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Abstract

Given the steady increase in cores per CPU, it is only a matter of time
until supercomputers will have a million or more cores. In this article, we
investigate the opportunities and challenges that will arise when trying to
utilize this vast computing power to solve a single integer linear optimization
problem. We also raise the question of whether best practices in sequential
solution of ILPs will be effective in massively parallel environments.

1 Introduction

Prediction is very oh ha difficult, especially about the future.
Niels Bohr

Until about 2006, one could rely on the fact that advances in solver algorithms over
time would be augmented by inevitable increases in the speed of the computing
cores of central processing units (CPUs). This phenomena led to two decades of
impressive advances in solvers for linear and integer optimization problems [9] 22].
Since then, the single-thread performance of processors has increased only moder-
ately, mainly due to improvements in CPUs such as better instruction processing
and larger memory caches. The raw clock speed of general purpose CPUs has
stayed more or less constant, topping out at 5 GHz with the IBM Power6 CPU.
The increases in clock speed that occurred so reliably for decades have now been
replaced by similar increases in the number of processing cores per CPU. Figure
summarizes CPU development since 1985. Currently, CPUs with 12 cores are avail-
able from AMD and Intel is planning to release specialized CPUs with 50 cores for
high-performance computing next year.

Not surprisingly, current trends in supercomputing also involve the use of ever
increasing numbers of computing cores to achieve increases in overall computing
power. Today, the ten fastest machines in the world (as measured by the Linpack
benchmark) have 180,000 cores on average and it is likely that a million cores will be
available soon. While increased clock speeds contribute directly to increases in the
performance of a solver over time, it is not as clear whether increases in the number
of processing cores will be equally beneficial. The natural question that arises
is whether and how we can harness such vast computing power to solve difficult
optimization problems. In what follows, we address this question with respect to
integer linear optimization problems (ILPs), but the discussion applies similarly to
solution of a wide range of problem classes for which enumeration algorithms are
generally employed.

Why is it important to think now about what we can do with a million cores?
After all, such systems are not yet available and may even seem fanciful by today’s
standards. We see several reasons to consider this question. First, we argue below
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Figure 1: Clock speed and number of cores for Intel processors from the 80386DX
in 1985 to the Westmere-EX in 2011

that it is not unreasonable to expect million core systems in the relatively near
future. As it is generally the case that the power of a supercomputer today will
become available in a desktop system within a few years, we may see such computing
power on the desktop within a decade. Even if this were not to come to pass, there
are important applications, e.g., infrastructure planning for power, water, and gas
networks, where the question is not whether we can solve the associated models at
a reasonable cost with current desktop computing technology, but rather whether
we can solve them by any means at our disposal.

No matter what the specifics of future computing platforms turn out to be, it is clear
that parallel algorithms able to run effectively in massively parallel environments
will have to be developed if we expect to continue to see advances in the size and
difficulty of ILPs we can solve. It is therefore important to question what will be
different in such an environment. Do the assumptions we normally make about the
way an ILP should best be solved hold in this environment? It is very likely that
this is not the case. We therefore endeavor to undertake this thought experiment
as a means to examine what long-held beliefs we might have to abandon in order
to achieve efficiency in massively parallel computing environments.

It should be emphasized that what follows is highly speculative and should be viewed
with appropriate skepticism. In order to answer the question posed in the title, we
make assumptions about the future of both computing and optimization technolo-
gies based on our best current understanding of the trends. Performance numbers
given in the paper are based on a few preliminary experiments that the authors
believe are useful to explain certain trends. These experiments should, however, be
questioned, reproduced, and extended before drawing further conclusions.

With respect to solution technologies, we assume that solvers for ILPs will continue
to be enumeration based, i.e., will explore a search tree via a traditional LP-based
branch-and-bound (B&B) algorithm, though we also emphasize that such algorithms
may not be the eventual winners and creative thinking about alternatives is needed.
We assume these future algorithms will derive bounds on subproblems by solving
relaxations of the original ILP that are (continuous) linear optimization problems



(LPs) obtained by dropping the integrality requirements on the variables. We also
assume these relaxations will be augmented by dynamically generated valid inequal-
ities (see, e.g., [33, [1] for details regarding general ILP solving and [35, 32, 3] 28]
for distributed memory solution techniques).

With respect to computing technologies, we assume that the trends observed in the
last five years will continue. For the purposes of describing a future million-core
system, the word core will be used to denote the part of a CPU that executes
single sequences of instructions and the word thread to denote a sequential program
consisting of such a set of instructions. A parallel program will be taken to consist
of a set of threads executing simultaneously either (1) on multiple cores of the
same CPU, (2) on multiple cores of different CPUs sharing a memory space (shared
memory execution), or (3) on multiple cores of different CPUs that may or may not
share memory (distributed memory execution). We assume that each core executes
a single thread, so that there are never more threads than cores (though there
might be more cores than threads). For the foreseeable future, we assume that
computers having a million cores will necessarily use distributed memory with the
overall system consisting of clusters of processing elements (PE). We define a PE
loosely as one shared memory node within this distributed system. One PE might
have one or more CPUs, with each CPU having several cores. More details on what
such a system might look like are given in Section

2 Solvability of ILPs

Before we address the question of which ILPs might be tackled effectively in parallel
with multiple cores, we first examine the reasons why ILPs cannot be solved by
today’s solvers (see also [10]).

