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Abstract

We propose rapid branching (RB) as a general branch-and-bound heuris-
tic for solving large scale optimization problems in traffic and transport.
The key idea is to combine a special branching rule and a greedy node se-
lection strategy in order to produce solutions of controlled quality rapidly
and efficiently. We report on three successful applications of the method
for integrated vehicle and crew scheduling, railway track allocation, and
railway vehicle rotation planning.

1 Introduction

Traffic and transport is one of the classical application areas of combinatorial
optimization and integer programming. Network-based models, which give rise
to integer programming formulations, which in turn can be solved by column
generation algorithms, have proved particularly effective. Successful applica-
tions of this approach include network design, line planning, timetabling, track
allocation, platforming, fleet, vehicle, and tail assignment, crew scheduling, ros-
tering, and assignment, and many others, see Lusby et al. [2011], Borndorfer
et al. [2010] for overviews.

Network models for transportation problems involve a large scheduling graph,
in which some cost-minimal structure such as a collection of paths or cycles has
to be determined. The size of this structure, measured in numbers of arcs, is
in general (sub)linear in the number of nodes |V|, while the number of network
arcs is quadratic (or larger for multi-commodity type problems), i.e., the rela-
tive size of the solution structure in the network model is O(|V'|~!), which goes
to zero as |V| goes to infinity. This obvious observation has an unavoidable
algorithmic consequence: In fact, branching on individual arcs makes little dif-
ference in large models, and the zero branch is infinitely worse in this respect
than the one branch. This “empty space” phenomenon is unavoidable. On
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the positive side, however, many of these model produce amazingly strong LP
relaxations.

Rapid branching is a partial branch-and-bound method that is built on these
two observations. The main ideas are to drive the LP relaxations towards in-
tegrality by slight perturbations (perturbation branching), and to branch on
large sets of variables simultaneously to one, controlled by a “target” estimation
of the expected objective value, and backtracking in a binary search manner if
necessary (binary search branching). The method fits perfectly with approxi-
mate large-scale LP solution methods, in particular, the bundle method.

Rapid branching was initially developed for the solution of integrated vehi-
cle and duty scheduling problems in public transport, see Weider [2007] and
Borndorfer et al. [2008]. Recently, it has also been successfully applied to
railway track allocation problems Schlechte [2012], and railway vehicle rota-
tion planning Borndorfer et al. [2011]. We are convinced that rapid branching
works for other problems of this type just as well. We document in this article
the rapid branching method and our three successful applications, providing
computational results for real-world large-scale problems.

The organization of the paper is as follows. Section 2 describes the rapid
branching method in a general problem setting. Section 3 provides details and
computational results for an application to integrated vehicle and duty schedul-
ing in public transit. Rapid branching for railway track allocation problems
is discussed in Section 4. We finally report results on railway vehicle rotation
planning in Section 5.

2 Rapid Branching

Branch-and-Bound is a basic method to solve combinatorial optimization prob-
lems. The idea is to partition the finite and discrete solution space of a problem
into subsets (“branch”) and to prune subsets which can be excluded from con-
taining the optimum by using lower bounds (“bound”). This is done recursively
until an optimal solution is found. Rapid Branching tries to branch in order
to construct solutions rapidly. The branching is done in a heuristic manner,
i.e., subsets are not only pruned because of their bounds.

We introduce the following notation in oder to describe the method.
Definition 1 (integer program (1P))

RmXTL

Given a matriz A € , vectors b € R™, and ¢ € R", the integer program

IP = (A,b,c) is to solve
(IP) ¢ =min {c'z : Az = b,z € Z"}.

The vectors contained in the set Xip = {x € Z" : Ax = b} are called feasible



solutions of IP. A feasible solution x* € Xip of IP is called optimal if its
objective value satisfies ¢c’x* = ¢*(IP).

We consider problems (IP) with the following characteristics. The number of
constraints is rather small in comparison to the number variables, i.e., n >> m;
we will therefore use a column generation procedure to solve (IP). Further-
more, the linear relaxation (LP) of problem (/P) is reasonably strong, i.e.,
(1 + €)c*(LP) = ¢*(IP) with some small € > 0. In addition, we assume that
the problems are feasible (which is a rather strong assumption). However, in
most cases it is possible to find a problem formulation that guarantees feasi-
bility by adding appropriate slack variables.

Let I,u € {0,1}", I < u, be vectors of bounds that model fixings of variables
to 0 and 1. Denote by L:={j € 1,2,...n:uj =0} and U :={j € 1,2,...n:
l; = 1} the set of variables fixed to 0 and 1, respectively, and by
(IP)(l,u) ¢ = min {c"z : Az =b,z € Z"}.
1<z<u

the problem derived from IP by such fixings. Denote further by N C 1,2,...n
some set of variables which have, at some point in time, already been gener-
ated by a column generation algorithm for the solution of IP. Let RIP and
RIP(l,u) be the restrictions of the respective IPs to the variables in N (we
assume that L, U C N holds at any time when such a program is considered,
i.e., variables that have not yet been generated are not fixed). Finally, denote
by MLP, MLP(c,l,u), RMLP, and RMLP(c,l,u) the LP relaxations of the
integer programs under consideration; MLP and MLP (¢, [, u) are called mas-
ter LPs, RMLP and RMLP(c,l,u) restricted master LPs. We included the
objective ¢ in the notation for MLP (¢, ,u) and RMLP(c, [, u) because the tree
construction of rapid branching is guided by perturbations of the original cost
vector ¢. More details will be given in Section 2.1).

