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Abstract: The results from invariant theory and the results for semi-
invariants and equivariants are summarized in a way suitable for the com-
bination with Gröbner basis computation. An algorithm for the determi-
nation of fundamental equivariants using projections and a Poincaré series
is described. Secondly, an algorithm is given for the representation of an
equivariant in terms of the fundamental equivariants. Several ways for the
exact determination of zeros of equivariant systems are discussed.

1. Introduction

Symmetry is one of the main principles in nature. Many mathematicians
have studied symmetry to explain phenomena and have exploited symmetry
to simplify calculations. One distinguishes the abstract group G and their
action on a vector space called linear representation

ϑ : G→ Gl(Cn ), t �→ ϑ(t), ϑ(ts) = ϑ(t)ϑ(s), ∀ s, t ∈ G, (1)

see Fässler, Stiefel [5] and Serre [20] for the theory of linear represen-
tations. Here we concentrate on finite groups.

While polynomials p ∈ C [x1 , . . . , xn] with

p(ϑ(t)x) = p(x) ∀ t ∈ G. (2)

are called invariant, the mappings f : Cn → CN satisfying

f(ϑ(t)x) = ρ(t)f(x) ∀ t ∈ G, (3)
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are called ϑ-ρ-equivariant, where ρ is a second linear representation. The
functions (3) become very important in bifurcation theory and in the con-
text of dynamical systems with symmetry because the dynamics of ϑ-ϑ-
equivariant vector fields show very interesting behavior. While the investi-
gation of mode interaction and heteroclinic cycles depends on the structure
of the equivariant mapping nowadays the attention is put on chaotic attrac-
tors. An ϑ-ρ-equivariant mapping with ρ �= ϑ having special properties is
used as a detective for the observation of symmetry of chaotic attractors,
see [1].

So the algebraic structure of the set of equivariants is interesting. Every
equivariant is of the form

f(x) =
R∑

λ=1

Aλ(σ1(x), . . . , σn(x))bλ(x), Aλ ∈ C [σ1 , . . . , σn], (4)

where the σj are so-called primary invariants and bi are fundamental equiv-
ariants generating the free module. This structure has e.g. been used in [8].

My starting interest in the algebraic structure of functions (3) was the
singularity theory in [10]. This theory is demonstrated only for the easy
groups Z2 = {id, s}, Z2 × Z2 and an irreducible action of D3. Application
of this theory to examples of moderate size necessitates support of Com-
puter Algebra. The first part being the computation of the fundamental
equivariants.

So the aim of this paper is threefold:

- computation of fundamental equivariants

- representing an equivariant in terms of fundamental equivariants and
invariants as in (4)

- solve ϑ-ϑ-equivariant systems f(x) = 0.

Before giving algorithms a section with theory is presented. Hopefully the
summary is helpful for people working in the field of dynamical systems.
Emphasis is put on those properties which are needed for computation. The
theory of invariants has been well investigated in the end of last century
(Hilbert, Molien) and in the beginning of this century (Noether [17]).
Since this old theory is still relevant and often applied, Sturmfels [23]
recently combined invariant theory with the computation of Gröbner bases
by the Buchberger-Algorithm. Part of this material is also contained in
[4]. For Gröbner bases see e.g. [2], [4].

2



For ϑ-ϑ-equivariants various results are known: Jaric, Michel, Sharp
[13],Worfolk [25], Sattinger [18]. In contrast to this I present the results
on Hilbert series, projections and Cohen-Macaulayness more general for ϑ-
ρ-equivariants. In this new viewpoint the proofs are based on the analogous
results for the semi-invariants to be found in Stanley [22].

In Section 3 various algorithms are given and their efficiency is discussed.
While in [7] the theory of linear representations is used to solve systems of
equations also invariants and equivariants can be used. The generators are
used in Jaric, Michel, Sharp [13] to determine exactly the zeros of an ϑ-
ϑ-equivariant system of algebraic equations using invariants. Worfolk [25]
combined this approach with the Buchberger-Algorithm. The structure of
the semi-invariants can be used to solve equivariant systems of equations as
well. The algorithms are tested for examples and the inconsistent computing
times are given.

2. The free module of equivariants

In this section we will give the theoretical facts preparing the section on al-
gorithms. Projections, Poincaré series, dimensions of vector spaces, and free
modules will be given. We start with summarizing the theory of invariants,
see [4], [21], [22], [23].

Invariants

Let C [x1 , . . . , xn] denote the ring of polynomials in variables x1, . . . , xn.
Let ϑ : G → Aut(Cn ) be a linear representation of the group G. We

assume that ϑ is faithful and restrict throughout this paper to finite groups.

Definition 2.1 A polynomial p ∈ C [x] is called invariant, if

p (ϑ(t)x) = p(x), ∀ t ∈ G.

The invariant polynomials form a ring, denoted by C [x]ϑ . From invari-
ant theory [23] on knows that the ring of invariants is generated by some
fundamental invariants σ1. . . . , σl.

In the special case of reflection groups a Theorem by Chevalley [3]
states that l = n fundamental invariants are sufficient, see Theorem 2.8.
In general the theory is more complicated. A Theorem by Noether gives
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bounds for the number of fundamental invariants and their degrees, see [17].
This is important for the algorithmic construction of generators: one may
restrict to a finite dimensional vector space.

