.g., characterize the relative position of
the ligand to the active site. In this case, a similar behavior compared to that
in Figure 1.1 can be expected for the observable in MD simulations. Due to rare
events during this simulation, the complete binding path in Fig. 1.2 cannot be
simulated with standard MD methods. These are the interesting questions to
be solved for the protein-ligand binding example:

Q1 What are the statistical weights of the conformations? In other words,
what is the probability for the system to be in one of the conformations?

Q2 How can we describe the transition pattern between the conformations?
In other words, how can we estimate the probability to stay in one of
the conformations, as well as the probability to move between certain
conformations?

Based on the conformation dynamics approach, the questions Q1 and Q2 can be
answered by a Markov State Model. The transition pattern between the confor-
mations is given by a row-stochastic transition matrix and the statistical weights
are given by the dominant left eigenvector of this transition matrix [19]. This is
a statement about the mathematical formulation of the answers to Q1 and Q2.
It is not a statement about how to get the statistical information to build up
the Markov State Model. Figure 1.1 clearly shows that a direct sampling ap-
proach leads to redundant statistical data. E.g., follow the trajectory in Figure
1.1 when the system is in the red conformation for the first time. During the
simulation a lot of redundant data about the local distribution of the dihedral
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Figure 1.2: A binding path of a small ligand molecule from the surface of a
protein into the active site. This is a result of a molecular kinetics simulation
and cannot be computed in reasonable time using standard MD methods [9].

angle inside this “red conformation”(A) is collected until the trajectory jumps
to the “blue conformation” (B) again. Although the overall generated simula-
tion data is by far sufficient to estimate the local distributions of the observable
inside the two conformations, the sampling does not contain enough data in
order to make a statistically relevant statement about the transition pattern
of the system. There are too few jumps between the conformations A and B
inside the trajectory. These jumps are rare events. Thus, the transition pattern
(Q2) cannot be extracted from the time-series in Figure 1.1 within reasonable
CPU-time. Additionally, even the statistical weights (Q1) of the two confor-
mations cannot be extracted from the presented time-series. If the trajectory
rarely jumps between its conformations, the weighting between the conforma-
tions may be wrong [81]. In order to answer the aforementioned questions of
conformation dynamics, the applied simulation method has to balance between
two different requirements

R1 In order to figure out the statistical weights of the conformations, the sam-
pling method cannot be based on rare jumps between the conformations.

R2 For an analysis of the transition pattern, the sampling method has to focus
on the transition regions. In our example: The region between the two
stripes in Figure 1.1.

These two requirements are contradictory, because for R1 the sampled trajectory
avoids spending time in transition regions whereas for R2 it focusses on these
regions. In the opinion of the author, these two requirements lead to different
sampling approaches. The second requirement R2 can be realized by a deeper
analysis of transition regions. This requirement is the most difficult part of
conformation dynamics and will be the main part of the present thesis. The
first requirement R1 can be implemented by using a special sampling scheme,
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which will be shown in chapter 4.3.

Conceptual change. At this stage, everything seems to be solvable using
the given Markov State Model framework of conformation dynamics. Answer-
ing the two questions (Q1 and Q2) seems to be a purely technical problem: The
requirements (R1 and R2) simply lead to different sampling schemes. However,
conformation dynamics has a conceptual problem. In Figure 1.3, a sketch of
the set-based concept of conformation dynamics is shown. The state space is

Figure 1.3: The states of a trajectory of a molecular dynamics simulation are
assigned to two conformations A and B.

decomposed into metastable sets (in our example: A and B). Each state of a
time-discrete trajectory (circles in the first row) can be assigned to one of these
sets, i.e., to one of the conformations. Note that in this concept, the states in
the transition region in Figure 1.1 have to be uniquely assigned to A or B as
well. Whereas, the first row in Figure 1.3 is a Markov chain in state space, the
projected time-series (AABBA...) does not possess a Markov property [76, 80].
Thus, presenting a Markov State Model as a solution of the conformation dy-
namics problem conceals that the projection from a dynamics simulation in a
continuous state space onto a finite number of sets spoils the Markov property.
There are several approaches in literature, which try to correct the results of
conformation dynamics in this direction. A rigorous approach is given by the
computation of committor functions. Unfortunately, this approach is only valid
for the case of two conformations. Therefore, the present thesis focuses in an-
alyzing the projection in Figure 1.3 from a different point of view. Instead of
analyzing molecular dynamics trajectories a transfer operator concept will be
used as, in principle, introduced by Schütte [63]. However, a transfer operator
different from Schütte’s operator will be defined. Desirable properties of such
a new transfer operator will be derived. In order to deduce a valid projection
of this new transfer operator to a low dimensional Markov State Model, confor-
mations are not defined by sets any more. Rather, conformations are given by
membership functions computed as a linear combination of dominant eigenfunc-
tions of the transfer operator. This approach will include the key for an efficient
sampling of the state space. A direct estimation of the infinitesimal generator of
the new transfer operator will be used to adaptively and hierarchically sample
from the state space, i.e., generate sampling data wherever “more information”
is needed.

1.2 Outline

The thesis is organized as follows. Chapter 2 presents the basic assumptions of
molecular kinetics on the basis of a canonical ensemble. The difference between
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molecular dynamics and molecular kinetics will be derived and common con-
cepts will be illustrated. It will be shown that these concepts directly lead to a
definition of a transfer operator in equation (2.3). The definition of the transfer
operator is depending on the dynamical model of the molecular system. One
example is given by Schütte’s transfer operator for Hamiltonian dynamics in
chapter 2.2 equation (2.4). Since Hamiltonian dynamics does not lead to self-
equilibration of the canonical ensemble, a generalization of the transfer operator
approach is derived in chapter 2.3 equation (2.7) for arbitrary dynamical models
- including stochastic molecular processes. In chapter 2.5, it will be shown, how
an existing algorithmic approach of Röblitz to the discretization of Schütte’s
transfer operator can be used for the generalized transfer operator, too. This
algorithmic approach can be computationally expensive. In chapters 2.6 and 2.7
alternative, efficient algorithmic approaches to the simulation of molecular kinet-
ics are analyzed. It is shown that the common theoretical basis for all efficient
approaches is the assumption of an infinitesimal generator of the generalized
transfer operator. Schütte’s transfer operator does not meet this assumption.
Therefore, a new generalized transfer operator is designed in chapter 3. Instead
of selecting one special dynamical model in order to simulate molecular pro-
cesses, desirable properties of the transfer operator are identified. Theoretical
results for the designed, generalized transfer operator are deduced in chapter
3.1. In chapter 3.3 it is shown, how this new generalized transfer operator leads
to a valid Markov State Model. Especially, the importance of the Robust Perron
Cluster Analysis (PCCA+) in the context of correct time-extrapolation will be
shown in Theorem 2. For this purpose, the PCCA+ algorithm will be extended
from discrete transition matrices to continuous operators in chapter 3.4. The
aforementioned assumption of an existing infinitesimal generator of the general-
ized transfer operator is one important aspect for a correct time-extrapolation,
this assumption may be too rigorous for realistic molecular models. This thesis
offers different optional approaches to the transition rate computation even if
an infinitesimal generator does not exist, see chapter 3.5. From an algorith-
mic point of view, Theorem 4 in chapter 3.6 (based on Gauß’ Theorem) will
be used to effectively compute the discretization of the infinitesimal generator
in high-dimensional spaces. Some algorithmic details of an efficient simulation
of molecular kinetics are given in chapter 4. Instead of estimating the transi-
tion pattern by a time-consuming realization of the metastable dynamical model
(and by “waiting” for the rare transition events), only the computation of Boltz-
mann distributions at the surfaces of Voronoi cells is needed which can be done
with accelerated (rapidly mixing) sampling schemes. The algorithmic point of
view will be changed with this new concept: It is not important to simulate a
statistically relevant number of transitions in order to compute a Markov State
Model, it is even not necessary to simulate a molecular system according to a
metastable dynamical model. Instead of applying molecular dynamics simula-
tions, it is only important to figure out free energy differences between certain
subsets of the configurational space efficiently. The latter requirement will be
solved by Jarzynski’s Identity in chapter 4.3. Finally, two different numerical
examples will be shown in chapter 5: An illustrative two-dimensional example
and a real-world molecular simulation of a binding process.
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Chapter 2

Molecular kinetics in the
canonical ensemble

All considerations in the present thesis assume a canonical ensemble, i.e., the
simulation results are valid for systems with a constant number of particles N ,
constant volume V and constant temperature T . The theoretical construction
of a canonical ensemble as well as the state of the art methods to characterize
its dynamical behavior are derived in the upcoming sections. This is necessary
because the basic assumptions should be clear before the mentioned conceptual
change is introduced in chapter 3.

2.1 From molecular dynamics to Markov State
Models

In Figure 2.1, an isolated system is indicated by a box with a thick-walled
barrier. The system cannot interact with its surroundings, the transfer of matter
and of heat is blocked. Imagine a thermos flask. This isolated system cannot be
modeled with computational methods because it consists of too many particles.
A certain homogeneity is assumed: The system is divided into a large number
of identical, closed subsystems. A closed system can exchange heat with the
surroundings, but it cannot transfer matter. Each subsystem is a copy of a
certain molecular system. E.g., imagine a certain protein with its ligand in a
water box as a subsystem in Figure 2.1. In the classical framework of this thesis,
each subsystem has the same number N , same types, and same connectivities
of atoms as well as the same volume. However, they are different with regard
to their molecular state. Each subsystem has its own configurational state
q ∈ Ω ⊂ R3N and momentum state p ∈ R3N . Thus, the total energy H of each
subsystem is different. The total energy H(q, p) of such a classical molecular
system is the sum H(q, p) = V (q) + K(p) of its potential energy, V : Ω → R,
only depending on q, and its kinetic energy, K : R3N → R, only depending on
p. Taking all these conditions into account, Boltzmann derived the probability
density function π : Ω×R3N → R+ of states (q, p) of the subsystems as

π(q, p) =
1
Z

exp(−β H(q, p)), (2.1)
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Figure 2.1: An isolated system divided into a large number of closed subsystems.
Each subsystem is a copy of the same molecular system with the same number
of atoms and the same volume, but with a different molecular state given by
configuration q and momentum coordinates p.

where Z > 0 is the normalization constant (also called partition function), and
β is derived from the Lagrange multiplier of the above constraints. In order to
compute the Boltzmann distribution as a solution of an optimization problem,
one can either ask for the most probable distribution or maximize the entropy
[42] of the isolated system1. The factor β can be related to the inverse tempera-
ture T of the system β = (kBT )−1, where kB is the Boltzmann constant. Thus,
besides the number of particles and the volume of the subsystems, temperature
is a further common property (see Figure 2.1). The states of the subsystems are
time-dependent. The Boltzmann distribution is a dynamical equilibrium of the
system. There are two different ways to characterize this dynamical process:
molecular dynamics and molecular kinetics.

Molecular dynamics. A molecular dynamics simulation of the system in
Figure 2.1 picks out only one subsystem of the canonical ensemble and deter-
mines its time-dependent evolution. This is done independently from the states
of the other subsystems. In the context of the canonical ensemble, molecular
dynamics can be seen as a simulation of a closed molecular (sub)system. For
this simulation a dynamical model has to be defined. This model has to qualify
and quantify the interchange of energy between the subsystems of the canoni-
cal ensemble. One important dynamical model is Hamiltonian dynamics2. In
this dynamical model, the time-evolution of the states is given by a first order
differential equation

q̇(t) = ∇pK(p(t)),
ṗ(t) = −∇qV (q(t)), (2.2)

1The Boltzmann distribution is the equilibrium distribution of the states of the subsystems
in Figure 2.1. Entropy increases as long as the system is not in an equilibrium state. In an
equilibrium state, entropy reaches its maximum.

2Hamiltonian dynamics is a dynamical model of an isolated subsystem, but an isolated
subsystem is just a special case of a closed subsystem without interchange of energy.
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where q̇ and ṗ are the time-derivatives of q(t) and p(t). A short calculation
shows that d

dtπ(q(t), p(t)) = 0 in the case of Hamiltonian dynamics (2.2). Fur-
thermore, the phase space volume is time-invariant with regard to the symplectic
dynamics. Therefore, the density π of states is preserved assuming Hamiltonian
dynamics. Hamiltonian dynamics is a valid dynamical model with regard to
the canonical ensemble (it preserves the equilibrium state of the system dy-
namically). This insight contradicts a common opinion. In fact, Hamiltonian
dynamics is a valid dynamical model for a simulation at constant temperature.
The important insight is that temperature is not a property of a molecular
state, it is a property of an ensemble. However, Hamiltonian dynamics is not
recommended for constant-temperature simulations, because it is not ergodic
in this context. Given an initial state (q(0), p(0)), the Hamiltonian dynamics
trajectory does not come arbitrarily close to all the states of the subsystems.
It keeps its initial energy level, whereas the subsystems have different total en-
ergy levels in Figure 2.1. As a consequence, self-equilibration of the isolated
system, i.e., convergence against the Boltzmann distribution of states, cannot
be based on Hamiltonian dynamics as a dynamical model for the canonical en-
semble. In chapter 2.3, modifications of Hamiltonian dynamics are presented,
which are often used for an ergodic molecular dynamics simulation at constant
temperature.

Molecular kinetics. In molecular dynamics a single trajectory is analyzed. A
conformational transition takes place along this trajectory in the moment when
the trajectory leaves a certain subset of the state space and enters a different
one3. In molecular kinetics, however, an ensemble of trajectories is analyzed, i.e.
the propagation of probability densities is observed. From this point of view,
a “transition” takes place if an arbitrary of the observed trajectories leaves a
certain subset of the state space and enters a different one. In particular, the
transition pattern of molecular kinetics does not hold for the behavior of sin-
gle subsystems. Statements like “transition rates between the conformations
correspond to a long-term dynamics trajectory” are not possible with regard
to this approach, because such a statement mixes two different points of view.
It is not possible to claim that the molecular kinetics transition pattern repre-
sents a single realization of a dynamical model. The computed transition rates
of molecular kinetics can also not be validated by experiments observing the
dynamics of a single molecule. Although, there are two main assumptions in
the molecular dynamics approach which are relevant for molecular kinetics, too.
The first assumption is a kind of a Markov property: Equation (2.2) is a first
order deterministic differential equation. In order to predict the future evolution
of the system it is sufficient to know the current state (q(t), p(t)). Note that
for all dynamical models in chapter 2.3, i.e, also for first order stochastic differ-
ential equations and for time-continuous time-harmonic Markov processes, this
Markov property holds. The second assumption of molecular dynamics, which
also holds for molecular kinetics, is given by the independence of the energy
transfer of the subsystems with regard to the rest of the ensemble. In other
words, the subsystems do not “see” if the ensemble is equilibrated or not.
An important consequence: Molecular kinetics is always (at each point of time)
driven by the same dynamical model, no matter whether the ensemble is on its

3An example is given by the conformational transitions in Figure 1.1.
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way to equilibrium or has already reached its dynamical equilibrium.
In molecular kinetics, the evolution of the probability density of the states of
the subsystems is determined. In this context, the basic assumptions can be
expressed mathematically by an operator equation. Given a time-dependent
probability density function ρ : R×Ω×R3N → R of states (q, p) ∈ Ω×R3N at
time t and a lag-time τ > 0, the evolution of the probability density function at
time t + τ can be expressed as:

ρ(t + τ, ·, ·) = Ps(τ) ρ(t, ·, ·), (2.3)

where Ps(τ) : L1(Ω × R3N ) → L1(Ω × R3N ) is a lag-time-dependent (but not
time-dependent) operator which propagates probability density functions4. In
chapter 3.2 it will be shown that our approach defines a Markov operator P(τ), a
projection of P s(τ) to configurational space Ω. Equation (2.3) is too complex to
be solved for high-dimensional molecular systems. The complexity of this equa-
tion is reduced by using the aforementioned conformation dynamics approach.
The probability density function ρ(t, ·, ·) is projected to a time-dependent low-
dimensional vector w(t) ∈ Rn. The elements of this vector are given by the
statistical weights of the n conformations at time t. In Figure 5.10 at the end
of this thesis, a plot of the time-dependent evolution of a w-vector (with 3 ele-
ments) is shown as an example for this kind of complexity reduction. In Figure
2.2, a sketch of the complexity reduction can be seen. Whereas the projection
shown in Figure 1.3 is based on a molecular dynamics simulation, Figure 2.2
presents the conformation dynamics approach in the desired molecular kinet-
ics framework. The propagation of the vectors w in Figure 2.2 is done by an
n × n-matrix P>c (τ) via w(t + τ) = P>c (τ) w(t). In order to get a commuting

Figure 2.2: Complexity reduction of molecular kinetics. Solid lines: propaga-
tion of probability density functions via Ps(τ). Dashed lines: projection of
probability density functions to a low-dimensional vector w. Dash-dotted lines:
propagation of statistical weights via an n× n-matrix P>c (τ).

diagram in Figure 2.2, the matrix P>c (τ) has to preserve the non-negativity of
w (at least). Furthermore, the sum of the elements of w has to be 1 for every
time-step in Figure 2.2. Column-stochastic matrices having positive eigenval-
ues present one possible(!) class of matrices in this context. Column-stochastic
matrices have non-negative elements and their column sums are equal to 1. In
this special case, the transposed Pc(τ) can be interpreted as a transition matrix
of a Markov chain. This is the reason why this matrix is called Markov State
Model in conformation dynamics. Each conformation is denoted as one possible

4Note that for a non-negative probability density function ρ the normalization 1 =∫
R3N

∫
Ω

ρ(t, q, p) dq dp holds, i.e., ρ(t, ·, ·) ∈ L1(Ω × R3N ). The connection of (2.3) to or-

dinary reaction kinetics is visible if ρ(t, q, p) is interpreted as “concentration” of “species”
(q, p) at time t.
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Markov state of the system. The transition behavior is given by Pc(τ). The aim
of conformation dynamics is to compute this Markov State Model5.

2.2 Transfer operator approach

The set-based concept of the transfer operator approach [63] of Schütte et al. is
a method to find a Markov State Model Pc(τ). This approach is described in this
section. As mentioned before, the investigations can be restricted to the case of
an equilibrated system. In the classical framework of this thesis, the total energy
H is the sum of kinetic and potential energy. The Boltzmann distribution π can
be decomposed, π = πpπq, into a probability density function πp : R3N → R
for the kinetic energy in momentum space and a probability density function
πq : Ω → R for the potential energy in configurational space.

The common algorithmic realization of the transfer operator approach is as
follows. In order to generate a Markov State Model Pc, the molecular kinetics
information is taken from a molecular dynamics simulation with a pre-defined
dynamical model. Hamiltonian dynamics has been identified above as a valid
dynamical model for the canonical ensemble. In his thesis, Schütte defined
a transfer operator T (τ) : L1,2

πq
(Ω) → L1,2

πq
(Ω) on the basis of Hamiltonian

dynamics as

T (τ) f(q) =
∫

R3N

f(ΠqΨ−τ (q, p))πp(p) dp. (2.4)

Equation (2.4) can be understood as follows: Given an initial state (q, p), a back-
ward Hamiltonian dynamics for a lag-time τ is investigated. The final state is
denoted as Ψ−τ (q, p). Via Πq, this final state is projected to position space.
The integral in (2.4) averages over all possible initial momentum variables with
given Boltzmann distribution πp. The definition of conformations as metastable
sets leads to a decomposition of the configurational space Ω. In the set-based
approach, the conformations χ1, . . . , χn are given by the characteristic functions
of the corresponding subsets of Ω, i.e., in terms of functions χi : Ω → {0, 1}.
The conformations χi form a partition of unity via

∑n
i=1 χi(q) = 1 for all q ∈ Ω.

In order to identify the conformations χ in practice, the configurational space
is decomposed into a larger (but finite) number of subsets represented by char-
acteristic functions Φi : Ω → {0, 1}, i = 1, . . . ,m, with m � n. A transition
probability matrix P (τ) ∈ Rm×m between these small subsets is used to iden-
tify the metastable subsets χi of the configurational space. The discretization
scheme of the transfer operator approach to conformation dynamics can be
written as

T → P → Pc. (2.5)

A continuous transfer operator T (τ) is defined to characterize the collective
transfer of initial states for a certain dynamical model of the molecular system.
A discretization of this operator via basis functions Φ leads to a transition
matrix P (τ) which is used to identify the conformations χ and the Markov
State Model Pc(τ). On the basis of the transfer operator T (τ), the element

5If P>c (τ) is column-stochastic, then Pc(τ) is a row-stochastic matrix. However, P>c (τ)
is not necessarily column-stochastic. Nevertheless, the technical term “Markov State Model”
will be used for Pc(τ) throughout this thesis.
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(i, j) of the transition matrix P (τ) can be computed as

P (τ)(i, j) =
〈Φi, T (τ)Φj〉πq

〈Φi, e〉πq

, (2.6)

where 〈f, g〉πq is the πq-scalar product defined as
∫
Ω

f(q) g(q) πq(q) dq. The
function e : Ω → {1} is a constant. The nominator in (2.6) counts the number
of states which undergo a transition from set Φi to set Φj in time τ . This
number is divided by the statistical weight of set Φi in equilibrium, given by
di := 〈Φi, e〉πq . Thus, the expression (2.6) denotes the conditional probability
for a transition from set Φi to set Φj . The matrix Pc can be derived from the
operator T in a similar way. Just exchange the Φ-basis functions by χ-basis
functions in (2.6). T (τ) in (2.4) is a transfer operator. T (τ) is not acting on
density functions, it is acting on membership functions. Thus, stationarity is
characterized by the equation e = T (τ) e, where e is the constant function e ≡ 1
in Ω. In contrast to T , the operator Ps(τ) in (2.3) is acting on density functions.
In this case, stationarity is characterized by π = Ps(τ) π, with the Boltzmann
density π. Consequently, T is discretized with a set of basis functions Φ or χ,
which is a partition of unity (and not a partition of πq). T and the projection
of Ps to configurational space are adjoint operators, which can be seen by the
fact that a χ-discretization of T leads to Pc and a χ-discretization of Ps leads
to P>c in chapter 2.1. The transfer operator approach is a powerful concept for
molecular kinetics investigations. For the computation of P and Pc, however,
high dimensional integrals have to be solved, see (2.6). In this equation, the
computation of the term T (τ)Φj(τ) can be based on short-time τ molecular
dynamics simulation data. As mentioned before, Hamiltonian dynamics is not
ergodic. Therefore, we will show how to compute the transition matrix P on
the basis of molecular dynamics simulation data for different dynamical models.
This requires a generalization of T .

2.3 Thermostated molecular dynamics simula-
tions

Many researchers have created possible dynamical models for a canonical ensem-
ble, such that the distribution of simulation data of a single long-term trajectory
converges to (2.1). They have been inspired by the equations of motion (2.2).
There are two main approaches used in practice.