The main idea of the rapid branching heuristic is that fixing a single variable to
zero or one has most of the time almost no effect on the value of the LP relax-
ation of the (IP), see Liibbecke & Desrosiers [2005]. The authors of Borndorfer
et al. [2008], see also the thesis Weider [2007|, proposed in the context of in-
tegrated vehicle and duty scheduling a heuristic that tries to overcome this
problem by a combination of cost perturbation to “make the LP more inte-
ger”, partial pricing to generate variables that are needed to complete integer
solutions down in the tree, a selective branching scheme to fix large sets of vari-
ables, and an associated backtracking mechanism to correct wrong decisions.
Rapid branching belongs to the class of branch-and-generate (BANG) meth-
ods for the construction of high-quality integer solutions for very large scale
integer programs. Branch-and-generate is an adaption of a branch-and-price
algorithm with partial pricing and branching, see Subramanian et al. [1994].

Rapid branching tries to compute a solution of IP by means of a search tree
with nodes IP(l,u). Starting from the root (IP) = (IP)(0,1), nodes are
spawned by additional variable fixes using a strategy that we call perturbation



Algorithm 1: Rapid Branching (for minimization problems).

Data: an (IP) and an absolute optimality tolerance 9,
Result: a solution z* € X1p with objective value el
bound b for IP with Ib > cTa* — § (if successful)

and a lower

1 init Sy < {Xip}, ub* = 00,lb* = —00,i + 0;

2 while S; # () do /* no subproblem left */

3 set N; € S;; /* node selection by binary search */

4 compute [b; < ;2%1 cla; /* lower bounding */

5 if found solution x; € N; then /* upper bounding */

6 set ub; := c'a;;

7 set ub* = min uby; /* global upper bound */
1<k<i

8 set z* « argmin c'zy; /* best incumbent */
1<k<i

9 else

10 ‘ set ub; := oo; /* no solution */

11 end

12 if 1b; > ub* then

13 set Sit1 < S; \ Ny, i« i+ 1; /* pruning */

14 goto 3;

15 end

16 set [b* < min{lb; | Ny € S;}; /* global lower bound */

17 if Ib* + 9 > ub* then

18 ‘ break ; /* quality of solution proven */

19 end

20 compute Uf;l Q{, 1 <5 <k; with k; > 2; /* perturbation

branching */

21 | set Sip1 ¢+ (S \ {N:}) U, ({Q1});

22 set 1 < i+ 1;

23 end

branching. The tree is depth-first searched, i.e., rapid branching is a plunging
(or diving) heuristic. The nodes are analyzed heuristically using restricted
master LPs RMLP(c,l,u). The generation of additional columns and node
pruning are guided by so-called target values as in the branch-and-generate
method. To escape unfavorable branches, a special backtracking mechanism is
used that performs a kind of partial binary search on variable fixings. The idea
of the method is as follows: we try to make rapid progress towards a feasible
integer solution by fixing large numbers of variables by perturbation branching
in each iteration, repairing infeasibilities or deteriorations of the objective by
regeneration of columns if possible, and exploring the tree in a binary search

manner with controlled backtracking.
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Figure 1: Solving track allocation problem REQ 48 with rapid branching.

We give a generic variant of rapid branching in Algorithm 1. The sets Sy, S1, . . .
of Algorithm 1 are subsets of the solution space Xip of IP. At every iteration
i we select one element of S; denoted by N; (line 3). This step will be ex-
plained in detail in Section 2.2. Solving a relaxation, e.g., a linear relaxation
or Lagrangean relaxation of problem IP restricted to set N; (line 4) provides
a lower bound of the corresponding subproblem. In addition, we use advanced
solution techniques like column generation for large scale problem instances in
that step. If we found a feasible solution for IP (line 5), which can happen if
the relaxation is integral or some heuristic provides a solution, e.g., the triv-
ial solution by using the remaining slack variables in problem N;, we update
our best incumbent solution for problem IP in case of an improvement. Then
we either delete it (line 13) because of a larger lower bound in comparison to
our best incumbent solution or we subdivide it into disjoint sets (line 20). In
our implementations of rapid branching we also use a target objective value,
which will be used additionally to ignore subproblems with an unfavourable
lower bound. Note that in that case we accept to cut off heuristically potential
solutions (line 13).

In a complete search like full branch and bound, a partition N; = Uf;l Qf
is used for the decomposition. Rapid branching concentrates only on some
promising subsets @Q; C N; of the solution space. In Section 2.1 we will explain
the perturbation branching method which determines the remaining subprob-
lems to evaluate.