For an algorithmic construction there are three further important facts.
The invariant ring is the image of the Reynold projector :

P : C [x] → C [x]ϑ , P (p(x)) =
1

|G|
∑
t∈G

p(ϑ(t−1)x), p ∈ C [x].

Since D(t)(p(x)) = p(ϑ(t−1)x) describes a linear representation D on C [x]
the Reynold projector is the projection on the trivial isotypic component,
well-known from the theory of linear representations.

The vector space Mk of homogeneous polynomials of degree k is an
invariant space wrt D. Thus we have a restricted projection P|Mk

. The
dimensions mk = dim(C [x]ϑ ∩Mk) are known from the Molien series since
the right hand side of (5) can be evaluated easily.

Theorem 2.2 ([23]) Let mk = dim(C [x]ϑ ∩Mk). Then the Molien series
satisfies

ψ(z) :=
∞∑
k=0

mkz
k =

1

|G|
∑
t∈G

1

det(I − zϑ(t))
. (5)

The most important fact from algorithmic point of view is that of Cohen-
Macaulayness.

LetR be a graded algebra. If the ringR is finitely generated by σ1, . . . , σn

as a module, where σj are homogeneous and have positive degree, the σj
are called a homogeneous system of parameters. The algebra is called to be
Cohen-Macaulay if it is a free module over every system of homogeneous
parameters.

Theorem 2.3 ([23]) The invariant ring C [x]ϑ is Cohen-Macaulay.

This theorem appeared first in [12]. A self-contained proof appeared in [14].
For each homogeneous system of parameters σ1, . . . , σn of C [x]ϑ there exists
ην, ν = 1, . . . , r with

C [x]ϑ ∼=
r⊕

ν=1

ηνC [σ].

We choose the ordering in a way that η1 = 1. The σj are called primary
invariants and the ην are called secondary invariants. This means that the
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Molien series equals

ψ(z) =

∑r
ν=1 z

deg(ην)∏n
j=1(1− zdeg(σj)))

. (6)

Once a homogeneous system of parameters is known, the number and
degrees of the secondary invariants are given with formula (6). This is the
main point of the algorithmic construction of secondary invariants in [23].
For the construction of primary invariants one has to show that the radical
of (σ1, . . . , σn) is (x1, . . . , xn), see [23] and Section 3.

Lemma 2.4 Let ϑ be a linear representation on Cn and let σ1, . . . , σn be ho-
mogeneous invariants. If radical(σ1, . . . , σn) = (x1, . . . , xn) then σ1, . . . , σn

form a homogeneous system of parameters of the ring of invariants.

Proof: The σ1, . . . , σn are algebraically independent and thus we can con-
sider radical(σ1, . . . , σn) as a module over C [σ1 , . . . , σn]. The radical is
finitely generated. Since the radical equals (x1, . . . , xn) and the invari-
ants of positive degree form a subspace of (x1, . . . , xn) the invariant ring
is a finitely generated module over C [σ1 , . . . , σn]. In over words the invari-
ants form a homogeneous system of parameters. Since the invariant ring
is Cohen-Macaulay the invariant ring is free as a module over its subring
C [σ1 , . . . , σn].

Isotypic components of C [x]

In order to prepare the theory of equivariants the isotypic components are
discussed. Let G have the irreducible representations ϑi, i = 1, . . . , h, where
ϑ1 denotes the unit representation and ni is the dimension of ϑi. Let the
character of ϑi denote by χi. The group action ϑ on Cn results in a linear
representation D on C [x] given by D(t)(p(x)) = p(ϑ(t−1)x). With respect to
D the ring C [x] as a vector space has a decomposition in isotypic components
Vi. The invariant ring C [x]ϑ is the component corresponding to the unit
representation ϑ1. The elements of Vi, i �= 1 are called semi-invariants or
ϑi-invariants, [22]. Projections onto Vi are given by

P i(p(x)) =
ni

|G|
∑
t∈G

χ̄i(t)D(t)p(x) =
ni

|G|
∑
t∈G

χ̄i(t)p(ϑ(t
−1)x) (7)
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or if one wants a symmetry adapted basis

P 11(p) =
ni

|G|
∑
t∈G

(ϑi(t
−1))11D(t)p,

and
P 1μ(p) =

ni

|G|
∑
t∈G

(ϑi(t
−1))1μD(t)p, μ = 2, . . . , ni .

This is explained in more detail in [5], [20]. The invariance of Mk wrt D
implies a graded isotypic decomposition

Mk =
h⊕

i=1

(Vi ∩Mk) =
h⊕

i=1

V k
i , k = 0, . . . .

Stanley [22] calls the C [x]ϑ-module Vi a Z-graded C [x]ϑ -module satisfying

MlV
k
i ⊂ V k+l

i ∀i, l, k.
For the algorithmic treatment of semi-invariants we need the analogues re-
sults as for the invariants.

Theorem 2.5 ([13] p. 3, [22] Thm. 2.1) Let mi
k denote the multiplicity of

ϑi in Vi ∩Mk. Then the Hilbert series or Poincaré series is

ψi(z) :=
∞∑
k=0

mi
kz

k =
1

|G|
∑
t∈G

χ̄i(t)

det(I − zϑ(t))
, (8)

where χi(t) = trace(ϑi(t)) is the character corresponding to the irreducible
representation ϑi.