1. Genuine weak formulation. An example of this phenomena is the modeling
Sudoku with integer variables [21]. Such weak models arise due to “improper”
modeling on the part of the user. In some such cases, the solver may actually
be capable of automatically reformulating, but often, an improved starting
formulation is necessary to overcome this difficulty.

2. Weak or difficult-to-improve dual bounds. A typical reason for this
behavior is the existence of symmetry in the solution space [0, 25]. Here again,
improving the formulation is the method of choice. Unfortunately, there are
cases in which no better formulation is known. Note that just because a
model produces poor dual bounds does not mean the optimal solution will be
difficult to find. In many cases, the optimal solution can be easily produced—
it is proving optimality that is difficult (see Section .

3. Poor numerical conditioning. Typically, this must be addressed with
either an improved model or a more robust solution technique. For instance,
one might use a so-called “exact” solver employing rational arithmetic [13].
An easier-to-implement alternative would be to use additional branching to
increase precision at the expense of increasing the size of the search tree (see
item @ It is also possible to improve the situation with hardware by the
use of quad-precision floating point arithmetic, but this will also increase the
computational burden (see item .

4. Difficult-to-find primal solutions. Since more B&B nodes can be evalu-
ated per second and more heuristics can be run, we anticipate that more cores
are likely to be helpful in this case. Nevertheless, there is some empirical ev-
idence that failure to find the primal solution is seldom the reason for not



being able to solve an ILP. As in the case of poor dual bounds, finding the
“optimal” dual bound may still be easy in this case (see Section .

5. Long node processing times. Typically, this situation arises either because
solving the initial LP is difficult or because reoptimization is not efficient. It
may also arise due to excessive time spent generating valid inequalities or an
excessive number of inequalities generated. In the absence of a better way to
solve the linear relaxations, we argue that this can be resolved by using more
cores.

6. Large enumeration trees. Any of the above phenomena could contribute
to the generation of large enumeration trees that would simply take too long
to explore sequentially. In such cases, the ability to evaluate more B&B nodes
clearly helps.

7. Model is too big. If there is not enough memory to solve the LP relaxation
of the model on a single PE, solution is impossible with most modern solvers.
We investigate whether a distributed computing approach can overcome this
challenge in Section [7]

In this paper, we focus on showing how using more cores may help for items 5] [6]
and [ above.

3 A Million Core System

As we briefly discussed in Section [, we expect future systems to be composed,
loosely speaking, of clusters of PEs. Table[I]shows the top ten systems of the June
2011 Top500 lisiﬂ all of which fit this description of a supercomputer. If we assume
the availability of 32 core CPUs in the near future and further assume four CPUs
per PE, then each PE will have about 128 cores with a single shared memory space.
A cluster consisting of 8,000 of these PEs would have a million cores. Comparing
these numbers to the current number one supercomputer, the “K computer,” which
has eight cores per CPU, four CPUs per PE, and 17,136 PEs, it is easy to argue
that once 32 core CPUs are available, systems with one million cores will quickly
become standard in supercomputing.

3.1 Architecture

We envision two basic alternatives when it comes to the design of tomorrow’s su-
percomputers. The first is specialty machines like IBM’s BlueGene and the second
is large aggregations of “commodity” PCs. For specialty machines, the number
of cores per PE will likely be much higher than what was described above, while
the memory per core will be lower. Such machines will also likely have extremely
fast interconnect and thus low latency. For aggregations of PCs, one might expect
something more like 64 cores per PE, in which case one would need about 16,000
PEs to get a million cores. These details do not change the broad conclusions drawn
in the following substantially.

The K-computer has 2 GB per core, while contemporary PCs have anywhere from
2-16 GB per core. Assuming 4 GB per core for the million core machine, we would
need 512 GB per PE, resulting in four petabytes of memory for the machine in total.
It seems reasonable to further assume that, in comparison to today’s computers:

e the total memory of the system will increase;

Lwww.top500.org



Table 1: Top500 list as of June 2011

Build Total CPU Cores

# Computer Year Cores Family GHz per CPU
1 K computer 2011 548,352 Sparc 2,00 8
2 NUDT TH MPP 2010 186,368 EMG64T 2,93 6
3 Cray XT5-HE 2009 224,162 x86-64 2,60 6
4 Dawning TC3600 Blade 2010 120,640 EMG64T 2,66 6
5 HP ProLiant SL390s 2010 73,278 EM64T 2,93 6
6 Cray XE6 2011 142,272 x86-64 2,40 8
7 SGI Altix ICE 8200EX/8400EX 2011 111,104 EM64T 3,00 4
8 Cray XEG6 2010 153,408 x86-64 2,10 12
9 Bullx super-node S6010/S6030 2010 138,368 EMG64T 2,26 8
10 BladeCenter QS22/LS21 Cluster 2009 122,400 Power 3,20 9

e the memory per PE will also increase; but

e the memory per core will decrease.