Figure 1 shows a rapid branching run for a track allocation problem, namely,
scenario REQ_ 48 of the T'TPLIB, see also Section 4. On the left hand side
the objective value of the primal solution, the upper bound, and the objective
of the fixation evaluated by the rapid branching heuristic is plotted. In the
initial LP stage (dark blue), a global upper bound is computed by solving the
Lagrangean dual using the bundle method after approximately 15 seconds. In
that scenario the upper bound is only slightly below the trivial upper bound,



i.e., the sum of all maximum profits. In the succeeding IP stage (light blue) an
integer solution is constructed by a simple greedy heuristic and improved by
the rapid branching heuristic. It can be seen that the final integer solution has
virtually the same objective value as the LP relaxation and the method is able
to close the gap between the greedy solution and the proven upper bound. On
the right hand side of the figure, one can see that indeed often large numbers
of variables are fixed to one and several backtracks are performed throughout
the course of the rapid branching heuristic until the final solution was found.
In addition, we plotted the development of the integer infeasibilities, i.e., the
number of integer variables that still have a fractional value.

2.1 Perturbation Branching

The idea of perturbation branching is to solve a series of MLPs with objectives
¢ i = 0,1,2,... that are perturbed in such a way that the associated LP
solutions ' are likely to become more and more integral. In this way, we hope
to construct an almost integer solution at little cost. The perturbation is done
by decreasing the cost of variables with LP values close to one according to
the formula:

& = ¢j, jeN

c; ::cé—l—cjozsz, JEN, 1=0,1,2,....

The idea behind this quadratic perturbation is that variables with values close
to 1 are driven towards 1. The progress of this procedure is measured in terms
of the potential function

v(z') :=c'x — §|B(z")|, B(z'):={jeN: ah>1—¢}

where € and § are parameters for measuring near-integrality and the relative
importance of near-integrality (we use € = 0.1 and § = 1), and B(z?) is the
set of variables that are one or almost one. The perturbation is continued as
long as the potential function decreases; if the potential does not decrease for
some time, a spacer step is taken in an attempt to continue. On termination,
the variables in the set B(z') associated with the minimal potential are fixed
to one. If no variables at all are fixed, we choose a single candidate by strong
branching, see Applegate et al. [1995|. Objective perturbation has also been
used in Wedelin [1995] for the solution of large-scale set partitioning problems,
and, e.g., in Eckstein & Nediak [2007] in the context of general mixed integer
programming.

Algorithm 2 gives a pseudocode listing of the complete perturbation branch-
ing procedure. The main work is in solving the perturbed reduced master
LP (line 3), generating new variables if necessary. Fixing candidates are deter-
mined (line 4) and the potential is evaluated (line 5). If the potential decreases



Algorithm 2: Perturbation Branching (in case of a minimization prob-
lem).

Data:

RMLP(c,1,u),

integrality tolerance € € [0, 0.5),

integrality weight § > 0,

perturbation factor o > 0,

spacer step interval ks,

iteration limit kpax

Result:

set of variables B* that can be fixed to one

1 init i < k < 0; & « ¢; B* < 0; v* < oc;
2 while k£ < kpax do /* maximum number of iterations not reached

*/

3 compute ' + argmax RMLP (w', [, u);

4 setBie{jzxézl—e,lj:O};

5 set v(2?) « 'z’ — 6| BY;

6 if 2 is integer then

7 set B* « B’ : /* candidates found */
8 break;

9 else

10 if k=0 mod ks and k£ > 0 then

11 set j* < argmax; _ :c;,

12 set cé —0; /* implicit fixing of j */
13 set B* «+ B'U {j*} ; /* spacer step */
14 else

15 if v(2%) < v* then

16 ‘ set B* < BY; v* < v(2%); k < —1; /* progress */
17 end

18 set cé“ — c§- — acj($§~)2 Vg /* perturbate cost */
19 end

20 end

21 seti<—i+1; k< k+1;

22 end

23 if B* = () then

24 ‘ set B* « {j*} «+ strongBranching() ; /* strong branching */
25 end

26 return B*;

(in case of minimization the approximate costs) (lines 15-17), the perturba-
tion is continued (line 18). If no progress was made for ks steps (line 10),
the objective is heavily perturbed by a spacer step in an attempt to continue



(lines 10-13). However, this perturbation does not guarantee that any variable
will get a value above 1—¢, for arbitraty e > 0. If this happens and the iteration
limit is reached, a single variable is fixed by strong branching (line 24).

2.2 Binary Search Branching

The fixing candidate sets B* produced by the perturbation branching algo-
rithm are used to define nodes in a branch-and-generate search tree by impos-
ing bounds x; = 1 for all 4 € B*. This typically fixes many variables to one,
which is what we wanted to achieve. However, sometimes too much is fixed
and some of the fixings turn out to be disadvantageous. In such a case we must
backtrack. We propose to do this in a binary search manner by successively
undoing half of the fixes until either the fixings work well or only a single fix
is left as shown in Figure 2. We call this incomplete search procedure binary
search branching.

Let B* be a set of potential variable fixes proposed by perturbation branch-
ing 2, and K = |B*|. Assume the variables in B* are sorted by some reasonable
criterion as i1, 19, ...,ix and define sets

Bf = {i1,...,ix}, k=1,... K.

