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Abstract

This paper surveys the required mathematics for a typical challeng-
ing problem from computational medicine, the cancer therapy planning
in deep regional hyperthermia. In the course of many years of close coop-
eration with clinics, the medical problem gave rise to quite a number of
subtle mathematical problems, part of which had been unsolved when the
common project started. Efficiency of numerical algorithms, i.e. computa-
tional speed and monitored reliability, play a decisive role for the medical
treatment. Off-the-shelf software had turned out to be not sufficient to
meet the requirements of medicine. Rather, new mathematical theory
as well as new numerical algorithms had to be developed. In order to
make our algorithms useful in the clinical environment, new visualization
software, a virtual lab, including 3D geometry processing of individual
virtual patients had to be designed and implemented. Moreover, before
the problems could be attacked by numerical algorithms, careful mathe-
matical modelling had to be done. Finally, parameter identification and
constrained optimization for the PDEs had to be newly analyzed and re-
alized over the individual patient’s geometry. Our new techniques had an
impact on the specificity of the individual patients’ treatment and on the
construction of an improved hyperthermia applicator.

AMS MSC 2000: 49MO05, 65N30, 65N21, 92C50

Keywords: therapy planning, mathematical modelling, Maxwell’s equa-
tions, state constraints, hyperthermia, parameter identification, barrier
methods

fSupported by the DFG Research Center MATHEON ”Mathematics for key technologies”,
Berlin



Contents
mtroduction

|1 Patient-Specific Virtual Lab|
[1.1 Paradigm of Virtual Medicine|

1.2 Construction of Geometrical 3D Modell . . . . . . ... ... ...

2 Mathematical Modelling|

[2.2__Heat Distribution inside the Human Body| . . . . . . .. ... ..

2.4 Therapy Planning Problem| .

B EfG Smulation

8.1 Adaptive FEM for Time-Harmonic Maxwell Equation| . . . . . .

3.2  Coupling of BHT and Maxwell Equation|. . . . . ... ... ...

4 PDE Constrained Optimization|

.1 eoretical Background| . . .

4.2 Adaptive Central Path Following in Function Space| . . . . . ..

|5 Impact on Medical Technology|

5.1 edesign of Applicator|. . . .
5.2 Case Study: Femural Tumour|

[References]

27
28
37

38
39
45

54
54
o7

60



Introduction

The term hyperthermia in cancer medicine means a heat treatment of tumour
tissue. Already in 1961, P. Scheid had detected “functional specialties in the
microcirculation of carcinomas” under the influence of heating, see [8I]. In an
early attempt, Manfred von Ardenne (1907-1997) had experimented with what
is today called full-body hyperthermia: he immersed cancer patients in a hot
bath or exposed them to infrared radiation. However, his medical results were
unclear: in rare cases, tumour growth was reduced, whereas in most cases there
was no effect at all. Today such a procedure is only considered for cancer pa-
tients with widespread micro-metastases that cannot be detected by medical
imaging. Rather, regional hyperthermia evolved as an option. Herein, tumours
are only locally heated, while healthy tissue is generally saved. With an increas-
ing understanding about the generation and function of heat shock proteins a
lower temperature bound of roughly 42.5° appeared to be advisable. An up-
per temperature bound in the tumour should be “not too high” to assure that
healthy tissue would be kept close enough to the body temperature 37° and the
systemic body stress remains tolerable. At present, hyperthermia is applied in
two typical modes:

e Downstaging: Hyperthermia treatment alone can produce sharper bound-
aries of the tumour, thus facilitating operative tumour extinction by the
oncosurgeon — an effect that helps to reduce the possible later occurrence
of a relapse of the operated tumour.

o (Combination therapy: In principle, one might think of a strategy where
heat alone just “burns” the tumour which then would be secreted by the
kidneys as necrotic tissue. However, as long as healthy tissue cannot be
guaranteed to be preserved unburnt in such a process, the therapeutic
temperature level must remain moderate. In a temperature window be-
tween 41°C and 45°C, so called deep regional hyperthermia (as opposed
to surface hyperthermia, e.g., for extremities) is usually combined with
chemo- and radiotherapy, see, e.g., R. D. Issels [55]. In fact, testing hy-
perthermia alone in a research situation, where other therapies like chemo-
or radiotherapy might help to cure the patient, is ethically not justified.
That is why the actual cases open to our simulation studies were only
deep-seated non-operable tumours.

Already in 1984, it became clear that a careful hyperthermia treatment
planning required computer simulations, see, e.g., R. B. Roemer [78]. In the late
1980’s, the physician (and, at the same time, physicist) P. Wust came to ZIB
seeking advice about the fast numerical solution of a PDE called the bio-heat
transfer equation that turned out to be of Helmholtz type in the uncritical case.
His interest was in 2D computations, since the input from individual patients
were 2D cross sections out of a pile of images. In the beginning, compare
[108] [109], he got the recommendation to use the 1985 version of the 2D elliptic
solver PLTMG by R. Bank [6]. However, the 2D calculations appeared to be



in strong contradiction with what medical radiologists encountered: various
patients complained about “hot spots” quite distant from the tumour to be
heated, whereas the simulations did not show any such phenomena. It was
the mathematician who suggested that patients should be regarded as 3D! As
a consequence, the new version of the 3D elliptic solver KASKADE [29] [13]
42] came into play. This started a close collaboration between the numerical
analysis group at ZIB and the radiology department at Charité, a collaboration
that continued over more than a decade, see, e.g., [I10, 90]. In the course of
time, nearly all mathematical and computer science tools necessary to tackle
the challenging hyperthermia problems were put on a test bench. As a result,
all pieces were redesigned until finally the whole computational line appeared
to be fast, robust, and reliable enough to be used in a clinical environment. For
this purpose, an integrated software, the virtual lab HyperPlan, was elaborated
(with eventually about half a million lines of code). It included a selection of
both visualization and numerical algorithms for the construction of individual
3D wirtual patients.

From the numerical side, it contained adaptive multilevel finite element
methods for the parabolic bio-heat transfer (BHT) equation coupled with the
time-harmonic heterogeneous Maxwell’s equation, the latter in the then still un-
derrated intermediate regime where the wavelength is of the size of the obstacles.
For the BHT equation, the hierarchical basis preconditioner of H. Yserentant
[114] 29] for 2D as well as the BPX preconditioner of J. Xu [I11] 17] (in the
variant due to [IT5] [13]) for 3D appeared just at the right time. For the time-
harmonic Maxwell’s equation in the radiowave regime, the key turned out to
be the use of (a) Whitney forms (see [106]), the lowest order 3D finite edge
elements (see J. C. Nédélec [70], A. Bossavit [14], R. Beck [7]) to avoid spuri-
ous discrete solutions and (b) the discrete Helmholtz decomposition due to R.
Hiptmair [49 10, @, 52] within multigrid methods. In 2000, a first survey on
this kind of work was given in [20]. These PDE solvers had been coupled to
compute an optimal tuning of the antenna parameters. As a first step, this has
been modelled by an unconstrained minimization problem where the medically
necessary heating constraints were taken into account via some penalty term.

Unfortunately, the DFG funding of the ZIB—Charité cooperation (within
the collaborative research unit SFB 273) terminated at the end of 2002. For-
tunately, the topic of regional hyperthermia could be further pursued within
the DFG Research Center MATHEON, now on a more mathematical basis. The
above unconstrained minimization problem with penalty term was substituted
by the medically more reasonable constrained minimization problem where the
heating constraints were modelled as strict inequalities. At the time when this
substitution was envisaged, the associated mathematical topic (adaptive multi-
level methods for PDE constrained optimization) was far from mature enough to
be used with medical reliability. It is the purpose of the present survey to report
about progress made since then in the context of what has been achieved before.



Outline. The paper is organized as follows. In Section [I| we give the basics of
the virtual lab HyperPlan. This software environment fixes all patient-specific
details necessary to set the hyperthermia problem on stage: individual geom-
etry, material coefficients, electromagnetic antennas at the applicator, water
bolus. After that, in Section [2] the medical problem is transferred into a math-
ematical model in terms of partial differential equations (PDEs), a Helmholtz
equation in the uncritical case for the distribution of heat in the body and the
time-harmonic Maxwell equation, which is structurally similar to a Helmholtz
equation in the critical case. The therapeutic goal is transformed into a variety
of mathematical optimization problems of increasing difficulty, starting from
a traditional functional with penalized temperature constraints and continuing
to a medically preferable functional with PDE equality constraints and strict
temperature inequality constraints. On this basis, Section [3| discusses efficient
numerical techniques to solve the PDEs. Section [d] presents the recent theoret-
ical analysis and algorithmic progress for PDE constrained optimization. An
interior point method is derived and worked out as a numerical pathfollowing
in terms of a barrier parameter. As it turns out, the log-barrier function, well-
known from finite dimensional optimization, needs to be replaced by a hierarchy
of rational barrier functions in function space optimization. In the last Section 5]
the impact of the mathematical developments over years with respect to clinical
application is surveyed.

1 Patient-Specific Virtual Lab

The many years of common work between ZIB and Charité in the hyperthermia
project caused a learning effect that paid off in all later collaborations between
mathematics and medicine. That is why we start with a description of the basic
pattern (paradigm) and the patient-specific 3D grid generation.

1.1 Paradigm of Virtual Medicine

For the cooperation between medicine and mathematics the following three-step
procedure has evolved, compare Fig. [I]

(I) Construct an individual wirtual patient: The construction of a patient-
specific geometrical 3D model starts from a stack of 2D images originating
from, e.g., CT, MRT, or ultrasound. In a first computational step, 3D
details of the patient’s body need to be identified, a procedure called
segmentation. In order to obtain reasonable starting grids for a multigrid
PDE solution, surface triangulation of interfaces, coarsening of surface
grids, and finally tetrahedral grid generation are successively performed.

(IT) Model and simulate the treatment in a virtual lab: The modelling of the
therapy in question consists of a description of the essential physiological

IPatient had agreed to be shown recognizably within scientific context.



and physical processes — as accurate as needed for the medical problems to
be tackled. Usually, the description consists of a set of partial differential
equations (PDEs) and, in the best case, a functional to be minimized
under constraints. In order to suggest an “optimal” treatment planning,
these PDEs need to be solved fast and reliably. Moreover, in order to
be of use as a basis for medical decision, any suggested therapy requires
careful visualization. All this must be realized on a hardware and software
platform that can be made available in a clinical environment.

(III) Transfer the simulation results back to the clinical environment: In some
prephase, the model and its simulation will be validated against the clin-
ical situation. Any discrepancies between model and reality need to be
discussed and, if necessary, taken into account by remodelling. Once this
adaptation has been done, the computationally suggested “optimal” ther-
apy is transferred back to patient-specific treatment in the clinical envi-
ronment.
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Figure 1: Hyperthermia treatment planning. Left: real patient in hospital.
Right: virtual patient in the virtual lab.!

The above step (I) is essentially independent of the special medical problem,
but only dependent on the body region treated, see Section below. Step
(IT) depends on the medical problem in question, which here is deep regional
hyperthermia, see subsequent Sections and@ Step (IIT) will be illustrated
by many examples of virtual patients inserted in the text throughout the paper.

1.2 Construction of Geometrical 3D Model

The above paradigm has been implemented in the virtual lab HyperPlan [92] 26],
an integrated software system that has been especially developed to support Hy-
perthermia treatment Planning in a clinical environment. The implementation
of roughly half a million lines of code made heavy use of C++-software tools
like OpenGL (graphic library) and Openlnventor (object oriented class library)
which are of high algorithmic complexity themselves.



HyperPlan combines
e efficient 3D grid generation techniques, which we will describe now,

e fast and reliable simulation techniques, e.g., adaptive multilevel finite el-
ement methods, see Section [3.1] below, and

e efficient visualization techniques, which are beyond the scope of the present
article (for reference see, e.g. [406] [91]).

Figure 2: Medical imaging input. Left: Stack of 2D computer tomograms (CTSs).
Right: Segmented raw image data.

Medical imaging input. Patient-specific geometrical input usually enters
from medical imaging techniques like CT, MRT, ultrasound or mixtures thereof.
We skip the case where different sources of input have to be matched (so-called
registration problem, see, e.g., [I18]). As shown for CT in Fig. this input
comes as a stack of 2D images that merely give mass density informatiorﬂ In
view of the solution of PDEs on the specific patient data, we need more than
just density information, see below under segmentation. Moreover, for the pur-
pose of presenting numerical results to medical doctors, a 3D grid generation
with clear material identification needs to be realized. This is done in several
steps which are described next.

Segmentation. As can be seen from Fig. the original CT input contains
only information about the mass density distribution in planar cross sections of
the body. What we need, however, to solve PDEs on an individual patient, is a

2More precisely, it gives material property information that is mapped to intensity values.
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Figure 3: Segmentation of some pelvic region by statistical shape analysis. Left:
Representation of known patient data by their average and eight individual data
(construction of essential coordinate frame). Right: Simultaneous adaptation of
a shape model for the full stack of 2D images of new patient data (representation
in the frame of essential coordinates). From [62].

clear correspondence of the various body parts with material properties such as
electromagnetic or thermal constants. This task is called segmentation. From
computer science, several segmentation techniques such as region growing [I] or
watershed methods [99] are quite popular. They typically work on the stack
of 2D cross sections and, in the best case, exploit some connection between
neighbouring 2D images. Such techniques usually require a significant amount
of user interaction which is not desirable. Therefore, at ZIB, we followed a
rather different approach called statistical shape analysis [22], which transverses
through 3D. In principle, this method performs the following steps:

1. Start from a sample set of carefully segmented patient data, a time con-
suming interactive job done by experts. For illustration, see the eight
pelvic regions ordered along a circle in Fig. [3] left.

