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Abstract

Let a set N of items, a capacity F ∈ IN and weights ai ∈ IN, i ∈ N be given.
The 0/1 knapsack polytope is the convex hull of all 0/1 vectors that satisfy the
inequality ∑

i∈N
aixi ≤ F.

In this paper we present a linear description of the 0/1 knapsack polytope for the
special case where ai ∈ {μ, λ} for all items i ∈ N and 1 ≤ μ < λ ≤ b are two
natural numbers. The inequalities needed for this description involve elements of
the Hilbert basis of a certain cone. The principle of generating inequalities based
on elements of a Hilbert basis suggests further extensions.

Keywords: complete description, facets, Hilbert basis, knapsack polytope, knap-
sack problem, separation

� Introduction and Notation

Let a set N of items, a capacity F ∈ IN and weights ai ∈ IN, i ∈ N be given. The
problem considered in this paper is the special case of the 0/1 knapsack prob-
lem,

∑
i∈N aixi ≤ F , xi ∈ {0, 1}, i ∈ N where μ < λ are given natural numbers,

N = N1∪N2 is the set of items and N1 contains all items of weight μ, N2 contains
all items of weight λ.
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Whereas in case N1 = ∅ or N2 = ∅, the set of solutions to this problem de-
fines a matroid, this is not in general true if both N1 and N2 are nonempty
and μ �= λ. Nevertheless, maximizing a linear function

∑
i∈N cixi over the set

{x ∈ {0, 1}N1∪N2 | ∑i∈N1
μxi +

∑
i∈N2

λxi ≤ F} can be performed in time that is
polynomial in |N1|+ |N2| as can be easily seen by the following arguments.
Without loss of generality we assume that N1 = {1, . . . , n1}, N2 = {n1 +
1, . . . , n1 + n2} and that c1 ≥ c2 ≥ . . . ≥ cn1 ≥ 0, cn1+1 ≥ cn1+2 ≥ . . . ≥ cn1+n2 ≥
0. For every t ∈ {n1+1, . . . , n1+n2} determine s(t) := min{|N1|, �F−(t−n1)λ

μ
	. An

optimal solution to the problem max{∑i∈N cixi | xi ∈ {0, 1}, i ∈ N,
∑

i∈N1
μixi +

∑
i∈N2

λxi ≤ F} is the vector ∑s(t�)
w=1 ew+

∑t�

w=n1+1 ew where
∑s(t�)

w=1 cw+
∑t�

w=n1+1 cw

attains the maximum value of
∑s(t)

w=1 cw+
∑t

w=n1+1 cw.
The fact that this special case of the 0/1 knapsack problem can be solved in poly-
nomial time indicates that one can derive an explicit description of the associated
polytope P (μ, λ, F ) := conv{x ∈ {0, 1}N | ∑i∈N1

μxi+
∑

i∈N2
λxi ≤ F} by means

of inequalities. Indeed, this is true, as we show in this paper.

There is already an important literature on special cases of the 0/1 knapsack
polytope for which a linear description is known.
Wolsey [11] showed that under certain restrictive assumptions the class of minimal
cover inequalities describe the convex hull of the 0/1 solutions to the inequality∑

i∈N aixi ≤ F . A subset S ⊆ N is called a cover if a(S) > F . The cover is called
minimal if a(S \ {i}) ≤ F for all i ∈ S. Padberg [7] introduced the notion of
(1, k)-configurations, a generalization of minimal covers. A set N ′∪{z} is called a
(1, k)-configuration if

∑
i∈N ′ ai ≤ F , but K∪{z} is a minimal cover for all K ⊂ N ′

with |K| = k. In [7] was proved that ifN = N ′∪{z} is a (1, k)-configuration, then
the convex hull of the associated knapsack polyhedron is given by the inequalities∑

i∈T xi + (|T | − l + 1)xz ≤ |T | where T ⊆ N ′, T ∪ {z} is a (1, l)-configuration
together with the inequalities xi ≥ 0, xi ≤ 1. Recently, Laurent and Sassano
[5] showed that |N | minimal cover inequalities suffice to describe the knapsack
polytope provided that a = (a1, . . . , an) is a weakly superincreasing sequence, i.e.,∑

j≥q aj ≤ aq−1 for all q = 2, . . . , n where N = {1, . . . , n}. Finally, a complete
description of the 0/1 knapsack polytope is known for the two cases

aj = 1 or aj ∈ [�F
3
	 + 1, . . . , �F

2
	] for all j ∈ N ;

aj = 1 or aj ∈ [�F
2
	 + 1, . . . , F for all j ∈ N .

In both cases, the facets of the corresponding polytopes are no longer necessarily
minimal cover- or (1, k)-configuration inequalities, but are derived by means of a
“ weight-reduction” principle (see [10]).

One reason why many researchers are interested in new polyhedral results for
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knapsack problems is that such results often apply to more general cases. In
fact, Crowder, Johnson and Padberg [3] have first shown that general 0/1 integer
programs can be solved quite efficiently via branch and cut algorithms. The
cutting plane phase of their code is essentially based on valid inequalities for the
0/1 knapsack polytopes associated with the rows of the given problem. Other
applications include for instance the node capacitated graph partitioning problem
[4]. Here the nodes of a graph must be partitioned into no more than k “clusters”
such that the sum of the weights of the nodes within one cluster does not exceed
a given capacity and the total sum of edges between nodes of different elements
of the partition is minimized. For the corresponding polytope, valid inequalities
can be derived that transform a knapsack inequality associated with the nodes
and the capacity into a “cut-inequality” associated with the edges of the graph.
Here new polyhedral results for the knapsack polytope directly apply to a better
understanding of the more complex polytope.

This paper is organized as follows. In the remainder of this section we give as
an example the description of the polytope associated with the 0/1 knapsack
inequality 2x1+2x2+2x3 +2x4+2x5+3x6 +3x7+3x8+3x9 ≤ 8 and introduce
some notation. Section 2 deals with the two dimensional vectors (−x, y) where
y = 1, . . . , μ, x = �yλ+r

μ
	, 0 ≤ r < μ and μ, λ are two natural numbers. In

particular, we present a recursive procedure for determing the Hilbert basis for
the cone generated by those vectors.
Having established a procedure for computing this Hilbert basis, we show in
Section 3 how the elements of the Hilbert basis can be transformed into valid
inequalities for P(μ, λ, F ). In Section 4 we outline the proof that the inequalities
of Section 3 (together with lower and upper bounds on the variables and one
minimal cover inequality) describe P(μ, λ, F ). In Section 5 we finally discuss
possible extensions.

Throughout the paper we use the following notation.

Let a set N of items, a capacity F ∈ IN and weights ai ∈ IN, i ∈ N be given. The
0/1 knapsack polytope denoted by P is the convex hull of all 0/1 vectors that
satisfy the knapsack inequality

∑
i∈N aixi ≤ F. The number F is called knapsack

capacity.

Let two positive integer numbers μ < λ be given, the greatest common divisor
between these numbers is denoted by gcd(μ, λ). For t ∈ {0, μ} and r ∈ {0, μ−1},
we denote by nr(t) the integer division � tλ+r

μ
	. If r = 0, we also use the symbol

n(t) instead of n0(t). The two dimensional vector (−nr(t), t) is called exchange
vector, because nr(t) is the maximum number of elements having weight μ that
can be exchanged against t elements of weight λ plus a given value of r. For
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r ∈ {0, μ − 1}, the symbol V (r) is used to denote the (unique) exchange vector
(−n(t), t) with tλ− n(t)μ = r. Let N be a set of items that can be partitioned
into two sets N1 and N2 such that ai = μ for all i ∈ N1 and ai = λ for all i ∈ N2

where 1 ≤ μ < λ ≤ F are integers and gcd(μ, λ) = 1. The convex hull of all
0/1 vectors that satisfy the constraint

∑
i∈N1

μxi +
∑

i∈N2
λxi ≤ F is denoted by

P (μ, λ, F ).

We say Fc a face of some polytope P induced by the inequality cTx ≤ γ, if
Fc = {x ∈ P | cTx = γ}. Every x ∈ Fc is also called a root of cTx ≤ γ. The
inequalities xi ≤ 1, i ∈ N and xi ≥ 0, i ∈ N are called trivial. For real numbers
τj, j = 1, . . . , n we define

∑w
j=v τj := 0 if v > w and, for I ⊆ {1, . . . , n} we use

the notation τ (I) :=
∑

i∈I τi with τ (∅) = 0. By eu we denote the unit vector in
IRd having a one in position u and a zero everywhere else.

Finally, letW = {w1, . . . , wk} be a finite set of integer vectors. A subset W ′ ⊆ W
is called integer generating set if every w ∈ W is a nonnegative integer combi-
nation of the elements in W ′. By C(W ) we denote the cone generated by the
elements of W . A set H of integer vectors is called integral Hilbert basis if every
integral vector z ∈ C(H) is a nonnegative integer combination of the elements
in H (see [8], section 16.4). The following well known result can be found in [8],
Theorem 16.4: Each rational polyhedral cone is generated by an integral Hilbert
basis. If C is pointed there is a unique minimal integral Hilbert basis generating
C .

Example 1.1. Consider the knapsack polytope defined as the convex hull of all
0/1 vectors that satisfy the inequality

2x1 + 2x2 + 2x3 + 2x4 + 2x5 + 3x6 + 3x7 + 3x8 + 3x9 ≤ 8.