We denote the associated subproblems by

P,= min {c'z: Av=0bx€[0,1]"|z; =1,j € B}}
I<x<u

or short RMLP(c¢,l,u) N {x € [0,1]" | ; = 1,5 € B;}. The complement of
problem Py is the set of solutions where at least one of the variables in BJ; is
zero. This could be formulated by adding a constraint of the type

> i <|Bi|-1

i€Bj

to the current solution set, but this may destroy the structure of the pricing
problem. Therefore, we split this solution set into |K| subsets as if we had
fixed the variables in B* subsequently. Consider the problems

Qr == RMLP(c¢,l,u)n{z € [0,1]" |zj =1,j € B;;_; and ; = 0,i € B;\Bj_},
with 1 < k < K. Then i, (Qx U Py) = RMLP(c, 1, u) holds.
We focus on the search tree nodes defined by fixing

vj=1l=1, jeB, k=K,I[K/2],[K/4],... 21

These nodes are examined in the above order. Namely, we first try to fix
all variables in Bj- to one, since this raises hopes for maximal progress. If



RMLP(c,1,u)

030®

Figure 2: The considered and ignored branch and bound nodes for candi-
dates B*

this branch comes out worse than expected, it is pruned, and we backtrack
to examine B, /2] and so on until possibly B7 is reached. In this situation,
the single fix is applied imperatively. The resulting search tree is a path with
some pruned branches, i.e., binary search branching is a plunging heuristic.
Figure 2 shows the ignored nodes (in red) and the potentially evaluated ones
(in orange).

In our implementation, we order the variables by increasing reduced cost of the
restricted root LP, i.e., we unfix half of the variables of smallest reduced cost.
This sorting is inspired by the scoring technique of Caprara et al. [1998]. The
decision whether a branch is pruned or not is done by means of a target value as
introduced in Subramanian et al. [1994]|. Such a target value is a guess about
the development of the LP bound if a set of fixes is applied. Furthermore, we
use a linear function of the integer infeasibility. If the LP bound stays below
the target value, the branch develops according to our expectations, if not, the
branch “looks worse than expected” and we backtrack, see line 13. In terms of
Algorithm 1 we choose

Siv1 = (Si \{Ni}) U{B[1} U{B[g )21} U{Bfk/a1} - - - {Bfo} U{Bf11}

in Step 20 and evaluate it recursively in chronological order in Step 3.

3 Integrated Duty and Vehicle Scheduling

In this section we apply the rapid branching heuristic to the the integrated
duty and vehicle scheduling problem in public transit (ISP). Vehicle and duty
scheduling are two of the most important planning steps in public transit, be-
cause vehicles and drivers are the two most important cost factors of public



transit companies. Often at first vehicles and then drivers are scheduled. But,
in particular, for regional public transit vehicles and drivers have to be sched-
uled in one planning step, because there are few relief points for drivers and
thus the interdependencies between drivers and vehicles are stronger than in
an urban context.

The resulting integrated problems are quite large, because on the one hand
the number of potential deadhead trips grows quadratically in the number of
timetabled trips, on the other hand, the number of potential vehicle changes
of drivers is also quite large, resulting in a complex graph model and a po-
tentially huge integer programming model. To tackle this complexity, we use
column generation in the duty scheduling subproblem, and the rapid branching
heuristic to find high quality integer solutions.

3.1 Model and Algorithm

Introducing suitable constraint matrices and vectors, the model (ISP) reads:

mine'z 4+ d'y, (1)
such that
Az =1, (2)
Ny =b, (3)
Bx — My =0, (4)
(5)

z € {0,1}Py € {0,1}”. 5
The variables x4, d € D are 1 if duty d is in the solution and 0 otherwise. D is
the set of all feasible duties. Analogously, F is the set of all potential deadhead
trips, and y;, f € F is 1 if the respecting deadhead is used and zero otherwise.
Equations 2 of (ISP) are set-partitioning constraints that model, that every
obligatory task from the timetable is serviced by exactly one duty. Equations 3
are forming a multi-commodity min-cost-flow-problem guaranteeing that every
timetabled trip is serviced by exactly one vehicle. The coupling constraints 4
are ensuring that every deadhead trip used in a duty is also serviced by a
vehicle.

Our algorithm ISOPT solves (ISP) in a two stage approach. In the first stage
the vehicle variables y are fixed by rapid branching, in the second stage the
duty variables z are also fixed by rapid branching. The LP-relaxation of (ISP)
as well as the LP-relaxation of the duty scheduling subproblem is solved by
the proximal bundle method (see Kiwiel [1995]). Further details on the model
and on the solver ISOPT can be found in Weider [2007] or Borndérfer et al.
[2008].

10



3.2 Scenarios

We present in this section rapid branching results for four scenarios.