2. Compute an “average” shape. See the centre shape in Fig. left. In
order to compute a theoretically satisfactory average, one must solve the
associated correspondence problem between two surfaces, see, e.g., [61]
wherein the way is paved towards a “variational shape analysis”.

3. Compute the differences “individual - average” as fluctuations.

4. Select “essential coordinates” by selecting the fluctuations with the help
of PCA (principal component analysis).

5. Whenever new patient data are to be segmented, try to just compute the
essential coordinates for the new data, see Fig. |3 right. If this works to
sufficient accuracy, then exit. Else enrich the patient data basis by these
new data and go to step 1.

In the beginning of the above procedure, the number of essential coordinates will
grow with every new patient data, but after a while it will get saturated, thus



defining the “essential dimension” of the patient data set at hand. Of course,
in order to keep this dimension low, patient data should be clustered according
to criteria like sex, age, sports activities, biological group etc. Fig. [3illustrates
such a 3D segmentation for some pelvic region. All in all, the techniques sum-
marized here have reached a state of maturity that makes them equivalent in
quality to a “second human radiologist, see the award-winning paper [56] by
Kainmueller, Lange, and Lamecker - from an international contest on liver seg-
mentation.

Surface triangulation coarsening. Typically, meshes generated after seg-
mentation are much too fine, for an illustration see Fig[] left. For the purpose
of visualization, this large number can be handled, but in view of the numeri-
cal solution of PDEs on the virtual patients (e.g., by multigrid methods), this
number is far too large. For this reason, some precoarsening of the grids is
needed. The associated iterative process is based on minimizing local approxi-
mation errors of coarser triangulated surfaces, which is closely related to local
curvature: Wherever the local curvature is “low”, the number of local nodes is
reduced, whereas it is left unaltered where the local curvature is “high”, see,
e.g., [45]. In Fig. [4] the coarsening procedure (including mesh quality control)
due to Zilske, Lamecker and Zachow [I17] is illustrated for some pelvic bone
region. For multigrid methods to be discussed below in Section this kind of
grid then serves as the initial grid.

Figure 4: Grid coarsening in the pelvic region. From 478.000 nodes via 98.000
nodes to 11.000 nodes.

Tetrahedral grid generation. As a final step, the interface triangular grids
are used as starting point to construct spatial tetrahedral grids in the full vol-
ume. This is done by a special adaptation of the “advancing front” algorithm
of Lohner/Parikh [64]. A more recent improvement is the remeshing technique
due to Zilske, Lamecker and Zachow [116]. This final step is illustrated in Fig. [5|
right.



Figure 5: Stepwise construction of adaptive 3D grid from a stack of cross
sectional images as shown in Fig. [2| Left: Segmented surface and interface lines
between different material regions. Center: Coarsened triangulation of surface
and interfaces, as illustrated in Fig. |4} Right: Generation of tetrahedral volume
grid.

Remark 1. HyperPlan was the predecessor of the popular system Amira [93]
which applies to general systems in science and medicine.

2 Mathematical Modelling

The purpose of this section is to describe the mathematical modelling necessary
to translate the medical treatment planning problem into a mathematical formu-
lation accessible to numerical methods. It covers the physics of heat generation
by radio-wave emission in the antennas of the applicator, which is modelled by
the time-harmonic Maxwell equation, and the transport of heat inside the hu-
man body, which is modelled by some bio-heat transfer equation. Moreover, it
includes the identification of unknown parameters in the mathematical models
and several choices of quantitative formulations of the therapeutic goal, which
leads to optimal control problems that are dealt with in the subsequent Section
@

Hyperthermia treatment of a real hospitalized patient is depicted in the left
hand side of Fig. As the patient has a quite large rectum carcinoma, his
abdomen is lying inside a so-called applicator which contains eight antennas
(pairwise coupled). The antennas emit radiowaves of frequency 100 MHz which
are absorbed in the human body thus generating heat. The associated mathe-
matical model, the time-harmonic Maxwell equation, is discussed in Section [2.1
Between the applicator and the body is a so-called water bolus to ease the entry
of the radiowaves into the body and, at the same time, to cool the skin — thus
setting a temperature value at the body surface. The absorption of the elec-
tromagnetic radiation is different for different body compartments (essentially



depending on the portion of water in the tissue). By virtue of blood flow as well
as heat conduction, the heat is distributed in the body. This process is modelled
mathematically by a parabolic PDE, the so-called bio-heat transfer equation,
see Section[2:2] A solution of the coupled system of PDEs is a necessary prereq-
uisite to compute an optimal tuning of the antenna parameters such that the
tumour is heated (within a temperature window), but not healthy tissue. This
leads to a formulation in terms of mathematical optimization problems to be
elaborated in Section 2.4

2.1 Emission of Radiowaves

From first principles, the radiowaves emitted by the applicator antennas are
known to be governed by Maxwell’s equations. Simplified models are available
for the case when the wavelength is much larger or much smaller than the
geometry of the objects. In the hyperthermia case, however, the wavelength in
water (which is a good approximation for the material of the body) is about
30 ¢m, which is the order of magnitude of the human body (the “obstacle”),
i.e. just in the intermediate regime. As a consequence, there is no way round
solving the full Maxwell equations for the heterogeneous medium “water bolus
- human body”.

Time-harmonic Maxwell equation: strong formulation. Fortunately,
only a single angular frequency w is emitted from the antennas, which means
that we can make the time-harmonic ansatz

E(x,t) = %(E(I)e*im) JH(z,t) = %(H(a:)eiiwt) :

for the electromagnetic fields £, H € C3. Insertion into the time dependent
Maxwell equations for linear isotropic dielectric media,

div(pH) =0 (1a)
div(eE) =0 (1b)
curl H =0F + 6% (1c)
curl £ = —,uaa—i[, (1d)

applying the curl operator to , and inserting yields the so-called double-
curl equation or time-harmonic Mazwell equation

1
curl = curl E = ¢w’FE (2)
W

for the complex electrical field E. Herein p is the magnetic permeability and
€ = e+1i0/w the complex dielectric constant related to Ohm’s law j = o E with
electric conductivity ¢ > 0 for any current density j and the generic dielectric
constant € > 0. The material constants u, €, o depend, as the name indicates,
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Figure 6: Antenna modelling with Dirichlet boundary conditions.

on the local materials (e.g. muscle, fat, bone etc.) and should therefore, more
precisely, be written as p(z), e(x),o(x). They are allocated on the basis of the
geometrical patient model, see the above Section [1.2

For spatially constant material parameters (homogeneous material), the
term on the left side may be reformulated to lead to

—~AE+VdivE = pd'w’E . (3)
=0

Herein the Laplace operator A is applied componentwise, such that repre-
sents three decoupled Helmholtz-type equations in the critical case. Otherwise,
with material jumps, the three PDEs are coupled, see Section [3.1

Boundary conditions. The computational domain of interest, see Fig. [L]
right, consists of an artificially chosen sphere coating the water bolus, the
antenna array, and the virtual patient model. Hence we have three types of
boundary conditions to be imposed. First, the metallic antennas on the phys-
ical boundary of the applicator are regarded as perfect conductors, which im-
plies homogeneous Dirichlet boundary conditions for the tangential components
E, = (n x E) x n of the electric field E, i.e.

E;=0 & nxE=0 on I'unt .

Herein I',,; denotes the thin metallic antennas shown in Fig. [I]and n the outer
unit normal of the surface I',n¢. Second, the small gap between the trapezoidal
antenna sheets is modelled by an artificial boundary I'gs, on which the tangential
component of FE is prescribed such as to yield the voltage of the power generator
when integrated across the gap:

E,=E) on Tgp.

Third, on the external sphere T'ex¢, the Sommerfeld radiation condition (also

10



named Silver-Miiller condition in the electrical engineering community)

) )
n x ( curlE) —n X (Mn X E) =0 on Dex (4)
1 pc

is prescribed as an approrimate transparent boundary condition in order to avoid
reflection at the artificial boundary Teyi. Herein ¢ = 1/, /e, the electromagnetic
wave velocity in the dielectric material, has been inserted.

Time-harmonic Maxwell equation: weak formulation. The weak for-
mulation starts from the double-curl equation directly. For lossy materials
(i.e. for 0 > 0), the material constant ¢’ is complex. As a consequence, the above
PDE with boundary conditions represents a non-selfadjoint operator. Then, fol-
lowing [10], we introduce the appropriate Hilbert space for the operator equation
as

Hr(curl; Q) == {v € Ly(Q)3;curlv € La(Q)*, n x v = 0 on Tape U Dgap,
n X v € Ly(Fexe)® on Text }

equipped with the scalar product

(0, W) g (cur) = (curlv, curlw) 1, @) + (v, W) L, (@Urext);

and a sesquilinear form a : Hr(curl; Q) x Hr(curl; Q) — C (conjugate linear in
the first component):

1
a(E,v) = / ((curl E)* curlv — wQ(E’E)*v> dx
Q \H
i (5)
- —(n x E)*(n x v)ds.
o
We end up with the following variational problem: find E € Hp(curl; Q) such
that
a(E,v) = f(v) Vv € Hrp(curl; Q), (6)

where f : Hp(curl; 2) — C is a linear form containing the inhomogeneity of the
Dirichlet conditions.

Properties of @ In order to study the question of uniqueness of a solution,
we follow the usual procedure, see [69, Theorem 4.12]. Suppose there exists some
E such that a(E, E) = 0, which implies that both its real and its imaginary part
vanish. We assume homogeneous, possibly lossy material, i.e. ¢ > 0. For the
imaginary part we get

_ _ 1 _
—Sa(E,E)=w <a/ |E|2sdx + 7/ In x E|% ds> .
9) He Jr

ext

Both integrals are positive. For lossless material (o = 0), the first term vanishes.
The second one is positive, unless the external boundary integral vanishes, which

11



would be the case for homogeneous Dirichlet or Neumann conditions. For the
radiation condition , however, this is not the case. For lossy material (o > 0),
both terms are positive, which leads to a contradiction to the assumption that
they should vanish. If a solution of @ exists at all, it is unique whenever o > 0.

Two further features of deserve special attention: (a) the first term in
the volume integral, representing the principal part of the PDE, has an “ample”
nullspace

HY(curl; Q) = ker curl

containing all gradient-functions, in particular also functions of high frequency,
(b) in this nullspace, the second term in the volume integral, representing the
zero order term in the PDE, is negative definite, since the factor —w?Re’ = —w?e
is negative. Thus, the functional a is highly indefinite. The indefiniteness is
the more marked, the higher the angular frequency w, a fact clearly given in
hyperthermia (with 100 MHz).

On simply connected Lipschitz domains H2(curl; ) gives rise to a regular

decomposition of Hr(curl; ) (cf. [51]):
v = ¢+ gradp, ¢ HY(Q)3 pe HY(Q), gradp € H(curl; Q)  (7)

such that
ollar + [lpllar < Clloll g ieun- (8)

In this way, our problem is split into a vectorial H!-part and a negative definite
H'-component for the potentials. This decomposition is a modification of the
classical Helmholtz decomposition.

Interface conditions at material jumps. Both quantities y and e have
jumps at material interfaces that have been determined by segmentation, see
Section[I.2]above. At these interfaces special conditions must be observed, which
in weak formulation are automatically satisfied (via the therein incorporated
vanishing of the remainder terms stemming from an integration by parts). These
conditions imply a kink in the electric field vector E at the boundaries, for an
illustration in FastLIC representation [46] see Fig.

Superposition. The radiowaves (100 MHz) are emitted from kg channels
of pairwise coupled 2kp antennas. Since the Maxwell equations are linear,
superposition can be applied. Let Ej(z) denote the electric field (the antenna
profile) originating from channel k for K = 1,...,kg. Then the total electrical
field can be written as a linear combination

ke
E(zx) =Y oyBi(z), ar€eC, (9)
k=1

in terms of complex amplitudes aj, ... ag,. They may be parametrized via

Q= Qg exp(—i&k) k= ].,...,kE y (].0)

12



Figure 7: FastLIC representation of electrical field lines [46]. Left: Abdominal
body part. Right: Zoom.

with real amplitudes a; and phase delays 6 that can be controlled indepen-
dently. Where appropriate, the kg complex parameters oy will be interpreted
as 2kg real parameters {Ray, Sag}.

Remark 2. In [58], Kremer and Louis treated the problem of approximating a
given electrical field (obtained, e.g., from optimization) via excitation through
n antennas. For their theoretical analysis, they define a hyperthermia operator
that maps arbitrary antenna excitations at a boundary circle of a cylinder to
any electrical fields in that cylinder. This operator is shown to be compact in
Ls. By means of singular value decomposition they can conclude that hot spots
outside the tumour volume can only be suppressed for sufficiently large n.

2.2 Heat Distribution inside the Human Body

Compared to the gemeration of heat as discussed in the preceding section, the
distribution of heat inside a specific patient’s body is much harder in terms of
modelling.