A complete inequality description (checked by a program developed in [1]) is
given by the trivial inequalities xi ≥ 0, xi ≤ 1, i = 1, . . . , 8 and the following
system of inequalities:

(1) +x6+x7+x8 +x9 ≤ 2

(2) +x2 +x4+x5+x6+x7+x8 +x9 ≤ 3

(3) +x2+x3 +x5+x6+x7+x8 +x9 ≤ 3

(4) +x1 +x4+x5+x6+x7+x8 +x9 ≤ 3

(5) +x1 +x3 +x5+x6+x7+x8 +x9 ≤ 3

(6) +x1+x2 +x5+x6+x7+x8 +x9 ≤ 3

(7) +x1+x2+x3 +x6+x7+x8 +x9 ≤ 3

(8) +x1+x2 +x4 +x6+x7+x8 +x9 ≤ 3

(9) +x1 +x3+x4 +x6+x7+x8 +x9 ≤ 3

(10) +x2+x3+x4 +x6+x7+x8 +x9 ≤ 3

(11) +x3+x4+x5+x6+x7+x8 +x9 ≤ 3

(12) +x1+x2+x3+x4+x5+x6+x7+x8 +2x9≤ 4

(13) +x1+x2+x3+x4+x5+x6+x7+2x8+x9 ≤ 4
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(14) +x1 +x2 +x3 +x4 +x5 +x6 +2x7+x8 +x9 ≤ 4

(15) +x1 +x2 +x3 +x4 +x5 +2x6+x7 +x8 +x9 ≤ 4

(16) +x1 +x2 +x3 +2x4+2x5+2x6+2x7+2x8+2x9≤ 6

(17) +x1 +x2 +2x3+x4 +2x5+2x6+2x7+2x8+2x9≤ 6

(18) +x1 +2x2+x3 +x4 +2x5+2x6+2x7+2x8+2x9≤ 6

(19) +2x1+x2 +x3 +x4 +2x5+2x6+2x7+2x8+2x9≤ 6

(20) +x1 +x2 +2x3+2x4+x5 +2x6+2x7+2x8+2x9≤ 6

(21) +x1 +2x2+x3 +2x4+x5 +2x6+2x7+2x8+2x9≤ 6

(22) +2x1+x2 +x3 +2x4+x5 +2x6+2x7+2x8+2x9≤ 6

(23) +x1 +2x2+2x3+x4 +x5 +2x6+2x7+2x8+2x9≤ 6

(24) +2x1+x2 +2x3+x4 +x5 +2x6+2x7+2x8+2x9≤ 6

(25) +2x1+2x2+x3 +x4 +x5 +2x6+2x7+2x8+2x9≤ 6

(26) +2x1+2x2+2x3+2x4+2x5+3x6+3x7+3x8+3x9≤ 8

� Exchange Vectors

Let a knapsack capacity F and positive integer numbers μ and λ such that 1 ≤
μ < λ ≤ b and gcd(μ, λ) = 1 be given. In this section we analyze the exchange
vectors (−nr(t), t) and the corresponding residua R((−nr(t), t)) := λt − nr(t)μ,
where r ∈ {0, . . . , μ−1} and t ∈ {0, . . . , μ}. More precisely, let tmax(r) > 0 be the
minimum positive number such that R((−nr(tmax(r)), tmax(r))) ≤ 0. Then, we
determine an integral Hilbert basis for the cone generated by the set {(−nr(t), t) |
t = 0, . . . , tmax(r)}. Having determined the Hilbert basis elements, we define in
Section 3 classes of valid inequalities for P (μ, λ, F ) that involve these elements.
Throughout this section we always assume that two natural numbers μ and λ,
1 ≤ μ < λ ≤ F , gcd(μ, λ) = 1 and an integer r ∈ {0, . . . , μ− 1} are given.

We start with two easy and well known observations concerning the numbers
n0(t), t = 1, . . . , tmax(0) = μ.

Observation 2.1. R((−n(t1), t1)) + R((−n(t2), t2)) = R((−n(t1 + t2), t1 + t2))
if and only if n(t1) + n(t2) = n(t1 + t2).

Observation 2.2. Let a, s, t < μ be natural numbers. Then the relations
s = n(t) and a = R((−n(t), t) hold if and only if 0 < tλ − sμ = a < μ. If
tλ− sμ < 0, then s > n(t) holds.

Before making precise the relation between the integral Hilbert basis of a certain
cone and the vectors (−n(t), t), t = 1, . . . , μ, let us give an example.

Example 2.3. Setting μ := 34 and λ := 47, the subsequent table shows the
values n(t)× μ || t× λ || R((−n(t), t)) for t = 1, . . . , μ.
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1 × 34 || 1 × 47 || 13

2 × 34 || 2 × 47 || 26

4 × 34 || 3 × 47 || 5

5 × 34 || 4 × 47 || 18

6 × 34 || 5 × 47 || 31

8 × 34 || 6 × 47 || 10

9 × 34 || 7 × 47 || 23

11 × 34 || 8 × 47 || 2

12 × 34 || 9 × 47 || 15

13 × 34 || 10 × 47 || 28

15 × 34 || 11 × 47 || 7

16 × 34 || 12 × 47 || 20

17 × 34 || 13 × 47 || 33

19 × 34 || 14 × 47 || 12

20 × 34 || 15 × 47 || 25

22 × 34 || 16 × 47 || 4

23 × 34 || 17 × 47 || 17

24 × 34 || 18 × 47 || 30

26 × 34 || 19 × 47 || 9

27 × 34 || 20 × 47 || 22

29 × 34 || 21 × 47 || 1

30 × 34 || 22 × 47 || 14

31 × 34 || 23 × 47 || 27

33 × 34 || 24 × 47 || 6

34 × 34 || 25 × 47 || 19

35 × 34 || 26 × 47 || 32

37 × 34 || 27 × 47 || 11

38 × 34 || 28 × 47 || 24

40 × 34 || 29 × 47 || 3

41 × 34 || 30 × 47 || 16

42 × 34 || 31 × 47 || 29

44 × 34 || 32 × 47 || 8

45 × 34 || 33 × 47 || 21

47 × 34 || 34 × 47 || 0

In this example the vectors (−1, 1), (−4, 3), (−11, 8), (−29, 21) and (−47, 34) are
an integer generating set for the vectors (−n(t), t), t = 1, . . . , μ and R((−1, 1)) >
R((−4, 3)) > R((−11, 8)) > R((−29, 21)) > R((−47, 34)). Moreover,

R((−4, 3)) < R((−n(t), t)) for all 1 ≤ t < 3,

R((−11, 8)) < R((−n(t), t)) for all 1 ≤ t < 8,

R((−29, 21)) < R((−n(t), t)) for all 1 ≤ t < 21,

R((−47, 34)) < R((−n(t), t)) for all 1 ≤ t < 34.

These properties of the integer generating set for the vectors (−n(t), t), t =
1, . . . , μ are indeed not random, but hold in general as we now show.
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2.4 Recursive construction of an integer generating set for the exchange
vectors.

Set R0 := 0, h0 := (0, 0), l0 := (0, 0) and σ0 := 0.

Set R1 := λ− n(1)μ, h1 := (−n(1), 1), l1 := h1 and σ1 := 1.

For i ≥ 2 perform the following steps until Ri−1 = 0.

– Compute σi := max{0 ≤ σ | σRi−1 +R(li−1) ≤ μ}.
– Set Ri := (σi + 1)Ri−1 +R(li−1)− μ.

– Set hi := (σi + 1)hi−1 + li−1 − (1, 0).

– Set li := σihi−1 + li−1.

– Set i := i+ 1.

Let τ denote the index with Rτ = 0. In the following we show that h1, . . . , hτ

is an integer generating set for the vectors (−n(t), t), t = 1, . . . , μ and that
hi = (−h1

i , h
2
i ) satisfies R(hi) ≤ R((−n(t), t)) for all 1 ≤ t ≤ h2

i and li = (−l1i , l
2
i )

satisfies R(li) ≥ R((−n(t), t)) for all 1 ≤ t ≤ h2
i − 1.

First note that by induction on i one can easily convince oneself that the vectors
hi and li, i = 1, . . . , τ , are exchange vectors and that Ri = R(hi) holds. Secondly,
Ri := (σi + 1)Ri−1 + R(li−1) − μ = Ri−1 + R(li−1) − μ < Ri−1 for i = 1, . . . , τ .
Hence, R1 > R2 > . . . > Rτ = 0. Similarly, R(l0) ≤ R(l1) ≤ . . . ≤ R(lτ ), because
R(hi−1) ≥ 0 and σi ≥ 0. We now prove that h1, . . . , hτ is an integer generating
set for the exchange vectors. To establish this we need the following lemma.

Lemma 2.5. For i = 2, . . . , τ the following properties are satisfied.

(a) R(li)− R((−n(t), t)) ≥ Ri−1 for all 1 ≤ t < l2i .

(b) R(li) ≥ R((−n(t), t)) for all 1 ≤ t < h2
i .

(c) For every h2
i +1 ≤ t ≤ h2

i+1 there exist nonnegative integers εu, u = 1, . . . , i
such that (−n(t), t) =

∑i
u=1 εuhu.

