Konrad-Zuse-Zentrum fiir Informationstechnik Berlin

Heilbronner Str. 10, D-10711 Berlin-Wilmersdorf, Germany

Atef Abdel-Aziz Abdel-Hamid
Ralf Borndorfer

On the Complexity
of

Storage Assignment Problems

Preprint SC-94-14 (June 1994)

On the Complexity of Storage Assignment Problems

Atef Abdel-Aziz Abdel-Hamid* Ralf Borndorfer!
June 20, 1994

Abstract. The storage assignment problem asks for the cost minimal assignment of containers with
different sizes to storage locations with different capacities. Such problems arise, for instance, in the
optimal control of automatic storage devices in flexible manufacturing systems. This problem is known
to be NP-hard in the strong sense. We show that the storage assignment problem is ANP-hard for
bounded sizes and capacities, even if the sizes have values 1 and 2 and the capacities value 2 only, a
case we encountered in practice. Moreover, we prove that no polynomial time e-approximation algorithm
exists. This means that almost all storage assignment problems arising in practice are indeed hard.

Keywords. flexible manufacturing, complexity theory

Mathematics Subject Classification (1991). 68Q25, 90B06, 90C60

1 Introduction

Consider two disjoint sets S and C to be the left and right node sets of a complete bipartite graph
G =(V,E) :=(SUC,S x C), node weights s : S — Z" and ¢: C — Z* and edge weights w : E — Z™.
Denote by §(v), v € V, the set of edges incident to v, by deg(v) := |0(v)] its valency. A feasible assignment
in (G,c,s)is aset A C E of edges, such that i) | S(i)NA |= 1 for each i € S and ii) 3=, c5(;)na 5i < ¢
for each j € C. The storage assignment problem (SAP) is to find a feasible assignment A* with minimal
Welght ZijGA* ’LUz'j.

This name is motivated by the following interpretation. S is a set of containers (s; = size of container),
C' a set of capacitated storage locations (¢; = capacity of location j). Storing container ¢ in location j
has a cost of w;;. The task is to store all containers in the locations cost minimally obeying the capacity
restrictions (sum of the sizes of the containers assigned to a storage location must not exceed its capacity).
Introducing binary variables x;;, ij € E, that are 1 if container ¢ is stored in location j and 0 otherwise,
the SAP can be modelled as the following integer programming problem, see [Abd94], [AG94].

min E E Wi T4

i€S jeC
Z Ty = Vi € S

(SAP) jec
Z 8ixi; < ¢ Vi e C

i€S

The SAP came up in a joint project with the production plant “Werk fiir Arbeitsplatzsysteme” of Siemens
Nixdorf Informationssysteme (SNI) in Augsburg, Germany, that manufactures PCs and PC-related prod-
ucts. A bottleneck in the production process was the operation speed of the automatic storage systems of
the factory. One of the aspects that influence this speed is the strategy of assigning boxes to free storage

*Konrad Zuse Zentrum fiir Informationstechnik Berlin, Heilbronner Strafie 10, 10711 Berlin-Wilmersdorf, Germany, On
leave from Department of Engineering Mathematics & Physics, Cairo University, Egypt

fKonrad Zuse Zentrum fiir Informationstechnik Berlin, Heilbronner Strafle 10, 10711 Berlin-Wilmersdorf, Germany and
Technical University of Berlin, Fachbereich 3 Mathematik, Sekretariat MA 6-1, Strale des 17. Juni 136, 10623 Berlin,
Germany

locations or how to solve the SAP, see [Abd94], [AG94]. In our application, containers are of sizes 1 and 2
and location capacities vary from 1 to 3, i.e. s: .5 — {1,2} and ¢: C — {1,2,3}. We call this special
SAP box assignment problem (BAP).