We note that with such a system, reliability becomes a serious issue. It is to be
expected that faults which might be considered very rare today will occur with
regularity. According to [3I], memory errors are correlated with the number of
memory modules installed, but not to the number of bits. Nevertheless, the authors
write that “Uncorrectable errors on 0.22% per DIMM per year make a crash-tolerant
application layer indispensable for large-scale server farms.” In [29], the authors cite
failure rates of 1-2% in the first year and much higher in subsequent years for disk
drives in a large population. At these failures rates, one might expect multiple
drive failures per day in a million core system. Other subsystems, such as power
supplies and motherboards, would also be subject to failure. We discuss approaches
to dealing with such failures in Section [6.2

4 Benchmarking

An important question that must be addressed in order to perform meaningful
experiments with large parallel systems is how to do benchmarking. Even in deter-
mining a proper experimental set-up, there are a number of challenges to be faced,
as we detail below.

4.1 Measures of Performance

Generally speaking, the question to be answered with respect to a parallel algorithm
running on a given parallel system is whether it “scales,” i.e., is able to take advan-
tage of increased resources such as cores and memory. The most commonly used
measure of scalability is the efficiency, which is an intuitive and simple measure
that focuses on the effect of adding of more cores, assumed to be the bottleneck
resource for most computations. The efficiency of a parallel program running on N
threads is computed as
EN = (To/TN)/N,

with Tj being the sequential running time and Ty being the parallel running time
with N threads. Generally speaking, the efficiency attempts to measure the fraction
of work done by the parallel algorithm that could be considered “useful.” An



algorithm that scales perfectly on a given system would have an efficiency of Fny = 1
for all N. A related measure is the speed-up, which is simply

SN = NEN.

Reasons for a loss of efficiency as the number of threads is increased can generally
be grouped into the following categories.

o Communication overhead: Time spent sending and receiving information, in-
cluding time spent inserting information into the send buffer and reading it
from the receive buffer.

e Idle time (ramp-up/ramp-down): Time spent waiting for initial tasks to be
allocated or waiting for termination at the end of the algorithm. The ramp-up
phase includes inherently sequential parts of the algorithm, such as time spent
reading in the problem, processing the root node, etc., but also the time until
enough B&B nodes are created to utilize all available cores.

o Idle time (latency/contention): Time spent waiting for access to information
necessary to continue the computation. This can include time waiting to ac-
cess local memory due to contention with other threads or time spent waiting
for a response from a remote thread either due to inherent latency or because
the remote thread is performing other tasks and cannot respond.

e Performance of redundant work: Time spent performing work (other than
communication overhead) that would not have been performed in the sequen-
tial algorithm. This includes the evaluation of nodes that would not have
been evaluated with fewer threads.

The degree to which we can control/limit the impact of these sources of overhead
determines the efficiency of the algorithm. Note that as long as the size of the tree
stays more or less constant, the number of nodes processed per second per thread
can be used as a proxy for efficiency. We refer to this measure in our analysis below.
Although efficiency is a commonly quoted measure of performance, we must point
out that it is not ideal for a number of reasons. First, it assumes the use of a fixed
test set on which the algorithm can be run to completion on a single thread. For a
million core system, we do not expect problems that can be solved in a reasonable
amount of sequential computing time to be of much interest. It is of course possible
to measure efficiency with respect to a different baseline number of threads, but
even this may not be practical with a million core system where running times
may be limited. In [24], a measure of scalability called the iso-efficiency function is
introduced that measures the rate at which the problem size has to be increased with
respect to the number of processors in order to maintain a fixed efficiency. However,
since size does not correlate well with difficulty in the case of ILPs, choosing a test
set would become even more problematic. A final difficulty with efficiency as a
measure is that it only takes into account increases in the number of cores, whereas
increases in memory may be equally important. We argue in Section [7]that memory
may soon become more of a bottleneck resource than cores. More effort is needed
to develop coherent performance measures for this type of computation.

4.2 Sources of Variability

Unfortunately, even with the use of sensible measures of performance, rigorous
experimentation on the scale we are proposing here is still extremely difficult due
to the high variability experienced in execution of the solver, even when running
on the same platform and solving the same problem. There are two main reasons



for this variability: (1) lack of consistency in running times of single threads due to
hardware effects and (2) lack of determinism in the order of execution of instructions
with multiple threads. We examine each of these below.

4.3 Variance in Running Times

In trying to improve the performance of a single CPU without increasing the clock
speed, chip manufacturers have introduced some techniques that make it inherently
difficult to measure performance consistently.

To begin with, all current multi-CPU systems employ cache coherent non uniform
memory access (ccNUMA), which means that depending on where the specific mem-
ory to be accessed is located, the access time might vary by up to a factor of two.
Because memory allocation may be different from one run to another, running times
may vary due to these effects.

In addition, the latest generation of Intel CPUs employs a so-called TurboBoost
functionality by which each CPU has an energy (or heat) budget. If this is not fully
utilized, e.g., because some of the cores are idle, the clock speed of the working
cores may be dynamically increased. This means that starting a second thread
might decrease the clock speed of the first thread.

Finally, in addition to the physical computing cores, each CPU might have a number
of logical cores through the use of a technique called Hyper Threading (HT) or
Simultaneous Multi Threading (SMT). Typically, there are two (Intel Xenon), four
(IBM Power7), or even eight (Sun T2) logical cores per physical core. Since these
logical cores compete for the physical resources of the CPU, the total computing
power depends very much on the load of the cores. For this investigation, both
TurboBoost and Hyperthreading were switched off when available.