Proof. For i = 2 the properties are easily verified. Suppose, i ≥ 3 and (a), (b),
(c) is true for all j ≤ i− 1. We now show that they are true for i as well. Recall
that li = σihi−1 + li−1 and hi = (σi + 1)hi−1 + li−1 − (1, 0).
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(a) Let (−n(t), t) be an exchange vector with t < l2i . We write t as t = σh2
i−1 +

t′ where t′ = t − σh2
i−1 < h2

i−1. Clearly, 0 ≤ σ ≤ σi and 0 ≤ t′ < l2i−1 if
σ = σi. Moreover, λt − μ(σh1

i−1 + n(t′)) = λ(σh2
i−1 + t′) − μ(σh1

i−1 + n(t′)) =
σR(hi−1) + R((−n(t′), t′)). Since σiRi−1 + R(li−1) < μ and since by assumption
of the induction R(li−1) ≥ R((−n(v), v)) for all 1 ≤ v < h2

i−1, we obtain 0 <
σR(hi−1)+R((−n(t′), t′)) < μ. By ObservationO2 this yields n(t) = σh1

i−1+n(t′).
Furthermore, if σ < σi, then R(li)−R((−n(t), t)) ≥ Ri−1. Otherwise, σ = σi and
t′ < l2i−1. By assumption of the induction we know R(li−1) − R((−n(t′), t′)) >
Ri−2 > Ri−1. Thus, R(li) − R((−n(t), t)) = σiR(hi−1) + R(li−1) − σiR(hi−1) −
R((−n(t), t)) > Ri−2 > Ri−1. This completes the proof of (a).

(b) Let (−n(t), t) be an exchange vector with t < h2
i . We write t as t = σh2

i−1+ t′

where t′ = t − σh2
i−1 < h2

i−1. Then, 0 ≤ σ ≤ σi + 1 and 0 ≤ t′ < l2i−1 if
σ = σi + 1. We first consider the case where σ ≤ σi. By assumption of the
induction we have R((−n(t′), t′)) ≤ R(li−1), because t′ < h2

i−1. Hence, 0 <
λt−μ(σh1

i−1+n(t′)) = λ(σh2
i−1+t′)−μ(σh1

i−1+n(t′)) = σR(hi−1)+R((−n(t′), t′))
≤ σiRi−1 + R(li−1) < μ. By Observation 02 this yields n(t) = σh1

i−1 + n(t′).
Moreover, R(li) − R((−n(t), t)) = R(li) − σR(hi−1) − R((−n(t′), t′)) ≥ R(li) −
σiR(hi−1)−R(li−1) = 0.

In case σ = σi + 1 we know t′ < l2i−1. By (a), R(li−1) − R((−n(t′), t′)) > Ri−1

,and hence, 0 < λt − μ(σh1
i−1 + n(t′)) = σR(hi−1) + R((−n(t′), t′)) ≤ (σi +

1)Ri−1 + R(li−1) − Ri−1 = σiRi−1 + R(li−1) = R(li) < μ. By Observation 02,
n(t) = σh1

i−1 + n(t′) and R(li) − R((−n(t), t)) ≥ 0 follows. Thus, statement (b)
is verified.

(c) Let (−n(t), t) be an exchange vector with t < h2
i+1. We write t as t = σh2

i + t′

where t′ = t − σh2
i < h2

i . By definition, σ ≤ σi+1 + 1 and if σ = σi+1 + 1, then
t′ < l2i . If σ ≤ σi+1, then by similar arguments as in case (b) we obtain n(t) =
σh1

i + n(t′). By assumption of the induction there exist nonnegative integers εu,
u = 1, . . . , i−1 such that (−n(t′), t′) =

∑i−1
u=1 εuhu. Hence, (−n(t), t) =

∑i
u=1 εuhu

where εi = σ.

If σ = σi+1 + 1, then t′ < l2i and by (a), R((−n(t′), t′) ≤ R(li) − Ri−1. Hence,
0 < λt− μ(σh1

i + n(t′)) = σRi +R((−n(t′), t′)) ≤ (σi+1 + 1)Ri +R(li)− Ri−1 <
σiRi +R(li) = R(li+1) < μ. Therefore, Observation 02 yields n(t) = σh1

i + n(t′).
By assumption of the induction there exist nonnegative integers εu, u = 1, . . . , i−1
such that (−n(t′), t′) =

∑i−1
u=1 εuhu. Hence, (−n(t), t) =

∑i
u=1 εuhu where εi = σ.

This completes the proof.

As a corollary of Lemma 2.5 we immediately obtain R i = min{R((−n(t), t)) |
t = 1, . . . , h2

i+1 − 1}, because R(hi) < R(hi−1) < . . . < R(h1). In addition, the
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set H := {h1, . . . , hτ} is an integer generating set for the set of exchange vectors.
We now briefly show that H is not only an integer generating set, but even an
integral Hilbert basis for the cone C(H).

Theorem 2.7. The set H = {h1, . . . , hτ} defined via (2.4) is an integral Hilbert
basis for the cone C(H).

Proof. It is easy to see that the two extreme rays of the cone are the lines passing
through the points (0, 0), (−λ, μ) and (0, 0), (−n(1), 1), respectively. Suppose,
there exist points in C(H) that are not nonnegative integer combinations of the
exchange vectors (−n(t), t), t = 1, . . . , μ. Let (−x, y) be such a point with y
minimal. We know (−x, y) = α(−λ, μ) + β(−n(1), 1) = (−(αλ+βn(1)), αμ+ β)
where α ≥ 0, β ≥ 0 and x and y are integers. Clearly, 0 < α < 1 and 0 < β < 1
holds. Hence, αμ + β ≤ μ and consequently, (−n(y), y) is an exchange vector.
Moreover, R((−x, y)) = λy−μx is integer and since λy−μx = β(λ−n(1)μ), we
obtain 0 < R((−x, y)) < μ. By Observation O2, x = n(y) holds, a contradiction.
SinceH is an integer generating set for the exchange vectors the statement follows.

By now we have analyzed the exchange vectors (−nr(t), t) and their residua for
the special case that r = 0. To end this section we deal with the case r > 0. First
note that nr(t) = n0(t+ v)− n0(v) where (−n(v), v) = V (r). We now show that
tmax(r) = min{t > 0 | R((−n0(t), t)) ≥ μ − r} and that (−nr(t), t) = (−n(t), t)
for t = 1, . . . , tmax(r) − 1. Both relations are quite obvious for the following
reasons.

nr(t) = � r+tλ
μ

	 = � r+R((−n(t),t))+n(t)μ
μ

	 = � r+R((−n(t),t))
μ

	+n(t). Hence, nr(t) = n(t)

and R((−nr(t), t)) := λt − μnr(t) = R((−n0(t), t)) if and only if R((−n(t), t))
< μ − r. Consequently, tmax(r) = min{t > 0 | R((−n(t), t) ≥ μ − r}. Taking
our discussions for the case r = 0 into account it follows that Hr := {hi | i =
1, . . . τ, h2

i < tmax(r)} ∪ {(−n(tmax(r)) − 1, tmax(r))} is an integer generating set
for the exchange vectors (−nr(t), t), t = 1, . . . tmax(r). In addition, Hr is a Hilbert
basis for the cone generated by these exchange vectors.

� The Facets of P (μ, λ, F )

In this section we establish a link between the elements of the Hilbert basisHr and
the facets of P (μ, λ, F ). Throughout this section we assume that natural num-
bers μ, λ, F with gcd(μ, λ) = 1 and nonempty subsets N1, N2 are given. Before

9



explaining the relation between the elements of Hr and the facets of P (μ, λ, F )
in more detail let us introduce the notion of “λ-maximum” with respect to an
inequality.

Definition Let
∑

i∈N1∪N2
dixi ≤ δ be an inequality. A natural number t is called

λ-maximum with respect to dTx ≤ δ if for all vectors x ∈ P (μ, λ, F ) with |{i ∈
N2 | xi = 1}| > t, dTx < δ holds and if there exists a vector x0 ∈ P (μ, λ, F )
satisfying |{i ∈ N2 | x0

i = 1}| = t and dTx0 = δ.

For every number t ∈ {1, . . . , |N2|} such that |N1| > �F−tλ
μ

	 we now generate a
series of inequalities where t is the λ-maximum. We proceed as follows.

Choose I1 ⊆ N1, s := |I1| = �F−tλ
μ

	 and I2 ⊆ N2, t = |I2| and set r := F−tλ−sμ.

Due to the choice of s and t we have 0 ≤ r < μ. Furthermore, let hi = (−h1
i , h

2
i )

be some element of Hr = {h1, . . . , hτ} satisfying

• h1
i ≤ |N1 \ I1|,

• h2
i ≤ |I2|

and consider the inequality

(3.1)
∑

i∈N1

h2
ixi +

∑

i∈N2

h1
ixi ≤ sh2

i + th1
i .

Of course, for every subset V1 ⊆ N1, V2 ⊆ N2, |V1| = s, |V2| = t the vector∑
v∈V1∪V2

ev satisfies the inequality at equation. Moreover, choosing V1 ⊆ N1,
|V1| = s+ h1

i and V2 ⊆ N2, |V2| = t− h2
i and setting xv = 1 if v ∈ V1 ∪ V2, xv = 0

otherwise, yields a root of the above inequality. Unfortunately, the inequality is
not always valid for P (μ, λ, F ). More precisely, we will show later the following.