1. A deterministic approach: Instead of (2.2) an alternative but similar deter-
ministic dynamical system is defined which converges against Boltzmann
distribution. A well-known example is the time-reversible Nosé-Hoover dy-
namics [30, 36]. Another example is the Berendsen thermostat [5] which
does not generate the canonical ensemble exactly. Other time-reversible
deterministic thermostats can be found in [37]. It should be mentioned,
that the term “deterministic approach” is only of academic interest. From
a numerical point of view, the Ljapunov exponent of the dynamical sys-
tems is usually very high: Long-term deterministic dynamical systems, say
over more than about 100 femtoseconds, are numerically chaotic. This is
the reason why many researchers prefer molecular dynamics simulations
for generating Boltzmann distributed ensembles.
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2. A stochastic approach: Besides Smoluchowski [38] and Langevin dynamics
[61], the class of hybrid Monte-Carlo methods (HMC) [22] is an example
for a stochastic dynamical model6. In HMC, the system is mainly prop-
agated according to (2.2). Sole exception: After a certain time-span the
momentum coordinates are refreshed randomly and a Metropolis-like ac-
ceptance step assures the convergence of the system towards (2.1). Since
a total refreshing of momentum variables seems to be unphysical, there
are alternative variants of this method. In these variants, momentum
variables are more or less conserved, e.g., like in targeted shadow HMC
[1].

Besides possible physical inconsistencies of the above dynamical models, there is
always an unknown additional parameter which defines how fast the trajectories
can change between the energy levels of H. From a physical point of view, this
parameter determines the quality of the energy transfer between the molecular
system and its environment in order to equilibrate temperature. This param-
eter is difficult to define and often appears arbitrarily. However, the transfer
operator approach can be extended to these different dynamical models. The
two classes of dynamical models have an important property in common – the
Markov property. Given a starting point (q, p) ∈ Ω×R3N , one can determine a
probability for the possible future evolution of the system. These probabilities
only depend on the starting point (q, p). From this point of view, a τ -time-
discretized computation of one of the mentioned dynamical models is nothing
else but a realization of a Markov chain in phase space. A generalized transfer
operator P(τ) : L1,2

πq
(Ω) → L1,2

πq
(Ω) can be written as:

P(τ) f(q) =
∫

R3N

( ∫
Ω

f(q̃) Ψ−τ

(
q̃|(q, p)

)
dq̃

)
πp(p) dp. (2.7)

In equation (2.7), the initial state (q, p) determines a probability density function
Ψ−τ

(
·|(q, p)

)
for the possible evolutions of the system in configurational space in

time τ . For an explanation see Figure 2.3. Ψ−τ is a Dirac delta function in the
case of deterministic dynamics, because the initial state (q(0), p(0)) exactly de-
fines the final configurational state q(−τ). Equation (2.7) can be used to define
a generalized transfer operator for any of the dynamical models (deterministic
and stochastic) mentioned above, even in the case of a dynamical model which
is independent from momentum variables7 – like Smoluchowski dynamics. T in
(2.4) is a special case8 of P. There is a very simple way to derive a transition
matrix P from the continuous operator P via (2.6), where T is replaced by P.
One can simply count the transitions between subsets (defined by Φ) of Ω in a
long-term molecular dynamics trajectory generated by one of the above ergodic
dynamical models for lag-time τ . This gives the nominator in (2.6). Divid-
ing this number by the equilibrium population of each set Φi directly leads to a
transition matrix P . This direct sampling approach is very common, but it does
not solve the conformation dynamics problem, as mentioned in the introduction.
An adaptive discretization approach for the computation of P is needed which
will be discussed in chapter 2.5.

6The data in Figure 1.1 have been generated with HMC.
7In this case Ψ−τ is independent from p.
8The lag-time dependence P(τ) is omitted sometimes. In this case, a common property of

all operators P(τ) for τ > 0 is addressed.
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(q,p) (q,p)

(q,p)
Figure 2.3: Left. In the case of (2.4), Hamiltonian dynamics is deterministic.
A given initial state (q, p) leads to a fixed propagated state (q̃, p̃) = Ψ−τ (q, p).
Right. In the general case of (2.7) with a stochastic differential equation or with
a Markov chain, the initial state (q, p) is propagated to different states with
a different probability. Ψ−τ

(
· |(q, p)

)
is the corresponding probability density

function in Ω.

2.4 Periodic boundary condition

The potential energy function V : Ω → R in this thesis is usually considered
to be an empirical potential energy function (also called molecular force field)
modelled on the basis of additive covalent and non-covalent energy contributions
to the molecular system. A simulation of a molecular system with potential
energy function V at constant temperature is only possible if the canonical
ensemble is assumed. The canonical ensemble probability function of Boltzmann
(2.1) only makes sense, if the partition function Z exists. Especially, the integral∫

Ω

exp(−β V (q)) dq

must exist. If Ω = R3N , the integral expression can be divergent, because trans-
lation and rotation in general does not change the value of V (q). One possibility
for a corresponding definition of a compact set Ω ⊂ R3N is connected to the
iso-volume construction of the canonical ensemble. In practice, the atom coordi-
nates are usually restricted to a certain three-dimensional box in position space.
Thus, the partition function exists. The severe problem in this context is the
construction of a potential energy function V . This problem can be explained
as follows. Although the subsystems of the canonical ensemble are closed and
do not interchange matter, they interchange “potential energy interaction” with
their surrounding neighbors. In order to compute the potential energy of a cer-
tain molecular state q ∈ Ω, one often assumes periodic boundary conditions for
the box, as if the neighbors of the subsystem are copies of the same conforma-
tional state q. Using this modelling approach, boundary effects are excluded
from the simulation.

Molecular dynamics. From a thermostated molecular dynamics point of
view, this modelling is incorrect. If every subsystem is a copy of the same
molecular state (q, p), then the corresponding ensemble is not canonical and
“temperature” (connected to the Boltzmann factor β) can not be defined.
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Molecular kinetics. In principle, the argument against periodic boundary
conditions also holds for molecular kinetics. But there is a possibility to correct
this inconsistency within the theoretical framework of the generalized transfer
operator P in (2.7) and Figure 2.3. Instead of assuming that V (q) models a
potential energy of a conformational state q ∈ Ω physically, it is only assumed
that V (q) := − 1

β ln(πq(q)) is a (complicated) expression for the probability
density of “finding” a certain conformational state q in the canonical ensemble9.
In the framework of (2.7), it is allowed that a certain initial state (q, p) leads to
a probabilty density Ψτ

(
q̃|(q, b)

)
for the evolution of the system in time τ . E.g.

in Hamiltonian dynamics this can account for the fact, that one initial state
(q, p) can evolve differently in time depnding on the conformational state of the
neighboring subsystems at time t = 0. From this point of view, the generalized
transfer operator (2.7) not only accounts for different dynamical models, it also
accounts, theoretically, for the fact that the time-dependent evolution of an
initial state (q, p) only depends on this state, not in the sense of one trajectory,
but in the sense of a probability density function.

2.5 Hierarchical, adaptive, and meshless discretiza-
tion

As mentioned in the introduction, long-term molecular dynamics trajectories
are not suitable for solving the conformation dynamics problem. Long-term
trajectories include a lot of redundant data concerning the local distribution of
states inside the metastable subsets of Ω. They do not contain enough data for
the evaluation of the transition pattern between these sets or of the statistical
weights of the conformations. Suitable discretizations Φ for the approximation
P of T can be found adaptively and hierarchically with a set of meshless basis
functions. This has been shown by Weber [75] and Röblitz [58]. Their concept
can be extended to ergodic dynamical models, i.e. to the generalized operator
P(τ). Instead of computing one long-term trajectory, one can estimate the
transition matrix P (τ) on the basis of many short-time trajectories of length τ .
Once one has estimated a transition matrix P (τ) in this way, it is also possible
to initiate an hierarchical refinement of the set of basis functions Φ in order
to improve the estimated transition behavior [58]. This adaptive hierarchical
scheme cannot be mesh-based, because of the high-dimensional configurational
space Ω. A meshless discretization approach is mandatory. In this thesis, a
Voronoi tessellation Φ of Ω is recommended as meshless approach, see also
[75, 58]. A Voronoi tessellation is based on nodes q1, . . . , qm ∈ Ω and on a
distance measure dist : Ω×Ω → R+. The nodes are configurational states that
represent the different configurations of the molecular system in a sufficient way.
The basis functions are given by:

Φi(q) =

 1, dist(q, qi) = min
k=1,...,m

dist(q, qk)

0, else
. (2.8)

9In order to implement an approximate(!) mathematical model for the computation of the
expression V (q) numerically, one can use periodic boundaries. That is the trick.
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In a hierarchical sampling approach, the set of basis functions Φ is not extended
by simply adding nodes to the Voronoi tessellation. This would also cause the
“old” basis functions and integrals in (2.6) to have to be recomputed. In a hier-
archical approach [75, 58], a certain basis function Φi is determined, which will
be refined. The basis function Φi is eliminated from the set of basis functions.
A new Voronoi tessellation Φ̃1, . . . , Φ̃m̃

is defined with nodes q̃1, . . . , q̃m̃
∈ Ω

stemming from subset Φi. Finally, the new basis functions ΦiΦ̃1, . . . ,ΦiΦ̃m̃
are

added to the set of basis functions. With this procedure, the partition of unity
is preserved (even in the case where Φi can have values between 0 and 1, which
will be described later). The other basis functions Φj , j 6= i, are unchanged.
Given a set of basis functions Φi, i = 1, . . . ,m, the matrix element P (i, j) of
P (τ) can be computed via (2.6) as

P (τ)(i, j) =
〈Φi,P(τ)Φj〉πq

〈Φi, e〉πq

=

∫
Ω

Φi(q)P(τ)Φj(q) πq dq∫
Ω

Φi(q̄) πq(q̄) dq̄

=
∫

Ω

∫
R3N

( ∫
Ω

Φj(q̃) Ψ−τ

(
q̃|(q, p)

)
dq̃

)
︸ ︷︷ ︸

(I)

Φi(q) πq(q)∫
Ω

Φi(q̄) πq(q̄) dq̄
πp(p)︸ ︷︷ ︸

(II)

dp dq

The above expression is an expectation value of an observable O(q, p) according
to a distribution πi(q, p) of states (q, p). The distribution is given by the term
(II):

πi(q, p) :=
Φi(q) πq(q)∫

Ω
Φi(q̄) πq(q̄) dq̄

πp(p).

πi is a Boltzmann distribution of molecular states, where the configurational
part is restricted to a subset Φi of Ω. The observable (I) itself is again an
expectation value. The observable of this nested expectation value is Φj(q̃) and
the distribution is given by Ψ−τ (q̃|(q, p)). A very common and efficient method
to evaluate continuous expectation values numerically is the following approach:
Generate a set of states according to the given distribution. Then compute the
mean value of the observable for the generated set of states. In the case of
P (τ)(i, j) one has to generate a set of Boltzmann distributed states (q, p), where
the q-variable is restricted to a subset Φi. With this set of initial states (q, p),
one has to compute the mean value of Φj(q̃), where the states q̃ are taken from
different realizations of the dynamical model represented by Ψ−τ (·|(q, p)). In
our group, the technical term for generating restricted states (q, p) is horizontal
sampling. The different realizations of the dynamical model based on states
(q, p) are called vertical sampling. In this Monte Carlo quadrature approach
for the estimation of P (τ)(i, j), the approximated transition matrix P̃ (τ) is a
random matrix due to truncated (finite) sampling. There are two main questions
to be solved in an adaptive sampling scheme for the estimation of P (τ):

AS1 Given a discretization Φ. How many horizontal and how many vertical
sampling points should be generated in order to estimate P̃?

AS2 Given a sampling and an estimation P̃ . How should the discretization set
Φi be determined that has to be refined?
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Röblitz [58] proposed a solution for these two questions. Her ideas were based
on the adaptive sampling approach of Singhal Hinrichs and Pande [35]. The hor-
izontal and the vertical sampling have to provide enough data for the statistics
in order to approximate P (τ) well. During the horizontal sampling, a tran-
sition matrix P̃ is not yet available. For this sampling, Röblitz proposed a
hybrid Monte-Carlo method for each subset Φi of Ω. She applied a distribution
based Gelman-Rubin convergence indicator [32] as a stopping criterion (AS1).
If a maximal number of sampling steps has been reached during the horizontal
sampling of a subset Φi, this basis function has to be refined (AS2). After the
horizontal sampling has converged for all basis functions Φi, the matrix elements
of P̃ can be sampled. Each horizontal sampling i can be used in order to start
vertical samplings to compute one row P̃ (τ)(i, :) of P̃ . Thus, the matrix P̃ is a
row-wise correlated random matrix. This structure can be used to derive error
bonds based on a stochastic error norm [58]. Röblitz computed an error bound
for the dominant eigenspace of P̃ in order to define a stopping criterion for the
vertical samplings (AS1). This error bound also identifies the basis function
Φi which mainly contributes to this error. The vertical sampling of this basis
function has to be extended. If a vertical sampling based on the horizontal
sampling of Φi does not converge in a pre-defined maximal number of sampling
steps, Φi has to be refined (AS2). The procedure has to be repeated until every
horizontal and every vertical sampling has converged.

Advantages of an adaptive sampling. In fact, the adaptive, hierarchical,
meshless sampling approach by Röblitz can be seen as the solution of the con-
formation dynamics problem, especially of the question Q2 in the introduction.
The approximation P̃ of P is error-based and can be improved by adding basis
functions to Φ. The algorithm avoids the sampling of redundant data, because
of its adaptive structure. It also avoids long-term dynamics simulations and
can be applied to non-ergodic dynamical models like Hamiltonian dynamics.
Concerning the identification of conformations χ on the basis of P , the adaptive
sampling approach is also effective and robust, because χ is computed from the
dominant eigenspace of P (chapter 3.3), which is the error-controlled object in
the algorithm. Especially in transition regions, the discretization of Ω is refined
in the adaptive sampling algorithm. The algorithm satisfies requirement R2
given in the introduction.

Computing the statistical weights with an adaptive sampling. A di-
rect sampling approach with an ergodic thermostated dynamical model provides
statistical weights of the conformations by simply counting the states of the
trajectory sampled per conformation. In an adaptive sampling approach, the
statistical weight wi := 〈χi, e〉πq of the conformation χi cannot be estimated by
counting the states in the set χi. The reason is that the number of sampling
points generated per discretization set Φi is not determined by the weight di, it
is the result of a convergence criterion. Because of the following equation

(d>P )j =
m∑

i=1

di ·
〈Φi,P(τ)Φj〉πq

di

= 〈e,P(τ)Φj〉πq
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=
∫

Ω

∫
R3N

∫
Ω

Φj(q̃) Ψ−τ

(
q̃|(q, p)

)
πp(p) πq(q) dq̃ dp dq

=
∫

Ω

Φj(q̃)
( ∫

R3N

∫
Ω

Ψ−τ

(
q̃|(q, p)

)
πp(p) πq(q) dq dp

)
dq̃

(∗) =
∫

Ω

Φj(q̃)πq(q̃) dq̃,

= 〈e,Φj〉πq

= dj , (2.9)

for the j-th element of the vector matrix product d>P (τ), the weights d can
be estimated by computing the left eigenvector d̃ of the approximation P̃ (τ) of
P (τ) for the eigenvalue 1. The step (∗) in (2.9) uses the fact that πpπq is the
stationary Boltzmann density and, therefore, independent from a propagation
via Ψ−τ . The eigenvalue λ1 = 1 is the dominant eigenvalue of P according
to a Gerschgorin estimation [33] for a row-stochastic matrix P . If the matrix
P is irreducible10 and primitive11, then the theorem of Frobenius and Perron
[56] says that the dominant left eigenvector of P is positive. Furthermore, it is
geometrically and algebraically simple. Thus, the statistical weights of P are
uniquely defined by (2.9). Although, the computation of an approximation d̃ of
d via solving an eigenvalue problem can have a unique solution, the condition
number of the eigenproblem d̃> = d̃>P̃ can be very high. Weber et al. [81] have
shown, that in the case of a metastable dynamical system the computation of
the stationary density by solving the eigenproblem (2.9) is ill-conditioned. A
very small error ‖P−P̃‖∞ can lead to a very large error ‖d−d̃‖∞ ≤ κ ‖P−P̃‖∞.
Simply adding more functions to the basis Φ, cannot improve the estimation of
the stationary density, because the condition of the weight computation depends
on the eigenvalue structure of P which mainly depends on P and not on the
discretization Φ. For the Meyer condition number κ of the statistical weight
computation, the following estimation holds:

1
m |1− λ2|

≤ κ ≤ 2(m− 1)∏m
i=2(1− λi)

, (2.10)

where λ1, . . . , λm are the sorted eigenvalues of P , see [31, 51, 75] and (3.3) in
[11]. Thus, even if d is taken as the error-controlled object of the adaptive
sampling approach (see [48]), this only can improve the result to a certain de-
gree. A possible solution of this condition problem has been mentioned in the
introduction: One has to separate the estimation of the statistical weights from
the computation of transition probabilities. This estimation of the statistical
weights can be done by a Markov chain which jumps between the basis func-
tions Φi or between the conformations χi [74, 81] rapidly. A rapidly mixing
Markov chain can answer question Q1 given in the introduction and it satisfies
the corresponding requirement R1. In fact, there are many possible approaches
to a well-conditioned solution of the statistical weights problem in literature:
The ratio of the statistical weight di of subset Φi and the weight dj of subset
Φj can be written in terms of a free energy difference ∆Aij between Φi and Φj .
This free energy difference is connected to the ratio via

∆Aij = − 1
β

ln
( di

dj

)
. (2.11)

10It cannot be decomposed into independent block matrices.
11For a primitive matrix A, there is a number k ∈ N with Ak > 0.
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The estimation of the statistical weights can be done with methods for the
computation of free energy differences, see also chapter 4.3. Note that for the
computation of free energy differences there are a lot of efficient sampling ap-
proaches which can also be applied in the context of this thesis. For an excellent
overview see Chipot [10]. All of the algorithms shown in that textbook circum-
vent the problem of rare events because of the aforementioned reasons (bad
condition number for metastable systems).

Increasing number of Voronoi cells. The construction of a rapidly mix-
ing Markov chain can solve the problem of computing statistical weights of the
conformations. A rapidly mixing sampling scheme can also accelerate the hori-
zontal sampling part of the adaptive algorithm. The horizontal sampling is used
in order to generate a restricted Boltzmann distribution. It is not important to
use a certain dynamical model for this issue. Thus, it is possible to construct
an artificial Markov chain for this part of the procedure. The vertical sampling
part, however, cannot be replaced by an artificial Markov chain. The vertical
sampling has to correctly reproduce the dynamical model Ψ−τ . From this point
of view, the increasing number of Voronoi cells during the adaptive sampling
algorithm is a further problem. Transitions in lag-time τ do not only occur
between neighboring cells. Therefore, the statistics of the vertical sampling al-
gorithm has to be sufficient for an increasing number of possible transitions in
order to approximate P (τ). This can lead to a slower convergence rate of the
vertical sampling part at a higher level of the hierarchical refinement and can
therefore introduce further refinements. This may be a vicious circle in the
aforementioned adaptive sampling algorithm if convergence of the vertical sam-
pling is crucial. For very short lag-times τ , however, the transitions between
non-neighboring cells can be neglected. Thus, the trick is to take the derivative
of P(τ) for lag-time τ = 0. In the following, we will assume that the operator
P(τ) defines an infinitesimal operator

Q = lim
τ→0+

P(τ)− I
τ

, (2.12)

where I is the identity operator. P in (2.7) has been defined on the basis of a
dynamical model. The realizations of the dynamical model are time-continuous
trajectories in configurational space. In this case, Q is well-defined via (2.12)
[45]. In chapter 3.5, we will assume that the transfer operator P meets the
Chapman-Kolmogorov equation P(τ +σ) = P(τ)P(σ) for all lag-times τ, σ > 0.
According to [45] Q is an infinitesimal generator of P

P(τ) = exp(τ Q). (2.13)

Hamiltonian dynamics projected to configurational space (represented by the
transfer operator T ) does not have an infinitesimal generator [38], because the
Chapman-Kolmogorov equation does not hold. Smoluchowsky dynamics (also
called Brownian dynamics) is an example for a dynamical model that has an
infinitesimal generator [38]. Conceptually, Q is connected to the computation
of transition rates. Many modern sampling approaches estimate transition rates
between conformations instead of estimating transition probabilities. Transition
path sampling [16], its more efficient variant called transition interface sampling
[26], and its workable variant called Markovian milestoning [71] are important
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examples of estimating transition rates. The basis for these algorithms is the
assumption of the existence of an infinitesimal generator Q.

2.6 Markovian milestoning with Voronoi tessel-
lations

The transfer operator P is acting on membership functions. For a time-dependent
membership function f : R× Ω → [0, 1], the following equations hold

f(t + τ, ·) = P(τ) f(t, ·)

⇔ f(t + τ, ·)− f(t, ·)
τ

=
P(τ)− I

τ
f(t, ·)

⇒ ḟ = Q f, (2.14)

where ḟ is the time derivative of f . Thus, Q is the infinitesimal generator of a
time-continuous Markov process, see [45]. This insight can be used in order to
estimate Q on the basis of molecular dynamics simulations.

In this section, an algorithm is worked out which takes only transitions be-
tween neighboring Voronoi cells into account. Milestoning is an idea of Farad-
jian and Elber [27]. The title of this section is also the title of an article of
Vanden-Eijnden and Venturoli [71] about milestoning. In their article, the au-
thors describe an algorithmic approach to compute transition rates between
conformations. This algorithm is very similar to the aforementioned adaptive
sampling algorithm of Röblitz except that it is based on Q instead of P(τ). The
first step of Markovian milestoning is a discretization of Ω into m Voronoi cells
Φ1, . . . ,Φm. For these Voronoi cells an m ×m-rate matrix Q∗ is computed on
the basis of a sampling. In Markovian milestoning, only the restricted horizontal
sampling part of the adaptive sampling algorithm is needed. However, an arti-
ficial, rapidly mixing sampling scheme is not applicable for this part, because
the trajectories have to represent the dynamical model Ψτ of the molecular sys-
tem correctly in order to extract the rates Q∗. Whenever a horizontal sampling
trajectory hits an edge of a Voronoi cell, the momenta are reversed. The corre-
sponding state is denoted as a hitting point. In a hitting point, the trajectory
is reflected at the edge of the cell and thus stays in the same Voronoi cell Φi

throughout the simulation. Using this kind of restricted sampling, an ergodic
dynamical model generates a local Boltzmann distribution of states inside Φi.
Plotting the histogram of the hitting points for each edge of the Voronoi cells
provides a sampling of the Boltzmann distribution of states restricted to these
edges. Intuitively, one would expect the edge-restricted Boltzmann distribution
to include all relevant information12 for the rate estimation between cell Φi and
a neighboring cell Φj , i.e. for the matrix element Q∗(i, j). One has to stress
that, in general, this intuitive approach is incorrect. This has been shown by
Vanden Eijnden et al. [72, 71]. However, in chapter 3.6 we will show that
the intuitive approach is correct in a special situation. The key is, one has to
understand what the term “incorrect” means in this context.