4.4 Nondeterministic Execution

For a single-threaded computer program, one would expect execution to be de-
terministic, i.e., two executions of a program in identical environments should be
identical. However, this is not necessarily the case for a parallel program in a multi-
threaded or distributed-memory environment. When a parallel program’s execution
is not deterministic, performance measurement becomes difficult and must be done
by sampling over multiple runs. For the foreseeable future, this will be too expen-
sive on a million core system. Furthermore, debugging also becomes complex, as
there is no guarantee that a bug will appear at the same stage of the program when
run again.

It is possible to ensure deterministic behavior of a program by forcing all com-
munication between the threads to happen at predefined points in the execution.
However, this leads to increased idle time during the run and degrades performance.
Depending on the size of the system and the variation in processing speed of the
nodes, an extreme loss of efficiency is possible. On a system as described above, it
may be extremely difficult to achieve an identical environment for two runs. As-
suming 8,000 PEs, there will be differences due to errors or genuine differences in
hardware configuration of different PEs. As will be shown in the next section, the
performance of current solvers can change dramatically depending on the number
of threads used. All-in-all, one has to assume non-deterministic behavior of the
solvers.
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Figure 2: B&B nodes processed per thread per second

5 Solving On a Single PE

In solving an ILP on a single (shared-memory) PE, a standard multi-threaded ILP
solver can be used (multi-threading is now available in most commercial solvers).
Implementation is somewhat easier in this case, since the tree can be stored wholly
in the memory and accessed by all threads (though contention becomes an issue
as the number of threads increases). As usual, the important question is whether
the solver performance scales. In [22], the average speed-up for all solvers when
going from 1 to 12 threads was roughly a factor of 3. Since instances that can be
solved within a few B&B-nodes generally will not scale, we examined five instances
from the Large Tree subset of the MIPLIB 2010 [23], namely: glass4, gmu-35-40,
noswot, pigeon-10, and timetabl. Using a 32 core Sun Galaxy 4600 equipped
with eight Quad-Core AMD Opteron 8384 processors at 2,7 GHz and 512 GB RAM
running Gurobi 4.5E|, solving these instances required between 97,223 nodes (noswot,
24 threads) and 665,106,682 nodes (gmu-35-40, eight threads). We can therefore
assume there is ample opportunity to parallelize the processing of the B&B tree.
Gurobi was used as a solver for this test because it was designed from scratch to
utilize multi-core architectures. We assume therefore that its performance would
be representative of the state of the art. All times given in the pictures include the
time for reading the instance, preprocessing, and solving the root node, though the
total time for these tasks was in all cases much less than one percent of the total
running time.

Figure [2] depicts the number of B&B nodes processed by the solver per thread per
second. It is not surprising that noswot exhibits the largest decrease in this measure
as the number of threads in increased, as solving noswot requires both the smallest
number of B&B nodes and the smallest processing time per node. Accordingly, due
to memory contention, the time required to update central data structures is likely
slowing the solver down. The performance of pigeon-10 is perhaps nearest to what

2www.gurobi.com
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one would expect, while the reason for the increase in performance for gmu-35-40
and glass4 when going from one to two threads is difficult to discern. The latter
may be due to changes to the internal settings in the multi-threaded case, e.g., a
higher tendency to dive or a reduced number of heuristic calls per thread. It could
also be due to differences in memory allocation and better use of cache with multiple
threads. In any case, we observe that with respect to this measure, the scalability
properties of these instances look rather promising—the measure is nearly constant
for glass4, and at least acceptable for gmu-35-40, pigeon-10 and timtabl.

Next, we investigate how this translates into parallel efficiency. A snapshot of typical
real-world behavior is shown in Figure (3] Here, the behavior of pigeon-10 is more
or less what one would expect, while the achieved efficiency of the other instances
looks more random and is usually poorer than hoped. When employing 32 threads,
the best of these achieves an efficiency of 0.3, while the typical is more like 0.1.
Worse than this, it is difficult to predict what the efficiency will be ahead of time.
A partial explanation for this can be seen in Figure 4] (note the logarithmic scale of
the y-axis). With the exception of pigeon-10, the number of nodes needed to solve
an instance varies substantially with different numbers of threads and is often higher
than in the sequential case. Especially for glass4 and gmu-35-40, the number of
nodes needed can be as much as 30 times higher than in the sequential case. Even
with no decrease in the number of nodes evaluated per second per thread, this
increase in the total number of nodes evaluated is enough to substantially reduce
efficiency.

We conclude that scaling to higher numbers of threads seems possible for those
instances for which many B&B nodes must be evaluated, provided we can ensure
that the number of nodes needed is not generally much higher than in the sequential
case.