Scenario 1 is a mainly urban one stemming from a southeast-European public
transit carrier. Scenario 2 is mixed regional and urban, from an east-Baltic
company, scenario 3 is a German regional scenario, and scenario 4 is a small
German urban scenario with many relieve points and deadheads. Column 2
of Table 1 contains the number of tasks that has to be covered by duties, this
number is equal to the number of rows of constraints (2) of (ISP). Column 3
contains the number of timetabled trips, they may differ from the number of
tasks, because a trip may contain a relief point for drivers, where drivers can
be enter or leave the vehicle. The number of trips is equal to the number of
constraints (3). The next column contains the number of potential deadheads
which is equal to the number of coupling constraints of (ISP). Column “depots”
is the number of valid combinations of vehicle types and depots of the vehicle
scheduling subproblem of (ISP). This is equal to the number of commodities
of the multi-commodity-flow problem formed by constraints (3). The column
“max columns” is the largest number of x-variables used at once throughout
our algorithm.

The last two columns contain the number of duties and vehicles in the best
known solutions of the scenarios. Scenario 3 uses fewer duties than vehicles,
because some of vehicles are not driven by drivers of the planning company, but
by subcontractors. Therefore these duties are not planned in the problem but
by the subcontractors, which may include own tasks in their duty schedules.

3.3 Computational Results

The following computations use version4.030 of our SCHED-OPT optimization
suite for public transit which is integrated in the commercial software suite
ivu.plan. All computations were done on an Intel(R) Xeon(R) CPU E31280
with 3.50GHz. We used only one core. Our code was compiled as 32bit code,
that is, the memory consumption of our code is below 4GB.

Table 2 shows some characteristics of rapid branching for the scenarios of
Section 3.2. The first four columns are for the first phase of ISOPT, i.e., the

scenariotasks  trips deadheads depots max columns duties vehicles

1 2.256 2.256 90.114 3 566.613 172 102
2 2.598 2.283 111.043 2 676.508 156 244
3 2.256  2.256 52.707 16 356.581 155 109
4 1.033 468 99.061 1 329.734 20 38

Table 1: Characteristics of the ISP-Scenarios

11



fixing of deadhead-variables, the next four columns are for the second phase,
i.e., the fixing of duty-variables, and the last four columns are the sums of the
two phases.

The columns “iter” are the number of examined branch-and-bound nodes,
columns “b.” are the number of backtracks, “gap” is the increase of the objec-
tive value after the respective phase, and “time” is the time in seconds of each
phase.

In Table 2, one can see that the remaining problem of the second phase is easy
if only few relieve points exist. The largest gap between the first objective
value and the solution found is for scenario 3 with 2.2%. However, we are
not able to find a “real” lower bound on the optimal objective value of (ISP),
because the column generation is heuristical, so the gap stated here is only
an estimation of the quality of our solution. Nevertheless, the solutions found
by rapid branching are of high quality and used by planners in public transit
companies in their daily operations, see IVU Plattform [2008|.

scenario 1st phase 2nd phase total

iter b. gap time iter b. gap time iter b. gap time
1 43 3 1.6% 69,819 3 - 01% 64 46 3 1.7"% 69,883
2 33 8 1.6% 28,269 3 - 0.0% 21 36 3 1.6% 28,297
3 18 7 22% 31,537 2~ 0.0% 10 20 7 22% 31,547
4 1 - 0% 8230 73 12 02% 5,440 84 12 02% 13,670

Table 2: Results of Rapid Branching for ISP

4 Railway Track Allocation

Railway track allocation is one of the most challenging planning problems for
every railway infrastructure provider. Due to the ongoing deregulation of the
transportation market in Europe, new railway undertakings are entering the
market. This leads to an increase in train path requests and thus to a higher
number of conflicts among them. The goal of track allocation is to resolve
these problems as much as possible by producing a feasible, i.e., conflict free,
timetable that achieves a maximal utilization of the railway infrastructure.

4.1 Path Coupling Problem Formulation

We briefly recall in this section a formal description of the track allocation
problem. Further details can be found in the survey article Lusby et al. [2011].
Consider an acyclic digraph D = (V, A) that represents a time-expanded rail-
way network. Its nodes represent arrival and departure events of trains at a

12



set S of stations at discrete times T' C Z, its arcs model activities of running
a train over a track, parking, or turning around. Let I be a set of requests to
route trains through D. More precisely, train ¢ € I can be routed on a path
through some suitably defined subdigraph D; = (V;, A;) C D from a starting
point s; € V; to a terminal point ¢; € V;. Denote by P; the set of all routes for
train i € I, and by P = (J;c; P; the set of all train routes (taking the disjoint
union).

Let s(v) € S be the station associated with departure or arrival event v € V,
t(v) the time, and J = {s(u)s(v) : (u,v) € A} the set of all railway tracks.
An arc (u,v) € A blocks the underlying track s(u)s(v) for the time interval
[t(u),t(v)], and two arcs a,b € A are in conflict if their respective blocking
time intervals overlap. Two train routes p,q € P are in conflict if any of their
arcs are in conflict. A track allocation or timetable is a set of conflict-free train
routes, at most one for each request set. Given arc weights w,, a € A, the
weight of route p € P is w, = ZaEp wg, and the weight of a track allocation
X CPisw(X) =3 ,cxwp. The track allocation problem is to find a conflict-
free track allocation of maximum weight.