Heat absorption. Inside the body, the electromagnetic waves generate heat
by absorption to be characterized via the absorption rate density

1
S=3 o|E|2s , (11)

wherein o is the electric conductivity of the specific tissue. If one exploits the
superposition @[), one ends up with the quadratic term

1

kg
S(z) = %U(x)|E(a:)|(%3 = Jo(@) Y ajar B} («) Eia) (12)
gl=1

13



wherein o varies among different tissues. From the definition it is apparent
that simultaneous phase shifts of the controls ay lead to a corresponding phase
shift of the electrical field E and thus have no thermal impact at all. Therefore,
one of the phases can be fixed a priori, e.g. by setting $(ag,) = 0. We will
therefore think of « containing only 2kr — 1 real parameters, which will be
important in Section to get rid of a trivial local non-uniqueness of optimal
solutions.

Bio-heat-transfer (BHT) equation: strong formulation. The standard
heat transfer model used in our simulations has been the so-called bio-heat-
transfer (BHT) equation over the domain ©Q C R? covered by the patient’s
body:
oT . .

peor = div (kgradT) — cpw (T — Thiood) + S in £, (13)
where p is the density, ¢ the specific heat capacity of tissue, x the thermal
conductivity, ¢, the specific heat capacity of blood, w the mass flow rate of blood
per unit volume of tissue, the so-called perfusion, Tyiooqa the blood temperature
in the unheated body (e.g. 37°C), and S the absorption rate density as defined
in . All material constants are understood to be local constants, different in
different tissues. Already in 1948, this Helmholtz-type equation in the uncritical
case was proposed by Pennes [74] on the basis of theoretical consideration and
experimental measurements — a rare scientific combination!
The boundary conditions are of Robin type:

oT
—Rg = hT — Thos) on Of. (14)

For the time dependent case initial conditions
T00,2) =T,

are prescribed. In hyperthermia, the steady state is typically reached after
about 15 — 20 minutes and maintained for 40 — 60 minutes. For this reason, we
may well be content with solving the stationary elliptic problem rather than the
time dependent parabolic problem.

As with the other material coefficients, the discontinuity of the thermal
conductivity here also yields interface conditions across the tissue interfaces.
Again, these conditions are automatically satisfied, if the PDE is solved in its
weak form.

BHT equation: weak formulation. Here we interpret the stationary BHT
equation (with notation as in ) as an operator equation:

(A(T) = B(a),p) =0 Ve € C™(Q), (15)
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where A and B are defined as

(A(T), @) = / k (grad T)Tgrad o+ cpw (T — Thiood ) dx
Q

+ / h(T — Tbolus)go dS7 (16)
o0

g

(B(a), ) :=/Q5 |E(a)|2s ¢ da.

The domain €2 consists of a number of subdomains €2;, corresponding to
various types of tissue. All coefficients depend on the tissue type and are chosen
piecewise constant on each subdomain associated with a tissue type. They may
vary significantly from tissue to tissue. For a more detailed description of the
parameters we refer to [33)].

Multiscale heat transport. Inside the patient’s body, heat is distributed
only by diffusion in tissue and by direct transport in blood vessels (with velocity
v(x), say), but not by any process described by the zero order term in the
BHT equation above. Therefore, from first principles, a PDE of diffusion-
advection type including the source term seems to be more appropriate:

T
pc aa—t =div (kgrad T) — pcv'grad T + S, (17)

However, due to the multiscale structure of the velocity field v, both from the
modelling aspect and from the point of view of computational complexity, such
a PDE cannot be used to successfully describe the situation within an individual
patient.

The multiscale vascular situation is schematically represented in Fig. [§]
Three scales can be distinguished:

1. On the macroscale, large blood vessels should be treated as full 3D objects

(e.g., as objects in a finite element setting, compare also Lagendijk et al.
[60]).

2. On some mesoscale, smaller vessels could be modelled as 1D objects (but
with some finite width, compare [23] [75] [66]).

3. On the microscale, detailed phenomena within the capillaries cannot be
resolved, both from a modelling and a computational perspective. That is
why some kind of averaging has to take place which results in a macroscale
model for some porous medium region.

In [108], the above BHT equation had been suggested as the averaged mi-
croscale model. It had been derived by some potential flow assumption in view
of Darcy’s law — known to arise from homogenization techniques in reservoir
simulation. That assumption was certainly not self-explaining in the present
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Figure 8: Three scale pattern of heat distribution in the human body: large
blood vessels (macroscale), medium size blood vessels (mesoscale), capillar-
ies (microscale). Homogenization of capillaries leads to some porous medium
macroscale model.

Figure 9: Normalized cells Y with inserted blood regions ): non-isolated as
well as isolated case. Surface of insertions 9Q) \ JY.

context. Therefore we directly turn to the mathematical homogenization ap-
proach (see, e.g., Bensoussan et al. [12]) that has been worked out by Hochmuth
and Deuflhard [28], [54] for the case of hyperthermia.

In the homogenization framework, we consider a periodic arrangement of
microscopic cubic cells €Y, periodic along the three spatial coordinate axes
Y1, Y2, Y3, with insertions of blood £@Q), the capillaries, assumed to have constant
temperature Thiood, see Fig. @ Let Q. denote the solid tissue volume with-
out the capillaries. Therein heat transfer takes place only by diffusion. For
simplicity, the authors in [28] scaled the thermal conductivity to kK = 1. As a
consequence, the temperature 7 is defined by the simple model equation

AT, =S. inQ,
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with thermal source term S, = %JE |Ee |27 exterior Dirichlet boundary conditions
T. = Thas on 0S)

in terms of some basic temperature Ti,,s and interior Robin boundary conditions

oT.
on

Due to [28], the following asymptotic result can be shown to hold.

=ea(THooq — T=) on 9(eQ) .

Theorem 2.1. Notation as just introduced. Let |-| denote the Lebesque measure
and define relative surfaces and volumes with and without blood by

b ooy v\
viQl v

<1.

Assume that, in weak*-convergence, we have

Se = OyorumeS,  Thiooa — OvolumeIblood -

Then, for e — 0, the temperature converges weakly as

Te = THiooa — Ovolume(To — Thiood) in Lo,
where the limit temperature Ty satisfies the PDE

—div (Agrad Tp) + absurtace(To — Thiood) = S in
with Dirichlet boundary conditions
To = Thas on 092
and perturbed conductivity
0ij — .- aijdy ;
Y\ Q[ Jy\o Ovi

where the functions x7, j = 1,2,3 are understood to be solutions of

I’ —yj)
On ’
The proof is a bit technical, mainly because of the occurrence of Robin

boundary conditions (for T, ,q = 0 a proof has been given earlier, see, e.g., the
book [2] and references therein). It starts from the above diffusion-advection
equation assumed locally in a microscale periodic cell structure which is
spatially averaged. Details are left to [28]. Summarizing, the above theorem
confirms the validity of the BHT equation in the microvascular regime — apart
from some perturbation factors Ogurface, Ovolume = 1 that take care of the relative
blood volume versus the full volume.

A=a;, aj;=

—AYT =0 nY\Q, XY — periodic . (18)

Remark 3. An alternative approach aiming at directed advective heat trans-
port in tumours has been developed by Gerber [40], but not validated.
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Temperature dependent perfusion. In a more detailed investigation, tem-
perature induced vasodilation leads to an increased perfusion of heated tissue
and thus gives rise to a more realistic, nonlinear version of the BHT equation.
Experiments [89] have shown that the blood flow in normal tissues, e.g., skin and
muscle, increases significantly when heated up to 41—43°C, whereas in the tu-
mour zone the blood flow may increase or decrease with temperature depending
on the type of tumour. On this experimental basis, the perfusion w = w(z,T)
can be chosen monotonically increasing with respect to 7" in the muscle and
fatty tissue, but monotonically decreasing in tumour tissue.

Simulations show significant qualitative differences between the temperature
distributions predicted by the linear and the nonlinear heat transfer model,
as illustrated in Fig. Generally speaking, the self-regulation of healthy
tissue reflected by the nonlinear model reduces “hot spots” caused by local
maxima of the absorbed electromagnetic fields and hence allows to rise the
total energy deposition. This is one reason for a slightly better tumour heating
(ca. 0.5°C) predicted by the nonlinear model. An analogous result is reported
in [97] for ferromagnetic thermoseed hyperthermia. An important finding is
that the nonlinear model has an impact on the optimal treatment parameters
as well. Maximal discrepancies turned out to be 22° for the phases 05 and 0.22
for the relative amplitudes a; — for the notation see . For a more detailed

discussion see [33] [63].
\

w
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Figure 10: Optimized temperature distributions in a frontal section of the pelvic
region. Black lines: body outline and tumour contour. Light grey to dark grey
shading: regions heated from 39°C to 43°C. Left: linear model. Right: nonlinear
model.

Besides local vasodilation, systemic thermoregulation can play an important

role, e.g., via centrally controlled vasodilation of the skin and a corresponding
shift of perfusion from the body core to the extremities, or an increased heart
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rate. A feedback mechanism observed rather recently is the so-called steal effect
where different regions compete for a joint blood supply. An increased perfu-
sion in one region, e.g., a heated muscle that actively reduces its peripheral
resistance by vasodilation, will lead to a larger blood flow and hence a greater
decrease of effective blood pressure along the vessels feeding both regions. In
this case, another region with less ability of thermoregulation, e.g. a tumour,
will experience reduced perfusion and a smaller cooling effect. Such a nonlocal
interaction may open up new possibilities for therapy optimization. It might
lead to higher tumour temperatures not to focus the power on the tumour, but
to heat up muscles supplied by the same vessels in order to cut off the tumour
from cooling perfusion.

2.3 Parameter Identification

All of the above thermoregulation models contain a number of parameters, most
of which are unknown. Such parameters must be determined either from direct
measurements or from computations comparing indirect measurements with the
applied model. The most relevant parameters are:

e Material coefficients: Thermal, electrical, and physiological properties of
tissue depend on the specific patient under consideration. Several tech-
niques are available to get hold of reasonable values. Parts of these data
are obtained from measurements, see, e,g, [109, Table 1] for electromag-
netic and bioheat data, or to [8§] with values from [73], where data for
vessels, lungs, spleen were taken from [39]. In [I10, Fig. 1], only slight
differences between different patients for the absorption rate density are
reported. One of the most important parameters is the perfusion w, both
due to its dominant effect on the temperature and its high inter-individual
variability. It can be measured by MRI using a contrast agent, but this is
not generally indicated.

e Geometry: Since therapy planning and in particular segmentation takes a
significant amount of time, the patient’s geometry is acquired some time
before the therapy starts. Moreover, several therapy sessions are per-
formed based on this single geometry. Positioning the patient in exactly
the same location every time is a major practical difficulty. Even with
utmost care, spatial deviations of roughly 15mm are unavoidable. Move-
ments of the patient during therapy lead to additional offsets. Changes in
body mass and intestine or bladder contents also affect the actual geom-
etry.

e Technical parameters: Clinically available HF power generators are less
stable in maintaining requested amplitudes and phase shifts than would
be desirable. Moreover, part of the HF energy is reflected at contact re-
sistances in coaxial cable connectors between the power generator and the
applicator. These resistances depend on the mechanical force with which
the connectors have been put together. While the transmission properties
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of the cable network can, in principle, be measured, this is not always
possible in clinical practice.

Figure 11: Hyperthermia applicator system in open MRT.

Computational identification. A validation of the models describing the
electrical field and the heat transport requires in-vivo measurements of relevant
quantities, in particular the temperature. If sufficient data is acquired, the
parameters entering the models can be identified, which allows to improve the
therapy. 3D distributed data sets can be obtained from magnetic resonance
tomography (MR) measurements [77] in a hybrid MR-hyperthermia applicator,
see Fig. [I1] At a rather limited number of discrete times, temperature probes
can be placed inside the patient’s body. By MR thermometry based on positron
resonance frequency shift (PRFS), a combination of tissue temperature increase
T — Ty and perfusion w can be measured. Due to lack of better understanding
of the relevant processes, a simple measurement model of the form

m =~ a(T —Tp) + bw

has been used, where the coefficients a and b depend on the tissue type. In
particular in fatty tissue, the perfusion influence vanishes almost completely
(b ~ 0). Resolution, signal-to-noise ratio, and measurement time are mutually
dependent. For useful thermometry data, a measurement takes at least 30s with
current MR scanners.

Adaptation of electric fields. As mentioned above, several model parame-
ters are not exactly known in clinical practice. These modelling errors lead to
predictions significantly deviating from measurements (see Fig. .

A radical remedy would be to omit the numerical solution of Maxwell’s equa-
tion completely and to identify the selfadjoint heating effect M(x) € Ckz-<e
of applicator control settings using only the k,, MR thermometry measure-
ments [57]. Assuming the correctness of the computed absorption rate density
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Figure 12: Cross section of absorption rate density in simulation (left) and MR
measurement (right) at a phantom [I01].

and the validity of the BHT equation ([L3)), Tikhonov regularization leads to the
quadratic optimization problem

km
. . 2 2

e g 2o = aT (6 M) = by M 19
subject to the equality constraints and with source term S(x) =
%a*M (). An implementation of this concept in clinical practice is prevented
by the number and type of required measurements. Since for each point or voxel
x € £ the number of real parameters in M (x) for an applicator with kg chan-
nels is k%, many measurements have to be taken for a complete identification
(the Sigma-Eye applicator with kg = 12 would require more than one hour just
to calibrate the model). Moreover, in order to allow a reasonable identifica-
tion, sufficiently different controls a@ € C¥& have to be used, most of which are
of questionable benefit for the patient. Motion artefacts at tissue boundaries
prevent the identification of heating effect in a significant part of the domain.