It is known that SAPs are N/P-hard in the strong sense, see e.g. [MT81], [MT91]. But the transformations
used in the A/P-hardness proofs do not work for bounded sizes and capacities, i.e., the case of the BAP.
But this is the practical relevant case. We determine in this article the complexity of the BAP. The
following results will be shown in the sequel.

e BAPs (and thus SAPs) are A/P-hard, even if all sizes are 1 and 2 and capacities are 2 only.
e No polynomial time e-approximate algorithm for BAPs (and thus for SAPs) exists.

e The problem of deciding whether a SAP has a feasible solution is polynomially solvable for all
bounded sizes and capacities.

Thus, basically all storage assignment problems arising in practice, in particular the one we encountered at
SNI, are indeed hard. Finding a solution of provable quality guarantee is also hard. These results motivate
a polyhedral study of the problem to design a cutting plane algorithm. Computational experiments have
shown that real-world SAPs, for example the ones at SNI, can be solved to optimality with this approach
efficiently, see [Abd94], [AG94].

2 Complexity
The following decision problem BAPp can be associated with the BAP.

Given two disjoint sets S and C, that form the left and right node sets of a bipartite
(BAPp) graph G = (SUC, E), “sizes” s: S — {1,2} and “capacities” c¢: C' — {1,2,3}.
Does there exists a feasible assignment in (G, ¢, s)?

Note that in BAP the graph G is complete. The reason is that —in principle— it should be possible
to store any box ¢ in any location j if s; < ¢;. (To simplify notation, we also include the edges ij with
s; > ¢;.) In BAPp this is not the case. It may happen that an edge ij ¢ E although s; < ¢;.

The first step in establishing that BAP is MP-hard, even if all sizes and capacities have values 1 and 2
will be to show that BAPp is A’P-complete. This will be done by reducing the AN’P-complete Independent
Set Problem (ISPp) [GJ79] to BAPp. A node set of a graph is called independent or stable, if no two
nodes in it are adjacent.

Given a graph G = (V, E) and a positive integer k.

ISP
(ISPp) Does G contain an independent node set of size k7

Theorem 1 BAPp is NP-complete, even if all sizes and capacities have values 1 and 2.

Proof. BAPp is in AP, because a nondeterministic algorithm need only guess a feasible assignment and
check in polynomial time that it is indeed one.

We now transform ISP to BAPp. Let an arbitrary instance of ISPp be given by the graph G = (V, E)
and the positive integer k. We must construct an instance (G’, ¢, s’) of BAPp, i.e., a bipartite graph
G' = (8" UC', E’") with left nodes S” (“box nodes”) and right nodes C’ (“location nodes”), sizes s :
S" — {1,2} and capacities ¢ : C" — {1, 2}, such that (G’, ¢/, s") has a feasible assignment if and only if
G contains an independent set of size k.

The graph G’ associated with the instance of BAPp can be viewed as consisting of components.

First, there will be k “selector nodes” ay, ..., a; which will be used to select k nodes from V. The selector
nodes are box nodes of size 2 (a; € §', s, =2,i=1,...,k).

Second, for each original node v in G, G’ contains a “cascade component” «y,. The main part of each -,
is a rooted tree with at least deg(v) leaves. The tree can be viewed as being iteratively composed from
a “root component” and one or more “leaf components”. The structure of both components is shown in
Figure 1.

Root Component Leaf Component

Root Root Legend

O Box Node of Size 1
Box Node of Size 2

[] Location Nodeof Size1
[[] Location Nodeof Size2
L eaf Leaf L eaf Leaf

Figure 1: Components of a Cascade Tree

Initially, the tree consists of a root component only. This root component forms the top of the tree in
any cascade, its root is also the root of the tree. If deg(v) < 2 the root component is already the whole
tree. Otherwise, a copy of a leaf component is attached to each leaf of the tree in such a way that an
edge joins its root to the corresponding leaf. In this way the number of leaves doubles. This step is
repeated until the number of leaves exceeds deg(v). This happens after [log, deg(v)] steps when the tree
has 2M1°g2deg()] < 2 deg(v) leaves. We now pick deg(v) leaves and label them with the edges incident
to v. The cascade is completed by adding a “garbage collection node” for each of the 21082 deg(¥)1 _ deg (v)
remaining unlabelled leaves that is joined by an edge to its leaf. Garbage collection nodes are location
nodes of capacity 1. An example of a cascade component for a node of degree six incident to six edges
a,b,c,d,eand f is shown in Figure 2.