12Note that this thesis proposes to use exactly this information in order to approximate a
Galerkin discretization Q of Q in chapter 3.6.
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Correct computation of transition rates. In order to define transition
rates between conformations, the assumption of the existence of an infinitesimal
generator Q of the semi-group of transfer operators P(τ) is important. If Φ is a
Voronoi tessellation, a Galerkin discretization Q of this operator Q is given by

Q(i, j) =
〈Φi,QΦj〉πq

〈Φi, e〉πq

. (2.15)

Although Q is a Galerkin discretization of the infinitesimal generator Q of P(τ),
Q is not the infinitesimal generator of the Galerkin discretization P (τ) of P(τ)
defined in (2.6). This is the most important fact to know when using a set-based
decomposition approach of Ω in order to derive transition rates. The reason
for this “incorrectness” is simple: The set of operators P (τ), τ > 0, does not
have an infinitesimal generator, because the Chapman-Kolmogorov equation
does not hold for the discretized operators [60, 77]. In general, P (τ + σ) 6=
P (τ)P (σ), for τ, σ > 0, because the discretization P (τ) is based on a projection.
Thus, there is no way to find a “correct” transition rate matrix Q, because it
does not exist in the set-based approach. Furthermore, there is no way to find
the “correct” Markov State Model P (τ) in the set-based approach, because an
iterative application

(
P (τ)

)k of P (τ) is different from the Galerkin discretization

of
(
P(τ)

)k and different from a Galerkin discretization of P(k τ), see [80, 76, 47].
This means, the desirable time-extrapolation, τ → kτ , is not possible in this
way. Two different errors can be defined in the framework of transition rate
estimation.

Definition 1. For a given lag-time τ > 0 the iteration error is defined as the
difference between the Galerkin discretization of

(
P(τ)

)k denoted as G
((
P(τ)

)k)
and the iterative application

(
P (τ)

)k of the Galerkin discretization of P(τ)
with regard to a suitable matrix norm, i.e. the iteration error is given as
‖G

((
P(τ)

)k)
−

(
G

(
P(τ)

))k‖.

Definition 2. For a given lag-time τ > 0 the time-extrapolation error is de-
fined as the difference between the Galerkin discretization of

(
P(k τ)

)
and the

iterative application
(
P (τ)

)k of the Galerkin discretization of P(τ) with re-
gard to a suitable matrix norm, i.e. the time-extrapolation error is given as
‖G

(
P(k τ)

)
−

(
G

(
P(τ)

))k‖.

In the case of an existing infinitesimal generator Q the equation P(k τ) =(
P(τ)

)k holds. The iteration error and the time-extrapolation error are identi-
cal. There exist very different ways to handle these errors in literature:

• In the Markovian milestoning approach, Vanden-Eijnden and Venturoli
[71] only count hitting points on the edge between Φi and Φj if the cor-
responding trajectory has hit a different cell (different from Φj) before.
These hitting points are denoted as first hitting points. The rate matrix
Q∗ computed on the basis of first hitting points is different from Q. In
Markovian milestoning, the matrix Q∗ is not used as an infinites-
imal generator. It is used in order to compute the transition rates kA→B

and kB→A between two selected Voronoi cells denoted as “conformations”
A and B, respectively. Note that in the approach of Vanden-Eijnden
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and Venturoli there is a distinction between conformations and transition
regions which is not desired in the conformation dynamics approach of
Deuflhard and Schütte. The Markovian milestoning can be seen as an
efficient analysis of transition regions.

• Sarich, Noé and Schütte give an error bound [60] for the iteration
error. They conclude that the error is small if the sets Φi correlate well
with the dominant eigenfunctions of P(τ). In chapter 3.3, the conforma-
tions χ are defined as a linear combination of the dominant eigenfunctions
of P(τ). It will be shown that the iteration error theoretically vanishes in
this case. The existence of an infinitesimal generator Q is not a necessary
condition in this context.

• In the case of an ergodic dynamical model, the asymptotic result of it-
eration, P∞(τ), is a matrix with identical rows. These rows are given
by the vector d (statistical weights of the sets Φ)[4]. The same holds for
a Galerkin discretization P (k τ) of P(k τ) for k → ∞. Thus, asymptot-
ically the time-extrapolation error vanishes. Many researchers test the
Markovianity of their Markov State Model [34, 12, 69]. They determine if

P (2k τ) ≈ P (k τ)P (k τ)

holds, e.g., by computing the eigenvalues of P (kτ) and P (2k τ). Having
the asymptotical result in mind, it is clear that there is a k > 0 for which
the approximation is good. The statement in this context is that the
iterative application of P (σ) is correct only for lag-times σ ≥ kτ ,
whereas for lag-times σ < kτ it is incorrect. In chapter 3.3 it is shown
that a function based approach does not need this concept of an optimal
lag-time if an infinitesimal generator Q exists.

Summarizing, the interpretation of the matrix Q as an infinitesimal generator
and the interpretation of P (τ) as a Markov State Model are not adequate. This
is why, in the following, these interpretations will not be used for these matrices
any more. It is not appropriate to ignore the continuous nature of P and Q by
taking P and Q as a starting point of the conformation dynamics analysis of a
molecular system. In fact, there is already a rigorous theoretical approach to
transition rates taking the continuous operator Q into account – the Transition
Path Theory based on a committor function approach [49].

2.7 Committor functions

Transition Path Theory (TPT)[23, 50, 83] is a rigorous way to compute tran-
sition rates between two conformations A and B. The basis for TPT is the
computation of committor functions fA, fB : Ω → [0, 1]. The theoretical funda-
ment of committor functions and of committor probabilities has been developed
by Onsager [53]. In the first step, the two conformations A and B are defined
as (small) subsets of Ω, whereas the rest Ω − (A ∪ B) is the transition region
between A and B. In the second step the following boundary value problem is
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solved [49]: 
QfA = 0, in Ω− (A ∪B),

fA = 1, on ∂A,
fA = 0, on ∂B,
fA := 1, inA,
fA := 0, inB.

(2.16)

For solving the boundary value problem, the infinitesimal generator Q has to be
known explicitly. In the case of Smoluchowsky dynamics, Q is an elliptic partial
differential operator [38, 49]. The function fB = 1−fA solves the above equation
when changing the roles of A and B. The important statistical information used
for TPT can be derived from the committor functions: The function value fA(q)
is the probability that a realization of the dynamical model (according to Q)
starting in q ∈ Ω reaches set A before it reaches set B. Some properties of
this approach do not fit into the conformation dynamics framework given in the
Introduction:

(i) The committor function concept is designed for the case of two conforma-
tions n = 2.

(ii) The conformations are subsets of Ω and have to be pre-defined (they are
not a result of the committor function calculation).

(iii) Like in Markovian milestoning, there is a distinction between conforma-
tions and transition regions, which is not the case for the desired partition-
of-unity decomposition of Ω into conformations proposed by Deuflhard and
Schütte.

In order to use the committor function concept in the conformation dynamics
framework, some conceptual changes have to be made. The distinction (iii)
between conformations and transition regions can be neglected if the sets A
and B in (2.16) are replaced by two different points A and B in Ω. In this
case, the committor functions fA and fB themselves define the conformations
in a fuzzy sense. fA and fB are interpreted as membership functions. The
partition-of-unity property, fA + fB = e, holds. For the case of two metastable
conformations n = 2 and for the case of using points A and B instead of sets,
Berezhkovskii and Szabo [6] have shown that (2.16) is approximately solved by
a linear combination of the leading two eigenfunctions of Q corresponding to
the eigenvalues 0 = ξ1 ≥ ξ2 ≈ 0. The leading eigenfunction of Q is the constant
function e ≡ 1. The second eigenfunction X2 : Ω → R is assumed to be real and
bounded. The linear combination is done in such a way that the constraints of
the equation are satisfied:

fA ≈ X2 −minq∈Ω X2(q)
maxq∈Ω X2(q)−minq∈Ω X2(q)

, fB = 1− fA. (2.17)

It is easy to check that these functions approximately solve the system of equa-
tions (2.16) because of the approximately zero eigenvalue of X2. Note that
computing fA and fB on the basis of a linear combination of the leading eigen-
functions of Q also defines(!) the points A and B in (2.17). In this equation, the
point A is a maximum of the eigenfunction X2, while B is a minimum of X2.
This solves the problem of the identification of conformations (ii). The approx-
imate solutions (2.17) of fA and fB are exactly the same as the membership
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functions χ1 and χ2 identified by Robust Perron Cluster Analysis (PCCA+) for
the case of two conformations, see Deuflhard and Weber [21, 75],

χ1 =
X2 −minq∈Ω X2(q)

maxq∈Ω X2(q)−minq∈Ω X2(q)
, χ2 = 1− χ1. (2.18)

Via PCCA+, the generalization (i) of the committor function concept to more
than n = 2 conformations is simple. For the case of n > 2 conformations, the
membership functions χ1, . . . , χn are determined as linear combination of the
leading n eigenfunctions of Q such that certain constraints are satisfied. For
the concept of Robust Perron Cluster Analysis (PCCA+) see chapter 3.3. Since
χi can be seen as a membership function of conformation i, these functions
themselves will be denoted as conformations in the followings. At this stage,
the picture is clear. For all of the aforementioned algorithms, the main subject
of conformation dynamics is the analysis of the dominant eigenfunctions of the
infinitesimal generator Q. This can be seen as follows:

• Vanden-Eijnden and Venturoli have shown [71] that the restricted hori-
zontal sampling of the Markovian milestoning algorithm is theoretically
valid only if successive transitions between the Voronoi cells are statis-
tically independent. This is the case only if Φ provides a good set of
basis functions to discretize equation (2.16), because the optimal choice
for the Voronoi cells in Markovian milestoning is given by the isocommit-
tor surfaces [71]. Solving equation (2.16) is very similar to computing the
dominant eigenfunctions of Q as shown before.

• Sarich et al. [60] have shown, that a Markov State Model has a small iter-
ation error only if the discretization sets Φ provide a good approximation
of the eigenfunctions of P. The eigenfunctions of Q are identical to the
eigenfunctions of P(τ).

• Röblitz [58] has introduced an error bound as a stopping criterion of the
adaptive sampling approach. The adaptive sampling approach terminates
if the dominant subspace of P (τ) is determined sufficiently. In case of a
self-adjoint transfer operator, the dominant eigenfunctions of Q span the
dominant invariant subspace of P(τ).

Analyzing the dominant invariant subspace of an infinitesimal generator Q can
be seen as a possible unification of molecular kinetics theories [54]. In the next
chapter, the corresponding theory will be derived.
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Chapter 3

Design of a generalized
Markov operator

In equation (2.7), a generalized transfer operator P(τ) : L1,2
πq

(Ω) → L1,2
πq

(Ω) has
been defined which characterizes the transfer of membership functions f : Ω →
[0, 1] with regard to different dynamical models Ψ−τ . In the above sections,
molecular simulation always starts with the selection of a dynamical model. In-
stead of selecting one special dynamical model in the following, a generalized
transfer operator will be designed which meets certain desirable properties. This
operator will be discretized. However, realizations of a dynamical model cannot
be applied for the computation of this discretization as long as the dynamical
model is undefined. Fortunately, we are only interested in the dominant invari-
ant subspace of the operator P(τ) which is identical to the dominant invariant
subspace of Q. It will be shown that a discretization of Q can be computed
without realizations of a dynamical model.

3.1 Desirable properties

In this chapter two desirable properties are defined: self-adjointness and discrete
dominant eigenvalues for the operator P. From a mathematical point of view,
these properties assure that a small perturbation of the input data leads to a
small perturbation of eigenvalues and eigenvectors. Besides these mathematical
advantages, the desired properties can be motivated physically.

Self-adjointness. A very important property of Hamiltonian dynamics is its
time-reversibility. Changing the sign of the initial momentum vector p(0) and
then solving the equations of motion is the same as starting in (q(0), p(0))
and going backward in time. In the canonical ensemble, the probability for
a momentum vector p(0) is equal to the probability for −p(0), i.e. for every
Hamiltonian dynamics trajectory in the canonical ensemble there exists a re-
verse trajectory. Physically, the Boltzmann density of states in the canonical
ensemble is a detailed balanced dynamical equilibrium with regard to this dy-
namical model. This property should be valid for the designed operator P,
too. Detailed balance is the first desirable property of P. Thus, the frequency
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of transitions q̃ → q is equal to the frequency of transitions q → q̃ for all
pairs of states (q, q̃) ∈ Ω in the canonical ensemble. This can be expressed by
πq(q̃) · P (q̃ → q) = πq(q) · P (q → q̃), where P (q → q̃) is the conditional proba-
bility density for a transition from q to q̃. In the general case of Ψ−τ , detailed
balance can be written as

πq(q̃) ·
∫

R3N

Ψ−τ

(
q|(q̃, p)

)
πp(p) dp︸ ︷︷ ︸

P (q̃→q)

= πq(q) ·
∫

R3N

Ψ−τ

(
q̃|(q, p)

)
πp(p) dp︸ ︷︷ ︸

P (q→q̃)

. (3.1)

Theorem 1. Given the operator P(τ) : L2
πq

(Ω) → L2
πq

(Ω) defined in (2.7)
and the detailed balance condition (3.1), then P(τ) is a linear, πq-self-adjoint
operator with ‖P(τ) f‖πq ≤ ‖f‖πq . In particular, P has a real-valued spectrum
σ(P) with σ(P) ⊂ [−1, 1].

Proof. Linearity is easy to check. Self-adjointness is a direct consequence of
equation (3.1):

〈g,P(τ) f〉πq =
∫

Ω

g(q)P(τ) f(q) πq(q) dq

=
∫

Ω

g(q)
∫

R3N

∫
Ω

f(q̃) Ψ−τ

(
q̃|(q, p)

)
dq̃ πp(p) dp πq(q) dq

=
∫

R3N

∫
Ω

∫
Ω

g(q) f(q̃) Ψ−τ

(
q̃|(q, p)

)
πq(q) πp(p) dq̃ dq dp

=
∫

R3N

∫
Ω

∫
Ω

g(q) f(q̃) Ψ−τ

(
q|(q̃, p)

)
πq(q̃) πp(p) dq dq̃ dp

=
∫

Ω

P(τ) g(q̃) f(q̃) πq(q̃) dq̃

= 〈P(τ) g, f〉πq
.

In order to prove ‖P(τ) f‖πq ≤ ‖f‖πq , note that according to the Cauchy-
Schwarz inequality, (

∫
Ω

f(x) π(x) dx)2 ≤
∫
Ω

f2(x) π(x) dx for a probability den-
sity function π : Ω → R. Thus, the following holds:

‖P(τ) f‖2πq
=

∫
Ω

(
P(τ) f(q)

)2
πq(q) dq

=
∫

Ω

( ∫
R3N

∫
Ω

f(q̃) Ψ−τ

(
q̃|(q, p)

)
dq̃ πp(p) dp

)2

πq(q) dq

≤
∫

Ω

∫
R3N

( ∫
Ω

f(q̃) Ψ−τ

(
q̃|(q, p)

)
dq̃

)2

πq(q) πp(p) dp dq

≤
∫

Ω

∫
R3N

∫
Ω

f2(q̃) Ψ−τ

(
q̃|(q, p)

)
πq(q) πp(p) dq̃ dp dq

(∗) =
∫

Ω

∫
R3N

∫
Ω

f2(q̃) Ψ−τ

(
q|(q̃, p)

)
πq(q̃) πp(p) dq̃ dp dq

=
∫

Ω

f2(q̃) πq(q̃) dq̃

= ‖f‖2πq
.

The detailed balance condition has been used in (∗). The spectral properties of
P are a consequence of self-adjointness and the above estimation.
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Discrete dominant eigenvalues. The second desirable property of a gener-
alized transfer operator P(τ) is the existence of a dominant discrete spectrum of
eigenvalues 1 = λ1 ≥ λ2 ≥ λ3 . . . λn. The dominant eigenvalue is λ1 = 1 because
of Theorem 1 and because of P(τ) e = e. The eigenvalues are real according to
Theorem 1. A conjecture by Schütte [63] says that in realistic applications of
the transfer operator approach, the dominant discrete spectrum of T is bounded
away from the essential spectrum of T . Huisinga [38] has derived properties of a
generalized transfer operator such that the essential spectrum is well separated
from the dominant eigenvalues near λ1 = 1. For the operator P(τ) we will
assume that there is a set of eigenvalues {λ1, . . . , λn} which are close to λ1 = 1
and corresponding eigenvectors {X1, . . . , Xn}. This assumption can be justified
by a perturbation approach. The inequality ‖P(τ) f‖πq ≤ ‖f‖πq in Theorem 1
is sharp. It can be shown that certain indicator functions IM are eigenfunctions
of P corresponding to the eigenvalue λ = 1.

Definition 3. A stable subset M ⊂ Ω of Ψ−τ is defined as follows: If a position
state q is in the closure of M , then

∫
R3N Ψ−τ

(
q̃|(q, p)

)
πp(p) dp = 0 for all q̃ 6∈ M

and τ ∈ R.

Lemma 1. If IM : Ω → {0, 1} is the indicator function of a stable subset
M ⊂ Ω, then P(τ) IM = IM . In particular, the indicator functions of stable
subsets of Ω span an eigenspace of P(τ) according to the dominant eigenvalue
λ = 1.

Proof. If M ⊂ Ω is a stable subset, then its complement Ω\M is also stable.
This can be shown by applying the detailed balance condition (3.1) for q̃ 6∈
M and q ∈ M . The definition of stability means that there is no transition
between M and its complement Ω\M . Stability of M and Ω\M directly implies
P(τ) IM (q) = 0 for all q 6∈ M , because the integrand

IM (q̃)
∫

R3N

Ψ−τ

(
q̃|(q, p)

)
πp(p) dp

is zero for all q̃ ∈ Ω. For q ∈ M :

P(τ) IM (q) =
∫

R3N

( ∫
Ω

IM (q̃) Ψ−τ

(
q̃|(q, p)

)
dq̃

)
πp(p) dp

=
∫

R3N

( ∫
M

IM (q̃) Ψ−τ

(
q̃|(q, p)

)
dq̃

)
πp(p) dp

=
∫

R3N

( ∫
M

Ψ−τ

(
q̃|(q, p)

)
dq̃

)
πp(p) dp

= 1.

The last equality uses the fact, that Ψ−τ is a density function that is normalized
in M .

In the case of metastable subsets, a perturbation approach justifies the exis-
tence of eigenfunctions Xi with eigenvalues λi ≈ 1. The identification of these
metastable subsets is an important aim of conformation dynamics. Note that
the two mentioned desirable properties are also valid for the transfer operator
T . In chapter 3.5 a further desirable property of P will be given which is not
valid for T .
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3.2 From a transfer operator to a Markov oper-
ator

In this section, we will see that defining a transfer operator P(τ) via listing
desirable properties also defines a corresponding projected Markov operator
P(τ) acting in configurational space.

Markov operator. P(τ) is a transfer operator which acts on membership
functions. It is not a desired Markov operator1 P(τ) propagating density func-
tions. If M denotes the adjoint operator of M with regard to the scalar product
〈f, g〉 =

∫
Ω

f(q) g(q) dq, then the following equations hold

P ◦ πq = P ◦ πq

= πq ◦ P
(∗) = πq ◦ P, (3.2)

where πq is the Nemytskii operator multiplying a function f point-wise with
the configurational Boltzmann density function πq. For the reason of simplicity
the same expression πq is used for the operator and for the function. Equation
(∗) is valid because of the πq-self-adjointness of P. From equation (3.2) one can
derive an expression for the propagator P:

P = πq ◦ P ◦ π−1
q . (3.3)

It can be shown that P(τ) is a linear Markov operator because it is preserving
the ‖ · ‖1-norm for a non-negative function f :

‖P(τ) f‖1 = 〈e, |P(τ) f |〉

(∗1) = 〈e,P(τ) f〉

= 〈e,P(τ) (π−1
q f)〉πq

(∗2) = 〈P(τ) e, (π−1
q f)〉πq

= 〈e, (π−1
q f)〉πq

= 〈e, f〉 = ‖f‖1,

where the positivity of P is used in (∗1) and the πq-self-adjointness of P is used
in (∗2). Thus, equation (3.3) means that the space of membership functions and
the space of density functions is connected by multiplication with πq. In the
upcoming sections, only the operator P(τ) will be investigated. Keep in mind
that there is a simple relation between P and P. If P has an eigenfunction
X : Ω → R corresponding to an eigenvalue λ, then P has an eigenfunction
(πq X) with eigenvalue λ. Thus, the spectral properties in Theorem 1 are also
valid for P.

1In this thesis a transfer operator and its adjoint Markov operator are defined. In literature
often the technical terms forward and backward operator are used instead.
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Markov property. In chapter 2.1, the propagator Ps has been defined in
state space, whereas in (3.3) the propagator is only acting in configurational
space Ω. Is it sufficient for conformation dynamics to assume a Markov opera-
tor with the aforementioned desirable properties in configurational space (and
not in state space)? In fact there exists an argument against this simplifica-
tion: The Markov property of molecular dynamics is valid for all dynamical
models, but only in state space. E.g., being a first order differential equation,
Hamiltonian dynamics is Markovian in state space. The equivalent Newton
dynamics in configurational space is a second order differential equation in q.
Given an initial configurational state q(0), it is not possible to predict the fu-
ture evolution q(t) of the system. Thus, Newton dynamics is not Markovian
in configurational space. In the molecular kinetics approach to conformation
dynamics, however, the ensemble of states is important and not a single trajec-
tory. For the evaluation of P(τ) it is assumed that the momentum states p are
equilibrated according to the Boltzmann distribution πp. Thus, one can predict
the future evolution ρ(t, ·) of an initial density ρ(0, ·) : Ω → R+ assuming equi-
librated momentum states. Using the molecular kinetics approach, a non-linear
dynamical model (like Hamiltonian dynamics) which is only Markovian in state
space can therefore be transformed into a linear Markov operator P acting in
configurational space. The Markov property does not hold for the dynamical
model in configurational space, but the Markov property holds for the evolution
of density functions in configurational space assuming equilibrated momentum
states.

