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Minimum Cost Hyperassignments with
Applications to ICE/IC Rotation Planning

Ralf Borndorfer Olga Heismann

Abstract

Vehicle rotation planning is a fundamental problem in rail transport.
It decides how the railcars, locomotives, and carriages are operated in
order to implement the trips of the timetable. One important planning
requirement is operational regularity, i.e., using the rolling stock in the
same way on every day of operation. We propose to take regularity into
account by modeling the vehicle rotation planning problem as a minimum
cost hyperassignment problem (HAP). Hyperassignments are generaliza-
tions of assignments from directed graphs to directed hypergraphs. Find-
ing a minimum cost hyperassignment is A’P-hard. Most instances arising
from regular vehicle rotation planning, however, can be solved well in
practice. We show that, in particular, clique inequalities strengthen the
canonical LP relaxation substantially.

1 Introduction

Vehicle rotation planning, also known as rolling stock roster planning,
deals with the allocation of vehicles to trips in a timetable, see [4]. We
focus in this article on a basic version of the problem that deals with
the construction of a cyclic schedule for a standard week, disregarding
maintenance, train composition, and some other side constraints. In this
setting, we are looking for an assignment of each trip to a follow-on trip
which will be serviced by the same vehicle.

Such an assignment is considered operationally regular, if many timetabled
trips are followed by the same timetabled trips on as many days of the
standard week as possible, i.e., if trip 4711 is followed by trip 4712 on
Monday, this should also be the case on Tuesday, Wednesday, etc. (pro-
vided that these trips exist on these days). In practice, most trips appear
on almost every day of operation. In other words, the weekly timetable
is largely regular, such that there is a good chance to also construct a
regular vehicle rotation plan.

Regular vehicle rotation plans are easier to communicate and under-
stand than non-regular ones. They standardize operations, increase ro-
bustness, and facilitate real-time scheduling. It is therefore essential to in-
clude regularity in vehicle rotation planning models. This can be achieved
by considering a suitable concept of hyperassignments, as we will show in
the following sections.



2 Notions on Directed Hypergraphs

We start by recalling some basic notions on directed hypergraphs, see also
[1] for an introduction (with slightly different requirements for hyperarcs).

Definition 2.1 (Directed Hypergraph, Directed Graph). A directed hy-
pergraph D is a pair (V, A) consisting of a vertez set V and a set A C
2V x 2V of hyperarcs (T, H,) such that T, H, # 0. We call T, the tail
of the hyperarc a € A and H, the head of a. A hyperarc a is called an arc
if |Hq| = |T,| = 1. If all hyperarcs are arcs, we call D a directed graph.
Definition 2.2 (Outgoing and Ingoing Hyperarcs). Let D = (V, A) be a
directed hypergraph. For W CV, B C A we define

SF (W) :={a€B:T.n\W #0} and 05(W):={a € B: H,\W # 0}

to be the outgoing and ingoing hyperarcs of W, respectively. For §%*({v})
and 6% ({v}) we simply write 63" (v) and 8% (v), respectively. If no set B
is given in the index of §°" or §™, B is assumed to be the full hyperarc
set of the hypergraph in question.

Definition 2.3 (Cost Function). Given a set S, a cost function is a
function ¢cs : S — R. For T' C S we define

cs(T) = Z cs(s).

seT
We are now ready to propose hyperassignments.

Definition 2.4 (Circulation, Hyperassignment). Let D = (V, A) be a
directed hypergraph. Z C A s called circulation in D if |63 (v)| = |05 (v)|
for every v € V. A circulation H C A in D is called a hyperassignment if
for each v € V |63 (v)| = 1.
Problem 2.5 (Hyperassignment Problem (HAP)).
Input: A pair (D, ca) consisting of a directed hypergraph D = (V, A)
and a cost function ca : A — R.
Output: minimum cost hyperassignment in D w.r.t. ca, i.e., a hy-
perassignment H* in D such that ca(H*) = min{ca (H) : H is a hyperassignment in D},
or the information that no hyperassignment in D exists if this is the case.

An ILP formulation of the hyperassignment problem is as follows:

minimize Z cala)za (HAP)
a€A

subject to Z Tq — Z To =0 YveV (1)
a€din(v) a€sout(v)

Yo wa=1 WwevV (ii)
a€sout (v)

>0 (i)

zez” (iv)

3 Complexity of the Hyperassignment Prob-
lem (HAP)

We study in this section the complexity of the HAP. Despite its simple
form, the problem turns out to be A’P-hard even for directed hypergraphs
with head and tail cardinality 2. In fact, already the LP-relaxation can
be numerically complex.