Under the assumption that t is the λ-maximum with respect to
∑

i∈N1
h2
ixi +∑

i∈N2
h1
ixi ≤ sh2

i + th1
i , it is valid for P (μ, λ, F ) if and only if one of the following

conditions is satisfied

i = τ ,

h1
i+1 > |N1 \ I1|,

h2
i+1 > |I2|.

10



If none of the three conditions holds, the above inequality must be modified to be
valid for P (μ, λ, F ) in a way we outline now. In this case, there are four possibil-
ities to determine an inequality. We first demonstrate some of these possibilities
on an example.

Example 3.2. For the polytope defined as the convex hull of all 0/1 vectors that
satisfy the inequality in 0/1 variables

8∑

i=1

5xi +
14∑

i=9

7xi ≤ 35,

the inequalities

(i) 6x1 + 6x2 +6x3 +6x4 + 6x5 + 5x6 +5x7 +5x8 + 8x9 +8x10 + 8x11 +8x12 +
8x13 + 8x14 ≤ 40,

(ii) 3x1 + 3x2 +3x3 +3x4 + 3x5 + 3x6 +3x7 +3x8 + 5x9 +4x10 + 4x11 +4x12 +
4x13 + 4x14 ≤ 21,

(iii) 4x1 + 4x2 +4x3 +4x4 + 4x5 + 4x6 +4x7 +4x8 + 6x9 +6x10 + 6x11 +5x12 +
5x13 + 5x14 ≤ 28.

define facets (checked by the program developed in [1]). The Hilbert basis H0

consists of the three vectors (−1, 1), (−4, 3) and (−7, 5). It is easily checked that
for the inequalities (i), (ii), (iii) the vector e9 + e10 + e11 + e12 + e13 is a root.
Moreover, choosing the Hilbert basis element hi = (−4, 3) we obtain in all three
cases that the vector

∑
v∈V1∪V2

ev defined via V1 = {1, 2, 3, 4}, V2 = {9, 10} is a
tight point. However, the inequality

∑
i∈N1

3xi +
∑

i∈N2
4xi ≤ 20 is not valid for

the corresponding polytope, because for hi+1 = (−7, 5) we have 3×7+0×5 > 20
and h1

i+1 ≤ |N1 \ I1|, h2
i+1 ≤ |N2|. To obtain valid inequalities we have the choice

either to reduce some of the coefficients in N1 from κh2
i to a smaller value or to

increase coefficients in N2 from κh1
i to a bigger value (κ is some natural number)

such that the vector
∑

v∈V1∪V2
ev with V1 = {1, . . . , 7}, V2 = ∅ is tight for the

corresponding inequalities.

Let us now formalize these possibilities. We assume that I1 ⊆ N1, s := |I1| =
�F−tλ

μ
	 and I2 ⊆ N2, t = |I2| is given and that r := F − tλ − sμ denotes the

residuum. Furthermore, hi = (−h1
i , h

2
i ) is some element of Hr = {h1, . . . , hτ}

satisfying

• h1
i ≤ |N1 \ I1|,

11



• h2
i ≤ |I2|.

Finally we assume that i < τ , h1
i+1 ≤ |N1 \ I1| and h2

i+1 ≤ |I2|, i.e., the inequality
of type (3.1) is not valid for P(μ, λ, F ).

(3.3.) We choose an integer h2
i ≤ j < h2

i+1 and a subset J2 ⊆ I2, |J2| = j. With
this subset J2 we associate an inequality such that the coefficients of the items
in N1 are all equal to some value a, where the coefficients of the items in I2 \ J2

are all equal to a value b′ and where the coefficients of the items in (N2 \ I2)∪ J2

are all equal to a value b < b′. The appropriate choice of the numbers a, b, b′ is
determined by the two equations

h1
i a = h2

i b,

h1
i+1a = jb+ (h2

i+1 − j)b′,

which yields a = κh2
i , b = κh1

i , κ = h2
i+1 − j and b′ = h1

i+1h
2
i − jh1

i . Choosing
a, b, b′ as indicated here we will show later that the inequality

∑

i∈N1

axi +
∑

i∈I2\J2

b′xi +
∑

i∈(N2\I2)∪J2

bxi ≤ sa+ jb+ (t− j)b′

is valid for P (μ, λ, F ). It is not difficult to see that for every subset V1 ⊆ N1,
I2 \ J2 ⊆ V2 ⊆ N2, |V1| = s, |V2| = t the vector

∑
v∈V1

ev +
∑

v∈V2
ev satisfies

the inequality at equation. Moreover, choosing V1 ⊆ N1, |V1| = s + h1
i and

I2 \ J2 ⊆ V2 ⊆ N2, |V2| = t − h2
i and setting xv = 1 if v ∈ V1 ∪ V2, xv = 0

otherwise, yields a root of the above inequality. Finally, we have that every
vector

∑
v∈V1∪V2

ev satisfies the above inequality at equation for which V1 ⊆ N1,
|V1| = s+ h1

i+1 and V2 ⊆ I2 \ J2, |V2| = t− h2
i+1.

(3.4.) We choose an integer h1
i ≤ j < h1

i+1 and a subset J1 ⊆ N1 \ I1, |J1| = j.
With J1 we associate an inequality such that the coefficients of the items in N2

are all equal to some value d, where the coefficients of the items in I1∪ J1 are all
equal to a value c and where the coefficients of the items in N1 \ (I1 ∪ J1) are all
equal to a value c′ < c. The numbers c, c′, d are a solution to the system

h1
i c = h2

i d,

jc+ (h1
i+1 − j)c′ = h2

i+1d,

which yields c = κh2
i , d = κh1

i , κ = h1
i+1 − j and c′ = h2

i+1h
1
i − jh2

i . Now consider
the inequality

∑

i∈I1∪J1

cxi +
∑

i∈N1\(I1∪J1)

c′xi +
∑

i∈N2

dxi ≤ sc + td.
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The roots of this inequality are the vectors
∑

v∈V1∪V2
ev such that

V1 ⊆ I1 ∪ J1, V2 ⊆ N2, |V1| = s, |V2| = t or

V1 ⊆ I1 ∪ J1, |V1| = s+ h1
i and V2 ⊆ N2, |V2| = t− h2

i or

I1 ∪ J1 ⊆ V1 ⊆ N1, |V1| = s+ h1
i+1 and V2 ⊆ N2, |V2| = t− h2

i+1.

The remaining cases are 1 ≤ j < h2
i or 1 ≤ j < h1

i , respectively. In both cases an
inequality similar to the one above can be derived.

(3.5.) We choose an integer 1 ≤ j < h2
i , a subset J2 ⊆ I2, |J2| = j and determine

numbers α, β, β ′ via the following system

h1
iα = jβ + (h2

i − j)β ′,

h1
i+1α = jβ + (h2

i+1 − j)β ′.

Solving these equations yields α = κ(h2
i+1 − h2

i ), β
′ = κ(h1

i+1 − h1
i ), κ = j and

β = −(h2
i − j)(h1

i+1 − h1
i ) + h1

i (h
2
i+1 − h2

i ). Choosing α, β, β ′ as indicated here we
present conditions such that the inequality

∑

i∈N1

αxi +
∑

i∈I2\J2

β ′xi +
∑

i∈(N2\I2)∪J2

βxi ≤ sα+ jβ + (t− j)β ′

is valid for P (μ, λ, F ).

(3.6.) We choose an integer 1 ≤ j < h1
i , a subset J1 ⊆ N1 \ I1, |J1| = j and

define numbers γ, γ ′, δ via the equations

jγ + (h1
i − j)γ′ = h2

i δ,

jγ + (h1
i+1 − j)γ′ = h2

i+1δ.

This yields γ′ = κ(h2
i+1 − h2

i ), δ = κ(h1
i+1 − h1

i ), κ = j and γ = h2
i (h

1
i+1 − h1

i ) −
(h1

i − j)(h2
i+1 − h2

i ). Under certain conditions, the inequality

∑

i∈I1∪J1

γxi +
∑

i∈N1\(I1∪J1)

γ′xi +
∑

i∈N2

δxi ≤ sγ + tδ

is valid for P (μ, λ, F ).
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Having introduced the inequalities (3.1), (3.3), (3.4), (3.5) and (3.6) we now deal
with the question when they are valid and facet defining for P (μ, λ, F ). For this
purpose we first present three easy, yet technical lemmas. The corresponding
proofs are left to the Appendix.

Lemma 3.7. Let natural numbers μ < λ with gcd(μ, λ) = 1 and 0 ≤ r < μ be
given. For every hi ∈ Hr and hj ∈ Hr, i �= j the following relations hold.

(1) h2
jh

1
i − h1

jh
2
i > 0, if j < i.

(2) h2
jh

1
i − h1

jh
2
i < 0, if j > i.

Lemma 3.8. Let natural numbers μ < λ with gcd(μ, λ) = 1 and 0 ≤ r < μ be
given and let a1 ≥ a2 ≥ . . . ≥ anr(tmax(r)) and b1 ≤ b2 ≤ . . . ≤ btmax(r) be two
sequences of nonnegative integers such that

h1
i∑

v=1

av =
h2
i∑

v=1

bv and
n(t)∑

v=1

av <
t∑

v=1

bv, for all t < h2
i

where hi = (−h1
i , h

2
i ) ∈ Hr = {h1, . . . , hτ} and i < τ . Then the following

statements are true.