3.3 Subspace approach

A projection of P(τ) to a low-dimensional Markov State Model Pc(τ) is based
on a Galerkin discretization. A Galerkin discretization on the basis of sets is
shown in equation (2.6). As mentioned in chapter 2.7, the set-based approach
will be replaced by a function-based definition of the conformations. These con-
formations χ1, . . . , χn : Ω → [0, 1] are not sets, they are membership functions
with values between 0 and 1. In this situation the Galerkin basis functions
χ = {χ1, . . . χn} are not orthogonal. A Galerkin discretization of P has the
following form2

Pc(τ) = G
(
P(τ)

)
:=

(
〈χ, χ〉πq

)−1 〈χ,P(τ) χ〉πq . (3.4)

In equation (3.4), the expression 〈χ, χ〉πq is an n×n-matrix. The element (i, j)
of this matrix is given by the scalar product 〈χi, χj〉πq . The matrix 〈χ,P(τ) χ〉πq

is defined analogously. The construction of a Markov State Model Pc(τ) based
on P(τ) is an important step in conformation dynamics. Time-extrapolation
and complexity reduction are the main intentions, see Figure 2.2 in chapter 2.1.
The iteration error of Pc(τ) is zero, if the Galerkin discretization of

(
P(τ)

)k is

equal to the iteration
(
Pc(τ)

)k. In other words, the iteration error is zero if the
diagram in Figure 3.1 commutes. As mentioned before, there is an intermediate
step between the operator P and the Markov State Model Pc. This intermediate

2In the case that the conformations χi, i = 1, . . . , n, define separated sets, equation (3.4)
has the same form like equation (2.6), because in this case χ2

i = χi and χiχj = 0 for i 6= j.
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Figure 3.1: If iteration and complexity reduction commute, the iteration error of
the Markov State Model Pc(τ) is zero. With a set-based concept of conformation
dynamics this is not possible.

step is a Voronoi tessellation Φ of Ω. The basis extension of χ using the set Φ
of basis functions is given by:

χi(q) =
m∑

j=1

χdisc(i, j) Φj(q), (3.5)

where χdisc is a n ×m-matrix. The element (i, j) of χdisc defines whether the
subset Φj is part of conformation χi. In the early articles about the transfer
operator approach, the elements of χdisc were defined as 0 or 1 [19]. In general,
this set-based Markov State Model has a non-vanishing iteration error because
the diagram in Figure 3.1 does not commute for this choice of χ. However, if we
abandon the set-based concept of conformations and define a set of membership
functions χ1, . . . , χn which can have values within the interval [0, 1], there is
a possible Galerkin discretization of P(τ) such that the diagram in Figure 3.1
commutes, see also [47] and Theorem 2. Thus, in the recent years the set-based
concept was abandoned in favour of a function-based approach. In the first
step, elements between 0 and 1 were allowed for the matrix χdisc in (3.5), as
long as the conformations still form a partition of unity. This has led to the
Robust Perron Cluster Analysis algorithm (PCCA+) by Deuflhard and Weber
[21] for the identification of χdisc on the basis of P (τ). This approach will be
described in this section. In the second step, the subspace based discretization
of Ω was extended to a basis expansion (3.5) with a set of basis functions Φi

which form a non-negative partition of unity and have values between 0 and
1, see [75]. The second step was necessary in order to compute the transition
matrix P numerically [82]. This numerical trick will be used in chapter 3.6 again.
According to the desirable properties of P(τ), there is a set of eigenfunctions
X = {X1, . . . , Xn} corresponding to the real eigenvalues 1 = λ1 ≥ λ2 ≥ . . . ≥
λn. P is πq-self-adjoint. Thus, the set of eigenfunctions can be assumed to be
normalized via 〈X, X〉πq = I, where I is the n× n unity matrix.

Theorem 2. Given the πq-self-adjoint transfer operator P(τ) in the situation
of Theorem 1 and a set X = {X1, . . . , Xn} of normalized eigenfunctions with
P(τ)X = XΛ, where Λ = diag(λ1, . . . , λn) is the diagonal matrix of eigenvalues.
Furthermore, given a set of functions χ = XA that is a linear combination of the
eigenvectors X with a regular n×n-transformation matrix A, then the iteration
error for the Galerkin discretization Pc(τ) = G

(
P(τ)

)
defined in (3.4) vanishes.
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Proof. By inserting the eigenvalue equation into the Galerkin discretization:

G
((
P(τ)

)k)
=

(
〈χ, χ〉πq

)−1 〈χ,
(
P(τ)

)k
χ〉πq

=
(
A> 〈X, X〉πq A

)−1A>〈X,
(
P(τ)

)k
X〉πq A

=
(
A>A

)−1A>〈X, X〉πq Λk A
= A−1 Λk A.

In particular, G
(
P(τ)

)
= A−1 ΛA. Furthermore,

G
((
P(τ)

)k)
= A−1 Λk A
=

(
A−1 ΛA

)k

=
(
G

(
P(τ)

))k
.

The diagram in Figure 3.1 commutes if the Galerkin discretization of the
transfer operator is based on eigenfunctions. This also holds for the corre-
sponding Markov operator P(τ). In terms of density propagation, the results
of the propagated full density compared to the propagated projected density
are identical if the projection of the initial density can be done without any er-
ror, see Figure 2.2. Let Σ∗ be the invariant subspace spanned by the dominant
eigenfunctions of P. The initial densities which allow for a correct propagation
stem from the function space πqΣ∗ = span({πqχ1, . . . , πqχn}) spanned by the
partially equilibrated, restricted Boltzmann densities.

Robust Perron Cluster Analysis (PCCA+). Theorem 2 holds for arbi-
trary regular transformations A of X. However, the theorem only makes sense
in the context of conformation dynamics if χ = XA can be interpreted as mem-
bership functions. PCCA+ (see [21, 75]) determines a transformation matrix
A ∈ Rn×n such that non-negativity χi ≥ 0, i = 1, . . . , n, and the partition-of-
unity property,

∑n
i=1 χi(q) = 1, q ∈ Ω, hold. In this situation the transformation

matrix A has a special structure [75]. Note that in standard PCCA+ only finite
transition matrices have been investigated so far. In the following, the results of
PCCA+ are discussed for the continuous operator P(τ) and the corresponding
algorithmic change is derived in chapter 3.4. For the purposes of this thesis the
following property of A is important.

Lemma 2. The partition-of-unity property of the conformations χ1, . . . , χn is
equivalent to Ae = e1 for the constant vector e ∈ Rn, e(i) ≡ 1, and the first unit
vector e1 = (1, 0, . . . , 0)> ∈ Rn.

Proof. The partition-of-unity relation
∑n

i=1 χi = X1 can be expressed by χe =
X1 which is equivalent to XAe = X1. For a linear independent set of eigen-
functions this is equivalent to Ae = e1.

In order to derive properties about the Markov State Model Pc(τ) a further
preparation is needed.

Lemma 3. Let W be the n× n diagonal matrix of the statistical weights wi :=
〈χi, e〉πq of the conformations, W = diag(w1, . . . , wn). In this situation the
vector w> = (w1, . . . , wn) solves the eigenproblems w> = w>W−1〈χ,P(τ)χ〉πq

and w> = w>W−1〈χ, χ〉πq .
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Proof. Note that the matrices M1 = 〈χ,P(τ)χ〉πq
and M2 = 〈χ, χ〉πq

are sym-
metric. Note that w>W−1 = e> and that the row sums of the matrices M1

and M2 are given by the statistical weights of the conformations due to the
partition-of-unity property of the basis functions χ.

With these preparations the next Theorem shows that the Markov State
Model Pc has the expected properties.

Theorem 3. In the situation of Theorem 2, with a transformation matrix A
defined via PCCA+, the Markov State Model Pc(τ) has the following properties:

(i) The row-sum of Pc(τ) is 1, i.e. Pc(τ)e = e for the constant vector e ∈
Rn, ei ≡ 1.

(ii) Pc(τ) is a Petrov-Galerkin discretization of the Markov operator P(τ).

(iii) w is an eigenvector of P>c (τ) corresponding to the eigenvalue λ = 1 (i.e.
w>Pc(τ) = w>).

(iv) In chapter 3.5, we will assume that P has an infinitesimal generator Q. If
Q is the infinitesimal generator of the set of operators P(σ), σ > 0, then
Pc has an infinitesimal generator Qc with Qc = G

(
Q

)
.

Proof. According to Lemma 2 the relation Ae = e1 holds, where A is regular.
Furthermore, λ1 = 1. Thus, the following equations hold Pc(τ) e = A−1ΛAe =
A−1Λe1 = A−1e1 = e. This shows that (i) is true. (ii): In terms of the Markov
operator P in (3.3), the following equation holds(

〈χ, χ〉πq

)−1 〈χ,P(τ) χ〉πq
=

(
〈χ, (πq χ)〉

)−1 〈χ,P(τ) (πq χ)〉.

Thus, the 〈·, ·〉πq
-Galerkin discretization of P can be seen as a 〈·, ·〉-Petrov-

Galerkin discretization of P with membership functions χ in the test space and
density functions (πq χ) in the trial space. (iii) is a consequence of Lemma 3
because

Pc = (W−1〈χ, χ〉πq )
−1(W−1〈χ,P(τ)χ〉πq ).

In the situation of (iv) an infinitesimal generator Q of P(σ) exists. The eigen-
functions of Q are identical to the eigenfunctions of P(τ). The corresponding
eigenvalues ξ1, . . . , ξn of Q meet the property exp(τξi) = λi. A computation
similar to the proof of Theorem 2 shows that the Galerkin discretization G

(
Q

)
of Q is given by G

(
Q

)
= A−1ΞA, where Ξ is the diagonal matrix of eigenvalues

Ξ = diag(ξ1, . . . , ξn). Note, that this expression is an infinitesimal generator of
Pc(σ).

Optimization problem. The non-negativity property and the partition-of-
unity property define a feasible set F ⊂ Rn×n of transformation matrices A.
As shown by Weber [75], this feasible set F is a convex polytope in Rn×n.
PCCA+ is formulated as a maximization problem on the set F . The solution
of the maximization problem is based on a transformation of the constraint
optimization problem in n2 variables into an unconstraint optimization problem
in (n − 1)2 variables. This transformation uses the fact, that the objective
function of PCCA+ is convex. In this case, the maximum of the objective
function is attained at a vertex of F . For n = 2 conformations (discarding
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permutation of indices) the convex polytope F has only one vertex leading
uniquely to the solution (2.18) of PCCA+. For n > 2 conformations, the optimal
tranformation matrices A can depend on the choice of the convex objective
function. Two different points of view are discussed in this context in order
to define a suitable optimization problem: The interpretation of Pc(τ) as a
transition matrix and the interpretation of χ as a committor function.

Pc(τ) as a transition matrix. Although Pc(τ) is the correct Markov State
Model, Pc(τ) in equation (3.4) cannot be interpreted as a transition matrix
between conformations. The reason is that is does not have the form of equation
(2.6). In equation (2.6) the number of transitions is divided by the weight of the
corresponding Voronoi cell. The matrix W−1〈χ,P(τ)χ〉πq in Lemma 3 has an
appropriate form that can be interpreted as a transition matrix. The difference
between Pc(τ) and this matrix is given by(

W−1〈χ, χ〉πq

)
Pc = W−1〈χ,P(τ)χ〉πq .

S := W−1〈χ, χ〉πq is a row-stochastic n× n-matrix. The maximal value for the
trace of S is given by n. If the trace of S is n, then S is the identity matrix. If the
matrix S is the identity matrix, then Pc(τ) can be interpreted as a transition
matrix. Thus, the objective function for the optimal choice of A is given by
the trace of S. Röblitz [58] has introduced this objective function. She has
shown that optimizing trace(S) is equivalent to optimizing the crispness of the
conformations χ. In other words, by optimizing trace(S), the interpretation of χ
as sets is also intended. In order to derive an expression for trace(S) in terms of
the transformation matrix A, there is a further property of the transformation
matrix A which is a consequence of Theorem 3.

Corollary 1. Assume that the second eigenvalue of P(τ) is not 1, λ2 6= 1. In
the situation of PCCA+, the first row of A is the vector w> of the statistical
weights of the conformations, i.e. e>1 A = w>.

Proof. This corollary is a consequence of Theorem 3 (iii):

w>Pc = w>

⇔ w>A−1ΛA = w>

⇔ w>A−1Λ = w>A−1.

The only vector which meets v>Λ = v> in the situation of λ2 6= 1 is the vector
v = e1, i.e. e>1 = w>A−1 and e>1 A = w>.

From Corollary 1, the objective function for an interpretation of Pc(τ) as a
transition matrix is given by

IR[A] = trace(diag(Ae1)−1A>A) =
n∑

i=1

n∑
j=1

(
A(j, i)

)2

A(1, i)
. (3.6)

Being a sum of convex functions IR is convex. For the proof of convexity the
positivity of A(1, i) shown in Corollary 1 is important.
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χ as a committor function. In chapter 2.7, comittor functions have been
defined for the case of n = 2 conformations. The resulting membership func-
tions of PCCA+ for the case of n > 2 conformations form a partition-of unity
discretization of Ω. In realistic molecular applications of the conformation dy-
namics approach, mainly one or two different membership functions contribute
to this partition-of-unity locally. In transition regions, the configurational space
Ω can be seen locally as a transition region between two conformations. This
allows for an interpretation of χ as a set of committor functions. In order to
interpret χi as a committor function, the function χi should be an approxi-
mate solution of the corresponding equation (2.16). The condition Qχi ≈ 0
holds if χi is a linear combination of the eigenfunctions of Q corresponding to
eigenvalues ξ ≈ 0. Furthermore, there should exist a point qi ∈ Ω such that
χi(qi) = 1 (see chapter 2.7). This value is the maximum value of χi according to
the constraints of the optimization problem of PCCA+. The corresponding ob-
jective function is given by the sum of the maximum values of the membership
functions χi, i = 1, . . . , n. This objective function IW [A] =

∑n
i=1 maxq∈Ω χi(q)

has been introduced by Weber [75]. It is a convex function. Weber has shown
that in the case that the optimal function value is IW [A] = n, the solution of
PCCA+ is unique. F has only one vertex (neglecting the permutation of indices
of the conformations). Note, that χi need not be an indicator function of a set
if its maximum value is 1. Whereas, χi must be an indicator function if the
corresponding diagonal element (i, i) of S is 1. The following Lemma shows the
corresponding relation between IR and IW .

Lemma 4. In the case of PCCA+, for a given solution matrix A the relation
IR[A] ≤ IW [A] holds.

Proof.

IR[A] =
n∑

i=1

〈χi, χi〉πq

〈χi, e〉πq

≤
n∑

i=1

〈χi,
(
maxq∈Ω χi(q)

)
e〉πq

〈χi, e〉πq

=
n∑

i=1

(
max
q∈Ω

χi(q)
) 〈χi, e〉πq

〈χi, e〉πq

= IW [A].

Thus, for an optimal transition matrix A with IR[A] ≈ n the function value
IW [A] is also approximately or equal to n. This means that an optimization of
IR is suggested in the following.

3.4 Discretization error

Theorem 2 and 3 hold for Pc(τ) only if the matrix A and the eigenvalues Λ
are computed without error. Given a set of Voronoi cells Φ, the Galerkin dis-
cretization P (τ) of P(τ) can be computed according to an equation of the type
(2.6). In a numerical approach, PCCA+ is applied to the discrete eigenvectors
and eigenvalues of P (τ) leading to the discrete conformations χdisc. χdisc is
used for a basis expension of χ as shown in (3.5). For a given discretization
Φ, it can be assumed that P (τ) has been estimated in a stable way with con-
trollable small sampling error, e.g. by using adaptive sampling of Röblitz or

34



of Pande and Singhal-Hinrichs. However, if we have computed the correct dis-
cretization P (τ), there is still a difference between the dominant spectrum Λdisc

of P (τ) and the true spectrum Λ of P(τ). There is also a difference between the
transformation matrix Adisc for the discrete eigenvectors Xdisc of P (τ) and the
transformation matrix A of X. This error is denoted as the discretization error.
Whereas the true Markov State Model is given by Pc = A−1ΛA, the matrix
P̃c = A−1

discΛdiscAdisc is the result of a numerical method which is based on a
Voronoi tessellation Φ of Ω. The matrix P̃c depends on the computed eigenvalues
Λdisc and on the computed transformation matrix Adisc. If we can find an hier-
archical adaptive discretization scheme which minimizes the errors ‖Λ− Λdisc‖
and ‖A − Adisc‖, then the true Markov State Model is approximated by this
approach. Does this approach also approximate the metastability of Pc(τ) and
the statistical weights of the conformations? The answer is yes, as we can see
in the following.

Discretization error in terms of a metastability. In literature there exist
different definitions for the metastability of a Markov chain. On the basis of the
Markov State Model Pc(τ), Huisinga [38] defines metastability as the trace of
the matrix Pc(τ). In the case of Theorem 2,

trace(Pc(τ)) = trace(Λ), trace(P̃c(τ)) = trace(Λdisc).

Thus, the error in terms of metastability only depends on the approximation
error of the eigenvalues and not on the approximation error of the transfor-
mation matrix. Weber [75] defines metastability as the determinant of Pc(τ).
The reason for this definition becomes clear if the existence of an infinitesimal
generator Qc of Pc is assumed (see Theorem 3 (iv)):

det(Pc(τ)) = det(exp(τ Qc)) = exp(trace(τ Qc)) =
n∏

i=1

exp(τ Qc(i, i)).

If Qc is interpreted as an infinitesimal generator of a Markov jump process, then
the term exp(τQc(i, i)) can be seen as the holding probability hi(τ) [45, 73] of
conformation χi, i.e. it is the probability that a process starting in χi stays in
χi during the simulation time τ . Thus, the determinant of Pc(τ) is the product
of the holding probabilities. Furthermore,

det(Pc(τ)) = det(Λ), det(P̃c(τ)) = det(Λdisc).

Thus, also for the determinant-based definiton of metastability the discretization
error only depends on the approximation error of the eigenvalues.

Discretization error in terms of the statistical weights. Corollary 1
has shown that the computation of the first row of A is equivalent to the de-
termination of the statistical weights of the conformations. Thus, the correct
computation of the statistical weights directly depends on the correct approx-
imation of A. We have seen in chapter 2.5 that the computation of statistical
weights di, i = 1, . . . ,m, of the Voronoi cells is ill-conditioned in the case of a
decomposition approach. Whenever a metastable sampling scheme is used to
determine statistical weights, their computation is ill-conditioned. Assume that
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we can compute the weights dj with controllable small error (see chapter 4.3).
In this case, the statistical weights of the conformations in equilibrium are given
by wdisc(i) =

∑m
j=1 χdisc(i, j) dj in the numerical approach.

Controlling the discretization error of the transformation matrix. If
the objective function IR[A] is used for an optimization of the transformation
matrix A, then this objective function is independent from the eigenfunctions
and eigenvalues of P(τ), see (3.6). The discretization error of A only depends
on the constraints of the optimization problem. In order to understand the
influence of the discretization Φ to the construction of Adisc via PCCA+, one
has to understand the PCCA+ algorithm. PCCA+ solves the optimization
problem with an iterative optimization routine. Given a non-optimal feasible
transformation matrix A(s)

disc in step s of the algorithm a feasible transformation
matrix A(s+1)

disc is proposed by an unconstraint local optimization step followed
by a mapping step. In the optimization step, the elements of an infeasible
transformation matrix A(s+1)

disc are determined except for the elements of its first
row and its first column. In order to derive the next step of the iterative scheme,
the infeasible transformation matrix is mapped to a feasible matrix A(s+1)

disc . In

this mapping h : A(s+1)

disc 7→ A(s+1)
disc the eigenvector data Xdisc is used in the

algorithm. This is the only part of the algorithm where the discretization can
influence the transformation matrix Adisc. The following three steps are used
for the mapping h (see [75]):

1. For j = 2, . . . , n the element A(s+1)

disc (j, 1) is defined as A(s+1)

disc (j, 1) :=

−
n∑

i=2

A(s+1)

disc (j, i). This is done because of Lemma 2. The row-sums for

the rows j = 2, . . . , n of a feasible transformation matrix are zero. Note
that the row-sums are still zero if A(s+1)

disc is multiplied with a scalar γ > 0.
This step is independent from the discretization of Ω.

2. For i = 1, . . . , n the element A(s+1)

disc (1, i) is defined as A(s+1)

disc (1, i) :=

− min
l=1,...,m

n∑
j=2

A(s+1)

disc (j, i) Xdisc(l, i). This step is also invariant against pos-

itive scaling of A(s+1)

disc . It assures feasibility of the transformation matrix
according to the non-negativity constraint. This step depends on the dis-
cretization of Ω.

3. The row-sum of the first row is determined

γ :=
n∑

i=1

A(s+1)

disc (1, i).

The matrix A(s+1)

disc is multiplied with γ−1:

A(s+1)
disc := γ−1A(s+1)

disc .

By this scaling, the row-sum of the first row of A(s+1)
disc is 1. According to

Lemma 2, A(s+1)
disc is a feasible transformation matrix.
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A PCCA+ algorithm which provides an optimal transformation matrix A in
the continuous case is simply given by a replacement of the term

A(s+1)

disc (1, i) := − min
l=1,...,m

n∑
j=2

A(s+1)

disc (j, i) Xdisc(l, i)

of (2.) by the term3

A(s+1)
(1, i) := − inf

q∈Ω

n∑
j=2

A(s+1)
(j, i) Xi(q).

The only difference between the discretized and the continuous algorithm is
given by this replacement. Note, that the above mapping h is not a projection
in the feasible set F of transformation matrices. A transformation matrix Adisc

is mapped to an edge of F . Convexity of the objective function assures that
the optimal value is element of the image of the mapping h. For the computa-
tion of the transformation matrix A in the continuous case it is important to
approximate the eigenfunctions Xi of P(τ) well.

Controlling the discretization error of the eigenvalues. For the analysis
of the discretization error of the eigenvalue matrix Λdisc, one step of an hier-
archical refinement is investigated. We will assume that an arbitrary Voronoi
cell is refined. Without loss of generality we will assume, that the Voronoi
cell Φm is decomposed into two new cells ΦmΦ̃1 and ΦmΦ̃2 according to chap-
ter 2.5. The eigenvalues of a matrix P (τ) ∈ Rm×m discretized according to
Φ = {Φ1, . . . ,Φm} are compared with the eigenvalues of a matrix P ∗(τ) ∈
R(m+1)×(m+1) discretized according to Φ∗ = {Φ1, . . . ,ΦmΦ̃1,ΦmΦ̃2}. If this
refinement does not change the n dominant eigenvalues, the discretization error
vanishes for Φ. The analysis of the discretization error is done in the follow-
ing way. Solving the eigenvalue problem for P ∗(τ) (i.e. on the finer level) via
P ∗X∗

disc = X∗
discΛ

∗
disc, where X∗

disc ∈ R(m+1)×n and Λ∗disc ∈ Rn×n, provides
a method for finding a good approximation X̃disc of the eigenvectors Xdisc of
P (τ). Using this approximation, the difference of the eigenvalues of P (τ) and
P ∗(τ) can be estimated. The estimation is based on the following lemma.

Lemma 5. Let A ∈ Rm×m be a matrix with real eigenvalues λ1, . . . , λm and
corresponding eigenvectors x1, . . . , xm ∈ Rm. Further, assume that the eigen-
vectors are orthonormal with regard to a vector norm ‖ · ‖. For a vector y ∈ Rm

with y 6= 0 and for a number λ̃ ∈ R let ∆ := Ay − λ̃y, then

min
i=1,...,m

|λi − λ̃| ≤ ‖∆‖
‖y‖

.

Proof. This result is well known, it is a simple computation of the basis extension
of ∆ in terms of the normalized vectors xi.