The number of parameters to be identified can be reduced by considering
the antenna profiles E = (Ej)j=1,. kp instead of the heating effect M. Since
M (z) = E(z)*E(x), this leads to a nonlinear identification problem with 6kg
parameters per voxel. Because simultaneous phase shifts and simultaneous spa-
tial rotation of field vectors have no thermal effect, a rank defect of at least three
reduces the number of parameters further. Still, relying on models identified
from scratch is impractical.

A promising approach is to start with antenna profiles obtained as the so-
lutions Fy of Maxwell’s equation and adapt them by least-change updates such
as to reproduce measurements [I01] [76]. This allows to start the therapy with a
reasonably good model to be improved further whenever new measurements are
available. Without the need to sample the whole space of applicator controls,
it is moreover possible to deliver the best therapy that is known at any time
during the whole hyperthermia session.

Solving identification problems of the type subject to the time-dependent
BHT equation giving T'(¢; M) in real time is a challenging task. Spatial decou-
pling by neglecting heat conduction in the identification leads to a set of smaller
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problems to be solved independently for every voxel, e.g., by a Gaufl-Newton
method:

Kkm
i s —aT(t;; M) — bw|? +~||E — Eyl|? 20
E*éélé?w;‘m aT (i M) = bul” +1] ol 20)

Heat conduction can nevertheless be taken into account without solving a spa-
tially coupled identification problem. Splitting the antenna profiles E into a
prediction part Ey based on Maxwell’s equations and a correction part 6E to be
identified, and the temperature T' = T + 6T into corresponding contributions,
the time-dependent BHT equation reads

O(Ty + 0T)

pe———r = div(k grad(Tp + 0T)) — cyw(To + 0T — Thiood)

+ %a*EOE’Oa + ga* (QEN'S + 5E*> SEa.

Assuming 6 F and 67 to be comparatively small, we may neglect heat conduction
in 07 only and obtain

40T
Pe i

as the constraint to . The temperature Ty satisfying does not depend
on OF to be identified and can thus be computed before or during the MR
measurement. This approach yields much better results than neglecting heat
conduction completely, see Fig. For details we refer to [76].

One important point to notice is that, despite being underdetermined, the
identification problem is severely ill-conditioned and hence leads to significant
noise amplification whenever similar applicator controls «; are used — a fact
that had been long overlooked in literature. Applied in a feed-back loop to im-
prove the applicator controls during therapy, the process will converge towards
some optimum. Hence, very similar controls are bound to occur, and sufficient
regularization is necessary, see Fig

= —qwdT + %a* (QES + (5E*) SEa

Identification of perfusion. Among the heat transfer model parameters the
perfusion is the most influential one. Hence, measurement or identification
of individual perfusion values would be very valuable. Quite accurate values
can be obtained from MR data using contrast agents [65]. The application of
contrast agents may incur an undesirable risk for the patient, which is why they
are only used if absolutely necessacy. Moreover, due to the required injection
of the contrast agent, only very few of these measurements can be obtained,
such that a continuous monitoring of thermoregulatory feedback is impossible.
Consequently, such data are not generally available.

As a noninvasive alternative, the MR thermometry data m mentioned above
can be considered. This leads to an identification problem for temperature and
perfusion [41]:

in [m — aT = b3, 0 + 7w (T + bluw, wo(T))
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Figure 13: Lo error of the predicted temperatures (in K) over the number of
adaptation steps on a simulated therapy. The curves correspond to antenna
profile adaptation with and without regularization (reg) as well as with and
without taking heat conduction (con) into account. The straight dotted line at
0.1 is the Lo norm of a normally distributed noise applied to generate artificial
measurements from exact temperatures (from [76]).

subject to the equality constraints and (14)). Herein, wo(T) is the a-priori
perfusion model. The norm

fitissues

ol = llwlf,e + D Vel
i=1

for the regularization term is constructed based on the assumption that the
perfusion depends smoothly on the temperature in every tissue region, but may
jump across tissue boundaries. The barrier function b enforces nonnegativity
of the perfusion, but has to be skewed such that its minimizer is the reference
perfusion wy(T) in order not to introduce a systematic bias.

Clinical application of that concept is prevented by the fact that there can
be two different value pairs of temperature and perfusion which are compatible
with both the BHT equation and the measurements, which is a consequence of
the bilinearity of the BHT equation. Hence, while local consistency is fostered
by regularization, global consistency cannot be guaranteed. In fact, numerical
experiments indicate that the occurrence of both compatible values must be
expected [103].

The consequence is that more data is required to provide the clinical staff
with reliable identified temperature and perfusion values. Such data might come
from additional measurements taken with MR sequences which exhibit impact
coefficients a and b different from PRFS.
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2.4 Therapy Planning Problem

In a first step, we formulate the medical problem of therapy planning which
then has to be translated into mathematical terms.

Medical problem setting. Due to the production of so-called heat shock
proteins, the temperature should best be above 42.5°C. Up to now the heating
cannot safely be restricted to tumour cells only, not the least, since it is not
possible to distinguish tumour cells reliably from healthy ones. Therefore, in
order to be on the safe side for healthy tissue, local temperatures in tumours
cannot be allowed to be too high. Thus the therapeutic aim is in general not to
burn tumour cells, but to make them more sensitive to other treatments like ra-
diotherapy or chemotherapy (cytostatica). In vitro, experiments have confirmed
an increased sensitivity of tumour cells by a factor of 7 over healthy ones, an
effect also be seen in a milder form in vivo, see, e.g., [I9]. The physiological
mechanism behind this effect is captured in the so-called oxygen enhancement
ratio (OER). Consequently, the general aim can be specified as:

Control the antenna parameters such that tumour tissue is heated, while healthy
and uncertain tissue is not heated above a prescribed threshold temperature.

After these preparations, we are now ready to translate the above medical
problem into a mathematical one. Let T denote the temperature inside the
body. Following the medical intention, an optimal temperature distribution
should satisfy the following items:

e In the region Viumour populated by tumour cells, the temperature should
be sufficiently high to incur a therapeutic benefit. In view of the metabolism
of heat shock proteins, a temperature level T; > 42.5°C should be main-
tained.

o In the region Vicaithy populated by a significant portion of healthy tissue,
the temperature should not exceed a tissue-type dependent threshold T}, ~
42 — 44°C in order to avoid subcutaneous burns.

In addition there is a region where both tumour and healthy cells are present,
which can be treated in a special way (cf. Section [5.2).

Apart from the medical intention, technical restrictions are imposed by the
applicator. The amplitude of each antenna is limited, as is the total power emit-
ted. Moreover, the antenna phases are only reliable as long as the amplitudes
are not too different.

These aims and restrictions, partially conflicting, have been modelled and
formulated as mathematical optimization problems in a variety of ways, which
we will present in the following.

Cost functionals. First approaches to the quantification of the therapeutical
benefit to be maximized have been formulated in terms of the absorption rate
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density alone [73] 58] [59], based on the idea that high power deposition
leads to high temperature. The associated cost functional to be minimized is

F(B) = —%/V o E(a) % da. (21)

tumour

An advantage is that this functional can be easily minimized by solving a low-
dimensional eigenvalue problem [58| 59], as long as no temperature constraints
are prescribed.

For medical reasons, a temperature-based objective functional is preferable.
Therefore, in [71], [73], such a functional has been suggested. The idea is to
penalize “cold spots” in the tumour below a therapeutical temperature T; =~
43°C, since the impact of hyperthermia on cancer cells drops quickly below this
threshold. This leads to the functional

ﬂﬂzﬁ (T, - T)2 da (22)

tumour

with (-)4 = max(-,0). This approach can be extended to the concept of thermal
dose, with the aim of minimizing the fraction of surviving tumour cells. The
thermal damage rate inflicted on cancer cells follows the Arrhenius law [34], [95],

with a rate constant AR
kE(T)=A - .
1) = e (37 )

Herein, the frequency factor A and the activation energy AFE depend on the

tissue type, R is the universal gas constant. An estimate s of the fraction of
surviving cells is given by the simple differential equation

§(t.T) = —k(T)s(t,T), s(0,T)=1,

which gives rise to
s(t, T) = exp(—tk(T)) . (23)

Thus the objective functional to be minimized is the fraction of cancer cells
surviving after a prescribed duration ¢ of a therapy session:

0= [ oo (coan (-25)) "

A schematic representation of such a function is given in Fig. The thermal
isoeffect dose is an established quantity for assessing the therapeutic benefit of
a treatment [34) [79]. Treatment planning based on the tumour cell survival has
been proposed for thermoseed placement [98], but up to now rather ad hoc cost
functionals like have been used in regional hyperthermia planning.

Temperature constraints. At the time when mathematical therapy plan-
ning was started, a sufficient mathematical understanding of state constraints
as well as an efficient algorithmic treatment were lacking. A common approach
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Figure 14: Cancer cell survival rate according to in dependence of the tissue
temperature.

was therefore an external penalization of “hot spots” arising in healthy tissue
with temperatures above a tissue-dependent threshold Ti;,, occasionally aug-
mented by an additional, weaker penalization of heating healthy tissue above a
comfortable temperature Ty, < Tjiy [37]. This leads to extended cost functionals

IO =50+ [ (alT =T+ (T~ Taw)?) do
Vhealthy
with fixed penalty parameters 0 < 77 < 72. Due to external penalization,
however, “hot spots” cannot be completely prevented. In fact, they are bound
to arise unless 75 — co. An analysis of the asymptotic behaviour performed in
[85] suggests that even under favourable circumstances the maximum constraint
violation only decreases by a rate of O(~, 2/ 5). We would like to point out that
in hot spots with less regularity of the temperature distribution, in particular
due to discontinuous temperature bound or singularities of the absorption rate
density, the maximum violation decreases even more slowly.

A strict prevention of hot spots in healthy tissue will require the explicit
respection of state constraints of the kind

T(z,a) < Tiim, 2 € Viealthy- (25)

One way to guarantee feasibility of the temperature distribution is to use a
barrier method. In Section [] below, we will work out results in terms of both
theory and algorithms.

Control constraints. Additional constraints directly on the control « are
imposed to model the limited power of the microwave applicator:

|ak‘C§amaX7 k:177kE
S (26)
>l < ajgil.
k=1
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If desired, stability of antenna phases can be ensured by confining the amplitude
ratios to

—1 ok |c
ratio S
lajlc

Saratio .77k: 13"'7kEa with Oratio > ]-7

or by requesting all antennas to have the same amplitude:
|Ozj‘((;:|04k|c, j,k:L...,kE.

Optimal control problems. Putting all pieces together, different optimiza-
tion problems can be formulated. Omitting the control constraints, we state
two variants that have been used for therapy planning.

Penalized problem:

i T,—T)2 d T —Ty)> T —Tyim)2) dz (2
ey (BT [ O =T 4 ol T e 27

tumour thalthy

subject to the BHT equation
A(T) — B(a) =0. (27Db)

Constrained problem:

AE
i —tA —— ] d 28
aEC’“Er?Y{IEIHl(Q) /v P ( P ( RT )) v (282)

tumour

subject to the BHT equation and temperature constraints

This above set of goal functionals and constraints supplies the starting point for
the actual computation of optimal therapies for individual patients.

3 Efficient Simulation

In the numerical simulation of the whole hyperthermia procedure computational
efficiency is of utmost importance, since clinical decision making requires nu-
merical algorithms that run on a local PC both fast and reliably. The simulation
involves solving both the time-harmonic Maxwell equation and the BHT equa-
tion. The latter, a Helmholtz equation in the non-critical case, can be readily
solved by algorithms which nowadays are standard textbook material, see, e.g.,
[32]. That is why we skip this part here. Rather, we concentrate on the two main
sources of computational cost, the adaptive multilevel finite element methods
for the time-harmonic Maxwell equation in Section [3.1] and their unidirectional
coupling with the BHT equation in the subsequent Section A first survey
on the decisive role of these methods for hyperthermia treatment planning has
been given in [31].
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3.1 Adaptive FEM for Time-Harmonic Maxwell Equation

The first algorithmic attempts to solve the time-harmonic Maxwell equation
were based on the rather popular FDTD method, see [94]. These methods
started directly from the voxel discretization, i.e. the raw data, as input for
numerical integration, certainly an intriguing feature. In addition, the methods
appeared to be very fast; but, after testing them in a hyperthermia environ-
ment, it turned out that they were unable to treat the interface conditions
correctly, which in an FEM would be automatically satisfied (see Section .
A comparison of results for a special virtual patient is given in Fig.

Figure 15: Comparison of electrical field computations. Left: Popular FDTD
method [94] based on the strong formulation (without correct interface condi-
tions). Right: Adaptive finite element method based on the weak formulation
(with automatically correct interface conditions), see Section

The typical ingredients of an adaptive multilevel finite element method (FEM)
are (a) an a-posteriori local error estimator, (b) an adaptive mesh refinement
strategy, and (c) a fast solver for the arising large linear systems. For Poisson-
type PDEs, such techniques are well-developed. For the time-harmonic Maxwell
equation, however, a deeper understanding of the indefinite structure is neces-
sary to reach optimal multigrid complexity.