(1)
∑nr(t)

v=1 av ≤ ∑t
v=1 bv for all t < h2

i+1 and
∑nr(t)

v=1 av <
∑t

v=1 bv for all h2
i + 1 ≤

t < h2
i+1, provided that a1 > ah1

i
or b1 < bh2

i
.

(2) If
∑h1

i+1
v=1 av =

∑h2
i+1

v=1 bv, it follows that
∑nr(t)

v=1 av ≤ ∑t
v=1 bv for all t ≤ h2

τ and
∑nr(t)

v=1 av <
∑t

v=1 bv for all h2
i+1 + 1 ≤ t ≤ h2

τ , provided that ah1
i+1

< ah1
i+1

or bh2
i+1

> bh2
i+1.

(3) If
∑h1

i+1
v=1 av <

∑h2
i+1

v=1 bv, then
∑nr(t)

v=1 av <
∑t

v=1 bv for all h2
i+1 < t ≤ h2

τ .

Lemma 3.9. Let natural numbers μ < λ with gcd(μ, λ) = 1 and 0 ≤ r < μ be
given and let a1 ≥ a2 ≥ . . . ≥ an1 and b1 ≤ b2 ≤ . . . ≤ bn2 , nr(n2) = n1 be two

sequences of nonnegative integers such that
∑n(t)

v=1 av <
∑t

v=1 bv, for all t < h2
τ .

(1) If
∑nr(h2τ )

v=1 av ≤ ∑h2
τ

v=1 bv, then
∑nr(t)

v=1 av ≤ ∑t
v=1 bv for all t ≥ h2

τ .

(2) If
∑nr(h2τ )

v=1 av <
∑h2

τ
v=1 bv, then

∑nr(t)
v=1 av <

∑t
v=1 bv for all t ≥ h2

τ .

(3) If
∑nr(h2τ )

v=1 av =
∑h2

τ
v=1 bv and if a1 > anr(h2τ )

or b1 < bh2
τ
, then

∑nr(t)
v=1 av <∑t

v=1 bv for all t > h2
τ .
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Proposition 3.10. Let I1 ⊆ N1, s := |I1| = �F−tλ
μ

	 and I2 ⊆ N2, t = |I2|
and set r := F − tλ − sμ. Furthermore, let hi = (−h1

i , h
2
i ) be some element of

Hr = {h1, . . . , hτ} satisfying h1
i ≤ |N1 \ I1| and h2

i ≤ |I2|.

Provided that t is the λ-maximum, the inequality (3.1),

∑

i∈N1

h2
ixi +

∑

i∈N2

h1
ixi ≤ sh2

i + th1
i

is valid for P (μ, λ, F ) if and only if one of the following conditions is satisfied

(V1) i = τ ,

(V2) h1
i+1 > |N1 \ I1|,

(V3) h2
i+1 > |I2|.

In addition, the inequality defines a facet of P (μ, λ, F ) if and only if the following
two conditions (O1) and (O2) are satisfied.

(O1) s > 0 or s+ h1
i < |N1| or |N1| = 1,

(O2) t− h2
i > 0 or t < |N2| or |N2| = 1.

Proof. We start with proving the validity statements. First notice that the
above conditions guarantee the existence of sets J1 and J2 with I1 ⊆ J1 ⊆ N1,
|J1| = s+ h1

i and J2 ⊆ I2, |J2| = t− h2
i .

Suppose, none of the conditions (V1), (V2), (V3) is satisfied. By Lemma 3.7
we have that h2

i+1h
1
i − h1

i+1h
2
i < 0. Choose sets V1 and V2 such that V1 ⊆ N1,

|V1| = s + h1
i+1 and V2 ⊆ N2, |V2| = t − h2

i+1. Such sets exist since (V1),
(V2), (V3) do not hold. The vector

∑
v∈V1∪V2

ev is an element of P (μ, λ, F ) and∑
i∈N1

h2
ixi +

∑
i∈N2

h1
ixi = (s+ h1

i+1)h
2
i + (t− h2

i+1)h
1
i > sh2

i + th1
i .

To prove the converse direction we assume that (V1) or (V2) or (V3) is satisfied.
Let x ∈ P (μ, λ, F ) and set V1 := {v ∈ N1 | xv = 1}, V2 := {v ∈ N2 | xv = 1}.
We can assume that |V2| < t (otherwise, x clearly satisfies the inequality). Let
v2 > 0 such that |V2| = t− v2. Then, |V1| ≤ s+ nr(v2).

If (V1) is satisfied, then by Lemmas 3.7 and 3.9
∑s+nr(v2)

v=s+1 h2
i ≤

∑t
v=t−v2+1 h

1
i and

hence the inequality is valid.
If (V2) holds, then |V1| < s+ h1

i+1. Define v′
1 via |V1| = s+ v′

1 and let v′
2 be the
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smallest natural number such that nr(v
′
2) ≥ v1. Clearly, v2 ≥ v′

2 and h2
i+1 ≥ v′

2.
By Lemma 2.5, (−nr(v

′
2), v

′
2) =

∑i
u=1 εuhu and by Lemma 3.7, h2

jh
1
i − h1

jh
2
i > 0

for all j = 1, . . . , i− 1. Therefore, |V1|h2
i + |V2|h1

i ≤ (s+ nr(v
′
2))h

2
i + (t− v′

2)h
1
i =

sh2
i + th1

i −
∑i

u=1 εu(h
2
uh

1
i − h1

uh
2
i ) ≤ sh2

i + th1
i .

If (V3) is satisfied, we conclude that v2 < h2
i+1. By Lemma 2.5, (−nr(v2), v2) =∑i

u=1 εuhu. Since h
2
jh

1
i − h1

jh
2
i > 0 for all j = 1, . . . , i− 1 (Lemma 3.7), we obtain

|V1|h2
i + |V2|h1

i ≤ (s+nr(v2))h
2
i +(t− v2)h

1
i = sh2

i + th1
i −

∑i
u=1 εu(h

2
uh

1
i −h1

uh
2
i ) ≤

sh2
i + th1

i . This proves that the inequality is valid.

We now turn to the second statement.
Suppose, (O1) or (O2) do not hold. W.l.o.g. we assume (O1) is not satisfied, i.e.,
s = 0 and s + h1

i = |N1| and |N1| > 1. By Lemma 3.7, h2
jh

1
i − h1

jh
2
i > 0 for all

j = 1, . . . , i− 1. Hence, every vector x satisfying (3.1) at equality either satisfies
xi = 0 for all i ∈ N1 or xi = 1 for all i ∈ N1. Since |N1| > 1, x also satisfies the
equation x1 − x|N1| = 0 and consequently, the dimension of the face induced by
inequality (3.1) is less or equal than |N | − 2. Analogous arguments apply if (O2)
is not satisfied.
Conversely, let cTx ≤ γ be a facet defining inequality of P (μ, λ, F ) such that
every root of (3.1) satisfies cTx = γ. If |N1| > 1, there exist ∅ �= V1 ⊆ N1,
V1 �= N1 with |V1| = s or |V1| = s + h1

i . Let V2 ⊆ N2 with |V2| = t if |V1| = s
and |V2| = t − h2

i if |V1| = s + h1
i . Then, x :=

∑
v∈V1∪V2

ev is a root of (3.1).
Moreover, for every u ∈ V1, u

′ ∈ N1 \ V1, the vector x′ := x − eu + eu′ is a root
of (3.1). Therefore, cTx = cTx′. This yields cu = cu′ for all u, u′ ∈ N1, since u
and u′ can be chosen arbitrarily. By analogous arguments we obtain cu = cu′ for
all u, u′ ∈ N2. Finally, let V1 ⊆ N1, |V1| = s, V2 ⊆ N2, |V2| = t and V ′

1 ⊆ N1,
|V ′

1 | = s + h1
i , V

′
2 ⊆ N2, |V ′

2 | = t − h2
i . Since x and x′ are roots of (3.1) we

immediately obtain h1
i cu = h2

i cv where u ∈ N1, v ∈ V2. This shows that c
Tx ≤ γ

and inequality (3.1) are equal up to multiplication by a scalar.

The next question to be raised is when the inequalities (3.3) – (3.6) are valid and
facet defining for P (μ, λ, F ). This question is answered by Proposition 3.11. Here
we show that under mild assumptions such inequalities are valid. In addition,
for each type of inequality (3.3) – (3.6) necessary and sufficient conditions are
presented such that the corresponding inequality defines a facet of P (μ, λ, F ).
It turns out that the statements as well as the corresponding proofs are quite
similar for the four types of inequalities and we decided to outline just one such
proof in detail.

Proposition 3.11. Let I1 ⊆ N1, s := |I1| = �F−tλ
μ

	 and I2 ⊆ N2, t = |I2|
and set r := F − tλ − sμ. Furthermore, let hi = (−h1

i , h
2
i ) be some element of

Hr = {h1, . . . , hτ} such that i < τ , h1
i+1 ≤ |N1 \ I1| and h2

i+1 ≤ |I2| (these three
conditions guarantee that the corresponding inequality of type (3.1) is not valid).
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(1) Let h2
i ≤ j < h2

i+1 be some integer and let J2 ⊆ I2, |J2| = j. Set a = κh2
i ,

b = κh1
i , κ = h2

i+1 − j and b′ = h1
i+1h

2
i − jh1

i . If t is the λ-maximum, the
inequality (3.3),

∑

i∈N1

axi +
∑

i∈J2∪(N2\I2)
bxi +

∑

i∈I2\J2

b′xi ≤ sa+ jb+ (t− j)b′

is valid for P (μ, λ, F ). In addition, it defines a facet of P (μ, λ, F ) if and
only if the following two conditions are satisfied

(F1) t < |N2| or j > h2
i or h2

i = 1,

(F2) h2
i+1 < t or j = h2

i+1 − 1.