The track allocation problem can be modeled as a multi-commodity flow prob-
lem with additional packing constraints, see Caprara et al. [2006]; Borndorfer
et al. [2006]; Fischer et al. [2008]. We focus on an alternative formulation
as a path coupling problem based on ‘track configurations’, see Borndorfer &
Schlechte [2007]; Fischer & Helmberg [2010]; Schlechte [2012]. A valid config-
uration is a set of arcs on some track j € J that are mutually not in conflict.
Denote by Q; the set of configurations for track j € J, and by Q = UjeJ Q;
the set of all configurations. Introducing 0/1-variables x,, p € P, and y,,
q € @, for train paths and track configurations, the track allocation problem
can be stated as the following integer program (PCP):

max Z WpTp, (1)

peP

such that

> @, =1,Viel (2)

PEPR;
dyg=1,Vjel (3)
q€Q;
Za:p—quzo,VaeA (4)
a€EpeP a€qeQR
Tp,yq €{0,1}, Vpe P, g € Q. (5)

The objective PCP (1) maximizes the weight of the track allocation. Con-
straints (2) state that a train can run on at most one route, constraints (3)
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allow at most one configuration for each track. Inequalities (4) link train routes
and track configurations to guarantee a conflict-free allocation. Finally, (5) are
the integrality constraints. This type of problem formulation fits perfectly in
the setting presented in Section 2.

4.2 Computational Results

We tackle large scale instances of PCP with slight modifications of the general
approach presented in 2, i.e., we consider maximization instead of minimization
and perform only partial rapid branching on the y-variables. The concrete
details on the algorithmic part can be found in Borndorfer et al. [2010] and
Schlechte [2012]. All following computations in the following were performed
on computers with an Intel Core i7 870 with 3 GHz, 8 MB cache, and 16 GB of
RAM.

In our experiments, we consider the Hanover-Kassel-Fulda area of the German
long-distance railway network. It includes data for 37 stations, 120 tracks
and 6 different train types (ICE, IC, RE, RB, S, ICG). Because of various
possible turn around and running times for each train type, this produces
an macroscopic railway model with 146 nodes, 1480 arcs, and 4320 headway
constraints. All instances related to HAKAFU SIMPLE are freely available at
our benchmark library TTPLIB, see Erol et al. [2008|.

Table 3 shows results for solving the test instances by our code TS-0PT. We
choose € = 0.25 in Algorithm 2. The table lists the number of scheduled trains
in the best solution found, the number of requested train paths, the size of the
model in terms of number of rows and columns, the upper bound produced
by the bundle method (v(LP)), the solution value of rapid branching heuristic
(v*), the optimality gap*, the total running time in CPU seconds, and the
number of rapid branching nodes (iter).

The benefit of our algorithmic approach is apparent for very large scale in-
stances, i.e., REQ 506 to REQ 906 with more than 500 train requests. In
addition, these instances have much more coupling rows than the standard in-
stances of the T'TPLIB. This demonstrates that rapid branching is a powerful
heuristic to solve large scale track allocation problems and is able to produce
high quality solution with a small optimality gap.

*The relative gap is defined between the best integer objective UB and the objective of

the best lower bound LB as 100 - %.
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scenario trains requests  rows colums wv(LP) v* gap iter time

REQ 17 216 285 1.393 3.692 39529 392,76 0.64% 15 37
REQ_ 31 360 1.062  6.913  28.318 464,78 461,97 0.61% 13 2,675
REQ 32 237 1.140 16.489  28.191 203,05 202,44 0.30% 21 2,628

REQ_33 138 570 9.036  12.566 105,69 105,66 0.02% 9 653
REQ 0506 218 506 30.213 282.463 274,55 266,79 2.91% 2188 70,186
REQ_ 567 247 567 30.595 259.003 369,47 360,58 2.46% 1875 63,573
REQ 813 215 813 32.287 225.482 441,45 41858 5.46% 157 37,627
REQ_875 239 875 36.206 248922 395,10 368,22 7.30% 228 46,128
REQ 906 235 906 35.155 265.837 441,16 409,06 7.85% 471 51,234

Table 3: Results of rapid branching for T'TPLIB-Scenarios

5 Vehicle Rotation Planning in Inter City Railway
Transportation

In this section we give a brief and rudimentary description of the cyclic vehi-
cle rotation planning problem (VRP). For the sake of simplicity, we focus on
the train composition part of the problem in case of Inter City railway trans-
portation. The integration of other major technical aspects like maintenance
requirements and capacities, and regularity can be found in Maroti [2006],
Borndorfer et al. [2011], and Giacco et al. [2011].

5.1 Hypergraph based Integer Programming Model

We consider a set of trains . Each train consists of at least one timetabled
trip. The a set of timetabled trips is denoted by T. A wehicle group is the
most basic type of the physical vehicle resources. In other contexts this is
called vehicle type, fleet, or abstracly commodity. A wvehicle configuration (or
short configuration) is a non-empty multiset of vehicle groups. It represents a
temporary coupling of its vehicle groups. A trivial configuration is a configura-
tion of cardinality one. The set of vehicle configurations is denoted by C'. For
each trip ¢t € T there exists a set of feasible vehicle configurations C(t) C C
which can be used to operate t. A vehicle configuration can be changed at
the departure and at the arrival of a trip but not inside a trip. A change of
a vehicle configuration is called coupling. We consider only coupling activities
that can be made on the fly, i.e., without the need of special machines and
crews. For t € T and ¢ € C(t) we have a special technical time — called turn
time for cleaning and maintaining the involved vehicle resources after the trip ¢
is done. Note, that operational cost per kilometer depends on the used vehicle
configuration.