Edge Elements. We return to the weak formulation (f]) in Section [2.1]above.
In order to obtain a finite element discretization of the weak equation @, we
generate a tetrahedral triangulation 7; of the domain Q and employ Nédélec’s
curl-conforming finite elements of first order [70], also called edge elements [14]
or Whitney 1-forms. Let us denote the space of linear Lagrange elements by
Sy, and the nodal basis functions associated to vertex ¢ by A;. Then the edge
element basis function associated with the edge e = {ij} is defined as

Wiigy = )\,-grad/\j - )\jgrad /\i, (29)
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Figure 16: The tetrahedral edge element shape function wy;;y associated to edge
{ij} is a circular field rotating around the opposite edge.

see Fig. [T6] The corresponding FE space is
NDy, := span{wyg;;y }.

Edge elements possess several distinct advantages compared to vectorial La-
grange elements: They guarantee the desired continuity of the tangential com-
ponents of the electric field while preserving jumps of the normal components.
In particular, concave metallic edges and internal boundaries between materi-
als with jumps in the coefficients can be naturally incorporated in agreement
with physical continuity relations. Moreover, they avoid the occurrence of spu-
rious modes, whereas nodal basis functions may give rise to wrong solutions
(see [15]). The convergence behaviour of edge element discretizations of (6] is
studied in [68]. For the actual realization we note that for a vector field E the
degree of freedom E, € C associated with each edge e in T}, is given by the path
integral

Ee:/ E - t.ds (30)

along the edge e with direction vector t..

Spectral properties. Before we dive into algorithmic details, let us have a
closer look at the spectral structure of the time-harmonic Maxwell operator
from that occurs in the weak equation @ As illustrated in Fig. its
spectrum divides into three distinct parts: (i) eigenvalues with negative real part
originating from the nullspace HY(curl, Q) of the curl-operator, (ii) eigenvalues
with negative real part to be associated with some space M~ spanned by the
corresponding eigenfunctions, and (iii) eigenvalues with positive real part, which
go with some space M.
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Coarse mesh. Suppose we formally expand both sides of the weak equation
@ in terms of eigenfunctions of the Maxwell operator. Then the system would
decouple in terms of these eigenfunctions. Then those terms on the right side
with smallest coefficients will dominate the solution structure in the generic
case — assuming, of course, that all eigenfunctions are present in the actual
solution. Recall that, in the Laplace operator, the smooth eigenfunctions have
the smallest eigenvalues and thus dominate the solution structure. The situation
is very is different for the indefinite time-harmonic Maxwell operator. To see
that, a simple plane wave analysis has been given in [9], which we repeat here.
For simplicity, let the material be homogeneous, so that the coefficients p, € are
constants. Let E(x) := exp(ikx)e denote a plane spatial wave in a polarization
direction e. Upon ignoring the boundary terms in A, eigenvalues |k|> — w?pue
will come up. Obviously, wavenumbers k close to the critical wavenumber ke =
wy/p€ give rise to the smallest eigenvalues of the time-harmonic operator A.
The associated eigenfunctions are bound to dominate the solution generically.
Let the critical wavelength be defined by

2m 2m
Ao =— = .
ke wy/ue

Then an appropriate coarse mesh able to resolve solutions in the space M™,
compare Fig. should obey a mesh size restriction of the kind

h<’S (31)
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which is often called Nyquist condition. It will again show up below in the
context of multigrid methods. In passing we note that the above restriction
depends, of course, on the material. In the hyperthermia setting, it is only
restrictive in the water bolus, producing a nearly uniform mesh therein.

Large linear system solvers. Replacing Hr(curl; ) by ND;, in the varia-
tional formulation @ leads to a large, very sparse linear equation system

Au=1> (32)

with complex symmetric and indefinite matrix A. The solution of can be
obtained by either direct or iterative solvers. Direct solvers have experienced
a significant progress in recent years [24]. Despite a still considerable memory
requirement due to fill-in, they are very effective on coarse up to moderately
fine meshes. Only for very fine grids or if low memory requirement is important,
iterative solvers have to be used. Iterative solvers face two difficulties, as can
be seen from the eigenvalue distribution of the operator A in Fig. which
carries over to the matrix A. First, the large eigenvalues grow with decreasing
mesh size h. The growing condition number of the matrix A renders both
matrix decomposition methods and Krylov methods inefficient on fine meshes.
Second, due to the eigenvalues with negative real part, usual positive smoothers
such as Jacobi or GauB-Seidel methods do not converge: the spectral radius of
their iteration matrix I — B~1A exceeds 1, so that the corresponding modes in
H2 U M~ are amplified rather than reduced.

Adaptive mesh refinement. Due to the complex geometrical structure and
strongly varying material properties of virtual patients, corner singularities and
other local solution features are bound to arise. Hence we consider adaptive
mesh refinement to be of crucial importance to ensure both efficiency of the
solver and reliability of its computational results. The foundation of adaptive
mesh refinement are a-posteriori error estimators, which are most often based
on localized operations. As we are dealing with equations of partly hyperbolic
nature in this context, it is clear that any local estimator will be unable to
capture far-field contributions. Accordingly we prefer to use the name error
indicator in the sense of Babuska [4].

Among the different flavours of error indicators we consider hierarchical error
indicators in the spirit of [29], which have been observed to yield very favourable
results with efficiency quite close to 1 on simple test problems [9, Section 8.2].
Quantitative reliability is, of course, of utmost importance in medical applica-
tions.

Conceptually, the ansatz space VF = ND), is extended by a hierarchical
surplus V¥ to give a higher order ansatz space VT = VL @ V¥ in which
assumes the block structure

(i amy () =(%), )
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For the mere purpose of error indication, needs only be solved approxi-
mately via a defect equation for the hierarchical components:

ATH I = g AHL L (34)

Hierarchical extensions of the lowest-order edge elements have been described
in [80], where the basis functions are given in terms of Lagrangian nodal func-
tions \; associated to the vertices i of the tetrahedral mesh. With each edge
{ij}, one basis function

wiiyy = Aigrad A; + Ajgrad \;
and with each face {ijk}, two basis functions
wiiey = MAgrad Ay — MNidggrad Ay, wiih = Adgrad Ay — Ay grad A,

are associated. An approximate solution of may be obtained via one block-
Jacobi step only (!), where it is essential to keep the 2 x 2-block-entries of both
functions wg;.lk}, 1 = 1,2, attached to each face of the triangulation (see [
for details). At first glance, this block-Jacobi sweep appears critical, as the
matrix contains negative eigenvalues and the related eigenmodes may be am-
plified. However, the modulus of all negative eigenvalues being comparatively
small, these modes can be expected to give only minor contributions. Let @
denote the first Jacobi iterate of the exact u’. For the definition of a relative
discretization error estimator we set

2 _ Il
- )
[u* 1%

wherein, in the absence of a better idea, we employ the norm

1
lv||% = / (H curlv* curlv + w?ev* U) dx + / B(nxv*)(nxwv)ds. (35)
Q

Text

This error estimator is the key ingredient for an adaptive refinement strategy
in the spirit of a technique suggested by I. Babuska and W.C. Rheinboldt [5]
for purely elliptic problems. As an illustration of an adaptive grid constructed
along these lines, results for a virtual patient mesh are shown in Fig.

Table [1] gives a list of error indicators as a function of the refinement levels
starting from the mesh of Fig.

Multilevel preconditioning. In the hyperthermia problem, a multigrid V-
cycle preconditioner is used within a conjugate residual iterative method (CR),
see [38]. On the subspace M™, standard multigrid methods are effective in
reducing the error — however, at the expense of amplifying error components in
H2U M. This leads to a deterioration of the whole multigrid procedure in the
present case, see Table [2| under columns Std. Therefore, the standard multigrid
approach needs to be modified.
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Figure 18: Adaptive mesh of a virtual patient consisting of about 128.000 nodes.
Note that a uniform grid would have required estimated 16.000.000 nodes. Left:
frontal cut. Right: sagittal cut.

Table 1: Estimated discretization errors versus refinement level j with node
numbers N;. The “coarse” mesh (j = 0) is taken from Fig.

J N; n

0 128365 10.1 %
1
2

373084 4.96 %
1085269 2.54 %

The general applicability of multigrid methods to indefinite problems has
been investigated in [I6]. In order to capture the error part in M ™, certain re-
strictions on the mesh size of the coarse grid have to be observed — unfortunately,
given there in terms of unknown theoretical quantities. Fortunately, both local
mode analysis and numerical experience confirmed that it is enough to observe
the above Nyquist condition . The coarse grid correction is then computed
by a direct solver. Treating the part originating from HP(curl, Q) is more deli-
cate, since it contains functions with all spatial frequencies and therefore cannot
be captured on the coarse mesh.

For Nédélec finite elements there exists a discrete counterpart of the repre-
sentation of H2(curl, Q) as space of gradients of potentials. Thus, on simply
connected domains each curl-free element of ND; can be represented as the
gradient of a scalar potential in the space Sy of nodal finite elements:

ND;, N HR(curl, Q) = grad Sy, (36)
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Table 2: Convergence history for multilevel solvers with standard Gauss-Seidel
smoothing (Std) compared to multiplicative (M-H) and additive (A-H) versions
using hybrid Gauss-Seidel smoothing on each level. The iteration is terminated
if the ratio of the Euclidean norms of residuals and right hand sides is below
1075. From [31].

Ref. Nodes #lter CPU [min]
Depth Std M-H A-H Std M-H A-H
0 128 365 4250 354 413 150 24 20
1 373084 4832 265 277 800 76 60

2 1085269 > 10000 186 194 > 2000 215 160

Moreover, the stable decomposition has a (perturbed) discrete counterpart,
too. To this end, let 1" : (S},)® — ND}, denote the edge interpolation operator,
defined via . Then

v =704 I°¢ + grad p, é € (Sp)3, pe Sy, v € NDy (37)

such that

1A= 0l L, + 18l + Pl < Cllollaeun- (38)
This outstanding feature of Nédélec elements (see e.g. [I0, [51]) is of crucial
importance for the construction of efficient multigrid solvers for the arising linear
systems, as we will illustrate at the simpler example of positive definite problems.

A multigrid method, applied to an linear system Au = b on a space V
consists of a (non-direct) splitting

V=>V

and preconditioners B;, defined on each V;. Here we will choose V; as one
dimensional spaces that come from a multilevel hierarchy and B; = A. The
convergence theory then depends on the stability condition

U:i%fvv DMl < Kallollas (39)
and the strengthened Cauchy-Schwarz inequality

(vk, v < yllvellalllla Kz =yl (40)

which have to be established for the given splitting [I12]. In the additive case
(e.g., Jacobi type smoothing) the product K K> gives an estimate for the con-
dition number of the preconditioned system. If K7 K5 admits an upper bound
that is independent of A we obtain an optimal preconditioner, i.e., a bounded
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condition number. Similar results hold in the multiplicative case, e.g., for Gauss-
Seidel type smoothing.

To understand, why standard multigrid smoothers are inefficient in an H (curl)-
setting, consider || - |4 = || - || f(cur1) and a multilevel splitting

ND;, = Z@i

where ®; are one dimensional spaces, spanned by the edge element basis func-
tions on different levels. Now let v € NDy N H(curl, Q) (recall curlv = 0), such
that

The basis functions satisfy ||¢; /L, < chillill f(curl). Thus we obtain
ol eurty = ellz, < € it > lleillz, <C inf D 0l Freuny - (41)
Whenever v bears high spatial frequencies, this implies

Kl Z Chiza

and thus leads to mesh-dependent condition numbers and contraction rates.
Returning again to 7 we may introduce a potential p € S}, such that
v = grad p. Then, for a multilevel decomposition

Sv=>_ P,

where P; are one dimensional subspaces spanned by the nodal basis functions
of Sj, on different levels, standard H!-multigrid theory yields:

p:i%fp_ Do llpillEn < Kiwilplin = KvmlleradpllE, = Ky ol Frean - (42)

For general v € NDj, we can apply the stable discrete decomposition which
finally yields a stable multigrid decomposition of the form

V=> &+ gradP, (43)

where ®; and P; are taken from a multilevel hierarchy of NDj;, and S}, respec-
tively. Then a similar multigrid estimate as for the rotational part of v,
together with yields an h-independent constant K;. Note that the mere
existence of such a splitting is sufficient, it need not be computed explicitly.
More details can be found in [I0, @} 8] (0L B3, T13].

On the basis of the splitting a hybrid smoothing procedure was con-
structed in [I0L [9]. There, as a basic solver the conjugate residual (CR) method
was used, which is similar to the well-known conjugate gradient algorithm, but
adjusted to symmetric indefinite systems. Its basic operations are Gauss-Seidel
sweeps both in the Nédélec space NDj,, coping with the elliptic part of A, and in
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the space Sp, of potentials. Within this framework, efficient transfer operators
between field representations in S;, and ND), are essential.

If we represent a vector field v € NDy, N H2(curl, Q) by v = grad p, then the
representation in NDj, can be obtained easily from :

P
Ve = /P gradp-tds = p(P) —p(Py) .
1

Here P; and P, denote the positions of the endpoints of the edge e.

In the following Pg, denotes the transfer operator from the potential space
Sp into the Nédélec space NDj, on Tp,. P§ will denote the adjoint operator,
defining the canonical restriction. Then the smoother Ag for the nullspace is
constructed by the Galerkin product As = P§ APs,. The following hybrid
smoothing algorithm for a given right hand side vector b € ND}, will provide an
updated solution vector u € NDy, via the following steps

One Gauss-Seidel step for Au =15
b+ b— Au

bs < P& b

ug < 0

One Gauss-Seidel step for Agugs = bg
w4 u + Pg, us

In order to be on safer theoretical grounds, we realize symmetric precondition-
ing, which means an immediately following step of the adjoint procedure. Note
that in this approach both spaces are treated in a multiplicative fashion in the
sense of domain decomposition methods.