(2) Let h1
i ≤ j < h1

i+1 be some integer and let J1 ⊆ N1\I1, |J1| = j. Set c = κh2
i ,

d = κh1
i , κ = h1

i+1 − j and c′ = h2
i+1h

1
i − jh2

i . If t is the λ-maximum, the
inequality (3.4),

∑

i∈I1∪J1

cxi +
∑

i∈N1\(I1∪J1)

c′xi +
∑

i∈N2

dxi ≤ sc+ td

is valid for P (μ, λ, F ). In addition, it defines a facet of P (μ, λ, F ) if and
only if the following two conditions are satisfied

(F3) s > 0 or j > h1
i or h1

i = 1,

(F4) h1
i+1 < |N1 \ I1| or j = h1

i+1 − 1.

(3) Let 1 ≤ j < h2
i be some integer and let J2 ⊆ I2, |J2| = j. Set α = κ(h2

i+1 −
h2
i ), β

′ = κ(h1
i+1 − h1

i ), κ = j and β = h1
i (h

2
i+1 − h2

i ) − (h2
i − j)(h1

i+1 − h1
i ).

We require that the numbers α, β, β ′ satisfy the properties

vβ − �vλ−r
μ

	α < 0 for all values of v with 1 ≤ v ≤ |N2| − t and

�vλ−r
μ

	 ≤ s.

−vβ + nr(v)α < 0 for all numbers v with 1 ≤ v ≤ j.

−jβ − vβ ′ + nr(j + v)α < 0 for all numbers v with 1 ≤ v < h1
i − j.

Then, the inequality (3.5),

∑

i∈N1

αxi +
∑

i∈I2\J2

β ′xi +
∑

i∈(N2\I2)∪J2

βxi ≤ sα+ jβ + (t− j)β ′

is valid for P (μ, λ, F ). In addition, it defines a facet of P (μ, λ, F ) if and
only t < |N2| or j = 1.

(4) Let 1 ≤ j < h1
i be some integer and let J1 ⊆ N1 \ I1, |J1| = j. Set

γ = κ(h2
i+1 − h2

i ), δ = κ(h1
i+1 − h1

i ), κ = j and γ′ = h2
i (h

1
i+1 − h1

i ) − (h1
i −

j)(h2
i+1 − h2

i ). We require that the numbers γ, δ, γ ′ satisfy the properties
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vδ − �vλ−r
μ

	γ < 0 for all values of v with 1 ≤ v ≤ |N2| − t and

�vλ−r
μ

	 ≤ s.

−vδ + nr(v)γ < 0 for all numbers 1 ≤ v with nr(v) ≤ j.

−vδ+jγ+(nr(v)−j)γ′ < 0 for all numbers 1 ≤ v with j < nr(v) < h1
i .

Then, the inequality (3.6),

∑

i∈I1∪J1

γxi +
∑

i∈N1\(I1∪J1)

γ′xi +
∑

i∈N2

δxi ≤ sγ + tδ

is valid for P (μ, λ, F ). In addition, it defines a facet of P (μ, λ, F ) if and
only if s > 0 or j = 1.

Proof of (1). For ease of notation we denote the corresponding inequality
by cTx ≤ γ. First notice that by Lemma 3.7 we obtain b′ = h1

i+1h
2
i − jh1

i >
h2
i+1h

1
i − jh1

i = b. W.l.o.g. we assume that I2 = {n1 + 1, . . . , n1 + t} and J2 =
{n1 + t− j + 1, . . . , n1 + t}. Let V1 ⊆ N1 and V2 ⊆ N2 such that x =

∑
v∈V1∪V2

ev
is feasible. If |V2| ≥ t, cTx ≤ γ obviously holds, because t is the λ-maximum.
Hence |V2| = t − v with v ≥ 1 and |V1| ≤ s+ �vλ+r

μ
	 = s + nr(v). Moreover, we

can assume that V1 = {1, . . . , |V1|} and V2 = {n1 + 1, . . . , n1 + t − v}. We write
(−nr(v), v) =

∑
u∈Hr

εuhu. In case, v < h2
i+1 we immediately obtain cTx ≤ γ,

because h2
jh

1
i − h1

jh
2
i > 0 for all j < i and εj = 0 for all j > i and εj ≥ 0 for all

j ≤ i. If v = h2
i+1, the inequality is satisfied as well. It remains the case v > h2

i+1.
By definition, cs+1, . . . , cs+nr (v) and ct, . . . , ct−v+1 are sequences of numbers as

investigated in Lemma 3.8 (2) and Lemma 3.9. Hence,
∑s+nr(v)

w=s+1 cw ≤ ∑t
w=t−v+1 cw

and it follows that x satisfies the above inequality.

We now turn to the facet statement. Let cTx ≤ γ denote the above inequality.
Suppose, condition (F1) is not satisfied. Then, t = |N2| and j = h2

i > 1. Hence,
|J1| ≥ 2 and every x ∈ Fc satisfies the equation xu − xw = 0 where u, w ∈ J1,
u �= w. Similarly, if condition (F2) is not satisfied, then, h2

i+1 = t and j < h2
i+1.

Therefore, |I2 \J2| ≥ 2 and every x ∈ Fc satisfies the equation xu−xw = 0 where
u, w ∈ I2 \ J2, u �= w.

This shows that the conditions (F1) and (F2) are necessary. To prove that both
conditions are sufficient such that an inequality of type (3.3) defines a facet of
P (μ, λ, F ) is straight forward and we omit further details.

Proof of (2). This proof is very similar to the one outlined above. We just notice
that c = κh2

i , d = κh1
i , κ = h1

i+1 − j and c′ = h2
i+1h

1
i − jh2

i < h1
i+1h

2
i − jh2

i =
κh2

i = c.
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Proof of (3). Let cTx ≤ γ denote the inequality of type (3.5). Again, we
first conclude that β = h1

i (h
2
i+1 − h2

i ) − (h2
i − j)(h1

i+1 − h1
i ) = h1

ih
2
i+1 − h1

ih
2
i −

h2
ih

1
i+1 + h2

ih
1
i + j(h1

i+1 − h1
i ) = h1

ih
2
i+1 − h1

i+1h
2
i + β ′ < β ′. Secondly, the three

conditions guarantee that t is the λ-maximum of the inequality and that every
vector

∑
v∈V1∪V2

ev with V1 ⊆ N1, V2 ⊆ N2, |V2| = t− v, v < h2
i , |V1| = s+ �vλ+r

μ
	

< s + h1
i satisfies cTx < γ. Taking these facts into account, one can proof

statement (3) analogously to (1).

Proof of (4). This proof is similar to the ones above.

To end this section we finally introduce a class of inequalities that can be viewed
as a degenerate case of the inequalities (3.1). We choose numbers s, t, r, l with
the properties 1 ≤ t ≤ |N2|, s = �F−tλ

μ
	, r = F − tλ − sμ, 1 ≤ l < nr(1) and

0 ≤ s, s+ l ≤ |N1|. For every subset I1 ⊆ N1, |I1| = s+ l, the inequality

(3.12)
∑

i∈I1

xi +
∑

i∈N2

lxi ≤ s+ lt

is valid for P (μ, λ, F ) if t is the λ-maximum. It is facet defining for P (μ, λ, F ) if
and only if s > 0 or l = 1. These two statements can be shown quite easily.

� A Complete Description of P (μ, λ, F )

Having introduced the five classes of inequalities in the previous section we
now show that they are together with the trivial inequalities and the inequal-
ity

∑
i∈N2

xi ≤ �F
λ
	 sufficient to decribe the polytope P (μ, λ, F ).

Theorem 4.1. The trivial inequalities, the inequality
∑

i∈N2
xi ≤ �F

λ
	, the in-

equalities (3.1), (3.3), (3.4), (3.5), (3.6) and (3.12) completely describe P (μ, λ, F ).

Proof. Let cTx ≤ γ define the nontrivial facet Fc of P (μ, λ, F ). W.l.o.g. we
assume that N1 = {1, . . . , n1}, N2 = {n1 + 1, . . . , n1 + n2} and c1 ≥ . . . ≥ cn1

and cn1+1 ≥ . . . ≥ cn1+n2 . Let t be the λ-maximum with respect to cTx ≤ γ.
If c1 = 0, then it is easy to see that Fc ⊆ {x ∈ P (μ, λ, F ) | ∑

i∈N2
xi = �F

λ
	}.