Proof: The proof uses an identification of the spaceMk of homogeneous
polynomials of degree k with a space of tensors. Let V := Cn and let V k

denote the tensor product of V with itself k times. A k-linear mapping
V k → C is identified with a tensor B ∈ (V∗)⊗k. B is called symmetric, if it
is invariant with respect to all permutations of arguments,

B(v1, . . . , vk) = B(vπ(1), . . . , vπ(k)) ∀π ∈ Sk, vj ∈ V,

Sk being the symmetric group. The space Mk is isomorphic to the subspace
of symmetric tensors denoted by ((V ∗)⊗k)s.

The given linear representation ϑ : G → Aut(V ) implies other linear
representations. The first is the tensor product (Kronecker product)

ϑ⊗k : G→ Aut(V k),
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ϑ⊗k(t) : V k → V k,

ϑ⊗k(t)(v1 ⊗ · · · ⊗ vk) = ϑ(t)v1 ⊗ · · · ⊗ ϑ(t)vk.

The representation on (V ∗)⊗k is isomorphic and thus denoted with the same
symbol.

ϑ⊗k : G→ Aut((V ∗)⊗k),

ϑ⊗k(t)(B(v1, . . . , vk)) = B(ϑ(t−1)v1, . . . , ϑ(t
−1)vk).

If B is symmetric, then ϑ⊗k(t)B is symmetric as well. Thus ((V∗)⊗k)s is
invariant wrt ϑ⊗k and the subrepresentation

(ϑ⊗k)s : G→ Aut(((V ∗)⊗k)s)

is isomorphic to the group action on Mk. It has a character denoted by γs
k.

By the formula for multiplicities

mi
k =

1

|G|
∑
y∈G

γs
k(t)χ̄i(t),

where χi is the character of the irreducible representation ϑi.
For a fixed t ∈ G let e1, . . . , en be the eigenvectors of ϑ(t) with eigenvalues

λ1, . . . , λn. (V
k)s is spanned by the vectors

(ei1 ⊗ · · · ⊗ eik)s =
∑
π∈Sk

eiπ(1)
⊗ · · · ⊗ eiπ(k)

A basis of (V ⊗k)s is denoted by Pl1,...,ln with l1 + · · ·+ ln = k.
The action of (ϑ⊗k)s on Pl1,...,ln is

(ϑ⊗k)s(Pl1,...,ln) = λl1
1 · · ·λln

n Pl1,...,ln .

Thus the character is

γs
k(t) = trace((ϑ⊗k)s) =

∑
l1+···+ln=k

λl1
1 · · ·λln

n .

This gives
∞∑
k=0

zkγs
k(t) =

∞∑
k=0

∑
l1+···+ln=k

(zλ1)
l1 · · · (zλn)

ln

=
∑

l1,...,ln=0

(zλ1)
l1 · · · (zλn)

ln

=
n∏

i=1

1

1− zλi

=
1

det(I − zϑ(t))
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∞∑
k=0

mi
kz

k =
1

|G|
∞∑
k=0

(∑
t∈G

γs
k(t)χ̄i(t)

)
zk

=
1

|G|
∑
t∈G

χ̄i(t)

det(I − zϑ(t))

Remark: This is essential the proof of the Molien series. Only the unit
representation is replaced by another irreducible representation. A proof
using the same ideas can also been found in [22].

V k
i = Vi ∩Mk has dimension mi

k · ni where ni is the dimension of ϑi.

Theorem 2.6 ([13], Stanley [22]) Assume σ1, . . . , σn are primary invari-
ants for C [x]ϑ. Then the isotypic components Vi, i = 2, . . . , h are modules
finitely-generated and free over C [σ1 , . . . , σn].

Proof: We use that

C [x] =
h⊕

i=1

Vi

is a direct sum of vector spaces of infinite dimension.
In [23], proof of Thm. 2.3.5, it is shown that C [x] is Cohen-Macauley.

Especially this means that C [x] is a free module over the ring in the primary
invariants. Thus

C [x]/(σ1, . . . , σn) =
h⊕

i=1

Vi/(σ1, . . . , σn),

f +
n∑

j=1

hjσj =
h∑

i=1

⎛
⎝P i(f) +

n∑
j=1

P i(hj)σj

⎞
⎠ ,

is a direct sum of finite vector spaces. The projections Pi (7) are C [x]ϑ-
module homomorphism. Thus a basis can be chosen consisting of homoge-
neous polynomials which are elements of either one of the Vi. So

Vi =
ri⊕

ν=1

ni⊕
μ=1

ηνμC [σ1 , . . . , σn].
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Theorem 2.7 ([22], Proposition 4.9) Let ϑ be a linear representation of a
finite group G and assume that σ1, . . . , σn are the primary invariants. Then
the group action on C [x]/(σ1, . . . , σn) is t times the regular representation.

Chevalley [3] proved much earlier a special case of Theorem 2.7 with t = 1.

Theorem 2.8 ([3]) Let ϑ be a linear representation of a finite group G and
assume that σ1, . . . , σn are the primary invariants. Assume that ϑ(G) is
generated by reflections with respect to hyperplanes. Then the group action
on C [x]/(σ1, . . . , σn) is isomorphic to the regular representation.