Let d∗m := 〈ΦmΦ̃1, e〉πq and d∗m+1 := 〈ΦmΦ̃2, e〉πq be the weights of the new
basis functions. With α := d∗m/(d∗m + d∗m+1) the elements of the last row and
the last column of the coarse matrix P (τ) can be computed via

P (τ)(m, k) = α P ∗(τ)(m, k) + (1− α) P ∗(τ)(m + 1, k),
3In the following it is assumed that the eigenfunctions of P(τ) are bounded.
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P (τ)(k, m) = P ∗(τ)(k, m) + P ∗(τ)(k, m + 1),

for k = 1, . . . ,m. This is a consequence of (2.6) and Φm = ΦmΦ̃1 + ΦmΦ̃2.
The relation can be written in matrix form as P (τ) = EP ∗(τ)F with matrices
E ∈ Rm×(m+1) and F ∈ R(m+1)×m. For i = 1, . . . ,m, the matrix elements are
E(i, i) = F (i, i) = 1. Furthermore, E(m,m) = α, E(m,m + 1) = 1 − α, and
F (m,m) = F (m + 1,m) = 1. All remaining elements of E and F are zero. For
the approximation of the eigenvectors, X̃disc := EX∗

disc is defined similar to y
in Lemma 5. The following equations hold

P (τ)X̃disc = EP ∗(τ)FEX∗
disc = EP ∗(τ) ·

(
X∗

disc + (FE − I)︸ ︷︷ ︸
=:G

X∗
disc

)
= EP ∗(τ)X∗

disc + EP ∗(τ)GX∗
disc = X̃discΛ∗disc + EP ∗(τ)GX∗

disc.

Equivalently,
P (τ)X̃disc − X̃discΛ∗disc = EP ∗(τ)GX∗

disc.

According to Lemma 5 the difference between the eigenvalues Λdisc of P (τ) and
the eigenvalues Λ∗disc of P ∗(τ) is in the order of ‖EP ∗(τ)GX∗

disc‖. This norm
is small if (P ∗(τ)G) approximately vanishes. A short calculation shows that all
non-vanishing elements of this matrix have the form

±
(
(1− α) P ∗(τ)(k, m)− α P ∗(τ)(k, m + 1)

)
, k = 1, . . . ,m + 1.

Thus, the matrix (P ∗(τ)G) would be zero if either

(P1) P ∗(τ)(k, m + 1) and P ∗(τ)(k, m) are zero or

(P2)
P ∗(τ)(k, m)

P ∗(τ)(k, m + 1)
=

d∗m
d∗m+1

, ∀k = 1, . . . ,m + 1.

In order to find a good decomposition of Ω on this basis, assume a discretiza-
tion Φ = {Φ1, . . . ,Φm}. Furthermore, assume that every Voronoi cell Φi, i =
1, . . . ,m has one of the following properties:

1) The statistical weight of Φi is small. The conditional probability for
a transition from any set Φk, k = 1, . . . ,m, into this set Φi in time τ is
neglectable small. This means that for a further refinement of Φi property
P1 is valid.

2) Inside the Voronoi cell Φi the dynamics is rapidly mixing. Assume
a realization of the dynamical model Ψ−τ starting in any Voronoi cell Φk

having an end point q in cell Φi. Because of the rapidly mixing dynamics
inside Φi, the probability for a certain end point q is approximately given
by the restricted Boltzmann distribution proportional to πqΦi(q). A fur-
ther refinement of Φ will have the property P2: The probability to end
in a certain subset of Φi is given by the relative statistical weight of this
subset.

Thus, for such a kind of decomposition the discretization error of the eigenvalues
is small. If P (τ) is used, Voronoi cells Φi with a small weight di need not be
refined in an adaptive hierarchical scheme in order to approximate Λ.
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3.5 An infinitesimal generator

In chapter 3.3 it has been shown that the iteration error for a transfer operator
having the aforementioned properties is vanishing for an appropriate selection
of χ. Thus, iterative application of Pc(τ) in terms of the diagram in Figure 3.1
provides the correct transition pattern of the system. In general, an iterative
application of P(τ) is not a time-extrapolation in terms of the dynamical model
which is in the “heart” of P. To give an example: The two aforementioned
desirable properties, self-adjointness and discrete dominant eigenvalues, also
hold for the transfer operator T (τ) in (2.4) which is based on Hamiltonian
dynamics. According to chapter 3.2, there is the corresponding Markov operator
T (τ) propagating configurational density functions. Given an initial density
function ρ(0, ·) : Ω → R+, the propagated density is ρ(τ, ·) = T (τ) ρ(0, ·).
For this propagation an equilibrated density πp of initial momentum states is
assumed. At time τ the initial equilibrium distribution of momentum variables
is not preserved by Hamiltonian dynamics if the initial density ρ is different from
πq. Whereas, an iterative application of T (τ) always assumes an equilibrated
density of momentum variables at the starting point. In general,(

T (τ)
)2

ρ(0, ·) 6= T (2τ) ρ(0, ·)

because the iterative application of T is not a continuation of the Hamilto-
nian dynamics (in particular it is not a continuation in momentum space).
The Chapman-Kolmogorov equation does not hold for the set of operators
T (τ), τ > 0. Although for a special choice of conformations the iteration
error vanishes (see Theorem 2), the time-extrapolation error is not zero, be-
cause

(
T (τ)

)k 6= T (k τ). In this strict sense: time-extrapolation, τ → kτ , is
not possible in conformation dynamics by using a discretization G

(
T (τ)

)
as

a Markov State Model if the Chapman-Kolmogorov equation does not hold.
The Markov property of a dynamical model (like Hamiltonian dynamics) is
lost when going from state space to configurational space. The configurational
space based transfer operator T has not lost its Markov property, it has lost
its Chapman-Kolmogorov property. For the upcoming sections, the Chapman-
Kolmogorov property is added to the desirable properties of P which allows for
a time-extrapolation on the basis of transition rates. In this case an infinitesimal
generator Q exists. The Smoluchowsky dynamics is one possible(!) dynamical
model which leads to a πq-self-adjoint transfer operator having an infinitesimal
generator Q [38]. In the followings, some optional approaches are listed which
can circumvent the assumption of a Chapman-Kolmogorov property. From a
mathematical point of view these options can only lead to approximate time-
extrapolations.

Option 1. As an operator acting on the space of membership functions T (τ) :
L2

πq
→ L2

πq
does not meet the Chapman-Kolmogorov property, but as an op-

erator T (τ) : {e} → {e} it meets this property for obvious reasons. In terms
of the Markov operator T (τ) this simply means that the Boltzmann density πq

is invariant with regard to Hamiltonian dynamics (and with regard to any of
the aforementioned dynamical models) for any lag-time τ . The restriction to
πq means that an iterative application of the operator T (τ) is a correct con-
tinuation of Hamiltonian dynamics, because at any time τ > 0 the momentum
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states are distributed according to πp. In the case of a Boltzmann equilibrated
ensemble of initial states, time-extrapolation is trivial because the equilibrated
density is the stationary density. The argumentation is still valid, if we go
from {e} to the space Σ = span({IM ;M is stable}) spanned by the indicator
functions IM of the stable subsets M of Ω. Approximately, it also holds for
a space of metastable membership functions Σ∗ = span({χ1, . . . , χn}), because
T (τ)χ ≈ χ for all lag-times τ which are not too large. In the space Σ∗, the
Chapman-Kolmogorov property is approximately valid for T (τ) : Σ∗ → Σ∗.
Consequently, transition rates between conformations exist, which allows for
time-extrapolation. Although the transfer operator T does not have an in-
finitesimal generator, rates between the conformations (and only between the
conformations) can be defined.

This is a mathematical description of Option 1. The physical interpretation
is as follows. The conformation dynamics framework of Deuflhard and Schütte
does not distinguish between conformations and transition regions. A transition
from one conformation χi to a different conformation χj can be considered as
instantaneous. The assumption Σ ≈ Σ∗ means that the conformations are like
traps. Transitions between the conformations are rare, instantaneous events. In
contrast to that, self-equilibration within the conformations is a rapidly mixing
process. Thus, we can consider the approach as a computation of rates between
always self-equilibrated subsystems of Ω. This point of view is the basis of a
very efficient parallel sampling algorithm of Voter [73]: If rates between con-
formations exist, then holding probabilities hi can be defined and related to
the diagonal elements of Qc, hi(t) = exp(t Qc(i, i)), see also page 35. These
holding probabilities of the conformations can be determined with the parallel
sampling approach of Voter. In contrast to Theorem 2, Voter defines confor-
mations as sets. This is necessary, because holding probabilities can only be
defined rigorously if they are based on sets.

Option 2. Researchers testing Markovianity [34, 12, 69] claim that the Chap-
man-Kolmogorov property for a transfer operator P1 is violated only for small
lag-times. P1 can be any transfer operator meeting the desirable properties
in chapter 3.1 if it corresponds to an ergodic dynamical model. In the case of
an ergodic dynamical model, there is an optimal lag-time σ: Some observables
O(P1(τ)) of P1 (e.g. the dominant eigenvalues) meet O(P1(k τ)) ≈ O((P1(τ))k)
if these observables are tested only for transfer operators P1(τ) with τ > σ. For
these observables, the Chapman-Kolmogorov relation approximately holds. In
molecular applications, this optimal lag-time σ is much smaller than the slowest
time-scale of the system. The transfer operator P1(σ) defines metastable con-
formations. On the basis of the πq-self-adjoint transfer operator P1(σ) having
a discrete dominant spectrum and a fixed lag-time σ, a possible transfer oper-
ator P2(τ) which meets the Chapman-Kolmogorov property can be defined for
arbitrary lag-times τ > 0 as

P2(τ) := exp(
τ

σ
(P1(σ)− I)).

If P2 is defined in this way it is πq-self-adjoint and has a discrete dominant spec-
trum of eigenvalues. The eigenvectors of P1(σ) and P2 are identical. Further-
more, the dominant eigenvalues of P2(σ) and P1(σ) are almost identical, because
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exp(λ− 1)=̇λ for λ ≈ 1. From this point of view P2(σ) is not only an alterna-
tive transfer operator (instead of P1(σ)) which meets the Chapman-Kolmogorov
property, it also approximates the Markov State Model G

(
P1(σ)

)
≈ G

(
P2(σ)

)
very well in the situation of Theorem 2. The reason is that the dominant
eigenfunctions and eigenvalues of P1(σ) and P2(σ) are almost identical. Note
that G

(
P2(σ)

)
has a vanishing iteration error in Theorem 2. It has also a

vanishing time-extrapolation error because
(
P2(σ)

)k = P2(k σ). Summarizing,
P2(σ) meets all desirable properties and has a vanishing time-extrapolation er-
ror. From this insight one can conclude that the approximation G

(
P1(σ)

)
≈

G
(
P2(σ)

)
is an appropriate Markov State Model for time-extrapolation σ → kσ,

too. This seems to be a good justification for testing Markovianity and gener-
ating Markov State Models for optimal lag-times σ. However, note that besides
the dominant spectral properties, the transfer operators, P1(σ) and P2(σ), are
very different.

Physically, P1 is constructed on the basis of a dynamical model. What
kind of dynamical model is time-extrapolated by computing G

(
P2(σ)

)k? The
infinitesimal generator Q∗ of P2 is

Q∗ =
P1(σ)− I

σ
.

This equation looks like an approximation of (2.12) using a finite difference
(but with a large value of σ instead of a small one). Whereas Option 1 uses
a short-time argument (for short lag-times the metastable subsets are traps),
Option 2 uses a long-term argument (for large lag-times Markovianity holds).
For the reason of a large lag-time, σ � 0, any discretization of Q∗ based on
Voronoi cells leads to non-vanishing “transition rates” Q∗(i, j) between non-
neighboring cells. This is unphysical, because instantaneous transitions between
non-neighboring Voronoi cells do not exist if we consider a time-continuous
dynamics trajectory in the “heart” of P2. Although this is a strong argument
against this alternative approach, one can find examples for the construction of
transition rates between non-neighboring sets in literature. One famous example
is Markovian milestoning in chapter 2.6 which defines transition rates between
two Voronoi cells A and B which are separated in Ω by a transition region.
From a mathematical point of view, the assumption of transition rates between
non-neighboring subsets of Ω allows for a valid time-extrapolation even if an
infinitesimal generator does not exist. There is an important lesson to learn
from Option 2. Two very different transfer operators P1(τ) and P2(τ) can have
the same Galerkin discretization in Theorem 2, i.e. G

(
P1(τ)

)
= G

(
P2(τ)

)
.

The operators can, therefore, lead to the same Markov State Model Pc(τ) of
the molecular system. In the framework of instantaneous transitions between
the conformations, this means that it is not so important to know how the
dynamical model acts within the conformations. It is only important to know
how it interacts between the conformations. This special aspect is used in a very
important part of this thesis when exploiting Gauß’ Theorem in chapter 3.6.

Option 3. Option 3 provides a possible interpretation of the results of the
algorithm given in chapter 4 if it is assumed that P does not have an infinitesimal
generator. For example, the Markov operator T does not have an infinitesimal
generator. The reason is the projection from state space to configurational
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space. For a propagation of densities via Hamiltonian dynamics, there exists an
infinitesimal generator in state space [30, 38] – the classical Liouville operator
L. One could have derived the aforementioned results on the basis of a state
space instead of using the projection to configurational space. In this case,
Theorem 2 would be valid if the conformations χi are linear combinations of
the dominant eigenfunctions Xi : Ω×R3N → R of L. For these state space based
conformations, time-extrapolation would be possible because iteration error and
time-extrapolation error would be zero. The approximation of Option 3 is that
there exist4 eigenfunctions Xi(q, p) ≡ Xi(q) for all p ∈ R3N and i = 1, . . . , n,
i.e. there is a set of dominant eigenfunctions Xi of L which are independent
from the momentum state. In order to approximate these eigenfunctions using
a discretization approach only a decomposition of Ω is needed.

From a physical point of view, Option 3 assumes that the time-scale of tran-
sitions between conformations is much longer than the time-scale of momen-
tum state equilibration. Note that conformations are defined in configurational
space. The assumption of fast momentum state equilibration is a physical basis
for all conformation dynamics algorithms.

3.6 Application of Gauß’ theorem

For the algorithmic realization of the aforementioned theoretical approach, an
adaptive hierarchical scheme will be applied. Recall the adaptive sampling algo-
rithm of Röblitz in chapter 2.5. In Figure 3.2, the situation of a one-dimensional
configurational space is shown. Ω is decomposed into Voronoi cells. One of it,

Figure 3.2: Voronoi tessellation of a one-dimensional configurational space Ω.
A Voronoi cell Φi is an interval of Ω. The energy difference between the left and
the right border of Φi determines the ratio between the transition frequency.

Φi, is shown in the figure. Assuming, that the restricted Boltzmann distribution
according to Φi has already been sampled (horizontal sampling for Φi) and one
wants to determine the transition behavior from Φi to the other subsets of Ω

4For Hamiltonian dynamics in state space, there exist stable subsets of Ω × R3N . Every
connected component of the preimage (with regard to the total energy H) of an interval in R
is a stable subset of the state space. These subsets are not p-independent. The assumption is
that there exist metastable subsets which are nearly p-independent.
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in a vertical sampling. In this case, the dynamical process Ψ−τ mainly leaves
the cell Φi by crossing the left border rather than by crossing the right one.
According to Boltzmann, the ratio r of observing a state at the left border with
regard to observing a state at the right border is r = exp(−β ∆E). The ratio
exponentially decreases with ∆E. For ∆E = 15 kJ/mol and a temperature of
T = 300 K, the ratio is r ≈ 0.002. When starting M vertical samplings, only
a small portion of (M · r) realizations of Ψ−τ are expected to cross the right
border. For a good statistics, an order of O(1/r) vertical samplings is necessary,
see Table 4.1 on page 58. This leads to a slowly converging sampling statistics
for the transition matrix P̃ if barriers are too high. A slow convergence rate
implies further refinements in the adaptive sampling scheme of Röblitz. This
might lead to a curse of dimensionality. However, if the matrix Q is computed
in the adaptive approach (instead of the transition matrix P (τ)), then it is suf-
ficient to generate the horizontal sampling. This can be seen by the application
of Gauß’ theorem.

Theorem 4. In the situation of chapter 3.5 the existence of an infinitesimal
generator of the transfer operator P is assumed. P meets the desirable properties
of chapter 3.1. Furthermore, assume a decomposition of the conformational
space into a set of Voronoi cells Φ1, . . . ,Φm leading to a discretization P (τ) of
P(τ). In this situation, Q(i, j) = ∂/∂τ P (τ)(i, j) is given by a surface integral5

of the form

Q(i, j) =
∮

∂ΦiΦj

z(q) πi(q) dS, (3.7)

where ∂ΦiΦj is the intersecting surface of Voronoi cell Φi and Voronoi cell Φj.

Note that Q is not an infinitesimal generator of P (τ), τ > 0. The elements of
Q are not rates! This has been shown in chapter 2.6. Q is simply the Galerkin
discretization of Q on the basis of a set of functions Φ. In (3.7)

z(q) =
∫

R3N

max{〈v̄(q, p), ν〉, 0}π(p) dp,

where 〈·, ν〉 is the scalar product with the surface normal vector ν of the inter-
secting surface ∂ΦiΦj . z(q) is a result of a mean value computation for the set of
momentum variables p distributed according to πp(p) and for the mean velocity
vector v̄(q, p) depending on q and p. Equation (3.7) shows that the computation
of transition rates is only based on information about the flux through certain
surfaces. This is an important complexity reduction of molecular kinetics.

Proof. Ψ−τ (q̃; (q, p)) in (2.7) is a probability density function. Using the conti-
nuity equation [13], it can be shown that

∂

∂τ

∣∣∣
τ=0

Ψ−τ (q̃; (q, p)) = − ∂

∂τ

∣∣∣
τ=0

Ψτ (q̃; (q, p))

= div
(
Ψ0(q̃; (q, p)) · q̇

)
= div

(
δq=q̃ · q̇

)
. (3.8)

5In this thesis, the expression
∮

is used in order to distinguish between volume and surface
integrals. It is not a circular integral.
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In (3.8) the term q̇ denotes the velocity vector of the probability density function
in the starting point (q, p) and δq=q̃ is a Dirac delta function. From the Marko-
vianity assumption given in the introduction, the velocity vector q̇ = v̄(q, p)
only depends on the initial state (q, p). It can be an averaged vector of many re-
alizations v(q, p) for stochastic dynamical models. Let the restricted Boltzmann
density inside the Voronoi cell Φi be denoted as

πi(q) :=
Φi(q) πq(q)∫

Ω
Φi(q) πq(q) dq

.

With this definition and (3.8) it can be shown that for Q(i, j) = ∂/∂τ P (τ)(i, j),
with i 6= j, the following equations hold

∂

∂τ

∣∣∣
τ=0

P (τ)(i, j) =
∫

Ω

∫
R3N

[ ∫
Ω

Φj(q̃) div
(
δq=q̃ · v̄(q, p)

)
dq̃

]
πi(q) π(p) dp dq

(∗1) =
∫

Ω

∫
R3N

[ ∫
Φj

div
(
δq=q̃ · v̄(q, p)

)
dq̃

]
πi(q) π(p) dp dq

(∗2) =
∫

Ω

∫
R3N

[ ∮
∂Φj

〈δq=q̃ · v̄(q, p), ν〉 dS
]
πi(q) π(p) dp dq

(∗3) =
∮

∂ΦiΦj

∫
R3N

max{〈v̄(q, p), ν〉, 0}π(p) dp︸ ︷︷ ︸
=: z(q)

πi(q) dS. (3.9)

For (∗1) it is used that Φj(q) is the indicator function of a Voronoi cell which
is also denoted as Φj . (∗2) is a consequence of Gauß’ Theorem (divergence
theorem [28]), where 〈·, ν〉 is the scalar product with the surface normal vector
ν of the surface ∂Φj and

∮
∂Φj

dS is the corresponding surface integral. From
(∗2) to (∗3) it is used, that the sets Φi and Φj have an intersecting interface
and that only trajectories going from Φi to Φj can contribute to instantaneous
transitions through this interface (positive sign of the scalar product with the
surface normal vector ν).
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Chapter 4

Algorithmic Details

The algorithmic realization of the aforementioned theoretical results has to
tackle some problems. An adaptive, meshless Galerkin discretization of a high-
dimensional configurational space is needed. Furthermore, an efficient estima-
tion of statistical weights is desired for the requirement R1 of the Introduction.
Some algorithmic details concerning these aspects are discussed in this chapter.

4.1 Meshless basis functions

In high-dimensional cases a box discretization of Ω is not appropriate. Instead
of using a box discretization, Voronoi cells are suitable for high-dimensional
systems.

Simplification by neglecting fast degrees of freedom. For the construc-
tion of Voronoi cells, the definition of a distance function dist : Ω × Ω → R is
required, see (2.8). From a mathematical point of view this distance function
should be zero, dist(q, q∗) = 0, only if two configurations are identical q = q∗.
However, in realistic applications this would lead to an unnecessary combina-
torial blow-up of the configurational space. Generated statistical information
would never be sufficient for the evaluation of Q. Pre-knowledge about the
molecular system should be incorporated into the distance function computa-
tion. The conformations χi(q) identify parts of configurational space which can
be described by a much longer time-scale than the fast degrees of freedom of the
dynamical model. Therefore, an efficient distance computation would provide
dist(q, q∗) = 0, if q and q∗ are configurations which are connected by a rapidly
mixing dynamical process. When discretizing Ω, the distance function can ac-
count for these fast degrees of freedom and exclude them from the computation
of dist(q, q∗).

• Rotation and translation. There are many cases in which rotational
and translational degrees of freedom of the whole system are not relevant
for the time-scale of the chemical process to be investigated (e.g., protein
folding). In this case, Kabsch [43, 44] has formulated an algorithm which
can be used in order to align two configurational states q and q∗ before
computing their distance in configurational space.
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• Neglecting atoms. The easiest way to simplify Voronoi cells in config-
urational space is to neglect atoms for the computation of the distances.
Whereas, all atoms are regarded for the computation of energies, veloc-
ities etc. the definition of eigenfunctions is restricted to a subspace of
Ω (this approach is comparable to neglecting the momentum coordinates
in Option 3 in chapter 3.5). When neglecting atoms, it should be done
in such a way that conformational changes can still be identified only on
the basis of the observed atoms. It is not important to include all atoms
that influence(!) the conformational change in the computation of the dis-
tance function. It is only important to include all atoms that allow for the
identification(!) of conformational changes. Thus, it can be appropriate
to neglect all explicit water molecules from distance computation if the
conformational changes of the system can be observed in the remaining
degrees of freedom. Although, the water molecules have an important in-
fluence in the chemical process, the conformational change can be seen in
the movement of the remaining atoms.

• Internal coordinates. Instead of taking all cartesian coordinates of the
observed atoms, one can restrict the point of view to a small set of inter-
nal coordinates which indicates conformational changes. This method can
only be used if enough pre-knowledge about the molecular system has been
collected. Bond lengths and bond angles are often preserved in a molecular
simulation of high-dimensional molecular models. Therefore, the restric-
tion to torsion angles may be appropriate. This reduction method should
only be applied if possible conformational changes are known in advance.

Fast degrees of freedom can be excluded from the configurational space Ω with a
combination of the aforementioned simplifications of the distance computation
in Ω. The binding path simulation in chapter 5.2.2 has been identified with a
distance function based on a set of internal coordinates.