Otherwise, c1 > 0 and we can assume that the vector x0 defined via x0
v = 1 for

v = 1, . . . , �F−tλ
μ

	, x0
v = 1 for v = n1+1, . . . , n1+t, x0

v = 0, else is a root of Fc (for

if not, then Fc ⊆ {x ∈ P (μ, λ, F ) | x1 = 1}). Set s := �F−tλ
μ

	 and r := F−tλ−sμ.
Since Fc is a nontrivial facet, not every root satisfies the equation

∑
i∈N2

xi = t.
Thus, there exist numbers t′ < t and s′ > s and a root x ∈ Fc such that xv = 1
if v = 1, . . . , s′, xv = 1 if v = n1 + 1, . . . , n1 + t′, xv = 0 else. Let t1 denote the
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maximum number t ′ with the above properties, i.e., there exist numbers t1 < t
and s1 > s and a root x1 ∈ Fc such that x1

v = 1 if v = 1, . . . , s1, x
1
v = 1 if

v = n2 + 1, . . . , n2 + t1, x
1
v = 0, otherwise. Of course, s1 ≤ �F−t1λ

μ
	. Notice that

for every number t′ < t, �F−t′λ
μ

	 = �F−tλ+(t−t′)λ
μ

	 = � r+sμ+(t−t′)λ
μ

	 = s+ � r+(t−t′)λ
μ

	
= s+ nr(t− t′).

We distinguish the two cases: (1) s1 = s+ nr(t− t1) and (2) s1 < s+ nr(t− t1).

(1) s1 = s+nr(t− t1). Since both x0 and x1 are roots of Fc and due to the choice
of t1 we derive the following relations:

(R1)
∑s+nr(t−t′)

v=s+1 cv <
∑n1+t

v=n1+t′+1 cv for all t > t′ > t1.

(R2)
∑s+nr(t−t1)

v=s+1 cv =
∑n1+t

v=n1+t1+1 cv.

Let Hr = {h1, . . . , hτ} denote the Hilbert basis as introduced in Section 2. From
Lemma 2.5 we know that every vector (−nr(t − t′), t − t′) with t − t′ ≤ h2

τ can
be written as

∑τ
u=1 εuhu where hu are the elements in Hr and εu ≥ 0, εu integer

(u = 1, . . . , τ ). Moreover, cs+1 ≥ cs+2 ≥ . . . ≥ cn1 and cn1+t ≤ cn1+t−1 ≤ . . . ≤
cn1+1 are two sequences of numbers as investigated in Lemmas 3.8 and 3.9. In
particular, we conclude from Lemma 3.9 that t− t1 ≤ h2

τ . Furthermore, Lemma
2.5, (R1) and (R2) imply that t − t1 = h2

i for some i ∈ {1, . . . , τ}. Therefore

by Lemma 3.8,
∑s+nr(t−t′)

v=s+1 cv ≤ ∑n1+t
v=n1+t′+1 cv for all h2

i < t − t′ < h2
i+1, t

′ ≥ 0,

nr(t − t′) ≤ n1 − s and
∑s+nr(t−t′)

v=s+1 cv <
∑n1+t

v=n1+t′+1 cv for all h2
i < t − t′ < h2

i+1,
t′ ≥ 0, nr(t− t′) ≤ n1 − s, provided that cs+1 > cs1 or ct < ct1+1.

(a) Suppose, i = τ or h1
i+1 > n1 − s or h2

i+1 > t.

By Lemma (3.8) and (3.9) we obtain that every x ∈ Fc satisfies |{i ∈ N1 | xi =
1}| = s + σ(s1 − s) and |{i ∈ N2 | xi = 1}| = t − σ(t − t1) for some σ ≥ 0, σ
integer. Thus Fc is defined by the inequality

∑
i∈N1

h2
ixi+

∑
i∈N2

h1
ixi ≤ sh2

i + th1
i .

(b) Suppose, i < τ and h1
i+1 ≤ n1 − s and h2

i+1 ≤ t. We distinguish the two
subcases:

(b1) cs1 = cs+1 and cn1+t = cn1+t1+1. Hence, cu = cv = κh2
i for all u, v, s + 1 ≤

u ≤ v ≤ s1 and cu = cv = κh1
i for all n1 + t1 + 1 ≤ u ≤ v ≤ n1 + t where κ

is is some positive integer. Moreover, (−nr(v), v) =
∑i

u=1 εuhu for h2
i + 1 ≤ v ≤

h2
i+1−1 and nonnegative integers εu (Lemma 2.5) and consequently,

∑s+n(v)
w=s+1 cw ≤∑n1+t

w=n1+t−v+1 cw. By Lemma 3.7 we know that h2
i+1κh

1
i − h1

i+1κh
2
i < 0. Since

the inequality cTx ≤ γ is valid there exists h2
i+1 > j ≥ h2

i such that ct−j >
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κh1
i or there exists h1

i+1 > j ≥ h1
i such that cj+1 < κh2

i . Now it follows that
∑s+h1

i+1
v=s+1 cv =

∑n1+t
v=n1+t−h2

i+1+1
cv. For if not then

∑s+h1
i+1

v=s+1 cv <
∑n1+t

v=n1+t−h2
i+1+1

cv

and together with Lemma 3.8 (3) and Lemma (3.9) , every root x ∈ Fc would
satisfy the equation

∑
i∈N1

h2
ixi +

∑
i∈N2

h1
ixi = sh2

i + th1
i , which contradicts the

assumption that Fc is a facet of P (μ, λ, F ). Since there exists h1
i ≤ j < h1

i+1

with cj+1 < κh2
i = cs1 or there exists h2

i+1 > j ≥ h2
i with ct−j > κh1

i = cn1+t1+1

we obtain
∑s+nr (v)

u=s+1 cu <
∑n1+t

u=n1+t−v+1 cu for all v = h2
i+1, . . . , h

2
τ (Lemma 3.8 (2))

and
∑s+nr(v)

u=s+1 cu <
∑n1+t

u=n1+t−v+1 cu for all v > h2
τ (Lemma 3.9). This implies that

cTx ≤ γ is of the type (3.3) or (3.4).

(b2) cs1 < cs+1 or cn1+t > cn1+t1+1. By Lemma 3.8 (1) we obtain
∑s+nr (v)

u=s+1 cu <
∑n1+t

u=n1+t−v+1 cu for all h2
i < v < h2

i+1. Further, if
∑s+h1

i+1
u=s+1 cu <

∑n1+t
u=n1+t−h2

i+1+1
cu,

then by Lemma 3.8 (3) and Lemma 3.9,
∑s+nr (v)

u=s+1 cu <
∑n1+t

u=n1+t−v+1 cu for all v >
h2
i+1. Hence, every x ∈ Fc would satisfy the equation

∑
i∈N1

h2
ixi +

∑
i∈N2

h1
ixi =

sh2
i + th1

i and consequently, dim(Fc) ≤ |N | − 2, a contradiction. Therefore,
∑s+h1

i+1

u=s+1 cu =
∑n1+t

u=n1+t−h2
i+1+1

cu. Taking Lemmas 3.8 and 3.9 into account, it

follows that cTx ≤ γ is of the type (3.5) or (3.6). This completes the analysis of
the case (1), i.e., s1 = s+ nr(t− t1).

(2) s1 < s+ nr(t− t1). Then, t1 = t− 1 for the following reasons:

Suppose, t1 < t−1 and let s′ denote the maximum number such that s+nr(s
′) ≤

s1. Then, s
′ < t− t1 follows and s1−(s+nr(s

′)) < nr(1) ≤ n(1)+1. Since the in-

equality is valid and due to the choice of t1 and s1 we conclude that
∑s+nr(s′)

u=s+1 cu <
∑n1+t

u=n1+t−s′+1 cu. Moreover,
∑s1

w=s+nr (s′)+1 cw ≤ ∑s+n(1)
w=s+1 cw ≤ cn1+t ≤ cn1+t−s′ .

Thus,
∑s1

w=s+1 cw =
∑s+nr (s′)

w=s+1 cw +
∑s1

s+nr(s′)+1 cw <
∑n1+t

w=n1+t−s′+1 cw + cn1+t−s′ ≤∑n1+t
w=n1+t−t1+1 cw, a contradiction since

∑s1
w=s+1 cw =

∑n1+t
w=n1+t−t1+1 cw. Therefore,

t1 = t − 1 and s1 < s + nr(1) and we obtain (�)
∑s1

w=s+1 cw = cn1+t. Since
s1 < s+nr(1), for every s1+1 ≤ v ≤ n1 the vector

∑s1
w=s+1 ew + ev +

∑n1+t1
w=n1+1 ew

is feasible. Together with (�) we obtain cv = 0. Set κ = s1 − s. Then, every
x ∈ Fc satisfies the equation

∑s1
i=1 xi +

∑n1+n2
i=n1+1 κxi = s + κt and consequently,

cTx ≤ γ is of the type (3.12).

Let us end this section with a brief remark on the separation problem for the
inequalities of P (μ, λ, F ). Let y ∈ IRN1∪N2 be a fractional solution. W.l.o.g. we
assume that N1 = {1, . . . , n1}, N2 = {n1 + 1, . . . , n1 + n2} and y1 ≥ . . . ≥ yn1,
yn1+1 ≥ . . . ≥ yn1+n2 . Choose a number t ∈ [1, . . . , n2] and check whether there
exists a violated inequality of the above types. Setting r = F − tλ − μ�F−tλ

μ
	,

we can construct the Hilbert basis Hr in polynomial time. For every hi ∈ Hr we
can check in polynomial time whether the inequality of type (3.1) is valid and in
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case it is, whether it is violated.
For the inequalities (3.3) – (3.6) we can proceed accordingly. Having established
the sorting of the values yi in N1 and N2, the number t and the element hi,
we just check for every j ∈ [1, . . . , h1

i+1 − 1] and j ∈ [1, . . . , h2
i+1 − 1] whether

the corresponding inequality of type (3.3), (3.4), (3.5) or (3.6) is valid and if so,
whether it is violated. Since all numbers j, t and h1

i , h
2
i , h

1
i+1, h

2
i+1 are polynomial

in |N |, a polynomial running time for solving the separation problem is obtained.
Similar arguments apply for separating the inequalities of type (3.12).