As an alternative, we propose a symmetric additive version:

One symmetric Gauss-Seidel step for Au =15

bs — Pghb

ug < 0

One symmetric Gauss-Seidel step for Asus = bg
w4 u + Pg, us

If we employ adaptive mesh refinement, thus creating a sequence of nested
triangulations 7o C 71 C ... C Tp, then the extension to a multilevel solver is
quite straightforward. Taking into consideration that the associated sequence
of Nédélec spaces is nested, i.e. NDy C ND; C --- C NDj,, we may adopt the
classical multigrid idea [43] by using canonical grid transfer operations between
these spaces, but employing a hybrid smoother on each level.

Finally, in order to demonstrate the efficiency of this hybrid algorithm, we
present comparative results for both the multiplicative and the additive hybrid
algorithm using the discrete Helmholtz decomposition in Table 2] above. As can
be seen, the hybrid versions exhibit a superior performance and do not deterio-
rate with increasing refinement level. Note that we have no direct factorization
available on the coarse grid, thus facing comparatively large iteration counts. A
proof of optimal multigrid complexity of this type of algorithm can be found in
[8, [49].
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3.2 Coupling of BHT and Maxwell Equation

In the covered temperature range of 30-50°C, the electromagnetic material pa-
rameters are essentially constant, such that the coupling of the time-harmonic
Maxwell equation and the BHT equation is unidirectional. Thus, we can first
solve the time-harmonic Maxwell equation and insert the results into the BHT
equation. Since the Maxwell equation is linear, we can compute the antenna
profiles E}, for each antenna channel £ = 1,..., kg and use superposition after-
wards. For the insertion into the BHT equation, however, a distinction between
the linear and the nonlinear case is necessary.

Linear BHT equation. As can be seen from equation 7 the superposition
of the electric field E from kg antenna profiles gives rise to a superposition of
k% source modes to the source term S:

kE kE J 1
> ajEjE = Z|aj|C|E 242) 0> (R(aga)R(EE) — (o) S(ES E))
jil=1 j=21=1

The source modes
R(ETE), j<I
Sit=19 oy e .
‘S(E] El)v J > l
correspond to temperature elevations T3 above the basic tissue temperature

Thas for « = 0 and can be computed in advance by solving the homogeneous
BHT equation

1
—div(k grad Tj;) = —cywTyj; + iasjl in Q
oT;
—ma—é = hT}; on 0f).

With coefficients ;; = 2R(afoy) for j < I, vj; = |a;|2, and v = —2S(ef )
for j > [, the temperature is obtained as

ke

T(e) = Toas + Y _ vt Tit-
Jil=1

Let costjy,puT denote the computational cost for one solution of the BHT
equation. Then the total computational cost sums up as

costiotal = kE COStaMaxwell + (k% + 1) costinpuT + costopt- (44)

As an illustration, see Table 3| below in Section [5} The cost for the optimization
as a whole depends, of course, on the number of iterations.
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Nonlinear BHT equation. In the case of a temperature dependent perfusion
w(T), some kind of iteration is needed to take care of this nonlinearity. In [31],
the following fixed point iteration has been suggested:

kr Maxwell solves: Fj
let a®:=0
for m=0,...,n:

one nonlinear BHT equation solve for S(a™)
supplies temperature 7™ and perfusion w™ := w(T™)

k* + 1 linear BHT equation solves for Sj; using w™
supplies Ty7 and temperature modes 17"

optimization min, f(777, + Z?le Yit(@)T}T)
supplies a™*!

The idea behind this algorithm has been that the Maxwell solves are con-
siderably more expensive than the BHT solves. The iteration converges linearly
and quite fast at an observed contraction rate 6 =~ 0.3. So the total computa-
tional cost sums up as

COStiotal = KE COStMaxwell +

Niter (COStnontinBHT + (k% + 1) costinpuT + COStopt) - (45)

In typical computations, ni; &~ 6 optimization iterations are required. The
nonlinear BHT equation has been solved by a Newton iteration in function
space [33], typically requiring no more than 2 steps due to the fast local conver-
gence.

4 PDE Constrained Optimization

In Section we had already worked out the medically preferable optimization
problem with strict temperature limits in healthy tissue. At the time, when this
aspect had come into the focus of interest, there were no efficient algorithms
to tackle such problems. That is why thorough theoretical investigations had
started, which we present in Section [£I} while algorithmic details are post-
poned to Section In order to derive efficient adaptive algorithms, we follow
a multistage computational paradigm. In a first stage, we develop the neces-
sary numerical analysis background in a function space setting, which covers
both optimality conditions and formal algorithms for the infinite dimensional
problem. In a second stage, we construct an iterative method, again in the
infinite dimensional setting, for the arising nonlinear problems. Only in the last
stage, the innermost loop, where linear operator equations are to be solved, we
discretize the infinite dimensional problem up to a prescribed error tolerance.
This kind of scheme has emerged as the general basis for any adaptive PDE
algorithm.
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4.1 Theoretical Background

The hyperthermia treatment planning problem can be formulated as an opti-
mization problem in function space subject to equality constraints and inequal-
ity constraints in the following form:

min f(T, o) (46a)

subject to
A(T)— B(a) =0 (46D)
‘athQ < Qmax T < 71lim (460)

Here A and B represent the BHT equation in weak form . From Section
we have a as a set of 2kg — 1 real parameters.

Various cost functionals f and inequality constraints have been discussed in
Section [2.4] The most challenging part are the constraints on the temperature
T < Tiim- They can be considered as an infinite number of inequality constraints
in function space. In PDE constrained optimization and optimal control they
are classified as pointwise state constraints and have been subject to intense
research in recent years (cf. e.g. [20} [67, 47 25]).

The following derivations are based on [86| [83]. More details and proofs can
be found therein.

Barrier regularization and strict feasibility. In finite dimensions, barrier
regularizations give rise to the highly popular class of interior point methods
[96, 107]. With y = (y1,...,yn), the principal idea is to replace an inequality
constrained problem of the kind

min f(y) subject toy; >0 i=1...n
yEeR™

by an unconstrained problem, depending on a parameter p > 0:

min f(y) — NZIOg(%) ;
i=1

yER™

wherein the functional f has been extended by a sum of logarithmic barrier
functions. This new minimization problem with minimizer y* can then be solved
approximately. By driving the barrier parameter to its limit 4 = 0 we can
approximate the solution of the original problem. The logarithmic terms assure
strict feasibility y! > 0 for all > 0, so that Newton’s method can be applied to
the corresponding first order optimality conditions in a feasible neighbourhood
of y*.

If we want to extend this idea to infinite dimensional function spaces, e.g.,
for the problem

mi}r} f(y) subject to y(x) >0 Ve K,
ye
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then a straightforward idea might be to substitute the above finite sum by an
integral. Along this line, the associated barrier regularization then would read

min f(y) —u/Klog(y(x))dx~

yey
However, we have to take into account two additional issues

(i) We have to achieve strict feasibility of y* in the sense that y*(z) > e(u) >
0 for z € K and for all u > 0.

(ii) The neighbourhood of y* that contains the Newton iterates has to be
taken with respect to the || - || norm (or stronger). Any norm that is
finite for a pointwise unbounded function yields neighbourhoods that are
not contained in the feasible set.

Unfortunately, the logarithmic barrier functional guarantees strict feasibility
of y* only almost everywhere in K, and possibly allows touch points where

y*(xz) = 0 for some p > 0, even when y* is a smooth function. A simple
example of such a case has been constructed in [83]. Of course, in such a case
no feasible neighbourhood exists, even in the || - || co-norm.

A way out of this difficulty is shown by the following lemma:

Lemma 4.1. Let K C R? be a compact set, satisfying a cone property. Let
y > 0 be in the space CP(K) of Hélder continuous functions, 1/y™ € Li(K),
0< B<1. Assume that m > d/B. Then 1/y € C(K).

Proof. Assume that without loss of generality 0 € K and y(0) = 0. We will show
that this contradicts the assumption 1/y™ € L;(K). By the Hélder-continuity
of y we infer that y(x) < cr? for all z € B(0,7) N K. Using the cone property
of K, there is a cone Cy C K, and we can compute for sufficiently small R < 1

ly™"™ L, (k) > / y(z) " dx > c/ pAmpd=1 gy > c/ r~tdr = o,
Co [0,R] [0,R]

which shows 1/y™ ¢ L;1(K). Hence, by contradiction, y > 0 in K, which implies
by compactness of K that there is ¢ > 0 with y > ¢ and thus 1/y € C(K). O

Hence, in order to obtain strict feasibility of barrier minimizers in Holder
spaces, we may use a hierarchy of higher order barrier functions

plog(y) © m=1
lnz(y) = I  om>1
(m — 1)yt

and solve

min f(y)—i—/Klm(y(:E))dx.

yeCH(K)
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Then, for sufficiently large m and Hélder continuous y, existence of a touch
point y(x) = 0 would imply

[ (o) do =
K
in contradiction to the optimality of y.

BHT equation as operator equation in function space. In order to
study the weak form of the BHT equation in a functional analytic setting,
we have to impose some regularity assumptions. Our set of assumptions has
to cover the case of discontinuous coefficients, which arise due to the different
types of tissues in the human body.

The presence of state constraints forces us to impose an || - ||o-topology on
the space of temperature distributions. For this reason, we have to depart from
the usual H!-framework for elliptic equations, since H'(Q) ¢ C(9Q) for spatial
dimension greater than one.

To proceed, let ¢ > 3, and define its dual exponent ¢’ via 1/¢ + 1/¢' = 1.
Let D, C H'(Q) be the set of all T, such that A(T) € W14 (Q)*, i.e.

(A(T), ¢) < Mll@llyr.0 Yo € C=(Q).
We have to achieve that the operator

A(-) = B(-) : Dy x R?*e=1 5 wha'(Q)*
is well defined, and D, can be embedded into C(Q). For a strictly monotone
perfusion term w (7T, 2)(T —Thiood ), general results from elliptic regularity theory
(cf. [44]) show that A has a continuous inverse A~! : Wha'(Q)* — C(Q), i.e.,
D, C C(Q), and even Tllcs@ < clAT) e () for some 5 > 0, where
C?(Q) is the space of Holder continuous functions. Moreover, D, only depends
on the principle part of A, and is thus independent of T'.

To assure that B maps into W4’ (©)*, we have to impose a technical regular-
ity assumption on the antenna profiles, which requires slightly more regularity
than the usual one for Maxwell’s equation, namely E}, € H(curl, 2). We assume
that each EJ, is contained in L,(Q,C?). Then B(a) is contained in Lg/5(€2),
which, in turn, is contained in Wl’q/(Q)* by the Sobolev embedding theorem.
In this way singularities in the temperature distribution 7' can be excluded.
Such regularity has been shown under certain smoothness assumptions on the
tissue interfaces in [36} [35]. Practical experience anyway shows that such singu-
lar temperature distributions do not occur in the hyperthermia setting. In this
framework A and B are then twice continuously Fréchet differentiable as long
as the perfusion term is twice differentiable with respect to 7. The derivative
of A with respect to T

A C(Q) D> D, — Wha'(Q)*
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is not continuous, but it has a continuous inverse. Moreover, since the principal
part of A is linear, A’(T) — A’(T') does not contain a differential operator. These
facts allow us to apply results, such as the inverse function theorem to A, and
thus to establish continuous differentiability of the control to state mapping

a— T(a):= (A" o B)(a).
Application of the barrier regularization to the pointwise state constraints
T(z) < Tim(z) Yz eQ

immediately leads us to identify the above variable y with Tjiy, () — T'(x). Con-
sequently, we arrive at the following barrier minimization problem:

f(T7a) + /Q lm(ﬂim - T) d.’l?

subject to
A(T) — B(a) =0.

(47)

Our regularity considerations yield T € C?(€), and since Ty, is constant on
each type of tissue, Lemma applies separately on each tissue. With these
considerations a generalization of the Weierstrass theorem on existence of min-
imizers yields (for details of the proof see [80]):

Theorem 4.2. There is m < oo, such that for every p > 0 the barrier prob-
lem has an optimal solution, which is strictly feasible with respect to the
inequality constraints.

First and second order optimality conditions. For a strictly feasible
barrier minimizer (T, «) first and second order optimality conditions have been
derived in [86]. To this end, it is convenient to define the Lagrangian function
of the problem:

L(T,a,\) = f(T,a) + /Q Loy (Thim — T') dz + (X, A(T) — B(a)).

Here, since A(T) — B(a) € Wh?' (Q)*, X is a Lagrangian multiplier in W14 (£2).

Theorem 4.3 (KKT Conditions). If (T, «) is a locally optimal strictly feasible
solution of , then there ewists a unique Lagrange multiplier A € Wh7 (Q),
such that

0=F(T,a,\) =

fr(T,0) + /Q (T — T) dz + A'(T)*,
v @)

fo(T,a) — B'(a)*
A(T) - B(a).
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Of course, F also depends on the parameter u, since I/, does so. Since A'(T)*
is a differential operator, the first line of this system is another (linear elliptic)
partial differential equation, the adjoint equation and A is called adjoint state.

Our algorithm will be based on this version of the KKT conditions and
can therefore be considered as a primal interior point method. Alternatively
one could also introduce Lagrangian multipliers for the state constraints, which
would lead to primal-dual interior point methods. These are known to be more
efficient than their primal counterparts for finite dimensional problems. How-
ever, the analysis in function space yields that these multipliers can only be
represented as Borel measures [20], which are very hard to treat numerically.
Below, a specific pointwise damping step is presented that recovers some of the
benefits of primal-dual methods.