Restricted sampling. The numerical computation of the matrix Q can be
done by restricted samplings. Expanding equation (3.7) with the term∮

∂ΦiΦj

πq(q) dS

leads to:

Q(i, j) =

∮
∂ΦiΦj

πq(q) dS∫
Φi

πq(q) dq
·
∮

∂ΦiΦj

z(q)
πq(q)∮

∂ΦiΦj
πq(q) dS

dS =
sij

di
· 〈z〉∂ΦiΦj

,

(4.1)
where sij is the weight of the surface ∂ΦiΦj and di is the weight of the Voronoi
cell Φi. In chapter 4.3 it will be shown, that these two quantities can be es-
timated by a restricted sampling approach (restricted to Voronoi cells and re-
stricted to the edges of Voronoi cells). In an algorithmic realization of the
computation of (4.1), the ratio between the surface measure dS and the volume
measure dq is unknown in general. This leads to a scaling factor µ of Q in (4.1),
i.e. Q can be computed numerically except for the unknown scaling factor µ.
Besides the weights sij and di, there is a further quantity in (4.1). z(q) is not
a constant function in general. 〈z〉∂ΦiΦj is the mean value of z with regard
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to the restricted Boltzmann distribution on the surface ∂ΦiΦj . In a numerical
computation for a given configurational state q, the term z(q) in (3.7) can be
approximated with standard Monte Carlo quadrature methods based on known
distributions of the variables. The value 〈z〉∂ΦiΦj

in (4.1) is the averaged positive
value of the scalar product 〈v̄(q, p), ν〉 determined for the set of πp-distributed
momentum vectors p and the Boltzmann distributed q-vectors, where this q-
distribution is restricted to the surface ∂ΦiΦj between the Voronoi cells Φi

and Φj . In order to determine 〈z〉∂ΦiΦj in (4.1) numerically, a Monte-Carlo
sampling of the Boltzmann distribution of configurational states q ∈ ∂ΦiΦj is
needed. This can be done by using a constraint molecular dynamics algorithm
[59, 2] combined with a Hybrid Monte-Carlo approach (HMC) [22]. HMC gen-
erates a Markov chain of configurational states. It consists of a proposal step
and an acceptance step. In the proposal step, a new configurational state q̃ is
generated on the basis of a given state q. This is done with a molecular dynam-
ics simulation with randomized initial momenta. The constraints to be fixed for
q̃ are given by the following system of equalities and inequalities.

dist(q̃, qi) = dist(q̃, qj)
dist(q̃, qk) ≥ dist(q̃, qi),∀k = 1, . . . ,m, (4.2)

where qk, k = 1, . . . m, are the centers of the Voronoi cells. The equaility in (4.2)
restricts the sampling to the correct hyperplane between Φi and Φj , whereas
the inequalities assure the restriction to the edge ∂ΦiΦj . In an implementation
of this sampling method, only the equalities are fixed by the constraint molec-
ular dynamics. The inequalities are tested in the acceptance step of the HMC
sampling algorithm. If q̃ is accepted, it is the next step of the Markov chain. If
it is rejected, the starting point q is repeated in the chain. For each sampling
point (q, p) of a HMC sampling algorithm, one has to determine the averaged
velocity vector v̄(q, p) for the selected dynamical model first. If it is assumed
that the averaged velocity of the dynamical model is given by Hamiltonian dy-
namics, then v̄(q, p) = M−1p, where M is the diagonal matrix of atom masses.
In a second step one has to determine the scalar product 〈v̄(q, p), ν〉. If one of
the aforementioned simplifications is applied in the distance computation, the
surface normal vector ν(q) depends on the configurational state q ∈ ∂Φi Φj . In
the case of a Voronoi tessellation, this surface normal vector is given by the
difference vector ν(q) ∝ ∇qdist(q, qi)−∇qdist(q, qj) (normalized to ‖ν‖2 = 1).

Avoiding the computation of z(q). Assuming v̄(q, p) = M−1p combined
with a special choice of dist(·, ·) can be used in order to avoid the computation
of z(q). If the distance function computation is only based on one type of atoms
(e.g. on a subset of carbon atoms of the system) by neglecting the rest of the
atoms or by solely including corresponding internal coordinates in the distance
function, then the surface normal vector ν has only non-vanishing components
for the entries corresponding to the coordinates of these atoms. For these atoms,
the averaged velocity distribution M−1p is isotropic (for p distributed according
to πp). I.e., z is a constant number, independent from the direction of ν. This
constant number can be included in the unknown scaling factor µ by setting
z ≡ 1.
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4.2 Adaptive and hierarchical refinement

There are mainly two sources of numerical errors when approximating the in-
finitesimal generator in a numerical approach via (4.1). The first error is given
by the numerical quadrature error, because the entries of Q are not computed
analytically, they are computed by a quadrature rule. For high-dimensional
applications, Monte-Carlo quadrature is used which leads to a stochastic error.
Röblitz mainly concentrates on this type of error in her thesis [58]. For the
present section, it will be assumed that the quadrature error can be controlled
and is reasonably small. Besides the quadrature error there is the discretization
error addressed in chapter 3.4. This error will be controlled by the adaptive
refinement procedure. If the computation of Q is based on soft basis functions,
the adaptive algorithm of Röblitz for stochastic matrices can be used.

Soft basis functions. Using Gauß’ Theorem, theoretically a horizontal sam-
pling is sufficient for the computation of Q, see (3.7). One can generate Boltz-
mann distributed states inside the Voronoi cell Φi and restrict this sampling to
the boundaries afterwards. Obviously, a sampling of states inside a Voronoi cell
will never exactly hit a boundary of this cell in a numerical routine. Instead of
a crisp Voronoi tessellation Φ[∞] one can, therefore, use continuous membership
functions Φ[α] with limα→∞Φ[α] = Φ[∞]. One possible class of membership
functions has been defined by Weber [75]:

Φ[α]
i (q) :=

exp(−α dist2(q, qi))∑m
k=1 exp(−α dist2(q, qk))

. (4.3)

Using the basis of membership functions (4.3), the Galerkin discretization Q in
(3.7) can be formulated in terms of a regularization Q[α]. The outer diagonal
elements of Q[α] are given by

Q[α](i, j) = µ

∫
Ω

z(q) Φ[α]
j (q) π

[α]
i (q) dq = µ

〈Φ[α]
i , zΦ[α]

j 〉πq

〈Φ[α]
i , e〉πq

, (4.4)

where µ is an unknown scaling factor which represents the difference between a
volume and a surface measure. It is shown in chapter 4.4 that Q[α] for α � 0
is an approximation for Q. (4.4) can be seen as a mean value computation
of the function z(q)Φ[α]

j (q) for a restricted Boltzmann distribution of states q

according to π
[α]
i with its corresponding density function

π
[α]
i (q) :=

Φ[α]
i (q) πq(q)∫

Ω
Φ[α]

i (q) πq(q) dq
.

Note that the outer diagonal elements of Q[α] in (4.4) are identical to outer
diagonal elements of the stochastic mass matrix defined by Röblitz in [58] except
for the additional term z and the scaling factor µ. The stochastic mass matrix
defines the overlap of the basis functions Φ[α] and measures their crispness. The
adaptive sampling algorithm and the statistical error analysis of Röblitz can be
used to generate the matrix Q[α] without performing the vertical sampling. The
binding process in chapter 5.2.2 has been constructed with this kind of approach
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using the software code ZIBgridfree [82, 75, 58] for a given value α � 0. For
high dimensional molecular systems, this approach may be applicable, but it
suffers from the fact that low-weighted boundaries of the Voronoi cells are not
sampled sufficiently. What has been said about Figure 3.2 does not only hold
for the vertical sampling, it may also be a problem of the horizontal sampling,
because the sampling may be too sparse for a statistical relevant estimation of
Q[α].

Crisp basis functions. In this thesis it is suggested to generate a sampling
not only inside the Voronoi cells. Additionally, one should generate a sampling
on the edges of the Voronoi cells in order to estimate the transition behavior
sufficiently. The restricted sampling has been described in chapter 4.1 for the
computation of z. A feasible starting point q̃ for this sampling meets the con-
straints (4.2). This can be achieved by using the function basis Φ[α] in (4.3). A
feasible point, q̃ ∈ ∂ΦiΦj , has the following property

lim
α→∞

1

Φ[α]
i (q̃) Φ[α]

j (q̃)
= s2,

where s is the number of inequalities in (4.2) which are active in q̃. For an
infeasible point, q̃ 6∈ ∂ΦiΦj the limit tends to infinity. In order to find a feasible
starting point with a low energy value V (q̃) one can, therefore, minimize the
function

I
[α]
C (q̃) :=

V (q̃)

Φ[α]
i (q̃) Φ[α]

j (q̃)

within a homotopy method for α → ∞. If the minimal value I
[α]
C does not

converge for α →∞, then the Voronoi cells Φi and Φj are not neighboring and
do not share a common surface ∂ΦiΦj . If additional samplings are performed
for the surfaces of the Voronoi cells, the adaptive error analysis of Röblitz is
not appropriate. The elements of Q are not row-wise correlated any more. A
different refinement strategy is needed. For an adaptive refinement, the approx-
imation of the eigenfunctions of Q is important. The space spanned by the
eigenfunctions is identical to the space spanned by the conformations. A set
of basis functions using a crisp Voronoi tessellation of Ω assumes a constant
value of the conformations χ inside the cells. This assumption is incorrect for
regions of Ω where χ has large gradients (transition regions). This fact can be
used in order to refine the set of basis functions adaptively. In an illustrative
example in chapter 5.1, a very simple adaptive refinement approach is shown,
which hierarchically adds basis functions in transition regions.

4.3 Efficient free energy calculation

For high-dimensional examples, the numerical computation of 〈z〉∂ΦiΦj
in (4.1)

has been described so far. The missing computation of the expressions sij/di

includes high-dimensional integrals. Only Monte-Carlo quadrature methods are
suitable for this task. Because of the complexity of the Boltzmann distribu-
tion, standard Monte Carlo quadrature methods are not appropriate in order
to determine the expressions sij/di in (4.1). The weights of the surfaces and
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of the Voronoi cells have to be computed by a routine which can determine
free energy differences in Ω. In other words, an algorithm is searched which
meets requirement R1 of the introduction not only for the statistical weights of
the conformations but also for the weights of discretization boxes and for the
weights of the surfaces. Three different approaches will be discussed here. The
first approach is called ConfJump which is a Metropolis-Monte-Carlo sampling
scheme for the computation of free energy differences. The second approach is
based on the Jarzynski Identity. The third approach is a heuristic method which
only takes into account restricted Boltzmann samplings (restricted to cells and
surfaces). The latter method is based on a density estimation approach intro-
duced by Weber and Andrae in [78]. It is recommended to apply a combination
of density estimation and Jarzynski’s Identity which will be described at the
end of this section.

Algorithm ConfJump. Instead of determining the absolute values of di and
sij one can alternatively estimate the ratios sij/skl or di/dj . If these ratios are
computed, the absolute values of the weights are known for di by a normalization
to

∑m
i=1 di = 1. The values sij can be determined with this procedure except

for the scalar factor µ. There are a lot of methods in literature which estimate
the ratios of weights of different parts of the configurational space by defining
a Metropolis-Monte-Carlo like sampling approach. This sampling is based on
jumps between the restricted parts of the space. For a survey see [8]. ConfJump
[74] is one algorithm of this type, it is very similar to the Smart Darting Monte
Carlo algorithm of Andricioaei et al. [3] and the Jump Between Wells (JBW)
algorithm of Senderowitz et al. [64, 65]. The ConfJump method is embedded
into a HMC-sampling of the restricted parts (Voronoi cells or surfaces) of the
configurational space. During the HMC sampling, sometimes (with a given
probability) the molecular dynamics proposal step is replaced by a jump from
the current part (A) of the configurational space to another restricted part (B)
of Ω. For the construction of the jump it is important that the conditional
probability for being in A and proposing a jump from a certain state q ∈ A
to q∗ ∈ B is identical to the probability for being in B and proposing a jump
from q∗ ∈ B to q ∈ A. There are many different ways to construct a suitable
jump. One possible construction is as follows. For each restricted part i of
the configurational space a representative configurational state qi is selected
in advance. If a jump from A to B is intended in the ConfJump algorithm,
then the difference vector ∆ := qA − q between the current sampling point q
and the representative qA is determined. The proposed new configurational
state q∗ in B is given by q∗ = qB −∆. The jump is accepted, if the potential
energy has decreased, V (q) > V (q∗), during the jump or if a Metropolis like
acceptance criterion holds for the energy difference. If the jump is rejected,
the HMC sampling continues in the old part A of Ω. If the jump is accepted,
the sampling continues in the new part B. When ConfJump has converged,
the numbers of sampling points per part of Ω represent the relative weights
of these parts. In order to improve the jump acceptance rate, one can shift
the minimal potential energy level of all restricted parts to 0 in advance. In
this case, the acceptance is improved because the jumps are performed between
configurational states with similar potential energies. After convergence of the
sampling, one has to reweight the number of sampling points per part with the
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Boltzmann expression of the energy shift. Even by using the energy shift, the
construction of a jump proposal step in this scheme is not a trivial task. In
our experiments, for every molecular system, a different jump strategy has to
be applied in order to yield a suitable acceptance ratio. A severe problem of all
jump methods is given by the treatment of explicit water molecules. Whenever
a jump between two configurational states of a molecular system is performed,
it is not easy to rearrange the water molecules within a reversible(!) proposal
step. Instead of a reversible jump, the next approach to weighting is based
on a non-reversible transport of sampling points and can, therefore, tackle the
problem of explicit water molecules.

Jarzynski’s Identity. Determining the ratios of weights is like a computa-
tion of free energy differences, see (2.11). For the estimation of free energy
differences, the Jarzynski’s Identity1 is very important [41, 14, 57]:

〈exp(−β W )〉 = exp(−β ∆A), (4.5)

where W is the work along a non-reversible process. On the right hand side
of equation (4.5) there is the desired free energy difference between Voronoi
cells or between surfaces of Voronoi cells. The left hand side of (4.5) can be
understood as an algorithmic approach towards the computation of free-energy
differences. A restricted Boltzmann distribution of states (restricted to Voronoi
cells or restricted to surfaces) can be seen as a Boltzmann distribution according
to a modified Hamiltonian. Assume H(q, p, 0) represents the Hamiltonian for
the restricted sampling of the Voronoi cell Φj with πp-distributed momenta,
whereas, H(q, p, t) for a fixed value t > 0 represents the Hamiltonian according
to the restricted Boltzmann distribution in Voronoi cell Φi with πp-distributed
momenta. The approach is a non-reversible biased density propagation method
transporting a Boltzmann density according to the Hamiltonian H(q, p, 0) in
time t. If the parameter t is fixed, the corresponding Hamiltonians H(·, ·, τ)
can be approximated by using the basis functions in (4.3) with α � 0. For a
transport from cell Φj to cell Φi the Hamiltonian is:

H(q, p, τ) = − 1
β

ln(Φ[(τα)/t]
i (q))− 1

β
ln(Φ[α−(τα)/t]

j (q)) + V (q) + K(p). (4.6)

For a transport from surface ∂ΦiΦj to surface ∂ΦiΦk the Hamiltonian is (see
chapter 4.4):

H(q, p, τ) = − 1
β

ln(Φ[α]
i (q))− 1

β
ln(Φ[(τα)/t]

k (q))− 1
β

ln(Φ[α−(τα)/t]
j (q))

+V (q) + K(p). (4.7)

1It is not possible to write down this equation without stressing out the incredible impor-
tance of Jarzynski’s Identity for all fields of thermodynamics. Jarzynski’s Identity replaces the
second law of thermodynamics. This law has been 〈W 〉 ≤ ∆A for non-reversible dynamical
processes. It has been formulated in terms of an inequality (only for reversible processes the
equality holds). Jarzynski has shown that the second law can be formulated in terms of an
equality. Although the dynamical processes are assumed to be reversible on a microscopic and
infinitesimal level (self-adjointness of P), via Jarzynski’s Identity it is possible to compute the
statistical weights of conformations by a substitution of the reversible metastable process with
a rapidly mixing non-reversible dynamics.
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Assume that the restricted density of Φj has been sampled with HMC. Then,
a molecular dynamics simulation according to the time-dependent Hamilto-
nian H(·, ·, ·) starting in (q(0), p(0), 0) and ending in (q(t), p(t), t) transports
the HMC-sampling point (q(0), p(0)) from one restricted region to the state
(q(t), p(t)) of the other restricted part of configurational space. The left hand
side in (4.5) is the averaged exponential work of this biased molecular dynamics
simulation. The average is taken over the sampling points in Φi. Note that
selecting Hamiltonian dynamics for the computation of free energy differences
is not defining the dynamical model of P(τ). Hamiltonian dynamics is selected,
because it is a symplectic mapping. Any dynamical model can be used in or-
der to propagate the density (even stochastic dynamical models). However,
Hamiltonian dynamics offers a simple way to compute the work W along the
propagation. Using that W = H(q(t), p(t), t)−H(q(0), p(0), 0) for Hamiltonian
dynamics (see chapter 5.3.1 in [10]) and (2.11), the Jarzynski Identity is given
by 〈

exp
(
− β(H(q(t), p(t), t)−H(q(0), p(0), 0))

)〉
≈ di

dj
. (4.8)

The equation (4.8) is formulated for time-dependent Hamiltonian (4.6) and the
weights di, dj . For sij there is an analogous equation when using the time-
dependent Hamiltonian (4.7). In an algorithmic realization of (4.8), an ensemble
of states distributed according to H(q, p, 0) is generated first. In a second step
the algorithm performs biased molecular dynamics trajectories on each sampling
point. This simulation propagates the density from one to other restricted
regions of Ω. In order to compute equation (4.8) numerically, the exponential
difference between the Hamiltonian in the starting points and the Hamiltonian
in the end points of the molecular dynamics trajectory have to be averaged.

Density estimation. It can be very difficult to design a suitable algorithm for
the biased movement of densities in Jarzynki’s approach with a reasonable small
amount of work W and a suitable simulation time t (especially for the voronoi
cell surface weights). Instead of performing a biased dynamics simulation for
the determination of free energy differences one can also estimate the free energy
differences on the basis of the generated restricted HMC sampling data within
the cells and on the surfaces (see chapter 4.1). This approach will be formulated
for the computation of free energy differences between the Voronoi cells (for the
determination of di), but it can also be applied for the estimation of sij . Assume,
there is a small δq̃-environment of a given configurational state q̃ ∈ Φi in which
the value exp(−β V (q)) can be considered as constant. In this case, the following
equation holds:∫

Φi

δq̃ dq · exp(−β V (q̃)) =
∫

Ω

δq̃
Φi(q) exp(−β V (q))∫
Φi

exp(−β V (q̄)) dq̄
dq︸ ︷︷ ︸

=:〈δ〉πi

·
∫

Φi

exp(−β V (q̄)) dq̄︸ ︷︷ ︸
∝di

.

(4.9)
If configurational states qi ∈ Φi and qj ∈ Φj are selected with an identical
δ-environment, then equation (4.9) can be reformulated as

di

dj
=

exp(−β V (qi)) 〈δ〉πj

exp(−β V (qj)) 〈δ〉πi

. (4.10)
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In (4.10), the expression 〈δ〉πi
can be approximated by the averaged number

of states which are element of the δ-environment of qi. The averaged value
is taken over a set of states which are distributed according to the restricted
Boltzmann sampling of Φi. This is comparable to a density estimation of this
restricted sampling at qi. In order to use (4.10) in a numerical routine, one
has to determine a representative qi for each Voronoi cell Φi and one has to
count the averaged number of sampling points which are element of a small
environment of qi. It is important to take a δ-environment with a constant
volume for each Voronoi cell Φi. The representative qi can be a local mini-
mum. The computational complexity estimation of the algorithmic approach
is based on the density estimation method for the determination of di and for
the computation of the surface integrals (see Table 4.1 on page 58). Although
the density estimation approach is theoretically applicable for the Voronoi cell
surfaces, the sampling of the Voronoi cell surfaces as described in chapter 4.1
can suffer from the problem of additional energy barriers. Furthermore, it can
be difficult to figure out a description of small iso-volume δ-environments on
different Voronoi cell suraces, if the Voronoi cell is determined by using internal
coordinates. In this case, the determinant of the Jacobian of the transformation
into internal coordinats is needed. Instead of using a density estimation for the
surface integrals, a combined approach is recommended.

Combination of density estimation and Jarzynski’s Identity. Assume
the density estimation method is used for the estimation of the weights di of
the Voronoi cells. Thus, HMC samplings restricted to the Voronoi cells have
been generated and evaluated according to (4.10). In this case, the absolute
values of di are known using the sum-1-normalization. For the estimation of the
transition pattern, one can (approximately) transport these sampling points to
the Voronoi cell surfaces. The corresponding time-dependent Hamiltonian Hij

for the transport Φi → ∂ΦiΦj is

Hij(q, p, τ) = − 1
β

ln(Φ[α]
i (q))− 1

β
ln(Φ[(τα)/t]

j (q)) + V (q) + K(p).

In this case,〈
exp

(
− β(Hij(q(t), p(t), t)−Hij(q(0), p(0), 0))

)〉〈
exp

(
− β(Hik(q(t), p(t), t)−Hik(q(0), p(0), 0))

)〉 ≈ sij

sik
. (4.11)

A justification for this approach is given in chapter 4.4. If the method (4.11)
is used, then the ratios of the surface integrals per Voronoi cell are known.
Thus, exept for unknown row-wise scaling factors r1, . . . , rm > 0, the matrix Q
is determined. The unknown scalig factors can be estimated in the following
way. By using the row-wise ratios sij/sik of the surface integrals and a row-wise
sum-1-normalization, one can determine a stochastic m × m-matrix K. The
desired matrix Q can be written as Q = R(K − I), where R = diag(r1, . . . , rm)
is the diagonal matrix of the unknown scaling factors and I is the m×m-unity
matrix. Since d>Q = 0, we can determine the ratios by solving d>R(K − I) =
r>D(K − I) = 0, where r = (r1, . . . , rm) and D = diag(d1, . . . , dm). The
recommended approach is a combination of Jarzynski’s Identity based on an
adaptive discretization of Ω (requirement R2) and the direct computation of
statistical weights using the density estimation approach (requirement R1).
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4.4 Approximation of the surface flux

In the algorithmic realization of the discretization of Q it is often assumed, that
the α-regularization is applicable:∮

∂ΦiΦj
f(q) exp(−β V (q)) dS∮

∂ΦiΦk
f(q) exp(−β V (q)) dS

≈
∫
Ω

f(q) Φ[α]
i (q) Φ[α]

j (q) exp(−β V (q)) dq∫
Ω

f(q) Φ[α]
i (q) Φ[α]

k (q) exp(−β V (q)) dq
.

(4.12)
Instead of comparing the (3N − 1)-dimensional surface integrals, a full-dim-
ensional approximation is used. Because of the special choice of Φ[α]

i the de-
nominator and the numerator of the right expression converge against zero for
α →∞. They additionally converge against zero for every differential ∂/∂α.