� Extensions

Having seen how Hilbert basis elements of a certain cone can be transformed into
valid inequalities for a special knapsack polytope, the natural question is how to
extend or apply this concept to more general cases. Within this section we briefly
discuss some directions that might be of interest for further investigations.
Let a 0/1 integer programming problem of the form Ax ≤ F be given where
ai ∈ INm, i ∈ N denote the columns of A. Suppose that N can be partitioned
into two sets N1 and N2 say, and suppose there exist values μ, λ, F ′ ∈ IN such
that t1μ + t2λ ≤ F ′ if and only if for every subset T1 ⊆ N1, |T1| = t1 and
T2 ⊆ N2, |T2| = t2, the relation

∑
i∈T1

ai +
∑

i∈T2
ai ≤ F holds. Then, the convex

hull of all 0/1 vectors satisfying Ax ≤ F is equal to conv{x ∈ {0, 1}N1∪N2 |∑
i∈N1

μxi +
∑

i∈N2
λxi ≤ F ′} and an inequality description is given by Theorem

4.1.

One way to apply this result to more general cases is to incorporate the lift-
ing and complementing of variables (see [6] and [11] for details on this subject).
Roughly speaking, the idea is the following. Let Ax ≤ F be a 0/1 integer pro-
gram where ai ∈ IRm, i ∈ N denote the columns. We choose C ⊆ N and
S ⊆ N \ C and consider the problem

∑
i∈S aixi ≤ F − ∑

i∈C ai. If the set S
can be partitioned into S1 and S2 and if there exist numbers μ, λ, F ′ such that
t1μ + t2λ ≤ F ′ if and only if

∑
i∈T1

ai +
∑

i∈T2
ai ≤ F for all T1 ⊆ S1, |T1| = t1

and T2 ⊆ S2, |T2| = t2, the inequalities (3.1), (3.3) – (3.6) and (3.12) are valid
for conv{x ∈ {0, 1}S | ∑i∈S1

aixi ≤ F − ∑
i∈C ai}. Any of these inequalities can

now be expanded by ordering the variables in N \ S and subsequently compute
appropriate coefficients for those variables not considered before. Of course, each
of these computation steps needs not be polynomial in the encoding length of
the problem Ax ≤ F and for practical purposes approximate coefficients are
usually determined. However, can one go further? Is it possible, for instance, to
choose a valid inequality for conv{x ∈ {0, 1}N1∪N2 | ∑i∈N1

μ1xi+
∑

i∈N2
μ2xi ≤ F}

and one for conv{x ∈ {0, 1}N3∪N4 | ∑i∈N3
μ3xi +

∑
i∈N4

μ4xi ≤ G} and combine
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them appropriately to obtain a valid inequality for conv{x ∈ {0, 1}N1∪N2∪N3∪N4 |∑4
i=1

∑
j∈Ni

μixj ≤ F + G}? If this is true, what is the precise relation to
the Hilbert basis associated with the exchange vectors of the knapsack prob-
lem

∑4
i=1

∑
j∈Ni

μixj ≤ F + G? Finding an answer to this problem is not only
of theoretical interest, but also has an algorithmic impact, because Hilbert bases
can be computed by the Buchberger algorithm. The latter algorithm plays an
important role for computational algebra in the setting of Gröbner bases (see [2],
[9]).

Besides this, there are several generalizations of the problem

∑

i∈N1

μxi +
∑

i∈N2

λxi ≤ F

that seem interesting. How does the inequality description look like if we replace
xi ∈ {0, 1} by xi ∈ {0, 1, . . . , ui} where ui is some natural number (i ∈ N)?
Is there a way to extend Theorem 4.1 to the polytope conv{x ∈ {0, 1}∪3

i=1Ni |∑
i∈N1

xi+
∑

i∈N2
μxi+

∑
i∈N3

λxi ≤ F} where N1, N2, N3 is the set of items with
weight 1, μ, λ, respectively? Finally, the mixed integer program
conv{x ∈ {0, 1}N1∪N2, y ∈ [0, 1]N1∪N2 | ∑

i∈N1∪N2
yi ≤ F, yi ≤ μxi, i ∈ N1; yi ≤

λxi, i ∈ N2} is a natural generalization of the knapsack problem
∑

i∈N1
μxi +∑

i∈N2
λxi ≤ F and it certainly would be interesting to understand its facial

structure.
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several valuable discussions on this subject.

Appendix

Proof of Lemma 3.7.

(i) Let j < i be given. From the generation of the integer Hilbert basis Hr we

know that Rj > Ri. Hence, h
2
jλ− h1

jμ > h2
iλ− h1

iμ. Equivalently, h
1
j (

h2
j

h1
j
λ− μ) >

h1
i (

h2
i

h1
i
λ−μ). Since h1

j < h1
i , we conclude that

h2
j

h1
j
λ−μ >

h2
i

h1
i
λ−μ and consequently,

h2
j

h1
j
>

h2
i

h1
i
. Moreover,

h2
j

h1
j
h1
i − h2

i >
h2
i

h1
i
h1
i − h2

i = 0. Then, h2
jh

1
i − h2

ih
1
j > 0 follows.

This proves statement (i).

(ii) Let j > i be given. In this case we have that Rj < Ri and h1
j > h1

i . By the
same computations as outlined above the statement follows.
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Proof of Lemma 3.8.

(1) Let Hr = {h1, . . . , hτ} be the Hilbert basis as introduced in Section 2 and
let (−nr(t), t) be given with h2

i < t < h2
i+1. From Lemma 2.5 we know that

(−nr(t), t) =
∑i

u=1 εuhu where εu ≥ 0, integer and εi > 0. Since a1 ≥ a2 ≥ . . . ≥
anr(tmax(r)) and b1 ≤ b2 ≤ . . . ≤ btmax(r) we obtain

∑nr(t)
v=1 av ≤ ∑i

u=1 εu
∑h1

u
w=1 aw ≤

∑i
u=1 εu

∑h2
u

w=1 bw ≤ ∑t
v=1 bv. If a1 > ah1

i
, then

∑nr(t)
v=1 av <

∑i
u=1 εu

∑h1
u

w=1 aw and if

b1 < bh2
i
, then

∑i
u=1 εu

∑h2
u

w=1 bw <
∑t

v=1 bv. Hence, statement (1) is true.

(2) Let (−nr(t), t) be given with t > h2
i+1. We write t = l + σ(h2

i+1 − h2
i ) where

h2
i ≤ l < h2

i+1. Now we first show that nr(t) < nr(l) + σ(h1
i+1 − h1

i ) holds.

� r+tλ
μ

	 = � r+lλ+σ(h2i+1−h2
i )λ

μ
	 =

� r+lλ
μ

+
σ(h2i+1−h2

i )λ

μ
	 =

�R((−nr(l),l))+σ(Ri+1−Ri)
μ

+ nr(l) + σ(h1
i+1 − h1

i )	 =

nr(l) + σ(h1
i+1 − h1

i ) + �R((−nr(l),l))+σ(Ri+1−Ri)
μ

	 ≤
nr(l) + σ(h1

i+1 − h1
i )

Henceforth,
∑nr(t)

v=1 av ≤ ∑nr(l)+σ(h1i+1−h1
i )

v=1 av =: A and

A =
∑nr(l)

v=1 av +
∑σ−1

u=0

∑nr(l)+(u+1)(h1i+1−h1
i )

v=nr(l)+u(h1i+1−h1
i )+1

av

≤ ∑nr(l)
v=1 av +

∑σ−1
u=0

∑h1
i+(u+1)(h1i+1−h1

i )

v=h1
i+u(h1i+1−h1

i )+1
av

≤ ∑nr(l)
v=1 av + σ

∑h1
i+1

v=h1
i+1

av

=
∑nr(l)

v=1 av + σ
∑h2

i+1

v=h2
i+1

bv

≤ ∑l
v=1 bv + σ

∑h2
i+1

v=h2
i +1

bv

≤ ∑l
v=1 bv +

∑σ−1
u=0

∑l+(u+1)(h2i+1−h2
i )

v=l+u(h2i+1−h2
i )+1

bv

=
∑t

v=1 bv.

In fact, strict inequality is true if ah1
i+1 > ah1

i+1
or bh2

i+1 < bh2
i+1

.

(3) This statement can be shown similarly to the proof of (ii).

Proof of Lemma 3.9.

This proof is analogous to the proof of Lemma 3.8. We briefly outline the steps.
Let (−nr(t), t) be given with t > h2

τ . We write t = σh2
τ + t′ where 0 ≤ t′ < h2

τ and
by similar arguments as used in the proof of Lemma 3.8 we obtain nr(t) ≤ σh1

τ +
nr(t

′). Due to the ordering of the numbers ai, i = 1, . . . , n1 and bi, i = 1, . . . , n2

and since
∑nr(t′)

v=1 av ≤ ∑t′
v=1 bv, we easily obtain statements (1), (2) and (3).
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