Since the regular representation decomposes like
∑h

i=1 niϑi, it follows
from Theorem 2.7 for the number of generators of Vi that

ri · ni = t · ni · ni.

Of course t depends on the choice of the primary invariants. The degrees of
ηνμ can be read off from ψi(z) ·∏n

j=1(1− zdeg(σj)).

Equivariants

Now we consider the module of equivariants. A lot of results are very similar
to those for the invariant ring. They are deduced from the results for the
isotypic components.

Let C [x1 , . . . , xn]
N denote the module of polynomial mappings with N

components. Let ρ : G→ Aut(CN ) be a linear representation.

Definition 2.9 A polynomial mapping is called ϑ-ρ-equivariant, if

p (ϑ(t)x) = ρ(t)p(x) ∀ t ∈ G.

For ρ = ϑ we obtain what in bifurcation theory is normally called G-
equivariant.

Example 2.10 The detectives ([1]) already mentioned in the introduction
are examples for ϑ-ρ-equivariants.

Example 2.11 A second example is given by the matrices which commutes,
i.e. S(ϑ(t)x) = ϑ(t)S(x)ϑ(t−1), S ∈ C [x]n,n. They are important in bifurca-
tion theory because Jacobians of equivariant vector fields have this property
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and degeneracies of the Jacobian are conditions for singular points. Ev-
ery commuting matrix is isomorphic to a ϑ-ρ-equivariant, where ρ : G →
Aut(C [x]n

2

) is given by the tensor product ρ = ϑ×ϑ∗ of two linear representa-
tions ϑ and the contragradient representation ϑ∗ : G→ Aut(Cn), ϑ∗(t) =
ϑ(t−1)t. Obviously, ϑ∗ = ϑ for orthogonal representations ϑ.

The equivariant mappings form a module C [x]ρϑ over the ring of invariants
C [x]ϑ . For finite groups the module of equivariants is finitely generated by
some fundamental equivariants b1, . . . , bl.

It is well-known that for reflection groups the gradients d
dx
σj(x), j =

1, . . . , n generate the module of ϑ-ϑ-equivariants, which in [13] is derived
with Theorem 2.8. This result is more general valid for connected compact
Lie groups which was shown by Schwarz in [19] by using Theorem 2.8 as
well. This result was used for example by Field and Richardson [6].

For reflection groups also the other modules of ϑ-ρ-equivariants are free
modules over the invariant ring.

In [25] for arbitrary finite groups the Noether degree bound is gener-
alized to ϑ-ϑ-equivariants. A similiar bound is valid for ϑ-ρ-equivariants as
well.

A projection on the ϑ-ρ-equivariants is given by Pϑ,ρ : C [x]N → C [x]ρϑ

Pϑ,ρ (p(x)) =
1

|G|
∑
t∈G

ρ(t)p
(
ϑ(t−1)x

)
, p ∈ C [x]N . (9)

Similar to the invariant case Pϑ,ρ = 1
|G|
∑

t∈GD(t) is the projection on the
trivial component of the linear representation

D : G→ Aut(C [x]N ), D(t) = ρ(t)p(ϑ(t−1)x).

Let MN
k denote the vector space of N -tupels where the components are

homogeneous polynomials of degree k or are zero. We may write MN
k =

(Mk)
N . Since MN

k is an invariant space wrt D we can compute with the
restriction

P|MN
k
:MN

k → MN
k ∩ C [x]ρϑ .

Theorem 2.12 Let mk = dim(MN
k ∩ C [x]ρϑ). Then

ψρ(z) :=
∞∑
k=0

mkz
k =

1

|G|
∑
t∈G

χ̄(t)

det(I − zϑ(t))
, (10)

where χ denotes the character of ρ.
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In case ρ is the unit representation this is the Molien series for the ring
of invariants, see [23]. In case ρ = ϑ this series was given by Sattinger
[18] and more recently by Worfolk [25].

Proof of Theorem 2.12: The group action ρ on CN decomposes like∑h
i=1mi(ρ)ϑi where mi(ρ) denote the multiplicities. By a suitable change

of coordinates in CN using symmetry adapted basis we may assume that a
ϑ-ρ equivariant f consists of mi(ρ) ϑ-ϑi-equivariants f

ij ∈ C [x1 , . . . , xn]
ϑi

ϑ ⊂
C [x1 , . . . , xn]

ni, j = 1, . . . , mi(ρ):

f = (f11, . . . , f1m1 , f21, . . . , fhmh).

Since we assume a symmetry adapted basis, fij1 , . . . , f
ij
ni

form the vector
basis of an irreducible subspace of Vi ⊂ C [x1 , . . . , xn]. This implies an iden-
tification

C [x]ρϑ �
h⊕

i=1

mi(ρ)Vi

having the Poincaré series
∑h

i=1mi(ρ)ψi(z). The character of ρ is χ =∑h
i=1mi(ρ)χi which completes the proof.

Theorem 2.13 If σ1, . . . , σn are primary invariants for C [x]ϑ then the mod-
ule of ϑ-ρ-equivariants is finitely-generated and free over C [σ1 , . . . , σn].