Theorem 4.4 (Second Order Optimality Conditions). Let (T, «, \) be a solu-
tion of . Moreover, denote by

K :=ker (A(T),—B'(«a)) := {(6T, 6c) : A(T)6T — B'(a)6cx = 0}
the kernel of the linearised constraints and by
H(T, o, \) (6T, 60)* := Lyp (T, o, \)0T? + Lo (T, o, N) oo (49)
the Hessian of the Lagrangian.
(i) If (T, «) is a minimizer of , H(T, «, \) is positive semi-definite on K.

(i) H(T, o, N) is positive definite on IC, if and only if (T, ) is a local mini-
mazer of and J satisfies a local quadratic growth condition.

Then for each (r1,r2,73) € HY(Q)* x RZE=1x W' (Q)* the linear system

LTT(T, «, )\) 0 A/(T)* or ]
0 Loo(T,a,\) —B'(a)* oa | =\ 7o (50)
A(T) —B'(a) 0 A r3

has a unique solution (8T,0c,6)\) € D, x R?*e=1 x HY(Q), depending
continuously on (r1,712,73).

Finally, in
Lyr(T, o, \)0T? = fTT(T,a)6T2+/ 1 (Tijm —T)6T? dz+(\, A”(T)6T?) (51)
Q

we encounter the second derivative I/, of the barrier term. This factor can be
very large if T is close to its upper bound, and thus induces a strong scaling to
be taken into account in solution algorithms.
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Central path. The solvability of in a neighbourhood of a locally unique
solution according to Theorem [£.4] allows us to compute Newton steps for the
solution of the KKT system . Here, it is important to obtain 7T € D, C
C(Q), instead of the weaker result 67 € H'(Q). This ensures that Newton’s
method stays in an L.,-neighbourhood of the minimizer and yields feasible
iterates.

Introducing the shorthand notation z := (T, o, A), we can formulate

Corollary 4.5. If H(z) is positive definite on ker (A, —B')(T,«), Newton’s
method, applied to F(z) converges locally superlinearly to a zero z* of F'.

Proof. Since F’ depends continuously on z, we may just use a qualitative local
convergence result for Newton’s method (see, e.g., [72, Thm. 10.2.2]). O

In particular, the implicit function theorem yields local existence and differ-
entiability of the so called central path of barrier minimizers:

Corollary 4.6. If H(z) is positive definite on ker (A’, —B’)(T, ), then, locally,
there is a differentiable path p — z" of local minimizers of the barrier problems,
defined in some open interval [fi, p[ D p.

A convergence theory for the path of barrier minimizers has been established
for the case of a linear partial differential equation as equality constraint and a
convex functional. In this case, estimates of the form

f(TM’ al’«) - f(TOpta aopt) S C/L (52)

have been established, which implies under a quadratic growth condition on «
the estimate

1T" = Toptll 2o () + |0 = qtopt|gers -1 < CV/p.

Furthermore, the qualitative result of Corollary can be quantified in this
case, giving a p-dependent lower bound on the radius of convergence. Then a
global convergence result can be established (cf. [82]) for a barrier path-following
method.

In hyperthermia, the equality constraints are nonlinear, and so our problem
is generically non-convex. However, in a neighbourhood of the central path,
under second order sufficient optimality conditions, our barrier problems behave
like convex ones, so that we can expect these results to carry over. Numerical
results give clear evidence to this conjecture, as can be seen in Figure

From an algorithmic point of view, the second order optimality conditions
yield well definedness of a Newton path-following method, as presented in the
following section, once an initial guess close to the central path is found. To find
such a point, algorithms have to be used that are robust with respect to non-
convexity. For our numerical experiments we employ a new algorithm (see the
forthcoming report [87]) that is based on the idea of a composite step method
(cf. e.g. [2I]) with a cubic regularization [104] of the functional and an affine
covariant treatment of the constraints.
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Figure 19: Experimental results on the rate of convergence of the function values
(cf. ) for a hyperthermia planning problem.

4.2 Adaptive Central Path Following in Function Space

The previous section laid the ground for a Newton path-following method with
respect to a barrier parameter u. The aim of this section is to describe the
development of an efficient algorithm based on this principle. We base our al-
gorithmic approach on an affine covariant adaptive path-following method, as
described in [27, Chapter 5]. However, compared to the standard case, addi-
tional difficulties appear:

e Our problem is posed in function space, and thus Newton steps cannot be
computed exactly, which means that an inexact Newton corrector has to
be used.

e The radius of convergence of Newton’s method tends to zero as p — 0.
Thus, the subproblems become more and more difficult to solve. This has
to be taken into account in an adaptive update strategy for pu.

An algorithm that takes these issues into account will consist of three loops:

(i) In the outer path-following loop, the barrier parameter p is reduced suc-
cessively. This requires an adaptive strategy.

(ii) Each step of the outer loop invokes an inexact Newton method in function
space. Here we have to design termination criteria, and criteria on the
success of the Newton iteration. An estimate of the local contraction
quantity ©(z) is crucial in this respect.

(iii) In the inner loop each Newton step is computed up to a desired relative ac-
curacy. Typical sources of errors are truncation errors of iterative solvers,
but also discretization errors which arise during the approximate compu-
tation of Newton steps in function space by finite element discretizations.
We have to devise error estimators that are suited to the particular prob-
lem structure.
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Local convergence of an inexact Newton method. A local affine covari-
ant convergence theory of inexact Newton methods lays the groundwork for our
algorithmic considerations. A detailed discussion of this topic can be found in
[27]. For the convenience of the reader we give a simplified presentation, based
on the analysis of [84].

The starting point is the following very simple local convergence result for
Newton’s method. It is a generalization of the affine covariant refined Newton-
Mysovskikh theorem due to [30] that can be applied to semi-smooth systems
F as well. It is formulated exclusively in terms of quantities in the domain
space of the problem, i.e. affine covariant, and covers the inexact computation
of Newton steps.

Theorem 4.7. Let R be a linear space, Z a normed space, D C Z and F :
D — R. Assume there is z, € D with F(z,) = 0. For given z € D assume that
there exists an invertible linear mapping F'(2)(-) : Z — R such that

PR F ) = 2) = (F(2) = )]

O(z) e (53)
18 well defined. Assume that an inexact Newton step results in
2y =2 —F'(2)7'F(2) +e,
where the relative error v(z) == |le|| / ||z — 24| is bounded by
() +0() < < 1. (54)
Then
24 — 2]l < Bllz — 2] (55)
Proof. We compute for one inexact Newton step:
Iz — 2| = ||z = F'(2) "F(2) + € — 2
< |F/(2) 7 F/ ()2 — 22) — (F(2) = P(z)]]| + el
Inserting the definition of ©(z) and assumption we obtain
2= 2]l < (O() +4()) 12 — 2l < Bz — =]l
O

Equations and show that local convergence of Newton’s method is
governed by the local contraction rate © and the relative accuracy . As we
will show, in an adaptive Newton path-following algorithm both quantities can
be controlled algorithmically.

To be able to react adaptively on the nonlinearity of the problem we have to
provide computable estimates for © and . We will construct an estimate for
in the paragraph about adaptive refinement, below.
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Next we derive a computable estimate for ©(z). From we observe that
©(z) cannot be computed exactly, unless z, is known. However, with the help
of a simplified Newton step:

0z = —F'(2) " F(2)
we can replace the solution z, in by the new iterate z4 and compute

_NEGTF @) - 2) = (F() - FEDI|_ [lo=]] (56)
Iz = 24| [[6]]

[©(2)]

In view of local quadratic convergence of Newton’s method, we may define
a parametrized model for ©(z) as follows

B = e 2.

The constant [w] can be computed for given z via :

W] = 2[0(z)] :2H5H
ol =l )

Then [w] can be interpreted as an estimate from below for an affine covariant
Lipschitz constant w, as used in [27]. This gives an estimate for the radius of
contraction, i.e., the radius of the largest ball around z,, where a contraction
O(z) < © takes place:

ro > 22 (57)
w

replacing w by our estimate [w] we get a quantitative estimate on the size of the
region of convergence. Moreover, the remaining error via of Newton’s method
satisfies the triangle inequality:

124 = 2l = ©(2)[|z = 2./l < O(2)(l|z = 24 [| + |24 — 21,

and thus, solving for ||z4 — z.| and replacing ©(z) by [©(z)], we obtain the
estimate
[O(2)]

(24 = 2] := m\\z—ml (58)

for the remaining error.

Adaptive reduction of barrier parameter. The geometric picture of a
successful path-following method is sketched in Figure For some prescribed
desired contraction ©4 < 1 (in practice one chooses 04 € [0.1,0.5]), each iterate
z; should remain in the region of convergence around a target solution z#7 which
lies on the central path, i.e.,

Iz = 21| < reg(1)- (59)
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Figure 20: Sketch of a Newton path-following method. In each corrector step
the iterates approach a target point on the central path and eventually enter
the region of convergence of the next target.

We want to achieve this inductively by a suitable adaptive choice of p;. First
of all, re, can be estimated via , if we assume a relation between w and p.
Numerical experiments, and estimates for related problem classes [105] suggest
the relation w ~ p~1/2.
To obtain a choice of u; that yields , we also have to provide an estimate
for
2 — 2] < flzg — 292 ]| + [z — 2]

The first term of the right hand side is the remaining error of the last Newton
corrector and can be estimated via (58). The second term depends on the
sensitivity of z# with respect to u, and we have the estimate

Hi-1 g Hj—1
[ ool
uy o dp I

J
For finite dimensional problems or for fixed discretizations, we may estimate
this slope simply by finite differences in the iterates. If, as in our approach,
adaptive grid refinement is performed during the corrector, finite differences are
not reliable due to the presence of discretization errors. Then, at the cost of
one system solve, an estimate [(y;—1)] can be computed via the formula

du. (60)

ot — 2 = ‘

n(p)

0 d 0
—F Hj—1)_—_ ,Hj—1 —F Hj—1
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where we have to replace z#7-! by its approximation z;. Then, using the relation
n(u) ~ p~'/2, we may compute the estimate

st — 2b ] = / " s e

= 2[n (ki)W =1 (Vig—1 = V/i3)-

To summarize, we may write down as an implicit inequality in p;:

s = 297 1]+ 2oy DW= V) < s [

and compute the smallest 1 that satisfies this inequality as a prediction for u;.
In the subsequent inexact Newton corrector the estimated error is reduced up
to a tolerance TOLq;,, which is chosen in a way that usually one corrector step
is sufficient, so that we terminate, if

. 204
z; — 2M71|]] < TOLcoyy := p———— p € [1,1.2].
[llz Il () [1,1.2]

This rule suggests a multiplicative update strategy. Define o; = p;/pj-1.
Then can be written as an implicit inequality in o;

20

Iz — 2= {[Jlw(pj—1)] + 2[n(ps—)]w(pj—1)]pi-1(1 — /o) < ek (62)

Under our model assumptions [w] ~ u~/2, [n] ~ p~'/2, which implies TOL o ~
/it we observe that p;_1 cancels out in , and thus o is constant. Of course
our model assumptions only hold approximately in computational practice, but
their use leads to an unbiased and strictly positive update p;_1 — p; > 0.

If it terminates successfully, we accept the result of the corrector as new
iterate z; and compute p;4+1 as new homotopy parameter, just as before. In
case of unsuccessful termination (for example, if [©(z)] > 1 for some iterate z),
with the additional information gained on [w] in this correction step, a more
conservative choice for p; can be computed and the corrector is restarted at
Zj—1-

Local norms for barrier subproblems. Up to now our considerations have
not included any special structure of our problem. A common possibility to do
this is the choice of a problem suited norm. In the context of barrier methods
the strong scaling property of the Hessian, as observed in should be taken
into account. Thus, (for fixed p) a suitable local norm can be defined as follows:

162112 := 16T 2, 0 + / U (T — T)OT? da + 60 200+ + [N,y (63)

Qualitatively speaking, the inclusion of the barrier function [,, into the norm
has the effect that errors are given more weight in regions of €2, where T is close
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to its upper bound Tj;y,. Thereby it is taken into account that the problem is
more nonlinear and thus more sensitive to errors in these regions.

In practical computations, the multiplier term Hé}‘“%z(ﬂ) can be omitted.
The reason is that A can be reconstructed approximately from the primal vari-
ables T, a by suitable multiplier update rules (cf. [21]) and plays the role of an
auxiliary variable.

In a neighbourhood of the central path, where positive definiteness of the
Hessian H of the Lagrangian from (49) can be assumed on ker(A’, —B’), the
generic Ly norms of §7T and da in (63]) can be substituted by the norm induced
by H for the tangential components, which dominate during the homotopy due
to the mild nonlinearity of the state equation. This leads to the affine conjugate
norm

H(SzH%I(z) = H(2) (6T, 6c0)>. (64)

The normal components can also be taken into account if desired, see e.g. [100].

As the local norm changes in every Newton step, contraction © < 1 for
a fixed norm need not translate to contraction between different local norms.
Whether this is guaranteed to hold depends on the actual impact of z on || - ||..
For details, we refer to [27], [100].

Pointwise damping. Barrier methods rely on iterates that are feasible with
respect to the inequality constraints. Since in the barrier context Newton’s
method approximates a rational function by a linear one, Newton steps tend
to violate the constraints. On the other hand, the nonlinearity, introduced by
the barrier functions is given in a pointwise fashion and highly structured. This
should be exploited.