Theorem 3.1. Given a directed hypergraph D = (V, A) satisfying |To| =
|Ho| < 2 for all a € A and a cost function ca : A — R, HAP with input
(D,ca) is NP-hard.

Proof. The 3-dimensional matching problem is NP-complete (see [2], page 46).
Given an undirected hypergraph U = (N WO U P, E), |[N| = |O| = |P|,
leNN|=lenO|=lenP|=1 Ve¢€ E, it asks whether a partitioning of
U into a subset of elements of F exists.

Construct a directed hypergraph D = (V,A) with V. = NUOU
{{p} x {0,1} : p € P} and

A= A1 U A,
Al = {((eﬂN)U(eﬂO),{(eﬂP,OL(eﬂRl)}) (e € E},

A ={({enP,0)},enN), ({(en P,1)},en0) e € B},

This can be done in polynomial time and the resulting hypergraph satisfies
|T.| = |Ha| < 2 for all a € A. Choose ca : A — R,ca = 0. Then HAP
with input (D, ca) returns a hyperassignment with cost 0 if and only if a
partitioning of U exists. The chosen hyperarcs from A; correspond to the
edges e € E in the partitioning of U. This proves the theorem. 0O O

The determinant of submatrices of the coefficient matrix of an ILP is
a complexity indicator. For example, if the coefficient matrix is totally
unimodular, the LP relaxation is integral. In general, by Cramer’s rule,
the denominator of the variable values in a basic solution of an LP is at
most the determinant of the basis matrix (if the numerators and denom-
inators are relatively prime). For the LP relaxation of the (HAP), the
denominators, and therefore also the determinants of basis matrices, can
be arbitrarily large. This is the case even if one allows only hyperarcs with
head and tail cardinality at most two. The following example illustrates
this fact.

Let s be a positive integer and consider the following directed and head
cardinality at most two. We want V' = {u,v;,w;,: 1 € {0,...,s — 1}} and
A= Al U A2 Wlth

Ay = {({vi,wi}, {vi,wi}) 1€ {0,...,5 — 1}},
A2 = {({u’vi}7 {w(i+1) mod sau}) 5 ({wz}7 {u}) 5 ({u}, {U»L}) 11 € {07 e, 8— 1}} .

The only feasible solution of the LP relaxation of (HAP) is z, = 251
for all a € A1 and z, = 2—15 for all a € As. Thus the determinant of the
basis matrix is at least 2s.

An upper bound on the modulus of the determinant is [], 4 |Tal if
the hypergraph D = (V, A) can be extended to a graph based hypergraph
by adding arcs (this is also true for the hypergraph of the example). This
is the case if head and tail cardinalities are equal for each hyperarc. Since
every column of the basis matrix can be represented as the sum of columns
for the corresponding arcs and basis matrices of (HAP) for directed graphs
are totally unimodular, i.e., have determinant with modulus 0 or 1, we
can apply the multilinearity of the determinant until we get only such
matrices and obtain the bound.

We remark that one can also prove that the gap between the optimum
solution of the LP relaxation of (HAP) and the minimum cost hyperas-
signment can be arbitrarily large. An example of such a HAP instance




on a hypergraph with only 6 vertices is given in [3]. Moreover, the re-
duction from the 3-dimensional matching problem implies that HAP is
APX-complete.

4 Hyperassignment Model for Regular Ve-
hicle Rotation Planning

Considering regularity in vehicle rotation planning leads to the minimum
cost hyperassignment problem, as we will show now.

Suppose we are given a weekly repeating schedule for long distance
trains with all trips that a railway company wants to operate. A trip is
characterized by its departure day, departure time, departure location,
arrival location, and its duration.

Every trip has to be serviced by a vehicle. Between arrival and de-
parture there may be several intermediate stops, but the vehicle must not
change during the trip.

After servicing a trip, a vehicle does a deadhead trip (possibly of dis-
tance zero) from the arrival location of the trip to the departure location
of the next trip it services. This deadhead trip has some duration. After-
wards, when the weekday and departure time of the next trip has come,
the vehicle services this next trip.

A wvehicle rotation plan is an assignment of each trip to another follow-
on trip. This assignment tells every vehicle which trip it has to service
next. Since the schedule is periodic, the sequence of trips for every vehicle
is periodic, too. The period is a positive integral multiple of a week.