Justification of the α-approximation. In order to show (4.12), the follow-
ing considerations are important. If the Voronoi surface ∂ΦiΦj is a part of a
plane2 in Ω, then the Riemann sum of (congruent) intervals of these surfaces
can be extendet to a Riemann sum of (congruent) boxes in Ω, see Figure 4.1.
The volume integrals can be expressed (separately) by a limit over a decreasing

Figure 4.1: Expansion of an interval-based decomposition to a volume-based
decomposition. By defining f(q) = 0 for all q 6∈ ∂ΦiΦj for the surface integrals,
the interval-based decomposition need not “fit” exactly.

volume of the boxes. The volume per box is c3N :

∫
Ω

f(q) Φ[α]
i (q) Φ[α]

j (q) exp(−β V (q)) dq∫
Ω

f(q) Φ[α]
i (q) Φ[α]

k (q) exp(−β V (q)) dq

=
lim
c→0

L(c)∑
l=1

c3N f(ql) Φ[α]
i (ql) Φ[α]

j (ql) exp(−β V (ql))

lim
c→0

L(c)∑
l=1

c3N f(ql) Φ[α]
i (ql) Φ[α]

k (ql) exp(−β V (ql))

2This is the case, if the Voronoi cells are defined by the Euclidean distance in Ω. A
neglection of atoms as described on page 47 is possible.
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=
lim
c→0

L(c)∑
l=1

c(3N−1) f(ql) Φ[α]
i (ql) Φ[α]

j (ql) exp(−β V (ql))

lim
c→0

L(c)∑
l=1

c(3N−1) f(ql) Φ[α]
i (ql) Φ[α]

k (ql) exp(−β V (ql))

,

where the states ql are taken from the midpoints of the boxes, which are also
the midpoints of the intervals (for the boxes which include the surface). Note
that the partial sums are almost zero for states ql which are not part of the
corresponding surfaces for α � 0. Furthermore, the Φ-product is constantly
almost 0.25 for the surface points and can be canceled out. This shows that the
last equation approximately is the Riemann sum of the surface integrals. Thus,
the regularization is a good approximation of the ratio of the surface integrals.
The considerations show that in equation (4.4) the ratio Q[α](i, j)/Q[α](i, k)
approximates the ratio Q(i, j)/Q(i, k). Furthermore, for Q the equation d>Q =
0 holds, which determines the row-wise scaling. In order to also meet d̃>Q[α] =
0, with d̃i = 〈Φ[α]

i , e〉πq , the matrix Q[α] has to be defined according to the
row-wise scaling in (4.4). At this stage, the unknown scaling factor µ occurs.
d̃>Q[α] = 0 is independent from µ.

Using internal coordinates. In a strict sense, in equation (4.4), (4.7), and
(4.11) the surfaces of the Voronoi cells have to be assumed to be parts of planes3

in Ω in order to meet the requirements of the aforementioned considerations.
Thus, using internal coordinates for the simplification of the configurational
space as described in chapter 4.1 is not included. For high-dimensional problems,
however, one may want to restrict the point of view to a few internal coordinates
which describe conformational changes and the leading time-scales sufficiently.
Note, that in Theorem 4 the expression 〈v̄(q, p), ν〉 in principle accounts for the
“derivative” of Φj with regard to time. This expression is like applying the
chain rule for the derivative of Φj(q̃), where q̃ is the result of a realization of
the dynamical model. In a strict sense, the crisp membership functions Φj do
not allow for this derivative. Therefore, in Gauß’ Theorem the surface integral
construction occurs. We will now use the soft membership functions in (4.3)
instead of crisp sets. The eigenequation

P(τ) Xi = exp(ξiτ) Xi

for the computation of the desired quantities Xi and ξi can be discretized via

P [α](τ) Xi = exp(ξiτ) S[α] Xi

using two stochastic matrices

P [α](τ)(i, j) :=
〈Φ[α]

i ,P(τ)Φ[α]
j 〉πq

〈Φ[α]
i , e〉πq

, S[α](i, j) :=
〈Φ[α]

i ,Φ[α]
j 〉πq

〈Φ[α]
i , e〉πq

. (4.13)

For the derivative of the eigenequation with regard to τ at τ = 0 the resulting
eigenequation is

Q̄[α] Xi = ξi S[α] Xi,

3A measure-preserving transformation of the states ql is possible.
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where
Q̄[α] :=

∂

∂τ

∣∣∣
τ=0

P [α](τ). (4.14)

Using the regularization Φ[α]
j , a full-dimensional time-derivative of P [α](i, j) is

possible. For the approximation of the contribution of a Φ[α]
i πq-distributed state

q ∈ Ω to the flux from Φi to Φj , expressions of the type 〈∇qΦ
[α]
j , q̇〉 have to be

computed. Let dj(q) := dist2(q, qj) denote the squared distance between q and
the Voronoi center qi in (4.3), then

∇qΦ
[α]
j (q) = α Φ[α]

j (q)
(( m∑

l=1

Φ[α]
l (q)∇qdl(q)

)
−∇qdj(q)

)
. (4.15)

In order to determine the matrices S[α] in (4.13) and Q̄[α] in (4.14), mean
value computations with regard to a Φ[α]

i -restricted Boltzmann sampling are
mandatory. Because of the pre-factor Φ[α]

j in (4.15), the mean value computation

of the (
∫
Ω

Φ[α]
i )-type can be transformed into a (

∫
Ω

Φ[α]
i Φ[α]

j )-type mean value
computation, i.e. restriction to Voronoi cell “surfaces” is possible.

Reactive flux. For every sampling point q in the aforementioned approach,
the expression 〈∇qΦ

[α]
j , q̇〉 has to be averaged over the Boltzmann distributed

set of momenta p. One possible choice for the velocities is q̇ := M−1p. In this
case the averaged expression is zero. Like in Theorem 4, a certain portion of the
flux has to be assiged for a transition Φi → Φj . This portion is denoted as the
reactive flux. According to Theorem 4 the contribution fij(q) of a Φ[α]

i -sampled
state q to the flux from Φi to Φj can be seen as the p-averaged value of

fij(q) := max{〈∇qΦ
[α]
j , q̇〉, 0}.

In order to meet the detailed balance property for this choice, for every tran-
sition Φi → Φj with momentum vector p there has to be the corresponding
transition Φj → Φi with momentum vector −p. This means, that ∇qΦ

[α]
j (q) =

−∇qΦ
[α]
i (q). A short calculation shows, that this is valid, if Φ[α]

i (q)+Φ[α]
j (q) = 1.

Equivalently, Φ[α]
k (q) = 0 for all k 6= i, k 6= j. This implies α � 0.

Algorithmic realization. When approximating ratios like Q̄[α](i, j)/Q̄[α](i, k),
the constant factor α in (4.15) cancels out.

Q̄[α](i, j)
Q̄[α](i, k)

=

∫
Ω

max{〈(
∑m

l=1 Φ[α]
l (q)∇qdl(q))−∇qdj(q), q̇〉, 0}πij(q) dq∫

Ω
max{〈(

∑m
l=1 Φ[α]

l (q)∇qdl(q))−∇qdk(q), q̇〉, 0}πik(q) dq
· S[α](i, j)
S[α](i, k)
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(∗) ≈
∫
Ω

max{〈Φ[α]
i (q)(∇qdi(q)−∇qdj(q)), q̇〉, 0}πij(q) dq∫

Ω
max{〈Φ[α]

i (q)(∇qdi(q)−∇qdk(q)), q̇〉, 0}πik(q) dq
· S[α](i, j)
S[α](i, k)

,

(4.16)

in (∗) the approximation Φ[α]
i (q) + Φ[α]

j (q) = 1 is used. Furthermore, πij(q)

denotes the Φ[α]
i Φ[α]

j -restricted Boltzmann distribution of states and

S[α](i, j) =
〈Φ[α]

i ,Φ[α]
j 〉πq

〈Φ[α]
i , e〉πq

.

In this case, a reweighting of the restricted Boltzmann samplings according to
Φ[α]

i Φ[α]
j and Φ[α]

i can be done in the full-dimensional space by the methods
described in chapter 4.3 (a surface measure does not occur). This reweighting
leads to a matrix S[α]. The πij- and πik-samplings, however, only lead to ratios
Q̄[α](i, j)/Q̄[α](i, k) in (4.16). Note that Q̄[α] can be determined except for an
unknown scaling factor µ by the eigenvector method described in chapter 4.3 on
page 53. Thus, this approach needs Voronoi cell samplings for the determination
of statistical weights and Voronoi cell “surface” samplings for the determination
of transition rates.

4.5 Efficiency of the algorithmic approach

The efficiency of statistical thermodynamics simulation software is determined
by two aspects. First, the generation of sampling points for a statistical evalu-
ation should converge in a reasonable time, i.e. the number of sampling points
needed for the statistical result should be small. Second, the generation of the
sampling points should not need too much computing time, i.e. the CPU time
per sampling point should be small.

Number of sampling points. Unbiased molecular dynamics simulation is
not able to estimate statistical quantities of conformation dynamics within a
small number of sampling points. This has been shown in the Introduction.
Rare events are the reason for bad statistics. An order of O · 1/(1 − λ2) sam-
pling points is needed for convergence, where λ2 is the second largest eigenvalue
of the underlying transfer operator, see first row in Table 4.1. The term O de-
notes the computational cost for a statistically sufficient sampling of a rapidly
mixing part of the state space. Using a space decomposition approach is a good
starting point for the reduction of the computational cost, because this approach
circumvents the problem of rare events. When using a space decomposition, the
statistical weights of the subsets of Ω and the transition behavior between these
sets have to be computed. It is not easy to solve this task efficiently. In many
algorithmic approaches, the overlap of different localized (modified) Boltzmann
densities is an important quantity. Assume, one wants to estimate the overlap
of a localized density A with a localized density B and with a localized density
C. A very common approach is given by the following method: The estimation
is based on a truncated sampling of the density A and on counting the states
of A in the overlap regions ’AB’ and ’AC’. One can show that this approach
can be very inefficient. In many cases, the ratio of the statistical weight of
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approach complexity problem
unbiased sampling
(e.g. thermostated dynamics) O · 1/(1− λ2)

rare events during the
sampling process

restricted sampling
using overlap statistics
(e.g. umbrella sampling)

O ·m · 1/r
computation of the
overlap of sparsely
populated regions

Theorem of Gauß O ·m · (fm + 1)
direct estimation of
statistical weights

Table 4.1: The complexity of different algorithmic approaches to conformation
dynamics compared with a sampling of transition rates based on Gauß’ Theo-
rem.

AB compared to the weight of AC is relevant. In other words, if b = AB/A
denotes the statistical weight of AB with regard to A and c = AC/A denotes
the statistical weight of AC with regard to A, then the ratio b/c is important.
If b and c are small numbers, then a small truncation error in b or c leads to a
large error in determining b/c. For this reason, a lot of sampling data is needed.
The corresponding complexity is shown in the second row of Table 4.1. For
the decomposition approach, m denotes the number of Voronoi cells. The ratio
1/r with r = exp(−β ∆E) is taken from the considerations in the beginning of
chapter 3.6 on page 43. 1/r can be very large. The solution to this problem
is given by a direct sampling of the overlap. In our case, the solution to an
efficient simulation is given by a restricted sampling of the edges of the Voronoi
cells justified by Gauß’ Theorem. In the third row of Table 4.1, fm denotes the
averaged number of neighbors of the Voronoi cells. In the case of a metastable
dynamical system with a moderate number of neighbors per Voronoi cell, the
presented algorithmic approach based on Gauß’ Theorem possesses the smallest
order of complexity.

The most CPU-consuming part of molecular simulation software.
The main complexity problem of classical molecular dynamics simulation is
given by the evaluation of the potential energy function V (q). Regarding all
atomic interactions, the computational cost of evaluating V (q) increases quadrat-
ically with the number N of atoms of the system. Therefore, the most time-
consuming step in classical molecular dynamics simulations is the solution of
the Hamiltonian dynamics equations. The aim of our work at the Zuse In-
stitute in Berlin was to get rid of Hamiltonian dynamics simulations for the
analysis of transition networks of molecular systems. In 1998, Peter Deuflhard
already stressed that long-term Hamiltonian dynamics simulations cannot solve
an ill-conditioned problem. Thus, this kind of simulation approach for molecu-
lar systems cannot be the basis for the analysis of molecular systems. A good
starting point to invent something new. Reading this thesis one may come to
the conclusion that Hamiltonian dynamics occurs at many different “places” of
the software code, but this is not obligatory.

HMC without Hamiltonian dynamics. The first place, where Hamilto-
nian dynamics may occur, is the Hybrid Monte-Carlo sampling routine. HMC
is based on a molecular dynamics simulation used in order to perform the pro-
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posal step. From a mathematical point of view, HMC only needs a reversible,
volume-preserving mapping as proposal step [22]. HMC does not need molecular
dynamics. Convergence against the Boltzmann distribution of states is assured,
if the proposal step leads to an ergodic Markov chain. Although ZIBgridfree uses
Hamiltonian dynamics, it does not perform molecular dynamics simulations on
the full molecular system in each HMC step. It does not need a computa-
tion of all potential energy terms of V (q) during the proposal step. Instead of
moving all atoms of a molecular system one can restrict the proposal step to
a (randomly chosen) subset of atoms4. During the proposal step, a short-time
molecular dynamics simulation of the molecule is performed by fixing the posi-
tions of the non-selected atoms. Since all interaction energies between the fixed
atoms are constant during the MD simulation, the corresponding terms need
not be computed. Instead of computing N2 interactions, where N is the total
number of atoms, only (n · N) interactions have to be considered, where n is
the number of selected atoms. Using this approach, the complexity reduction of
HMC is based on the following consideration. The interaction energy between
non-bonded parts of the molecular system decreases rapidly, such that separated
parts of the system have an almost independent distribution of conformational
states. The word “almost” is important this context. If separated parts really
had independent distributions, then using a cutoff value for the computation
of long-range interactions during the MD proposal step would also lead to the
same complexity reduction. Neglecting long-range interactions may lead to in-
correct results [52, 85]. In contrast of defining a cutoff, HMC with randomly
chosen subsets of moving atoms accounts for all long-range interactions.

Jarzynski’s Identity without Hamiltonian dynamics. The second place
where Hamiltonian dynamics may be important for the algorithmic realization
is given by the propagation of HMC sampling points from the surface of Voronoi
cells into the center of them. As mentioned in chapter 4.3, Hamiltonian dynam-
ics is selected in this context for the presentation of theoretical results because
it simplifies the computation of the work W along the propagation. Note that
an arbitrary non-reversible propagation can be applied, see also [24]. This is
the key contribution of Jarzynski’s Identity in statistical thermodynamics. For
arbitrary non-reversible propagations, the work can be computed as

W =
∫ t

0

∂H(q(τ), p(τ), τ)
∂τ

dτ.

But how can one get rid of molecular dynamics simulations, although transition
rates have to be computed (which are based on a dynamical model). Isn’t there
the theorem that says, that complexity of a problem can not be reduced by
reformulation? The intrinsic reduction of the complexity of the conformation
dynamics approach is given by Gauß’ Theorem and the insight that knowing
the exact transition processes within the conformations is not necessary for
the computation of transition rates between the conformations. Note, however,

4The atoms which are selected for the proposal step of HMC should not be chosen purely
by random. One should build groups of atoms in advance and select one of these groups
for a short-time molecular dynamics simulation. Some (important) groups can be selected
with a higher probability, in order to improve the statistics of this group. As long as the
probability distribuion for the selection of the groups is identical in each proposal step, the
detailed-balance condition of HMC is assured, see also [74].
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that being blind for the transition processes within the conformations is not
the solution. Some information is needed which is given by the eigenfunctions
of the generator Q. Whatever is the answer to the question of complexity,
one aspect is clear: Molecular simulation can definitely get by without long-
term Hamiltonian dynamics trajectories! Furthermore, long-term Hamiltonian
dynamics trajectories focus on the simulation of the transition processes within
the conformations which is the most uninteresting information for conformation
dynamics.
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Chapter 5

Numerical Examples

In this chapter two different numerical examples of the subspace approach to
molecular Markov State Models are presented. Example 5.1 is based on an ar-
tificial 2-dimensional potential energy function, whereas Example 5.2.2 is taken
from a real-word simulation of a binding process of the Aminopeptidase N in-
hibitor bestatin (APN).

5.1 Illustrative Example

In order to illustrate the computation of Q, we start with a simplified 2-
dimensional example of a potential energy function [55] and β = 3.34. In this
example, a system of two atoms moving in one dimension is analyzed. The
potential energy function is V : R2 → R with

V (q) = 3 exp
(
− q2

1 − (q2 −
1
3
)2

)
− 3 exp

(
− q2

1 − (q2 −
5
3
)2

)
−5 exp(−(q1 − 1)2 − q2

2)− 5 exp(−(q1 + 1)2 − q2
2)

+0.2 q4
1 + 0.2 (q2 −

1
3
)4. (5.1)

A contour plot of this q1-symmetric function is shown in Fig. 5.1, see also [50].
The potential function has three local minima. A direct thermostated dynamics
simulation on the basis of the potential energy function does not provide correct
statistics, see Figure 5.2. The matrix Q will be evaluated for a set of indicator
functions Φ stemming from a regular grid of 9× 9 = 81 discretization boxes in
Ω = [−2; 2] × [−2; 2]. Up to this stage, the dynamical model which is in the
“heart” of Q is not yet defined. The computation of v̄(q, p) is based on further
assumptions. For the computation of Q we will assume that the mean velocity
vector v̄(q, p) is independent from q (like in Hamiltonian dynamics) in this simple
example. We will also assume that z(q) is independent1 from the direction of
the normal vector ν. In this case, z(q) = z is a constant number only leading to
a rescaling of Q. Q is only computed up to an unknown scaling factor µ > 0. z
can be set to 1. The normalization of the densities is also part of the unknown

1For Hamiltonian dynamics, the velocity vector is v̄(q, p) = q̇ = M−1p. For this special
choice z is independent from the direction of ν if all masses of the atoms are equal.
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Figure 5.1: (Example 5.1) Potential energy function. The function has three
local minima. Two deeper ones at about (−1; 0), (1; 0), and one minimum at
about (0; 5/3).

Figure 5.2: (Example 5.1) Direct thermostated simulation of the potential en-
ergy function (10000 steps). Starting in the upper lower minimum, the trajec-
tory crosses the barrier and is trapped in one of the deeper local minima.

scaling factor µ. Thus, instead of the normalized expression πq(q), the integrals
in (4.1) are based on the Boltzmann expression exp(−β V (q)). Because of z ≡ 1
the computation of the elements of Q(i, j), i 6= j, is only based on the ratio sij/di,
i.e. only on the weights of intersecting surfaces and on the weights of the boxes.
The diagonal elements of Q are determined such that the row sums of Q are zero.
The surface weights sij =

∫
∂ΦiΦj

exp(−β V (q)) dS can be computed numerically
with a one-dimensional Gauß-Legendre quadrature rule based on 5 nodes per
surface [67]. The weights of the boxes di =

∫
Φi

exp(−β V (q)) dq are computed by
a two-dimensional Gauß-Legendre quadrature rule based on 25 nodes per box.
After computation of the matrix Q, the matrix Qc is approximated analogously
to Pc in chapter 3.4 by Q̃c = A−1

disc ΞdiscAdisc. The matrices Adisc and Ξdisc

are 3 × 3 matrices in our example. These matrices are approximations of the
matrices A and Ξ for the continuous operator Q. Note that the matrices A and
Ξ are also 3× 3-dimensional in the continuous case. Without loss of generality,
the scaling of Q is chosen in a particular way: Q defines an 81 × 81-matrix
M := Q + I which is a stochastic matrix with minimal diagonal element 0.
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The dominant eigenvectors Xdisc of M and the dominant eigenvectors of Q are
identical. Since M is a stochastic matrix, the standard PCCA+ algorithm can
be applied in order to find χdisc and the corresponding transformation matrix
Adisc. If λdisc ≈ 1 is an eigenvalue of M , then ξdisc = λdisc − 1 is an eigenvalue
of Q. For the regular 9× 9-discretization, the results are

Ξdisc =

 0 0 0
0 −0.000065 0
0 0 −0.012396


and

Adisc =

 0.002413 0.498793 0.498794
0.000000 −0.480285 0.480285
−0.039562 0.019781 0.019781

 .

Note, that Adisc meets the theoretical results from Lemma 2 and Corollary 1.
The statistical weights w of the conformations are given by the first row of
Adisc. Because of the symmetric discretization, the statistical weights represent
the symmetry of the potential energy function. Furthermore, the approximated
infinitesimal generator has the desired symmetry2

Q̃c =

−0.012366 0.006183 0.006183
0.000030 −0.000047 0.000017
0.000030 0.000017 −0.000047

 . (5.2)

Note, that Q̃c is computed up to an unknown scaling factor µ. Therefore, it
is computed without giving the time unit. If the time unit is unknown the
absolute values of Q̃c do not make sense. Only ratios of elements of Q̃c can
be interpreted physically. In order to give an example for a possible physical
interpretation: The transition rate from conformation two (one of the deeper
minima in Figure 5.1) to the upper minimum is about 2 times larger than the
transition rate between the deeper minima, Q̃c(2, 1) ≈ 2 · Q̃c(2, 3).

Further theoretical results. The optimal value of the objective function
IR[Adisc] is 2.575 according to (3.6). A Markov state model P̃c(τ) = exp(τ Q̃c)
based on the approximation Q̃c of Qc only insufficiently allows for an interpre-
tation as a transition matrix, because the membership functions χ are not crisp,
they are only nearly indicator functions of sets. The value of IW [Adisc] is 2.867.
The feasible set F has several vertices and allows for more than one possible
transformation matrix Adisc depending on the choice of the convex objective
function. If IW [Adisc] = 3, then there would be (up to permutation of cluster
indices) only one vertex of F , which would lead to an optimal solution A in-
dependent from the choice of a convex objective function [75]. The IR-optimal
membership functions according to the 9 × 9-grid based expansion are plotted
in the left column of Figure 5.5.

Adaptivity. As mentioned in chapter 3.4, the approximation quality of the
eigenfunctions and of the eigenvalues of P determine the discretization error.

2In the case of an x-symmetric potential energy function, the following elements of Q
should be identical Q(1, 2) = Q(1, 3), Q(2, 1) = Q(3, 1), and Q(2, 3) = Q(3, 2).
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Figure 5.3: (Example 5.1) Final discretization of an adaptive refinement ap-
proach. Starting with 16 discretization boxes the algorithm terminates after a
decomposition of Ω into 86 boxes.

Figure 5.4: (Example 5.1) The decreasing maximal χdisc-difference between
neighboring boxes in the adaptive refinement approach.