In the following we propose a modification of Newton’s method, which ad-
dresses these issues and may be considered as a pointwise damping strategy.
The idea exploits the pointwise structure of the problem and guarantees strict
feasibility of the iterates. In the whole discussion p > 0 is fixed.

For what follows, define the Lagrangian function of the unconstrained prob-
lem: ~

L(z):= f(T,a) + (A, A(T) — B(a)).

Further, let z4 = (T, a4, At) be the possibly infeasible next Newton iterate,
which satisfies
F(z)+ F'(2)(z4 — 2) = 0. (65)

Our principle idea is to construct a modified feasible iterate zc = (T, a4, A\y)
that satisfies the first row of , ie.

Lr(ze) + U (Thm — Te) + A'(Te)* Ay = 0. (66)

This is an equation in (H')*, which seems to be difficult to solve for T. How-
ever, if we subtract the first row of from we observe that the temper-
ature independent differential operators in A’(-)* cancel out, and we obtain a
pointwise equation in T that depends on z and z,. If we neglect those higher
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Figure 21: Comparison of path-following algorithm with and without pointwise
damping. The horizontal axis: barrier parameter p. Vertical axis: reduction
factor o := pu /p. For pointwise damping one can observe o — 0 for u — 0.

order terms that are independent of [,,, we end up with a pointwise equation of
the form }
Lrr(2)Te + 1, (Tim — Te) = 1(z, 24).

This equation can be solved for T at each node of the discretization. For scalar
equations there are efficient and robust algorithms available (e.g. [18]) , and the
computational cost of performing this step is marginal compared to the overall
computation time.

To obtain a pointwise damping step we use only those Te = T (), for which
|Tc —T| < |T4 — T, these are exactly those, for which Ty > T > T holds.
Hence, we are able to compute a strictly feasible corrected iterate T from a
possibly infeasible iterate T4 in a natural way. It can be shown that

1T =Tyl _ 0
IT-T#]loe—0 [|T — T |lso

This implies that undamped steps are recovered asymptotically, close to a
strictly feasible solution. An estimate for the Newton contraction ©(z) can
be computed in analogy to the case, described above.

Our pointwise damping strategy has a marked effect on the numerical per-
formance of the path-following method. As Figure [21] indicates, an algorithm
without pointwise damping shows relatively slow linear convergence behaviour
for an academic test problem. In contrast, with pointwise damping the reduc-
tion of p often takes place at a superlinear rate. This is particularly beneficial
in the context of our hyperthermia problem.
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Figure 22: Bone and tumour surfaces with adaptively refined grid. Left: frontal
view. Center: sagittal view. Right: zoom into upper femur with 43°C' isosurface;
adaptive refinement occurs near hot spots.

Discretization and adaptive grid refinement. So far, we assumed that
our algorithm can compute Newton steps in function space exactly. However,
this is not realistic, because the Newton steps have to be discretized for com-
putation. Discretization of the temperature 7" and the Lagrange multiplier A is
done straightforwardly by linear finite elements, and the precomputed electric
fields are discretized using edge elements of first order, as described in Section [3]

As an additional numerical difficulty the barrier integrals and their deriva-
tives cannot be evaluated exactly. However, it can be shown that the use of the
trapezoidal rule is sufficient to obtain satisfactory a-priori error estimates (cf.
).

For a-posteriori error estimation and adaptive grid refinement we rely once
more on hierarchical error estimators as already presented in Section [3.1

Discretizing with an extended ansatz space, we obtain a block linear
system of the form (B3):

F'(2)t F'(2)EH 62" o F(z)F (67)
F'(z)HL  F/(z)HH szt ) F()" |
The only difference is that each block of this system is in turn a block matrix

of the form (50). Finally, as in Section[3.1]we end up with the problem of solving
the block linear system

Fl(2)TH5H = pH = —(F(2)" + F'(2)7L520). (68)
Once 0z is computed, one can compute cheaply an estimate in the affine
conjugate norm defined in . If 625 = (0TH 6o, 5AH), define 627 :=
(0TH 5o, —5AH). Then one can compute via that

[lellzro))? = (027, 7)) = (827, F'(2)"H821) = (162" |I3(),
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because the off-diagonal blocks of F'(z)#H cancel out. Hence, we can estimate
the error in the same norm that is used to measure the length of the Newton
steps.

Now we can use these estimates to control the relative error

<5ZH77~’H>1/2

H52L||H(z)

[v(2)] ==

by adaptive mesh refinement. The refinement loop is stopped as soon as the
estimate for [y(z)] drops below a given relative tolerance TOLgise € [0.1,0.5].
A closely related adaptive refinement scheme results from goal-oriented error
estimation for optimal control problems looking at the error in the cost func-
tional [I1 102].

In the context of Theorem [£.7] it can be seen that the corresponding inexact
Newton iteration will converge asymptotically linearly in function space. A
superlinear or quadratic convergence rate is not aimed at, since this usually leads
to needlessly high accuracy and a corresponding dramatic increase of unknowns,
impeding the efficiency of the algorithm.

Solution of linear systems. Finally, we have to solve discretized versions of
the system in order to compute the discretized Newton steps, and also to
solve the defect equation (68)).

This can be done by reducing it to a linear system in the control o € R2¥#~1
via a Schur complement approach. To obtain the reduced linear system, each
of the discretized PDEs A'(T)v = r and A'(T)*w = s has to be solved for
2kp — 1 right hand sides. For a wide range of discretizations a sparse direct
solver (e.g., MUMPS [3]) performs quite efficiently. Alternatively, one can solve
the PDEs iteratively up to a certain accuracy by a preconditioned conjugate
gradient method and perform an outer iteration to obtain a solution of the total
system.

In particular, when solving approximately, the solution of the PDEs
A'(z)v = r and its adjoint can be found iteratively via a Jacobi preconditioned
conjugate gradient method.

Putting all pieces together, which have been described above, we now arrive
at the following pseudo-code.
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algorithm AdaptivePathfollowing(zg, po) (Initial Guess)

for j =1,... (Path-following Loop)
(Z; success) < InexactNewtonCorrector(z;_1;ftj—1)
if success
compute new fi; < i1
Rj z
else
compute corrected f1; > f1j_1
Zj & Zj—1

subroutine InexactNewtonCorrector(z;u) :

do (Newton Iteration Loop)
do (Inexact Newton Step)
RefineMarkedElements
2=z — F)(2) 7 Fy(2)
[llell z7(.)] := ErrorEstimator:Discretization(z)
MarkElements
while [[le| ;(,)] > TOLaisc||z+ — 2|l
compute a pointwise damped iterate z¢
compute [O(z)]
comprte [|2c- — ]|
success = ([||zc — 2"(,] < TOLcorr)
failure = ([0©(#)] > RequiredContraction)
Z < Zc
while not(success V failure)
return(z; success)

5 Impact on Medical Technology

Already the earlier versions of our virtual lab HyperPlan have led to a significant
impact in the treatment of deep regional hyperthermia, part of which we will
present here.

5.1 Redesign of Applicator

During the past ten years the applicator most frequently used for regional hy-
perthermia had been the Sigma-60 applicator of BSD Medical Corp., Salt Lake
City, Utah E| — see Fig. left. This applicator consists of 8 antennas (i.e.

3

meanwhile Munich, Germany
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kg = 4 channels) arranged on a ring with a diameter of 60 cm, hence its name.
The space between the antenna ring and the patient’s body (see Fig. [1] left, in
reality and Fig. left, as computer image) is filled with a water bolus contain-
ing de-ionized water. In early 1988, based on results of our first simulations,
the new Sigma-Eye applicator (see Fig. right), was introduced. It has 24
antennas (i.e. kg = 12 channels) arranged in three parallel rings thus allowing
for an additional power steering along the patient’s axis. The much smaller
bolus volume has an “eye”’-shaped cross-section, hence the name.

Figure 23: Applicator design. Left: Old applicator Sigma-60 with 8 antennas
(kg = 4) and circular cross section, compare also Fig. right. Right: New
applicator Sigma-Eye with 24 antennas (kg = 12) and eye-shaped cross section,
designed on the basis of our simulations.

In order to illustrate the progress, let us document some comparative results.
In Table 3 the computation times for the whole simulation process (on a SUN
UltraSparc), based on the linear BHT as heat transfer model, are listed.

Table 3: Coarse grid computation times (SUN UltraSparc) for the whole simu-
lation process with linear BHT equation. From [31].

Sigma-60 Sigma-Eye
kp =4 kg =12

Grid Generation 15 min

Field Calculation 80 min 120 min
Temperature Calculation 2 min 20 min
Optimization 6 sec 1 min

Note that, essentially due to its smaller bolus volume, the field calculation
time per channel of the Sigma-Eye is only about half the one of the Sigma-60.
Moreover, recall from the cost model @) that the temperature calculation times
roughly increase with k%, whereas the Maxwell solves enter with O(kg).
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In Table[d] the progress in hyperthermia is documented at three patients with
typical tumour locations. Not only in these cases new applicator has proven to
significantly improve tumour heating, keeping “hot spots” in healthy tissue at
a constant level or slightly reducing them. By the way, the second location is
the most difficult one since the tumour is to a large extent enclosed by bony
structures.

Table 4: Comparison of old applicator Sigma-60 and the new applicator Sigma-
Eye for three patients with different tumour locations. From [31].

part of tumour volume
heated to above 43°C

Sigma-60  Sigma-Eye

distal (supraanal) rectal carcinoma  17.5% 62.5%
highly presacral rectal carcinoma 0.7% 18.4%
cervical carcinoma at pelvic wall 24.8% 49.1%

Figure 24: Optimal temperature distribution for some rectum carcinoma at a
frequency of 100 MHz. Left: Old applicator (Sigma-60). Right: New applicator
(Sigma-Eye).

In Fig. we illustrate the progress in the resulting therapy by visualiza-
tions of the optimal solution in both cases.

Frequency study. First frequency studies have already been performed in
1999 by Paulsen et al. [73] for 100, 150, and 200 MHz, but only for power
functionals like ; for their applicator test cases, they came up with an “op-
timal” frequency of about 150 MHz. In Fig. we show our results for the new

96



Figure 25: Optimal temperature distribution in new applicator for some rectum
carcinoma at frequencies different from the one in Fig. right. Left: 150 Mhz.
Right: 200 MHz.

applicator in Fig. 4] right. Over all our simulations in various patient cases, a
frequency around 150 MHz also appeared out to be preferable.

5.2 Case Study: Femural Tumour

In order to give an impression of the computational impact by the new opti-
mization techniques, we finally present a case study. The anonymous patient
data belong to some femural tumour, see Fig. top left. Among the various
objectives from Section [2.4] we selected the Arrhenius functional inside the
tumour. Outside the tumour, in healthy tissue, we imposed the strict restric-
tion T' < 44°C and a mild quadratic penalty term, if tissue were heated above
41°C. To treat the unsure tissue around the tumour, we coated the tumour by
some region (of width just one coarse mesh size): for this region we replaced
the constraints by a strong quadratic penalty term — thus smoothing the tem-
perature profiles to be computed. The 2kg electrical fields have been computed
off-line once; they are a property of the given applicator. In order to satisfy
the temperature constraints in healthy tissue, we applied the barrier algorithm
from Section 4} The intermediate values of the barrier parameter p are auto-
matically determined from some adaptive control as described in Section
In the present example, the path-following method started at g = 0.5 and took
the number of p-steps documented in Table [5| down to to u = 1076, The state,
shown in Figure bottom left, was reached already after 7 p-steps. The
remaining 39 steps have merely been computed for reference purposes. In real
world applications, one, of course, employs an automatic termination criterion.

Numerical central path following. The computational homotopy chain for
pu — 0 started at u = 0.5 and a conservative solution (no 43°C isothermal sur-
face active), see again Fig. top left. Upon examination of the other figures
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in Fig. one observes that intermediate steps may well supply interesting
planning options, depending on additional medical information to be taken into
account, which opens new possibilities to the medical staff in charge of the hy-
perthermia treatment: For large u, the thermal dose is lower than for smaller
values. For smaller and smaller p, the appearance of hot spots becomes clearly
visible. However, due to the barrier regularization, these regions are still be-
low the prescribed upper bounds of 44°C. Hence, some individual weighting
of the occurrence of hot spots versus a better covering of the tumour by the
temperature isosurface may be done.

Mesh history. In contrast to the old penalty approach, the new approach via
the PDE constrained optimization solves the full nonlinear problem including
adaptive mesh refinement within one algorithmic sweep. The geometry of the
tissue regions is adjusted during mesh refinement. For practical reasons, the
maximal number of degrees of freedom had to be restricted. Table [5| gives
details about three refinement levels at different barrier parameters p.

Table 5: Computational effort spent on the therapy planning problem for the
femural tumour. The first line represents a computation on the coarse grid.

tetrahedra unknowns p-steps

74457 28691 39
617178 222972 46
3658357 1275057 95
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Figure 26: Femural tumour: Temperature distributions along the numerical
central path. Light grey grid: bone, medium grey grid: tumour, dark grey
surface: isothermal surface for 43°C. Top left: Just bone and tumour (identical
with g = 0.5). Top right: p = 0.44. Center left: p = 0.42. Center right:
i = 0.38. Bottom left: p = 0.26. Bottom right: pu = 1075, Obviously, the
difference to the bottom left result is marginal.
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