Root of
Cascade Tree Root Component
2 Leaf Components
4 Leaf Components
Leaves
Garbage Collection Garbage Collection
Nodes Component

Labelled Leaves Unlabelled
Leaves

Figure 2: Cascade Component for a Node with Degree six

The last component of G’ is an “adjacency testing component”. Together with the cascade components
it will be used to test whether two selected nodes are adjacent. It consists of an “edge node” for each
edge in G which is a location node of size 1.

The construction is completed by connecting the components by additional edges.

First, each selector node is connected to all root nodes of the cascade components.

Second, each edge node corresponding to an edge ij € F is connected to the leaf nodes labelled ij of the
two cascades ~y; and ;.

This completes the construction of the instance (G’ ¢, s’) of BAPp. Figure 3 shows a graph G and the
associated instance (G', ¢, s") of BAPp for k = 2.

Selector
Nodes

Cascade

Components

Edge
Nodes

Figure 3: A Graph and the Associated Instance of BAPp for k = 2

It is not hard to see that this transformation can be done in polynomial time.

We show now that (G’, ¢/, s") contains a feasible assignment if and only if G has an independent set of
size k.

Suppose V* = {v1,..., v} is an independent set in G. A feasible assignment A’ in G’ can be constructed
as follows. Adopting standard terminology, the father of a node v in a rooted tree is the next node on
the unique path from v to the root, the sons are all nodes adjacent to v but the father. Consider the
cascades 7,,v € V' \ V*. Tt is easy to see that all box nodes in 7, can be assigned to their fathers inside
~y. For the remaining cascades v,,,7 = 1,..., k assign selector node a; to the root node of cascade ~,,.
This forces all box nodes in 7,, to be assigned to their sons. Then, the unlabelled leaves have to be
assigned to their corresponding garbage collection nodes and the labelled leaves have to be assigned to
their corresponding edge nodes. This completes the construction of the assignment A’. A’ is feasible,
because at most one labelled leaf node (of size 1) is assigned to each edge node (of capacity 1). Suppose
the contrary, i.e., there is an edge node v;v; and two labelled leaves of the cascades ,, and v, that are
both assigned to v;v;. The reason that the leaf nodes are assigned to v;v; is that two selector nodes are
assigned to the root nodes of the cascades v,, and v,,. But then v; and v; belong to the stable set V*
and the edge v;v; cannot exist in G, a contradiction.

Conversely, suppose G’ has a feasible assignment A’. Then the selector nodes a1, ..., a, are assigned
to the root nodes of cascades v, ,...,V,. Then the labelled leaves of cascades v,,, ..., Y, have to be
assigned to their corresponding edge nodes. We will show that the selected nodes vy, . . ., vy form a stable

set in G. Suppose v; and v; are adjacent. Each cascade ,, and 7,, contains a labelled leaf v;v; of size 1
and both of them are assigned to the edge node v;v; of capacity 1 — a contradiction.
Since we used sizes and capacities having values 1 and 2 only, this completes the proof of the theorem. I

Increasing the capacities of the edge and garbage collection nodes to 2 and connecting each of them to
one additional corresponding “dummy” box node of size 1, one can easily prove

Corollary 1 BAPp is NP-complete, even if the box sizes have values 1 and 2 and the capacities have
value 2 only.

3 Optimization and Feasibility

Corollary 2 There is no polynomial time e-approzimate algorithm for BAP for any € > 0 unless P =
NP, even if all sizes have values 1 and 2 and capacities have value 2 only.