A wehicle rotation is a cyclic concatenation of trips which are operated by a
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vehicle group. The number of physical vehicle groups needed to operate a
vehicle rotation is the number of times the cycle passes the whole standard
week. It is not decidable whether a single vehicle rotation is feasible or not
without knowing the complete vehicle configurations of the involved trips. A
vehicle rotation plan is an assignment of vehicle configurations, timetabled
trips, and a set of feasible connections between these configurations, such that
each used vehicle group rotates in a vehicle rotation. The vehicle rotation
problem is to find a cost optimal vehicle rotation plan.

We model the considered vehicle rotation planning problem by using a hy-
pergraph based integer programming formulation. Since a vehicle configura-
tion ¢ € C'is a multiset, we denote the number of elements — called multiplicity
— in ¢ of a vehicle group f € F by m(f,c). In order to clearly identify the
elements of a vehicle configuration ¢ € C we index all elements of vehicle group
f € F in ¢ by natural numbers {1,...,m(f,c)} C N.

We define a directed hypergraph G = (V,V, A) with node set V', hypernode
set V and hyperarc set A. Our definition of a directed hypergraph is slightly
different to standard definitions from the literature, e.g. Cambini et al. [1997],
and therefore we define the sets V', V, and A as follows:

A node v € V is a four-tuple v = (¢, ¢, f,m) € T x C x F x N and represents a
trip t € T operated with a vehicle configuration ¢ € C(t) and with vehicle group
f € c of multiplicity m € {1,...,m(f,c)}. The set V(t,¢) = {(¢t,c, f,m) |t =
t, ¢ = ¢} denotes all nodes belonging to a trip t € T' operated with a vehicle
configuration ¢ € C(t). Each V(t,¢) with ¢t € T and ¢ € C(t) is a hypernode
v € V. A hypernode can been seen as a feasible assignment of a vehicle
configuration to a trip.

A link is a tuple (v,w) € V x V. A hyperarc a € A — or short arc — is a non-
empty set of links, thus a C V x V. For a € A we define the tail component
of a by tail(a) ={v e V|Iw eV : (v,w) € a} and the head component by
head(a) ={v e V|3FueV : (u,v) € a}.

We assume that the tail set and head set of a hyperarc must be not empty
and of equal cardinality, because hyperarcs model the transition of individual
vehicles. In addition we do not assume that the tail set and head set have to be
disjoint due to the cyclicity. There is an hyperarc a € A if the operational rules,
e.g. the turn times of the involved configuration, are fulfilled. The objective
function ¢ : A — QT includes vehicle cost, deadhead cost, coupling cost, and
regularity aspects.

Let G = (V,V,A) be a hypergraph modeling the VRP as described above.
We introduce binary decision variables z, € {0,1} and y, € {0,1} for each
hyperarc a € A and each hypernode v € V of G. Those variables take value
one if the corresponding nodes and hyperarcs are used in the vehicle rotation
plan and otherwise zero. The set of all hypernodes v € V for trip t € T is
denoted by V(t) and V(v) denotes the set of all hypernodes of G containing v.
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By definition, the set V(v) for v € V has cardinality one. The set of all ingoing
hyperarcs of v € V is defined as §®(v) := {a € A|I(u,w) € a : w = v} C A,
in the same way §°"(v) := {a € A|,3(u,w) € a : w=v} C A denotes the set
of all outgoing hyperarcs of v.

Our hyperflow based Integer Programming formulation (HFIP) states:

min Z CaTa (1)

a€A

such that

> =1, vteT (2)

veEV(t)
Z Tg — Z Yy =0, YoeV (3)
a€din(v) veV(v)
Z Tgq — Z yp =0, YoeV (4)
a€dout(v) veV(v)
xq €{0,1}, Va € A (5)
Yy € {0,1}, Yv e V. (6)

Our objective function 1 minimizes the total cost. Constraint 2 assign one
hypernode of graph G to each trip of the VRP. This models the configuration
assignment of vehicle configurations to trips. Constraints 3 and 4 can be seen
as flow conservation constraints for each node v € V. If one interprets an 3
equation as a departure and the 4 equation as an arrival node, a hypernode
v € V can be even seen as a hyperarc between these departure and arrival
nodes. With this interpretation the 3 and 4 constraints become constraints
conserving hyperflow on the trips and connections between trips. Finally, 5
and 6 states that all variables are binary.

5.2 Solution Approach

In this section we present our rapid branching approach for the VRP. In case
of only trivial configurations the hypergraph is a standard graph. In this case
our problem reduces to the Integer Multi-Commodity-Flow problem, which is
known to be NP-hard, see Lobel [1997]. Furthermore, if all trip configurations
are fixed, problem VRP is a simple assignment problem and hence an optimal
solution of the LP relaxation of our model is already integral.