The cost of a pair of trips in the assignment depends on the duration
and distance of the associated deadhead trip and on the duration of the
breaks before and after the deadhead. Clearly, the longer the deadheads
and the breaks are, the more vehicles the railway company needs.

The aim is to find an assignment of minimum cost. It is apparent that
vehicle rotation planning as explained so far can be formulated in terms of
an assignment problem in a directed graph D = (V, A), where the vertices
V' are the trips and there is an arc a € A from every trip to every possible
follow-on trip.

Now we include operational regularity. We associate with each trip
v € V a departure weekday d, € {Mo,...,Su}. We group all trips that
differ only in the departure weekday and call such a set a train.

Given an assignment, we can count for each train the number of non-
regular deadheads in the trips assigned to the trips of the train. Two
deadheads are non-regular if the trains the next trips belong to are dif-
ferent or the breaks have a different length. Otherwise they are regular.
The less the number of unequal deadheads in the vehicle rotation plan,
the higher the operational regularity.

This criterion can be modeled in terms of a hyperassignment problem.
To this purpose, we define hyperarcs as follows. For each possible set of
deadhead trips a1,...,aq € A with the same length between the trips of
two trains we introduce a hyperarc a € A where T, = Ule T,, are the
timetabled trips of the first train and H, = U?:l H,, are the timetabled
trips of the second train between which the deadhead trips take place. To
reward regularity, we set ¢, < Ele Ca;- Then we can choose the hyperarc
a for the hyperassignment if we would use a1, ..., aq in the assignment to
get lower costs. The difference ¢, — ZLI Ca,; is the bonus for operational
regularity.



Table 1: Computational results with real-world vehicle rotation planning prob-
lems using (HAP) and CPLEX 12.1.0. The LP-IP gap is given by 1 — %, where
L is the optimum value of the LP relaxation and I is the best integral solution
found by CPLEX or Gurobi 3.0.0. The root gap is 1 — ?, where R is the op-
timum value of the LP relaxation before branching but after applying the cuts
described in the seventh and eighth column of the table. The root improvement

is £ — 1. (*) means that the calculation was aborted.

o
- 5 g
’;\\ § § @2 » ;/
= > £ 5 £ =
o 5 3 g s A S -
£ ) 5 a, &0 5 & 3 g
g g 5 7 5 5 5 3 5
S & S 3 = i< TS S I
534 52056 140081 11.16 % 6.81% 4.90 % 160 14 8
620 80477 236020 8.72% 0.00% 9.54 % 120 2 29
812 102375 216566 0.38% 0.18% 0.20% 24 16 40
1128 267542 732134 4.59% 0.26 % 4.55% 263 0 160
1310 363513 1006024 7.85% 0.22% 8.28% 378 2 270
1496 469932 1369224 18.70 % 1.86 % 20.71 % 809 0 971
1696 618348 1787078 5.17% 0.16 % 5.28% 925 0 1705
1746 649525 1859898 7.52% 4.88% 2.86 % 563 0 1129
1798 647650 1822718 13.60 % 0.95% 14.65% 537 0 1099
1798 647650 1822718 13.35% 0.62% 14.69 % 604 0 873
2006 855153 2491372 5.76 % 0.68 % 5.39% 1025 0 2490
2260 1079535 3138752 9.89 % 2.03% 8.73% 954 0 5483
2502 1290750 3680124 7.06 % 0.76 % 6.79% 801 0 4583
2620 1432355 4187296 9.05% 1.15% 8.68 % 1068 0 7910
2624 1439453 4087042 14.17% 5.23% 10.41 % 951 0 (*) 14400

5 Computational Results

Solving practical instances of HAP using the ILP (HAP) showed that
the separation of clique inequalities associated with this formulation is
very important. Our computational results (on an Intel Core i7-870) are
summarized in Table 1. It can be seen that the duality gap between
the LP solution and the ILP solution is very small if one adds enough
clique inequalities, and that it can be large without them. The LP bound
improved up to 20 % by adding clique inequalities and the LP-IP gap was
reduced in many cases to less than 1 %.

All instances stem from a project with DB Fernverkehr AG, which
deals with the optimization of long distance passenger railway transport in
Germany. More precisely, they arise from cyclic weekly schedules of ICE 1
trains. Our results show that the HAP is computationally well-behaved.
This model therefore provides an excellent basis for incorporating regular-
ity requirements into more complex large-scale real-world vehicle rotation
planning models.
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