Proof: By the proof of Theorem 2.12 C [x]ρϑ is isomorphic to
⊕h

i=1mi(ρ)Vi.
Application of Theorem 2.6 completes the proof.

The degrees of the homogeneous generators can be read off from

ψρ(z) ·
n∏

j=1

(1− zdeg(σj )) = c1z
d1 + · · ·+ clz

dl .

By Theorem 2.7 the number of generators is

h∑
i=1

t ni ·mi(ρ).

3. Algorithms

The algorithms in this section consider the computation of fundamental
equivariants and the representation of an equivariant in terms of fundamen-
tal invariants and equivariants. They make use of the Buchberger algorithm
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available in a lot of Computer Algebra systems. For details on the Buch-
berger algorithm see [2] or [4].

Primary invariants

We start with recalling the computation of primary invariants using Lemma 2.4.

Algorithm 3.14 (Computation of primary invariants)

Input: linear representation ϑ of dimension n
Output: primary invariants σ1, . . . , σn

Compute n invariants σ1, . . . , σn (e.g. with the Reynold projector)
if radical (σ1, . . . , σn) = (x1, . . . , xn) then σ1, . . . , σn are primary invariants
else try another set.

Algorithm 3.14 is a simplified version of an algorithm in [23]. The radical
test can be done with the Buchberger algorithm (Algorithm 2.5.1 in [23]).

Algorithm 3.15 (Check whether f ∈ radical(h1, . . . , hl))

Input: polynomials h1, . . . , hl

polynomial f

Introduce a new variable z and compute the Gröbner basis G
of (h1, . . . , hl, fz − 1).
If 1 ∈ G then f ∈ radical(h1, . . . , hl).

Due to the use of the Buchberger algorithm this radical test may happen
to be time consuming.
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Fundamental equivariants

Algorithm 3.16 (Computation of a free module basis of ϑ-ρ-equivariants)

Input: primary invariants σ1, . . . , σn,
linear representations ϑ, ρ of dimension n,N , respectively.

Output: free module basis b1, . . . , br of ϑ-ρ-equivariants

ψ(z):=poincareseries(ϑ,character(ρ)); Thm. 2.12
ψ(z):=ψ(z) ·∏n

j=1(1− zdeg(σj))
= c1z

d1 + · · ·+ clz
dl

B := ∅
for j :=1 : l do

M := vector space basis of MN
dj

while cj > 0 and M �= ∅
p := next p in M ; M :=M \ {p};
b := projection(p); projection Pϑ,ρ

if b �= 0 and
b independent of B over C [σ1 , . . . , σn] Algorithm 3.17

then B := B ∪ {b};
cj := cj − 1;

endif
endwhile
if cj �= 0 write ’something wrong’;

endfor

Algorithm 3.17 (Test whether b ∈ ⊕λbλC [σ1 , . . . , σn])

Input: primary invariants σ1(x), . . . , σn(x)
free module basis bλ(x), λ = 1, . . . , R, polynomial vector b(x)

Output: true or false

Bλ =
∑m

j=1(bλ(x))jz
j, λ = 1, . . . , R

B =
∑m

j=1(b(x))jz
j

Compute Gröbner basis G0 of (βλ − Bλ, σj − σj(x))
wrt x1 > · · · > xn > z > β1 > · · · , βR > σ1 > · · · > σn
Reduce B modulo G0 to g.
if g ∈ C [β, σ] then true else false.
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Algorithm 3.16 describes the computation of fundamental ϑ-ρ- equivari-
ants using the Poincaré series in order to get the degrees. In case ρ is the
unit representation this algorithm equals the algorithm for the computation
of secondary invariants (Algorithm 2.5.14 in [23]).

A variant is possible: First compute the fundamental ϑ-ϑi-equivariants,
i = 1, . . . , h where mi(ρ) > 0. By change of coordinates they give all fun-
damental ϑ-ρ-equivariants. This makes clear that Algorithm 3.16 is better
than the Algorithm in [25] which is restricted to ϑ-ϑ-equivariants and uses
linear algebra technique.

Algorithm 3.17 checks whether b is an element of a free module

⊕λbλC [σ1 , . . . , σn].

For the involved Gröbner computation a module version is helpful. Then
the βj are defined to be module variables. In [14] it is proposed to do this
by means of linear algebra. A test whether b is an element of the vector
space formed by bλ(x)σ

d1

1 (x) · · ·σdn
n (x) of degree equal to the degree of b is

performed by solving a system of linear equations obtained by comparing
coefficients.

Representing a given equivariant

Algorithm 3.18 (representation of one ϑ-ρ-equivariant in fundamental in-
variants and fundamental equivariants)

Input: p(x) ∈ C [x]ρϑ , primary invariants σ1(x), . . . , σn(x),
free module basis bλ(x), λ = 1, . . . , R

Output: Aλ(σ) ∈ C [σ1 , . . . , σn] such that

p(x) =
∑R

λ=1Aλ(σ1(x), . . . , σn(x))bλ(x)

use a help variable z

B :=
∑N

j=1 pj(x)z
j

Bλ :=
∑m

j=1(bλ(x))jz
j, λ = 1, . . . , R

Compute a Gröbner basis of the ideal generated by
β − B(x, z), βλ − Bλ(x, z), λ= 1, . . . , R, σj − σj(x), j = 1, . . . , n
with respect to the lexicographic ordering and
σ1 < · · · < σn < β1 < · · · < βR < β < z < x1 < · · · < xn
The polynomial in the Gröbner basis in C [β, β1 , . . . , βR, σ1, . . . , σn] is