Proof. Suppose A is an e-approximate algorithm for BAP for some fixed, but arbitrary ¢ > 0. We can
use A to solve BAPp (sizes and capacities restricted to {1,2} and {2} respectively) in polynomial time.
Let an arbitrary instance (G, ¢, s) of BAPp with restricted sizes and capacities be given by the graph G =
(V,E)=(SUC, E), sizes s : S — {1,2} and capacities ¢ : C' — {2}. Add all missing edges F from S to
C' to obtain the complete bipartite graph G’ = (V, E U F). Define edge weights

e ije E
YT A+ oV +1], ijeF.

(G, ¢, s,w) is an instance of BAP. The transformation is polynomial.

Denote by wept the optimal objective value of (G’,¢,s,w) and let A be an assignment found by the
algorithm A with quality guarantee e.

If (G, ¢, s) has a feasible assignment A’, A’ will also be a feasible assignment for (G', ¢, s,w), A’ C E and
thus A’ has costs |A’|. This implies for the costs of A

D wij < (L+wop < (14 €)|A| < (1+¢)|V[%
ijEA
V|2 < |A| since |[A/| < |S x C| < |S]|C| < V]2

If (G, ¢, s) has no feasible assignment, A contains at least one edge from the expensive edge set F and we
have

Z wij > Wopy > [(L+€)[V]* +1] > (1 +¢)|V]*

ijEA
Thus,
(G, ¢, s) has a feasible assignment <= Z wi; < (1+€)|V)?
ijEA
and we can solve BAPp in polynomial time — a contradiction. O

Corollary 3 BAP is NP-hard in the strong sense, even if all boz sizes have values 1 and 2 and capacities
have value 2 only.

The graphs associated with the instances of BAPp are not complete. Theorem 1 states that it is NP-
complete to determine whether an instance of BAPp has a feasible solution. In SAPs, the graphs are
complete. We will show now that it is then possible to decide in polynomial time the existence of a
feasible solution provided the sizes and capacities are bounded.

For any positive integer M, the following decision problem SAPY can be associated with the feasibility
question of SAP.

(SAPM) Given an instance (G, ¢, s, w) of SAP with both max;cg s; < M and maxjec¢; < M.
D Does there exists a feasible assignment in (G, ¢, s, w)?

To show that SAPY is polynomially solvable for any arbitrary, but fixed M, we will transform SAP#

to the bin packing problem BP%. It is known that the bin packing problem is polynomially solvable for

any fixed “bin capacity” B € ZT, see [GJT9].

Given a finite set U of items, sizes s : U — ZT for each u € U and a positive integer k.
(BP%) Does there exists a partition of U into disjoint sets Uy, ..., Uy such that the sum of
the sizes of the items in each U; is B or less?

We will call a partition Uy, ..., U, such that the sum of the sizes of the items in each “bin” U; is B or
less a feasible partition.

Theorem 2 SAPY is polynomially solvable for any fized, but arbitrary bound M € 7.

Proof. Let B :=2M + 1. Then B is fixed for fixed M and BPZ is polynomially solvable.

We transform SAPAD/I to BP%. Let an arbitrary instance (G, ¢, s, w) of SAPAD/I be given by the complete
graph G = (SUC,E), sizes s : S — {1,2,..., M}, capacities ¢ : C — {1,2,..., M} and weights
w: E — Z% (we can ignore the weights here). We must construct an instance (k, U, s’) of BPE, i.e., a
set U of items, sizes s’ : U — ZT and an integer k, such that (k, U, s') has a feasible partition if and only
if (G, ¢, s, w) has a feasible assignment.

We construct (k,U, s’) as follows.