Assuming the existence of an infinitesimal generator3, the eigenfunctions of P
are given by the eigenfunctions of Q. The space spanned by the eigenfunctions
of Q is identical to the space spanned by the conformations χ1, . . . , χn. This
leads to a very simple refinement strategy. For a given discretization Φ, the
1-norm difference between the n-vectors χdisc(i, :) and χdisc(j, :) (rows of the
matrix χdisc) is determined if Φi and Φj are neighboring discretization boxes.
The basis set Φi is hierarchically refined in the direction where the set Φj is
located in Ω if the χdisc-difference is maximal for the pair (i, j) of discretization
sets. The maximal χdisc-difference is a number between 0 and 2 independent of
the dimension of the space Ω and independent of the number n of conformations.
A corresponding adaptive decomposition of Ω for the illustrative example of the
three-minima potential in Figure 5.1 is shown in Figure 5.3. Starting with 4×4 =
16 discretization boxes and a maximal χdisc-difference of 1.9, the refinement
has been terminated for a maximal χdisc-difference of 0.7 and 86 discretization
boxes. The decreasing maximal difference during the refinement algorithm can
be seen in Figure 5.4. The eigenfunctions are approximated adaptively. The
discretization is also appropriate for the approximation of the eigenvalues of the

3One can also assume Option 3 in chapter 3.5. In this case the eigenfunctions of P are the
p-independent eigenfunctions of L. They can be approximated by an adaptive decomposition
of Ω.
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χ1

χ2

χ3

Figure 5.5: (Example 5.1) Final membership functions of the three conforma-
tions of the potential in Fig. 5.1 (white= 0, black= 1). Left column: Member-
ship functions for a regular 9x9-grid-based decomposition of Ω. Right column:
Membership functions for an adaptive decomposition of Ω. The membership
functions are nearly constant inside the metastable parts. High gradients can
be found in transition regions where a refinement of the basis functions is needed.

transfer operator P, because the boxes Φi either have a small weight di or they
represent a rapidly mixing part of the potential V (as described at the end of
chapter 3.4). If the approximation Q̃c is based on Gauß-Legendre quadrature,
the result is

Q̃c =

−0.002962 0.001408 0.001554
0.000007 −0.000009 0.000002
0.000007 0.000002 −0.000009

 . (5.3)

The corresponding membership functions are shown in the right column of Fig-
ure 5.5. As said before, only ratios of the entries of Qc can be interpreted
physically as long as the time unit of Qc is unknown. The ratios of the type
Q̃c(i, j)/Q̃c(j, i) of the elements of Q̃c are almost identical in (5.2) and (5.3). The
reason is that the statistical weights of the conformations are almost identical in
(5.2) and (5.3). The ratios Q̃c(2, 1)/Q̃c(2, 3) are different in (5.2) and (5.3), be-
cause the transition regions are better resolved in the adaptive approach. The
good approximation of the transition regions in the adaptive algorithm also
leads to membership functions which are more crisp than the grid-based mem-
bership functions. This fact can be seen in the optimal value of the objective
function IR[Adisc] = 2.811. This value is larger than 2.575 in the grid-based
case. The function IR is maximized for an optimal transformation matrix Adisc
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Figure 5.6: (Example 5.1) A membership function according to the PCCA+
algorithm for the case of n = 2 conformations and for the discretization shown
in Figure 5.3.

χ1 χ2

χ3 Φ

Figure 5.7: (Example 5.1) Final membership functions of the three conforma-
tions of the potential in Fig. 5.1 (white= 0, black= 1). Final Voronoi discretiza-
tion Φ.

which is also optimal for the objective function IW [Adisc] = 2.959 ≈ 3. The
interpretation of χ1, χ2, and χ3 as committor functions is possible. In chapter
2.7, committor functions are only defined for the case of n = 2 conformations. A
resulting membership function of the PCCA+ algorithm for the given adaptive
discretization and for n = 2 conformations is shown in Figure 5.6. A compar-
ison of this membership function with the committor function of the potential
V computed by Metzner [49] clearly shows that the two concepts (the concept
of membership functions and the concept of committor functions) are strongly
related.

Avoiding degeneration of Qc. Note that the elements of the matrix Q̃c

in (5.3) are smaller than the corresponding elements of the approximated in-
finitesimal generator (5.2) in the grid-based approach. The reason is given by
the special scaling of Q such that the matrix M = Q + I is a stochastic matrix
with minimal diagonal element 0. The problem is that in (4.1) the matrix ele-
ments of Q are antiproportional to the weights of the basis functions which leads
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to large entries for small weighted discretization boxes. This can be a numerical
problem. Note, however, that all numerical computations can be done using a
matrix Q := DQ instead of Q, where D is the diagonal matrix of the weights di

of the basis functions Φi. Q is a symmetric matrix with row-sum zero. Instead
of using the matrix M = Q + I for the scaling of Q, the matrix M := (Q + I)
can be used. The eigenvector computation can be done by solving a generalized
symmetric eigenvalue problem

M χdisc = D χdisc Λ.

In this case, the minor influence of discretization boxes with small weights can
be used numerically.

Estimation of the time unit. The scaling of Q has a further consequence.
The appropriate scaling factor µ for Qc is missing. In other words, the time unit
of Qc is unknown. The aforementioned illustrative example has been constructed
with 3 conformations. The reason is that a two-conformations example would
be trivial. For two conformations, the matrix Qc is always given by

Qc = µ

(
−w−1

1 w−1
1

w−1
2 −w−1

2

)
.

Discarding µ it only depends on the weights of the conformations. The weights
of the conformations, however, can be estimated by computing free energy
differences. Dynamical information is not necessary. Except for the identi-
fication of the conformations χ1 and χ2 in Ω, a numerical simulation of a
two-conformations molecular system cannot contribute to the theoretical under-
standing of its kinetics, because (without knowing µ) the free energy difference
between the conformations is the only information included in Qc. One may try
to interpret the simulation data of a two-conformations system in terms of local
transition rates. Note, however, that the discretized matrix Q is never appro-
priate for an interpretation in terms of rates according to chapter 2.6! Starting
with n = 3 conformations, the matrix Qc can provide interesting kinetic in-
formation without knowing the scaling factor µ, e.g. by determining ratios of
outer diagonal elements of Qc which are not of the type Qc(i, j)/Qc(j, i). In the
illustrative example it can be answered whether transitions from conformation
2 to 1 or transitions from 2 to 3 are preferred. This information cannot be
derived from the statistical weights of the conformations. However, researchers
may be interested in the absolute values of Qc. In this case an estimation of µ
is needed. If a theoretical understanding of experimental data is intended, then
the time unit of Qc can simply be adjusted by the experiment, see also [79]. Can
µ be determined solely with theoretical methods? As shown in chapter 2.1, the
transition pattern of molecular kinetics is not valid for single trajectories stem-
ming from dynamics simulations. The transition pattern can approximately
be derived from an ensemble of molecular subsystems distributed according to
the χ-restricted Boltzmann distribution of states (see Option 1 in chapter 3.5).
Simulating many trajectories in parallel like in the algorithm of Voter [73] can
represent this ensemble of subsystems. First-exit times stemming from this
simulations can be used to rescale the diagonal elements of Qc. The relation
between the diagonal elements of Qc and the holding probabilities is used for
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this rescaling. For the computation of the holding probabilities, the conforma-
tions have to be transformed into indicator functions of sets. The approach is
an approximation. Furthermore, waiting for a first transition of an arbitrary
trajectory in a canonical ensemble can take a lot of time. Another approach
is to estimate the holding probabilities for the discretization sets Φ1, . . . ,Φm

which should be much smaller than the holding probabilities of χ1, . . . , χn for
small times t > 0, see also [76] and [46]. This approach conceals the fact that
Q is not a transition rate matrix of a Markov process. The holding probability
of Φi is not independent from the special choice of the initial state q ∈ Φi.
This independence may be regarded as valid for subsets of Ω which include(!)
a rapidly mixing part of the configurational space, i.e. it is valid for a union of
discretization sets Φi with χdisc(i, l) ≈ 1 for a given l ∈ {1, . . . , n}. This ends
up in a similar approach like Voter’s algorithm. Nevertheless, an estimation of
the time unit using a theoretical approach is always based on the realization of
a molecular dynamics simulation which needs to specify the dynamical model.
Furthermore, the estimation of a time unit by computing holding probabilities is
always based on further assumptions (interpretation of χ as indicator functions
or regarding Q as a transition rate matrix).

Density estimation approach. Using a Voronoi tessellation and an adaptive
refinement in the sense of chapter 4.2 by inserting new nodes of Voronoi cells,
the final discretization of the configurational space Ω and the conformations
can be seen in Figure 5.7. The conformations have been computed on the
basis of the density estimation approach in chapter 4.3. The statistical weights
of the conformations are w1 = 0.0021, w2 = 0.4905, and w3 = 0.5075, in
good agreement with the statistical weights (first row of Adisc) on page 63.
The optimal value of IW [Adisc] = 2.963 allows for an interpretation of the
membership functions as committor functions. The density estimation method
is suitable for determining the statistical weights of the conformations. The
complexity of this sampling approach is shown in the last row of Table 5.1. The
Voronoi cells have an averaged number of fm ≈ 5.37 neighbors. If the statistical
data for the overlap of neighboring Voronoi cells is not based on Gauß’ Theorem
but based on a restricted sampling of the Voronoi cells only, then the averaged
ratio 1/r ≈ 4500 shows that the intersecting surfaces of the Voronoi cells with
their neighbors have very different statistical weights. This would leed to large
computational costs. Finally, a direct thermostated sampling of the potential
energy function is not suitable for the computation of transition probabilities
at all, the trajectory is trapped in the deeper local minima, see Figure 5.2.

5.2 Real-World Examples

Before analyzing the binding path of an APN inhibitor in chapter 5.2.2, a short
overview of state of the art molecular simulations will illustrate that there is a
need for a reduction of complexity in molecular simulation and that there is a
chance to apply the aforementioned theoretical results in existing algorithmic
approaches.
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approach complexity

unbiased sampling
no sufficient statistics
after 10000 steps
(Figure 5.2)

restricted sampling
using overlap statistics mean 1/r ≈ 4500

Theorem of Gauß fm ≈ 5.37

Table 5.1: (Example 5.1) The complexity of different algorithmic approaches to
conformation dynamics compared with a sampling of transition rates based on
Gauß’ Theorem according to Table 4.1 on page 58. For the decomposition of
the conformational space see Figure 5.7.

5.2.1 State of the art molecular simulations

There is a growing interest in accelerated molecular dynamics simulations in
the field of biomolecular simulation. In this context, the temperature-based
replica exchange algorithm, also called parallel tempering, has to be mentioned
[68, 25]. Replica exchange can be used to sample from the canonical ensemble
of molecular systems. Since standard thermostated molecular dynamics simu-
lations are not suitable for crossing high-energy barriers, replica exchange has
been introduced for decreasing these barriers by high-temperature simulations.
The decrease of free energy barriers by including high-temperature simulations
mainly corresponds to a decrease of inner energy barriers of the molecular sys-
tem. Entropical energy barriers are not addressed sufficiently in this context.
Using this argument, Zuckermann and Lyman [86] have shown that replica ex-
change is not as efficient as it is supposed to be. It can (in the worst case) be less
efficient than a single thermostated molecular dynamics simulation. The argu-
ment of Zuckermann and Lyman can be interpreted in the following sense. The
energy barriers along the lowest energy transition paths of real-world molecular
systems are, in general, not very high, but an unbiased molecular dynamics
simulation does not “find” these paths (even at high temperature).

In this context, a tremendous improvement in efficiency has been achieved
by “steering” a molecular dynamics simulation through the rough energy land-
scape. Steered molecular dynamics [39, 40] developed in the group of Schulten
applies non-equilibrium molecular dynamics simulations in order to force a sys-
tem to undergo a conformational change from A to B. This approach has been
shown to be very efficient for bridging time-scales of molecular dynamics simu-
lation by using biasing forces. An important theoretical basis for using steered
molecular dynamics simulation in the context of equilibrium investigations is
Jarzynski’s identity. If the steered molecular dynamics simulation is done “step
by step” as described in chapter 4.3 on page 53, then steered molecular dynam-
ics also allows for the computation of transition rates. An adaptive approach
for the construction of the corresponding Voronoi cells has been shown in this
thesis. An adaptive approach is desirable: In some applications, the time-scales
of binding processes are far above the time-scales of simulation, such that addi-
tional steering forces have to be artificially high in order to accelerate molecular
dynamics simulations in a propriate way [39].

As described in chapter 2.3, the common basis for all molecular dynam-
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ics simulations is the construction of a dynamical model. From a mathematical
point of view, methods based on a trajectory (its discretized version is a Markov
chain) explore a high-dimensional space by using a “ray”, an one-dimensional
object. Thus, the statistical results in a high-dimensional space are obtained by
combining many one-dimensional explorations. In this thesis, Gauß’ Theorem
has been used in order to change molecular simulation from observing trajec-
tories (simulation along the process) to the sampling of Voronoi cell surfaces
(simulation perpendicular to the process). In principle, Voronoi cell surfaces are
as high-dimensional as the conformational space minus 1. Thus, it should be
more efficient than MD to combine statistical information of many Voronoi cells
surfaces in order to explore the high-dimensional space (if numerical quadrature
on Voronoi cell surfaces was trivial). Furthermore, energy barriers that occur
along the MD trajectories need not occur perpendicular to it.

It has been shown for real-world examples that a discretization approach can
be used in order to accelerate the sampling of the transition pattern of larger
molecular systems. Chodera et al. [12] analyzed short-time molecular dynamics
simulations in order to successfully derive long-time molecular processes. In
this thesis it has been shown by Gauß’ Theorem, that long-time processes do
not need the simulation of any dynamical model. The molecular simulation
problem can be transformed to a pure numerical quadrature problem combined
with a function approximation problem. The latter one is solved by the dis-
cretization approach. There is a further advantage of discretization approaches
which has not been mentioned yet. A common problem of all algorithms, which
use a Markov chain in order to sample from the state space, is the lack of
a criterion that assures the completeness of the sampling. Are there any ne-
glected transition pathways? In the hierarchical, adaptive scheme of this thesis,
in principle, there is no missing pathway. There is only a sufficient or insuf-
ficient discretization of the conformational space. The discretization is always
a partition-of-unity and, therefore, includes the total space at each step of the
algorithm. Thus, a rational initial discretization of the state space can assure
a good resolution of the transition behavior (i.e. it assures the completeness of
the approach). In practice, an initial discretization can be based on methods
which do not suffer from energetic barriers of the potential energy landscape.
One famous example is given by the software ConCoord [15] developed in the
group of de Groot. Using the aforementioned theory combined with a sufficient
initial discretization of the state space can tackle the time-scales problem of
molecular simulation.

5.2.2 Binding path of an APN inhibitor

In this section, a binding path of the inhibitor bestatin of aminopeptidase N
(APN) from Escherichia coli (ePepN, EC 3.4.11.2) will be simulated in the
context of the aforementioned theoretical investigations. The results and figures
are taken from Bujotzek and Weber [9]. An inhibition of human APN is a
possible drug target in order to treat cancer. APN especially plays an important
role in tumor progression in several human malignancies [70].

Algorithmic approach. For the simulation of a binding path of the inhibitor
candidate, the software code ZIBgridfree has been used in order to generate
restricted HMC samplings of Voronoi cells located in the binding pocket of APN.
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The molecular structure has been taken from the Protein Data Base [7] with
PDB code 2DQ6. Proteine structures were reduced to the domain harboring
the binding pocket [9] and the flexibility of the protein backbone has been
restricted (boundary dimensions: (42, 52, 50)Å). We applied an implicit water
model with distance dependent dielectric constant. 335 soft basis functions have
been sampled. For the restricted sampling, the concept of equation (4.4) for the
computation of a Galerkin discretization Q ofQ has been applied. We sampled 3
HMC chains per basis function with a maximal number of 2500 steps per chain.
The Gelman-Rubin convergence check of the sampling is set to 1.2, which is
the proposed value of the original paper [32]. For the proposal step a modified
molecular dynamics simulation of 60 steps with a time-step of 1fs is applied. In
order to derive the surface flux in (4.4), an averaged potential energy value has
been computed for the overlap of the soft basis functions.

Visualization of the results. By using PCCA+ for the matrix Q, the con-
formations χ of the binding process can be identified. For the visualization, the
sampling points of each Voronoi cell Φi of the sampling is weighted with the cor-
responding weight di and with the corresponding membership value χdisc(i, l),
where l is the index of the conformation to be visualized. Then, a volume
rendering method is applied [62] in order to show the restricted Boltzmann dis-
tribution of the conformations. The binding process of the inhibitor candidate
can be decomposed into several steps represented by these conformations. The
steps of the binding path are visualized in Figure 5.8 by selecting one configura-
tional state per conformation out of the sampling data. On the basis of Q one
can also quantify the percentage of the flux taking place between the different
conformational barriers and the statistical weights of the conformations. This
is visualized in Figure 5.9.

Figure 5.8: (Example 5.2.2) A binding path of the APN inhibitor bestatin from
the surface of the protein into the active site. This binding path does not include
the low weighted conformations in Fig. 5.9.
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Figure 5.9: (Example 5.2.2) Percentage of the flux between the conformations
and their statistical weights.

Performance of the sampling method. The sampling of the whole binding
process of the APN inhibitor candidate in Figure 5.8 has been performed by
ZIBgridfree on an AMD Opteron 885 computer (2×2.6 GHz) within 10 days
[9]. This performance cannot be achieved with long-term molecular dynamics
simulations, because there are high potential energy barriers within the binding
path of the inhibitor candidate such that molecular dynamics can not lead to
good statistical results (see Introduction). In other words, for the femtosecond
time-scale of molecular dynamics simulations the relation λ2 ≈ 1 holds. There
is an improvement in terms of computational costs for the APN simulation
bewteen “restricted sampling using overlap statistics” (B) and the “Theorem of
Gauß” (A). This improvement can be seen by the complexity results in Table 4.1
on page 58. In this table the expression O denotes the computationally costs of
the sampling of a rapidly mixing part of the conformational space, assuming that
for each sampling a comparable number of sampling points have to be generated
in order to achieve a good statistics for the relevant observables. Ad (A): For
the APN example in the ZIBgridfree framework, 335 Voronoi cells have been
generated and corresponding restricted samplings have been performed. Using
Gauß’ Theorem, 335 samplings have to be performed for the estimation of the
statistical weights using equation (4.10). There are 7251 neighborhood relations
between the Voronoi cells (averaged number of neighbors, fm = 21.6). For the
simulation of fluxes between the Voronoi cells, 7251 restricted samplings have
to be performed, additionally. This means, that a total number of 7586 rapidly
mixing, local samplings are necessary in order to compute Q. Ad (B): If one
only takes into account the statistical data from the 335 local samplings and
(on this basis) tries to estimate the transition behavior by counting sampled
states in overlap regions, then the ratio 1/r plays an important role for the
determination of the computational costs. Here is a “bad” example. Using
the ZIBgridfree approach, the estimated flux between Voronoi cell number 106
and Voronoi cell number 286 is almost 107 times larger than the flux between
Voronoi cell number 106 and Voronoi cell number 9. In order to generate 1
sampling point in the overlap region between 106 and 9 one has to generate
an expected number of about 107 sampling points for Voronoi cell number 106,
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activity window

activity period

Figure 5.10: The injection of an inhibitor molecule at time zero (green curve)
starts two processes in the human body: The binding process to the target
molecule (blue curve) and the elimination process of the unbonded inhibitor
molecule (red curve). Good drug candidates have an extended activity period.
Accelerating the binding process by injecting more drug molecules is often im-
possible because it can reach a toxic dose.

i.e. 1/r = 107. Comparing 1/r and fm in Table 5.2, one can see that Gauß’
Theorem can reduce the computational costs significantly. Note, that the fm-
value depends on the dimensionality of the molecular system. In the worst case,
fm = m.

From simulation to inhibitor design. We have to recall an important the-
oretical result. In contrast to a molecular dynamics simulation of the binding
process of an APN-inhibitor candidate, the results of a molecular kinetics sim-
ulation do not hold for the transition pattern of single molecules. The binding
process of an ensemble of APN-inhibitor candidates is observed. A transition
is happening if an arbitrary inhibitor molecule in the canonical ensemble leaves
a conformation A and enters the next step of the binding path. If we want to
wait for the transition of a special inhibitor candidate of the ensemble inside a
molecular dynamics simulation, this may take much more time. Thus, the bar-
riers identified between the conformations of a molecular kinetics simulation are
a forteriori barriers for the single inhibitor molecules during their own” binding
process. The identification of conformations and especially the characterization
of barriers during the binding process can contribute to the design of inhibitor
molecules for pharmaceutical industry. It is important to accelerate the bind-
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approach complexity
unbiased sampling no sufficient statistics
restricted sampling
using overlap statistics max 1/r ≈ 107

Theorem of Gauß fm ≈ 21.6

Table 5.2: (Example 5.2.2) The complexity of different algorithmic approaches
to conformation dynamics compared with a sampling of transition rates based
on Gauß’ Theorem according to Table 4.1 on page 58.

ing process of inhibitor molecules, because this can extend the activity period
of the drug, see Figure 5.10. The inhibitor molecule should bind to the APN
target and reach the activity window much faster than the elimination process
(by metabolism) takes place. The molecular kinetics framework fits exactly
to the framework of pharmacokinetic investigations and can contribute to the
simulation of possible drug candidates.

The overestimation of transition rates. It has been shown that the transi-
tion rates of molecular kinetics overestimate the “transition rates” of molecular
dynamics. Besides this conceptual overestimation, there is also a numerical
overestimation of rates. The Galerkin discretization in (3.4) can be seen as the
Rayleigh-Ritz principle of molecular kinetics. The determinant or the trace of
Pc(τ) is maximized (metastability is maximized) only for the special choice of
χ as a linear combination of the dominant eigenfunctions of P(τ) in Theorem
2. For all conformations χ which are different from this choice (in particular
for set-based conformations) the metastability is underestimated, i.e. rates are
overestimated. In the numerical approach, only an approximation of the eigen-
functions of P(τ) is computed. Thus, rates are overestimated in all numerical
approaches. The optimal rates are given by Theorem 2.
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Conclusion

Instead of selecting a special dynamical model, this thesis suggests to start
molecular simulation with defining desirable properties of a new transfer op-
erator. One desirable property is the existence of an infinitesimal generator.
Using this assumption, the time-extrapolation error of molecular simulation
vanishes. This new concept has some algorithmic consequences. Instead of gen-
erating molecular dynamics trajectories, it is only important to approximate the
eigenvalues and eigenfunctions of the new infinitesimal generator, because these
objects include all relevant information of the kinetics of the molecular system.
Their approximation can be done within an hierarchical, adaptive, and meshless
algorithmic approach. Using Gauß’ Theorem, it has been shown that the sim-
ulation problem can be reformulated into solving high-dimensional quadrature
problems (the generation of trajectories corresponding to a special dynamical
model is not necessary). Some important algorithmic details have been derived
in this thesis which lead to a very efficient algorithmic framework for molecular
simulation.

Outlook. This thesis has introduced a new concept for the simulation of
molecular processes. It has been shown that this new concept allows for a
correct time-extrapolation and it is computationally more efficient than molec-
ular dynamics simulations. Some problems have not been solved in this thesis.
The first problem is given by the fact, that an unknown time unit µ occurs
when applying Gauß’ Theorem. Using molecular dynamics simulations in or-
der to determine µ has been suggested as a workaround. This aspect has to
be analyzed more precisely in future. The second problem is given by solving
high-dimensional integrals efficiently. Markov Chain Monte Carlo methods have
been applied in this thesis. In general, these methods need a lot of sampling
points in order to solve the quadrature problem. Additionally, deterministic
error estimation is not possible within their framework. The third problem is
given by the complexity estimation of the new approach. The new approach is
only efficient, if the averaged number of Voronoi cell neighbors (fm) is small. It
is not clear, whether it is always more efficient to estimate the statistical weights
of all Voronoi cell surfaces than to simulate transitions between the cells. All
these aspects have to be investigated in the future.
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