β −∑R
λ=1Aλ(σ)βλ
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Algorithm 3.19 (Representation of several ϑ-ρ-equivariants in fundamen-
tal invariants and fundamental equivariants)

Input: p1(x), . . . , pl(x) ∈ C [x]ρϑ, primary invariants σ1(x), . . . , σn(x),
free module basis bλ(x), λ = 1, . . . , R

Output: pj =
∑R

λ=1A
j
λ(σ1, . . . , σn)bλ, j = 1, . . . , l

use a help variable z

Bλ :=
∑N

j=1(bλ(x))jz
j, λ = 1, . . . , R

Compute a Gröbner basis G0 of the ideal generated by
βλ − Bλ(x, z), λ= 1, . . . , R, σj − σj(x), j = 1, . . . , n
with respect to the lexicographic ordering and
σ1 < · · · < σn < β1 < · · · < βR < z < x1 < · · · < xn
for each j = 1, . . . , l

B :=
∑m

i=1(pj(x))iz
i

B(x, z) →G0
P (β1, . . . , βR, σ1, . . . , σn)

Algorithm 3.18 is more or less the inverse of Algorithm 3.16. If ρ is the
unit representation the help variable z is not necessary. When several rep-
resentations are needed, it seems to be appropriate to compute one Gröbner
basis in advance (Algorithm 3.19). The difference is that a Gröbner basis of
(σj −σj(x)), j = 1, . . . , n, ην, ν = 2, . . . , r is computed first and then used in
the second Gröbner calculation. But computational experience shows that
Algorithm 3.19 is not necessarily faster than Algorithm 3.18 although on a
naive level one may have this impression. The point is that a Gröbner basis
G0 of (σj − σj(x), βλ(x)− Bλ(x)) is not appropriate to the symmetry of the
problem. The reduction p(x)→G0

P (σ, β) eventually needs more steps than
a reduction which also uses the polynomials σj −σj(x), βλ(x)−Bλ(x) itself.

In case of equivariants it might be helpful to use a module version of
Gröbner, to define the variables βj as module variables and to choose a
weighted ordering.

An alternative to Algorithm 3.18 and 3.19 would be a method based on
linear algebra techniques, but using the Buchberger algorithm is the elegant
way.

Algorithm 3.20 (Computation of syzygies)

Input: primary invariants σ1(x), . . . , σn(x),
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secondary invariants η2, . . . , ηr
Output: ημηλ =

∑r
ν=1 ηνAν(σ), μ = 2, . . . , r, λ = 2, . . . , r

Apply Algorithm 3.18 or 3.19 to p(x) = ημ(x)ηλ(x) with ρ equal to the unit
representation, without using the help variable z.

Algorithm 3.21 (Representation of a polynomial in primary invariants
and free module basis of the polynomial ring)

Input: p(x) ∈ C [x],
primary invariants σj(x), j = 1 . . . , n

Output: p = A(x, σ)

Compute a Gröbner basis of the ideal generated by β−p(x), σ1−σ1(x), . . . , σn−
σn(x) wrt the lexicographical ordering and σ1 < · · · < σn < β < x1 < · · · <
xn The polynomial which is linear in β describes a relation

β −
h∑

i=1

ri∑
ν=1

ni∑
μ=1

Ai
νμ(σ)η

i
νμ(x)

where ηiνμ(x) generate C [x] over C [σ1 , . . . , σn] as a module.

Remark: The algorithms of this section can be improved by choosing a
problem adapted term ordering. The Gröbner package of REDUCE allows
to define various orderings.

4. Solving symmetric algebraic systems

In this section we apply the results from the previous sections to the exact
solution of a system of equations

f(x) = 0, f ∈ R[x1, . . . , xn]
n

where f is ϑ-ϑ-equivariant. We restrict to real representations: ϑ(t), t ∈ G
are assumed to be orthogonal matrices. Then also the fundamental invari-
ants and fundamental equivariants may be assumed to have real coefficients.

An interesting connection to common zeros of invariant polynomials is
known:
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Theorem 4.22 ([13], see also [25]) Let ϑ be an orthogonal representa-
tion of a finite group G and let the fundamental ϑ-ϑ-equivariants denote
by b1, . . . , bR ∈ R[x]ϑϑ. Let f be another ϑ-ϑ-equivariant. The real zeros of
f(x) = 0 are exactly the common real zeros of the invariant polynomials

btλ(x)f(x) = 0, λ = 1, . . . , R.

If one is also interested in the complex solutions one has to demand
b̄tλf = 0, λ = 1, . . . , R. Based on Theorem 4.22 Worfolk [25] proposed to
proceede in several steps:

- express btλf in terms of invariants by means of linear algebra tech-
niques:

btλ(x)f(x) = Fλ(σ1(x), . . . , σn(x), η1(x), . . . , ηr(x)), λ = 1, . . . , R.

- Find all real solutions (σ̃, η̃) of F1(σ, η) = 0, . . . , FR(σ, η) = 0 with
Gröbner bases technique.