T T T T T T T T T T T T R T T
pigeon-10  +
glass4  x
50 noswot x|
gmu-35-40 O
o x timtabl =
X
3 x x
g 20 « o i
> X
o &l X
o> « X X
% 10 - X e K O X X X X x o X 1
i) X " x o
n n
ij 5 m ™ x n] i " x m - s
© ) L] ] .
[ X X o
8 O n * o ] o
1 2+ o 5% o
@ . "y D x® . x
3 * % ] * *
2 * * [ [ ] *
o 1}l m * * * * * .
§ T T e N T T A B gttt ym R
g ) . .
g 05F % * B
2 O O
o *
0.2 i
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1234586 8 10 12 16 20 24 28 32

# Threads

Figure 4: Total number of B&B nodes processed by number of threads

Table 2: Instances from MIPLIB2010 used as examples

Name Rows Columns Nonzeros Status
Slow LPs  stp3d 159,488 204,880 662,128 solved
Large tree reblock354 19,906 3,540 52,901 solved
Big hawaiil0-130 1,388,052 685,130 183,263,061 unsolved
Big zib01 5887041 12,471,400 49,877,768 unsolved

6 Solving On Many PEs

We now move to the question of whether we can effectively utilize several thousand
PEs to solve one ILP. To get a feel for the answer to that question, we performed
preliminary experiments with the Ubiquitity Generator (UG) Framework [32] em-
ploying SCIP[I] as an ILP solver and using CPLEX lﬂ to solve the LP relaxations.
UG]] consists of a supervisor/worker load coordinator system capable of maintain-
ing the trunk of a B&B tree and distributing the solution of an ILP over 8,000 PEs
by use of the MPI communication protocol. Note that the variation in performance
is higher in a distributed environment and singular results sometimes have rather
complex explanations.

Four instances from MIPLIB 2010 will be used as examples in this and the next
chapter. Table 2| shows some statistics about these instances. The number in the
Column labeled Case corresponds to the list of reasons for failing to solve an ILP
given in Section [2}

Swww.cplex.com
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Table 3: Solving times for stp3d on the HLRN-II ICE2 complex using distributed
memory

Cores 4096 7168
Wall clock time [h] 42.32 30.68
Total CPU time [years] 19.79 25.08
Total Idle time [years] 0.80 1.82
Total Root time[years] 6.85 8.49
Nodes processed 9,779,864 10,328,113

6.1 Preliminary Results

Using UG[SCIP/CPLEX/MPI], the optimal solution to reblock354 from MIPLIB
2010 was computed. 41,918,266,856 B&B nodes had to be processed. This took
about 36 CPU years, delivered in less than one week of real time on 2,000 cores
of the HLRN-II SGI Altix ICE 8200 Plus (ICE2) supercomputer, which consists of
960 Infiniband connected nodes with double quad-core Intel Xeon X5570 processors
at 2.93 GHz with 48 GB memory each.

In the same way, it was possible to solve stp3d, introduced in MIPLIB 2003 [2],
for the first time. Table [3] lists the solution times comparing the use of 4,096 and
7,168 cores. stp3d clearly falls into category [5| of “hard-to-solve LPs” from the
list given in Section [2] as can be seen from the rather low number of nodes. Using
UGISCIP/CPLEX/MPI], an efficiency of 0.79 was achieved when scaling from 4,096
to 7,168 cores, even though the parameter settings proved to be suboptimal.

It should be noted that for the stp3d run, the optimal solution was given as input.
However, this appears to have much less influence on the solution time than one
might think. In fact, there are astonishingly many cases in which having the optimal
solution from the start actually leads to an increased solution time. The important
point to note is that once the optimal solution is found, the remaining execution of
the algorithm basically becomes an exercise in high-throughput computing, as the
order of the processing of the nodes does not matter (much) anymore.

Table[dlist those instances from the MIPLIB 2010 benchmark set which were solved
by SCIP 2.0.1, but needed more than 10,000 B&B nodes. As can be seen in the
table, in all cases considered, SCIP found the optimal primal solution before the
dual bound reached the optimal value. For most instances, the optimal solution
was found before even half of the nodes were enumerated.

6.2 Challenges

There are a number of difficulties with a distributed solution approach and we
outline a few of these challenges here. The biggest of these is the substantial fraction
of the running time occupied by the ramp-up and ramp-down phases (see discussion
in [35]). There are approaches, such as, e.g., racing ramp-up [32], to utilize idle PEs
during the ramp-up phase, but so far, these approaches have not proven to be
effective enough to make up for the reduction in subproblems solved per thread per
second in the initial parts of the algorithm. Ramp-down is usually less critical and,
as opposed to ramp-up, profits from algorithmic developments that make the tree
smaller. Nevertheless, both situations typically decrease the efficiency of the scaling
as the number of threads increase.