First, we will use k := |C| bins. Each bin j corresponds in one to one manner to the storage location j.
Second, the set of items consists of two types of items. There will be |C| items called “location items”
ai,...,a)c|, that will be used to reduce the capacities of the bins to become exactly the capacities of the
corresponding storage locations. Each location item a; has size B — ¢; > M + 1 > B/2. The remainder
of the items, called “box items”, is formed by the set of boxes S. The box items keep their original sizes
s'(i) = s(i) for all i € S. Thus, U := {a1,...,a)c/} US and

. Boc;,>M+1, ifi=a,

st(l):{s(i),J itics
This completes the construction of the instance of BPB. The transformation is polynomial because B is
a constant.
We now show that (k, U, s’) has a feasible partition if and only if (G, ¢, s, w) has a feasible assignment.
Suppose A is a feasible assignment in (G, ¢, s,w). We can construct a feasible partition Uy, ..., Ujc| as
follows. Let U; := {a;} U {z eS:ijeds(dn A},j =1,...,|C|. So each U; comprises its corresponding
location item and the box items, whose corresponding boxes are assigned to location j. Then each item
is contained in exactly one bin and the sum of the sizes of the items in each bin U; is

Z §'(i) = §'(aj) + Z §(i)<B—-cj+c;=B

i€U; 1€S:jE8(5)NA
and Uy, ..., U)c) is a feasible partition.
Conversely, suppose (k, U, s’) has a feasible partition. Since the sum of the sizes of any two location items
a; and a; is 8q;, + 8q; = B—c; + B —c¢; =4M +2 —¢; —c¢; > 2M + 1 = B, each bin U; contains exactly
one location item. Without loss of generality, we can assume a; € U;. Consider the remainder of the
items in bin U;. Their sizes add up to

Yo i)=Y s())<B-5(a;)=B—(B-¢;)=c;
i€SNU; i€SNU;
We can thus assign the boxes in SN Uj to location j and obtain A := Ujec{ij 1 eSN Uj} as a feasible
assignment in (G, ¢, s, w).
This means that we can obtain a polynomial algorithm for SAPY by first polynomially transforming
the instances of this problem to instances of BPS and then solve these instances with a polynomial time
algorithm for BP5. O

4 Summary

The complexity status of SAPs is summarized in the following table.

SAP Maximal Capacity
Maximal Size 1 > 2
1 P (Assignment Problem) | P (Transportation Problem)
>2 P (Assignment Problem) NP-hard

Table 1: Complexity Status of Storage Assignment Problems

Moreover, the e-approximation problem for arbitrary quality guarantee € is also not polynomially solvable,
even if sizes and capacities are restricted to {1,2} and {2} respectively, unless P = AP. This shows,
that basically all storage assignment arising in practice are indeed difficult if one wants to solve them to
optimality or to proven quality.

On the other hand, it is possible to solve the feasibility problem for SAPs in polynomial time for bounded
sizes and capacities.

The complexity results in this article motivate a polyhedral investigation of storage assignment problems
to design a cutting plane algorithm.

References

[Abd94] A. ABDEL-Az1z ABDEL-HAMID, Combinatorial optimization problems arising in the design and

[AG94]

[GJT79]

[MT81]

[MT91]

management of an automatic storage system, PhD dissertation, Technical University of Berlin,
1994.

A. ABDEL-Az1Z ABDEL-HAMID AND M. GROTSCHEL, Storage assignment in flexible man-
ufacturing: Polyhedral investigations and a cutting plane algorithm, Tech. Rep. SC-94-13,
Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, Heilbronner Strale 10, D-10711 Berlin-
Wilmersdorf, Germany, 1994. Submitted to STAM Journal on Optimization.

M. GAREY AND D. JoHNSON, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W.H. Freeman and Company, New York, 1979.

S. MARTELLO AND P. TOTH, An algorithm for the generalized assignment problem, in Opera-
tional Research’81, J. Brans, ed., North-Holland, Amsterdam, 1981, pp. 589-603.

S. MARTELLO AND P. ToOTH, Knapsack Problems — Algorithms and Computer Implementa-
tions, John Wiley and Sons, New York, 1991.