- Find all real solutions of σ(x) = σ̃, η(x) = η̃ for each solution (σ̃, η̃).

A much simpler method doing the steps simultaneously is given in the
following algorithm.

Algorithm 4.23 (Solution of an equivariant system)

Input: ϑ-ϑ equivariant mapping f ,
primary invariants σj , j = 1, . . . , n,
secondary invariants ην, ν = 1, . . . , r
fundamental equivariants bλ, λ = 1, . . . , R.

Output: Real solutions of f(x) = 0.

Compute a Gröbner basis G of the ideal generated by btλ(x)f(x), λ = 1, . . . , R, σj−
σj(x), j = 1, . . . , n, ην − ην(x), ν = 2, . . . , r with respect to the ordering
σ1 < · · · < σn < η1 < · · · < ηr < x1 · · · < xn.
Compute the real solutions of G.

Secondly, one can use the results in Section 2 on the isotypic components.
Theorem 2.6 shows that each fk(x), k = 1, . . . , n has a representation

fk(x) =
h∑

i=1

ri∑
μ=1

ni∑
μ=1

ηνμ(x)B
i
νμ(σ(x)), k = 1, . . . , n.
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Let J = (σ1 − σ1(x), . . . , σn − σn(x)).

Fk(x, σ) =
h∑

i=1

ri∑
μ=1

ni∑
μ=1

ηνμ(x)B
i
νμ(σ) ∈ R[x, σ], k = 1, . . . , n, (11)

are the representatives of fk in R[x, σ]/J with the lowest degree in x. Then
the Gröbner bases of the ideal generated by

Fk(x, σ), k = 1, . . . , n, σj − σj(x), j = 1, . . . , n,

wrt the lexicographical ordering x1 < · · · < xn < σ1 < · · ·σn contains the
information on the solutions. This suggests a two-step algorithm where the
representation (11) is computed with Algorithm 3.21. A better way is a
Gröbner computation in one step:

Algorithm 4.24 (Solution of equivariant system of algebraic equations)

Input: ρ-ϑ-equivariant f ∈ R[x]ρϑ,
primary invariants σj(x), j = 1, . . . , n

Output: solutions of f(x) = 0.

Compute a Gröbner basis G of the ideal generated by

fk(x), k = 1, . . . , n, σj − σj(x), j = 1, . . . , n

wrt the lexicographical ordering σ1 < · · ·< σn < x1 < · · ·< xn.
Then solve G.

The advantage of Algorithm 4.24 is that the fundamental equivariants
are not needed. This allows to generalize to ϑ-ρ-equivariant mappings, ϑ �=
ρ. In contrast to Algorithm 4.23 also the complex solutions are determined.

In both Algorithms 4.23 and 4.24 a Gröbner basis of (σj − σj(x)) is
included. By this fact it is important to choose primary invariants such that
the Gröbner basis of (σj − σj(x)) is computed easily. The choice influences
the computing times of Algorithms 4.23 and 4.24 a lot.

Example 4.25 (Cyclohexane) A. Dress described the deformation of the
cyclic hydrogen molecule with six nodes in three-space with three variables
(essentially the distances) and four equations:

f1(x1, x2, x3) := f3(x2, x3, x1),

f2(x1, x2, x3) := f1(x2, x3, x1),
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Figure 1: Geometry of the Cyclohexane. 3 distances describe the deforma-
tion in the three-dimensional Euclidean space.

f3(x1, x2, x3) := det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1
1 0 1 8/3 x1 8/3
1 1 0 1 8/3 x2

1 8/3 1 0 1 8/3
1 x1 8/3 1 0 1
1 8/3 x2 8/3 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

f4(x1, x2, x3) := det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1 1
1 0 1 8/3 x1 8/3 1
1 1 0 1 8/3 x2 8/3
1 8/3 1 0 1 8/3 x3

1 x1 8/3 1 0 1 8/3
1 8/3 x2 8/3 1 0 1
1 1 8/3 x3 8/3 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(12)

In [16] this problem was solved without exploiting the symmetry. The sym-
metry is given by the dihedral group D3 = {id, r, r2, s, sr, sr2} acting on the
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problem with representations ϑ and ρ,

ϑ(r) =

⎛
⎜⎝ 0 1 0

0 0 1
1 0 0

⎞
⎟⎠ , ϑ(s) =

⎛
⎜⎝ 0 1 0

1 0 0
0 0 1

⎞
⎟⎠ , ρ(t) =

(
ϑ(t) 0
0 1

)
, ∀ t ∈ D3.

F = (f1, f2, f3, f4) is ϑ-ρ-equivariant. Because f = (f1, f2, f3) is ϑ-ϑ-
equivariant, a variant of Algorithm 4.23 applies. Because ϑ(G) is generated
by reflections there are three fundamental invariants. They are

σ1(x) = x1 + x2 + x3, σ2(x) = x21 + x22 + x23, σ3(x) = x31 + x32 + x33

and the fundamental equivariants are bi = dσi

dx
, i = 1, 2, 3. By Theorem

4.22 the first way of solution is to compute the Gröbner basis of the ideal
generated by

xk
1f1(x) + xk2f2(x) + xk3f3(x), k = 0, 1, 2, f4(x), σi − σi(x), i = 1, 2, 3.