Another difficulty is that PEs can run out of memory. Using many cores, a single
PE might produce an excessive number of open B&B nodes when no subtree can be
fathomed. We experienced this, for example, in trying to solve dano3mip. Writing

11



Table 4: % number of nodes processed until first solution and optimal solution

Total % nodes % nodes
Instance nodes at first at optimum
mik 415149 0.0 0.0
iis-100-0-cov 103865 0.0 0.2
noswot 605006 0.0 0.4
n4-3 81505 0.0 1.6
neos-1109824 10792 0.1 1.9
qiu 14452 0.0 2.6
aflow40b 278717 0.0 4.6
pgb_34 257034 0.0 5.8
neos-916792 67445 0.1 14.7
dfn-gwin-UUM 14491 0.0 15.8
€il33 11129 0.0 18.7
ranl6x16 344269 0.0 23.3
roll3000 593902 0.0 27.7
reblock67 139635 0.0 28.1
enlight13 622598 30.1 30.1
bienst2 89641 0.0 30.3
binkar10_1 199430 0.0 39.2
rococoC10-001000 462506 0.0 44.5
iis-pima-cov 11113 0.0 45.9
mcsched 23111 0.0 53.5
neos-1396125 49807 9.1 55.3
mine-90-10 56177 0.0 56.5
timtabl 699973 0.0 60.5
unitcal_7 12264 0.0 63.9
harp2 319153 0.0 79.9
rocll-4-11 27610 0.4 85.5
ns1830653 47032 3.1 85.8
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node files is not feasible, as this would require writing several petabytes to disk.
For the same reason, a transfer of the nodes back to the load coordinator is also
not realistic. A possible solution is to switch to iterated DFS as the node selection
strategy to limit the number of newly created nodes. While this will increase the
number of nodes processed per second, it generally leads to a higher number of
total nodes (see [I] for some details). The bottom line is that the total number of
open nodes is limited (even with the increase due to parallelism), and this can be
problematic.

The third problem comes from the fact that for the foreseeable future, machines
with one million cores will be expensive and somewhat unreliable. This means that
computing time will be limited and runs may have to be interrupted. After having
run two days on a system with a million cores, one would not be willing to throw
the results of the computation away. To remedy this, some way of checkpointing is
necessary. However, as we pointed out previously, writing descriptions of all open
nodes to disk is likely to be excessive. One solution is to write only the roots of
subtrees, as stored by the load coordinator. In this case, some, but not all, work is
lost. The effectiveness of this depends on the instance.

6.3 Opportunities

We have assumed thus far that the size of an instance is small enough to fit into the
memory of a single PE, which limits us a priori to instances of a certain maximum
size. On the other hand, we are able to process a vastly larger number of B&B nodes
per second in parallel, therefore enabling us to solve instances requiring many more
total nodes. In addition, we are able to manage a much larger number of open
nodes than on a single PE.

The biggest challenge is to decide which instances fall into the category of ILPs
for which this type of computing is appropriate. So far, it has proven difficult to
estimate the number of B&B nodes that will be needed to solve an instance early
in the solution process [14, 27]. It remains very unclear how many more instances
could be solved if 10, 100, or 1000 times the number of nodes can be evaluated.
The instances that could probably profit the most from additional node evaluations
are probably those instances for which the LPs are hard to solve and the number of
nodes processed per second is the limiting factor. Here, using a million cores clearly
offers a viable approach.

7 Solving Bigger ILPs

An obvious question that now arises is what to do with instances that are too
big to fit into one PE. If we assume that one PE is big enough to solve a single
LP relaxation, the revised dual simplex algorithm is clearly the method of choice
for solution of LP the relaxations. However, there are cases for which barrier or
even some other alternative are more appropriate choices. One such case is when
the instance is very large, perhaps even too large to solve on a single PE. In this
section, we address this possibility.

7.1 Simplex Versus Barrier

The main advantages of the simplex algorithm are its very good numerical stability,
its excellent warmstart capability, and the fact that it computes vertex solutions.
The biggest drawback is that the simplex algorithm seems to be inherently sequen-
tial. While there has been some success in parallelization in special cases [820], such
as when the number of columns > number of rows, all attempts at general-purpose
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Table 5: Questionable comparison of simplex and barrier algorithms for solving LPs

Simplex Barrier
Basic speed 1 0.6
Warmstart speed-up ~ 5-500x 1 (2-10) x
Parallel speed-up 1(2) x 164 x
Needs crossover no yes
Memory requirement 1x up to 10x

Table 6: Performance of simplex and barrier algorithms on large instances

Instance Solver Method Thrd Mem Tter Time
hawaiil0-130 CPLEX Simplex 1 6 55,877 762
Gurobi  Simplex 1 21 175,782 6,967
CPLEX Barrier 32 39 130 47,933
Gurobi  Barrier 32 56 191 43,037
zib01 CPLEX Simplex 1 7 >15,152,000 >435,145
Gurobi  Simplex 1 10 10,833,995 166,177
CPLEX Barrier 32 38 28 4,953
Gurobi  Barrier 32 51 34 6,455

parallelization have so far failed [34, [I7]. This is in contrast to the barrier algorithm,
which parallelizes quite well. The barrier algorithm, however, lacks warmstart capa-
bilities. A speed-up factor of two from warmstart seems to be consistently possible,
but ten is the maximum speed-up that seems remotely possible at the moment (see,
e.g., [16} 136, 5, 19]). Even worse, the solution provided by the barrier algorithm is
not a vertex solution and since this is needed for generation of several of the most
common classes of valid inequalities, a crossover [26] [I1] procedure has to be per-
formed. This crossover is itself a simplex-type algorithm and therefore sequential.
In [30], the authors estimate that the crossover takes up to 20% of the total solution
time when using 12 threads. Finally, the memory consumption of the barrier algo-
rithm is higher than that of the simplex algorithm. In certain cases, it may need as
much as ten times the amount of memory. Table [5| shows a summary comparison
of the simplex and the barrier algorithms based on the above discussion. Numbers
in parenthesis indicate what is considered possible without having been generally
implemented so far.