Due to the NP-hardness of problem VRP, we propose a heuristic Integer Pro-
gramming approach to solve model HFIP. We are mainly utilizing two gen-
eral techniques. First we use a column generation approach to solve the LP-
relaxation of model HFIP. Note, that the number of variables is very large,
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i.e., one for each hyperarc and hypernode. Second, we adapt the rapid branch-
ing heuristic of Section 2 and consider only a subset of the variables — in our
case the y-variables for the hypernodes assigning the vehicle configurations to
the trips. The reason is the observation that the model is almost integral and
rather easy to solve if the configurations for the trips are fixed. After the arc
generation and rapid branching we use CPLEX 12.2 to solve the generated
model so far, i.e., a restricted variant of model HFIP, as a static IP.

5.3 Results

We tested the hypergraph based model HFIP and our algorithmic approach
on a large set of real world instances that are provided by our project partner
DB Fernverkehr. The problem set contains small and rather easy instances,
e.g., instance vrp015 and vrp016 with only 19 trains, as well as very large scale
ones, e.g., instance vrp011 and vrp014 with more than 24 million hyperarcs.
We consider instances for the current operated high speed intercity vehicles
(ICE) of DB Fernverkehr as well as instances of conceptional studies for future
rolling stock fleets. Today, there are some fleets in operation that can not
be coupled on the fly and some of the conceptional studies also consider only
scenarios with trivial configurations. Therefore most of the instances contain
only trivial configurations.

scenario trains  configurations fleets nodes hypernodes  hyperarcs

vrp001 410 8 8 10913 10913 19372792
vrp002 61 1 1 310 310 109480
vrp003 288 6 4 2433 2038 1687668
vrp004 298 6 6 7379 7379 10706855
vrp005 298 24 24 26396 26396 34414338
vrp006 298 2 2 2753 2753 4327785
vrp007 298 8 8 9896 9896 14016078
vrp008 298 18 18 7474 7474 8078048
vrp009 298 8 8 3619 3619 3932239
vrp010 298 7 7 2913 2913 3312612
vrp011 443 16 16 13538 13538 24996096
vrp012 443 16 16 9275 9275 10314664
vrp013 252 1 1 406 406 167231
vrp014 443 24 24 20124 20124 24278320
vrp015 19 4 2 534 387 47542
vrp016 19 4 2 534 387 47542

Table 4: Characteristics of the VRP test instances.

Table 4 gives some statistics on the number of trains, the number of vehicle
groups, and the number of vehicle configurations. In addition, the number
of nodes, number of hypernodes, and the total number of hyperarcs of the
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scenario  trains vehicles objective value gap time

vrp001 410 175 22846 0.14% 2755
vrp002 61 17 1742 0.41% 19
vrp003 288 104 5571434 0.14% 410
vrp004 298 117 5875729 0.55% 33564
vrp005 298 118 5979407 1.72% 74946
vrp006 298 116 6442855 0.00% 634
vrp007 298 116 6472379 0.00% 42558
vrp008 298 117 5949035 0.43% 6529
vrp009 298 117 6270215 0.18% 2551
vrp010 298 117 6533280 0.02% 478
vrp011 443 187 26378130 0.34% 45438
vrp012 443 190 26390306 0.00% 757
vrp013 252 127 9266682 0.00% 84
vrp014 443 192 26033013 0.80% 28125
vrp015 19 13 792806 0.08% 24
vrp016 19 13 1064958 0.06% 20

Table 5: Results for all 30 instances.

hypergraphs associated with model HFIP are listed. In case of only trivial
configurations the number of hypernodes equals the number of nodes, otherwise
it has to be smaller because the set V is a subset of V, e.g., instance vrp015.

All our computations were performed on computers with an Intel Core 2 Ex-
treme CPU X9650 with 3 GHz, 6 MB cache, and 16 GB of RAM. CPLEX Bar-
rier was running with 4 threads as well as the CPLEX MIP solver. We were
able to solve all 31 instances to nearly optimality by the solution approach
presented in Section 5.2. Table 5 shows the detailed results, i.e., the number
of vehicles v to operate the || trains, the total objective value of the solutions,
the optimality gap, and the total running time in seconds. We marked 5 in-
stances which are solved to proven optimality. Except for instance vrp005 the
gap is considerably below 1%. This demonstrates that our solution approach
can be used to produce high quality solutions for large-scale vehicle rotation
planning problems.

6 Conclusion

We provide a computational study for rapid branching applied to several real
world transportation problems. By different variants of rapid branching we
were able to compute high-quality integer solutions for the mentioned large-
scale problems in practice. The core idea of all presented solution approaches is
the same, namely, rapid branching. This documents that rapid branching is a
general solution approach and a successfull method for large scale optimization
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problems in public transport.

Applications of the rapid branching heuristic are not limited to optimization
problems in transportation. There are several other areas for which also very
large scale and similar linear programming models are used. A prominent
example is the steel mill slab problem or other production planning problems,
see Konig [2009].
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