Table 1 compares this variant of Algorithm 4.23 with Algorithm 4.24 and the
Gröbner computation without use of symmetry. In all three computations
we have used the Gröbner package of REDUCE [15] with the factorizing
possibilities and with restriction to positive solutions. The lexicographical
ordering has been chosen. Although in Algorithm 4.24 the number of vari-
ables is extended, it is as fast as the Gröbner computation without use of
symmetry. Another improvement could be made by choosing a sophisticated
ordering which is supported by REDUCE. The second advantage of Algo-
rithm 4.24 is that the solution structure shown in Figure 2 is much clearer
than without use of symmetry, compare with [16]. The one-dimensional va-
riety of solutions is parametrized by the first invariant σ1.

For comparision, Table 2 shows the computing times for REDUCE (with-
out factorizer), Maple, and Mathematica. Without factorization possiblities
Algorithm 4.23 is better than Gröbner without use of symmetry. In the
column for Algorithm 4.24 one recognizes that the implementation of the
Gröbner package has been improved in REDUCE 3.5.

Example 4.26 A class of problems is given by a Lotka-Volterra equation.
The interior critical points satisfy

1− cxi +
n∑

j=1

δijxix
2
j = 0, 1 ≤ i ≤ n,
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{{3*x1 - 11,

3*x2 - 11,

3*x3 - 11,

9*sigma3 - 1331,

3*sigma2 - 121,

sigma1 - 11},

{ - sigma1 + x1 + x2 + x3,

2 2

- 3*sigma1*x2 - 3*sigma1*x3 + 22*sigma1 + 3*x2 + 3*x2*x3 + 3*x3

- 121,

2 3

- 27*sigma1*x3 + 198*sigma1*x3 - 75*sigma1 + 27*x3 - 1089*x3

- 250,

3 2

- 9*sigma1 + 198*sigma1 - 1164*sigma1 + 9*sigma3 - 250,

2

- 3*sigma1 + 44*sigma1 + 3*sigma2 - 242}}

Figure 2: Gröbner bases of the Cyclohexane problem.
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Gröbner Algorithm 4.23 Algorithm 4.24

REDUCE develop. v.
IBM RISC 6000 1.8 s 2.4 s 1.7 s

REDUCE develop. v.
Sun 4 2.2 s 2.7 s 2.2 s

REDUCE 3.4.1
sparc4/70 1.9 s 2. 4 s 1.8 s

Table 1: Computing times of Gröbner package for Cyclohexane with RE-
DUCE. The factorizer and the restriction to positive solutions have been
used.

Gröbner Algorithm 4.23 Algorithm 4.24

REDUCE develop. v.
IBM RISC 6000 3.3 s 3.1 s 9.4 s

Maple
HP 730 5.7 s 2.5 s 32 s

REDUCE 3.4.1
sparc4/70 1.3 s 0.8 s −
Maple

sparc4/70 8.6 s 3.7 s 47.2 s
Mathematica
sparc4/70 3.8 s 2.9 s −

Table 2: Computing times for Cyclohexane with REDUCE, Maple, Mathe-
matica.
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Gröbner without sym. Algorithm 4.23 Algorithm 4.24

without fact. 453 s 2.1s 6.0 s
with fact. 207 s 4.7 s −

Table 3: Computing times for a Lotka-Volterra system with REDUCE on a
IBM.

where the connection matrix is defined as

δij =

⎧⎪⎨
⎪⎩

0 if i = j
1 if j ≤ p, i �= j, i ≤ i ≤ n,
−1 if j > p, i �= j,

For p = 3 and n = 3 the system has the symmetry of D3. As in Example
4.25 the system is ϑ-ϑ-equivariant with the same ϑ. This means that the
fundamental invariants and equivariants can be taken from Example 4.25.
In Table 3 we give the computing times for the Gröbner computation without
use of symmetry, with use of the equivariants and without equivariants, but
with invariants. Because of the additional parameter c Algorithm 4.23 with-
out factorization is faster than with. The Algorithm 4.23 is best in contrast
to Example 4.25 with use of factorization where it is the worst.

Conclusion

We showed how to compute the fundamental equivariants. These funda-
mental equivariants generate the module of equivariants over the ring in the
primary invariants. Since these computations are usually done by hand, the
computing times are not that relevant. The reliability of the computations
and the fact that pencil and paper mathematics is automated is much more
important than the performance.

The second topic of this paper is to find all solutions of a symmetric sys-
tem of equations using invariants. An approach based on the theory of linear
representations has already been given in [7]. The examples in this paper
are overdetermined or depend on a parameter such that other methods than
the Buchberger algorithm do not apply. If one is interested in all solutions of
a system without parameters we also recommend mixed symbolic-numeric
methods such as presented in [24]. In the examples presented here the use
of invariants and equivariants are sometimes successful and sometimes not.
The enlargement of the number of variables by using invariants means in
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principle a dramatic enlargement of the complexity of the computation of
Gröbner bases. Nevertheless the Example 4.26 shows that in the presence
of parameters this means a huge simplification.

Acknowledgment: I thank Reiner Lauterbach for helpful discussions.
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des Hautes Ètudes Scientifiques, Publications Mathèmatiques 51, 1980.
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