The question of whether the simplex or the barrier is the faster algorithm to solve
LPs is not new and is difficult to answer. For small instances, the simplex is often
faster, while for medium-sized instances the barrier seems to hold an edge. There
are two important points. First, it seems the two algorithms are complementary
in the sense that the barrier typically performs quite well on instances for which
the simplex has difficulties and vice versa. Second, there is still no reliable way to
tell in advance which of the two will be faster. Just to give an example, we tested
both algorithms on the two instances hawaii10-130 and zib01 with CPLEX 12.2
and Gurobi 4.5. The results are shown in Table[6} The instances were deliberately
chosen to show opposing aspects of algorithm performance. We compare the single-
thread performance of the simplex to the 32-thread performance of the barrier
algorithm. As can be seen, on hawaii10-130, the simplex is the clear winner, while
on zib01, the barrier is much faster.

A pivotal question, however, is how much it helped the barrier to be able to use 32
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Scaling of CPLEX 12.2. barrier algorithm without crossover for zib01
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Figure 5: Efficiency of solving zib01 with different barrier solvers / including or-
dering / no crossover

threads. We solved instance zib01 using several solversEI with different numbers of
threads. The runs with up to 32 cores were performed on the same SUN Galaxy
4600 as mentioned before. For the runs with 12 cores, a system with two hexa-core
Intel Xeon X5680 CPUs at 3.33 GHz with 32 GB RAM was used. Figure [f] depicts
the results. As can be seen, the barrier algorithm scales well in all cases with up to
four threads, while with CPLEX, it requires 16 threads to bring down the efficiency
to 50%. Nevertheless, with 32 threads, we are down to an efficiency of one third.
Interestingly, this is somewhat similar to what we saw in Figure [3] for solving ILPs.
One of the reasons could be the limited memory bandwidth of the machine. If this
is the case, it will only get worse if more cores are added. As we mentioned earlier,
the number of cores is currently increasing much faster than the overall memory
bandwidth, which is constant for one CPU. Typically, each core has its own L1 and
L2 caches, but the L3 cache and the connection to the memory is shared between
all cores.

Looking at the results of several solvers for the MIPLIB 2010 benchmark set, one
can observe that the geometric mean of the number of simplex iterations needed
to solve the root LP is about 1,500 and the number of iterations needed for reop-
timizing the LP relaxation is about 60. Thus, we have an average speed-up factor
of roughly 25, which is less than what is commonly thought. One must, however,
keep in mind that a low speed-up factor is not necessarily an indication of poor
performance, as it may also be due to a low number of simplex iterations in the
initial solve. In those cases, the speed-up achieved for reoptimization might be
lower than average, although the simplex algorithm is still performing very well.
For gmu-35-40, noswot, pigeon-10, and timetabl, the number of simplex iter-
ations to reoptimize is typically below ten. For instances that can be solved with
such a small number of iterations, the simplex is usually already faster than the
barrier for the initial solve. Empirically, this behavior changes for larger instances,

ACPLEX 12.2.0.2 (www.cplex.com), Gurobi 4.5.0 (www.gurobi.com), MOSEK 6.0.0.106
(www.mosek.com), XPRESS 22.01.03 (www.fico.com/en/Products/DMTools/Pages/FICO-Xpress-
Optimization-Suite.aspx)
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however. The barrier becomes faster at solving the root node in comparison, but
the speed-up ratio for the simplex algorithm increases.

The above leaves two basic options: either use the barrier in order to profit from
the parallelization (but give up the benefit offered by reoptimization) or use the
simplex and leave 127 of our assumed 128 cores idle on each, assuming that we
can only handle one LP relaxation on a single PE due to memory limitations. If
we are in fact limited to solving a single LP relaxation on each PE at any one
time, the simplex might be the only choice, given its lower memory requirements.
However, this gives little hope of utilizing the additional cores efficiently. Though
one typically endeavors to utilize all available CPU cycles and leave some memory
idle, an abundance of cores may require getting used to the idea of leaving the cores
idle and utilizing the memory instead. In other words, it may turn out that the
memory, not the available cycles, may be the bottleneck.

Given that only one LP can be solved on a PE, the additional memory to run an
ILP solver with iterated DFS node selection is small. Therefore, we can assume this
works as described in the previous section, though this might lead to an increased
number of B&B nodes.

7.2 Alternative Algorithms for LP

In addition to the simplex and the barrier methods, there are a number of algo-
rithms [7], e.g., Lagrangian relaxation [15], the volume algorithm [4], and bundle
methods [18], that can compute lower bounds on the LP optimum and might even
converge to it. They usually give lower bounds very quickly, do not need much
memory, and are quite suited for large-scale instances. In fact, there have been a
number of successes for special applications (see, e.g., [I2]). Nevertheless, in the
general case, it seems difficult to use these as a replacement for the simplex or the
barrier. They typically produce no primal feasible solution and the dual solution is
not a vertex solution in general. There might be some hope of using these alterna-
tives for binary problems, but they seem unrealistic for solving general ILPs, i.e.,
without being able to exploit special structure.

8 Conclusion

The only rules that really matter are these:
what a man can do and what a man can’t do.
Captain Jack Sparrow

We conclude by summarizing these three basic cases:

The instance is small enough to run multi-threaded on a PE. Based on
the results of Section [5] an efficiency of E. = 0.2 for a 128 core ILP solver can
reasonably be assumed. This means we can achieve a speed-up of roughly 25. From
Section @, we assume an efficiency for distributing over many PEs of F,. = 0.1,
which means we achieve roughly a speed-up factor of 800 on 8,000 PEs in steady
state. Together, we have:

Eo x N, X Epe X Ny & 20,000

compared to a sequential run. Since we can run easily on one PE, this means,
roughly, we can evaluate as many nodes on the million core machine in one day as
we would be able to compute in two years on one PE in steady state. For instances
with very large trees, the ramp-up and ramp-down phases of the computation should
have a relatively small impact on efficiency.
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Table 7: Inabilities and their cures

Symptom HW cure SW cure
Slow LPs Faster cores LP algorithm improvement
Many nodes More cores ILP algorithm improvement

Big instance More memory Different LP algorithm

The LP relaxation of the instance can be solved on a single PE. In this
case, we face the question of whether to use the simplex or the barrier method. As
described in Section [7] this depends very much on the instance and the available
memory. We can assume the barrier with crossover to run at an efficiency of 0.2,
giving us a speed-up of 25 on a 128 cores machine. This is likely about equivalent
to the speed-up we get from the simplex running sequentially, due to warmstart.
We end up with
Epe X Npe = 800.

The difference with respect to running on one PE is the same as before, but we
compute about 25 times fewer nodes per second. Furthermore, because solving an
LP that needs half a terabyte of RAM will likely take at least ten minutes, the
whole machine will likely be able to compute at most 15 B&B nodes per second.
Hence, the ramp-up and ramp-down phases could begin to impact efficiency.

Solution of the LP relaxation has to be distributed. In this case, a dis-
tributed barrier algorithm would currently be the only choice. Since, to our knowl-
edge, this approach has not been implemented yet, we suppose an efficiency of 0.1
for this method. We then end up with

Npe/Nip x 0.1 x Epe = 10,

assuming we need eight PEs per LP. Even if we assume that we could solve one
distributed LP in 15 minutes, we would have an equivalent performance of 1 B&B
node per minute. This would allow us to compute a few thousand nodes before we
run out of computing time. Also, there would be very severe ramp-up problems.
Furthermore, without a distributed simplex algorithm we will have no cross-over
procedure, which will hamper the generation of cutting planes and will lead to an
increased number of B&B nodes necessary to solve the problem.

In the same sense, many of the primal heuristics would either have to be imple-
mented in a distributed fashion, with the drawback that they rely on solving special
LP subproblems. All kinds of diving heuristics are pretty much out of question with
this approach.

It should be noted that solution methodologies for ILP rely very heavily on the
ability to solve LPs quickly and it therefore seems highly questionable whether a
general-purpose ILP solver for instances that need distributed solution of LPs is
useful. In those cases, it seems much more promising to implement specialized
methods.

Table [7] give an overview of what change would help to solve which challenges.
Faster cores would help in all cases (this was depended upon for decades). Increased
numbers of cores may help in cases where the LP solution times are slow and may
also help with very large instances, but the latter case is hampered by memory
bandwidth constraints, the requirement for sequential LP solution algorithms, and
ramp-up/ramp-down issues. Better LP algorithms would help a lot for big instances.
So what should we take away from all of this? Unfortunately, the effect of the devel-
opment of algorithms for ILPs that are considered “better” in the traditional sense
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of sequential computing time is usually a reduction in the size of the tree, which
actually results in less efficient parallelization. The path to development of more
efficiently parallelizable algorithms is thus very unclear. One thing is clear, however.
Straightforward parallelization of algorithms developed originally for sequential ex-
ecution seems to have limited scalability. To move forward, we must begin to think
out of the box. It may be that the key is to embrace a completely new solution
paradigm that breaks from the traditional strategies we have until now used quite
successfully. Rather than drawing any solid conclusions, we end this investigation
by posing some challenge questions that may help move us in new directions.

e Most current ILP solvers are designed under the assumption that computing
cycles are the main bottleneck. This is not true any more if a million cores
are available. What implications does this have on the solver algorithms?

e During the solution of an ILP, there are typically several phases, e.g., the time
until the first feasible solution is found or the time until an optimal solution
has been discovered but not yet proved optimal. Especially in the case of item
[0] from the list given in Section [2] the distribution of time between the phases
might substantially change. Again, the question arises, which implications
this has on the ILP solver?

e Typically, the time until 1 million active B&B nodes are available is consid-
erable. A similar effect occurs at the end of the computation. What should
we do during these so called ramp-up and ramp-down phases to utilize the
available computing resources?

e Decomposition has always been a topic with much potential that is difficult
to realize. Might this be the way to go?

e The main obstacle to solving bigger ILM is the solution of the LP subproblems.
The simplex method does not scale with the number of cores and the barrier
algorithm is not well suited for re-solving LPs as they occur in B&B based
ILM solvers. Improvements in this area will directly translate in an increased
ability to solve bigger instances.
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