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A Class of Semidefinite Programs with rank-one solutions

Guillaume Sagnol

March 27, 2012

Abstract

We show that a class of semidefinite programs (SDP) admits a solution that is a positive
semidefinite matrix of rank at most r, where r is the rank of the matrix involved in the
objective function of the SDP. The optimization problems of this class are semidefinite
packing problems, which are the SDP analogs to vector packing problems. Of particular
interest is the case in which our result guarantees the existence of a solution of rank one: we
show that the computation of this solution actually reduces to a Second Order Cone Program
(SOCP). We point out an application in statistics, in the optimal design of experiments.

1 Introduction

In this paper, we study semidefinite packing problems. The latter, which are the semidefinite
programming (SDP) analogs to the packing problems in linear programming, can be written as:

max 〈C,X〉 (P)

s.t. 〈Mi, X〉 ≤ bi, i ∈ [l],

X � 0,

where C � 0, and Mi � 0, i ∈ [l]. The notation X � 0 indicates that X belongs to the set
S+n of n × n symmetric positive semidefinite matrices. Similarly, X � 0 stands for X ∈ S++

n ,
the set of n × n symmetric positive definite matrices. The space of n × n symmetric matrices
Sn is equipped with the inner product 〈A,B〉 = trace(ATB). We also make use of the standard
notation [l] := {1, . . . , l}, and we use boldface letters to denote vectors. We denote the nullspace
(resp. the range) of a matrix A by Ker A (resp. Im A).

Semidefinite packing problems were introduced by Iyengar, Phillips and Stein [IPS11]. They
showed that these arise in many applications such as relaxations of combinatorial optimization
problems or maximum variance unfolding, and gave an algorithm to compute approximate solu-
tions, which is faster than the commonly used interior point methods.

Our main result is that when the matrix C is of rank r, Problem (P) has a solution that is
of rank at most r (Theorem 2). In particular, when r = 1, the optimal SDP variable X can
be factorized as xxT , and we show that finding x reduces to a Second-Order Cone Program
(SOCP) which is computationally more tractable than the initial SDP. We present this result
and some applications in Section 2. Then, we extend our result to a wider class of semidefinite
programs (Theorems 5 and 6), in which not all the constraints are of packing type. The proofs
of the results of Section 2.1 are given in Section 4. Theorems 5 and 6 are proved in appendix.
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Related work Solutions of small rank of semidefinite programs have been extensively studied
over the past years. Barvinok [Bar95] and Pataki [Pat98] discovered independently that any SDP
with l constraints has a solution X∗ whose rank is at most

r∗ =

⌊√
8l + 1− 1

2

⌋
,

where b·c denotes the integer part. This was one of the motivations of Burer and Monteiro
for developing the SDPLR solver [BM03], which searches a solution of the SDP in the form
X = RRT , where R is a n × r∗ matrix. The resulting problem is non-convex, and so the
augmented Lagrangian algorithm proposed in [BM03] is not guaranteed to converge to a global
optimum. However, it performs remarkably well in practice, and some conditions which ensure
that the returned solution is an optimum of the SDP are provided in [BM05]. Our result shows
that for a semidefinite packing problem in which the matrix C has rank r, one can force the
matrix R to be of size n × r (rather than n × r∗), which can lead to considerable gains in
computation time when r is small.

We point out that the ratio between the optimal value of Problem (P) and the value of its
best solution of rank one has been studied by Nemirovski, Roos, and Terlaky [NRT99]. They
show that the value v∗ of the SDP and the value v∗1 of its best rank-one solution satisfy:

v∗ ≥ v∗1 ≥
1

2 ln(2lµ)
v∗, where µ = min(l,max

i∈[l]
rank Mi). (1)

This ratio can be considerably reduced in particular configurations, but to the best of our knowl-
edge, the fact that the gap in (1) vanishes when the matrix C in the objective function is of rank
1 is new, except in the particular case in which every Mi is of rank 1, too [Ric08].

2 Main result and consequences

In this section, we state the main result of this article and point out an application to statistics.
We also discuss the significance of our result for combinatorial optimization problems (the hy-
pothesis on the rank of the matrix C appears to be very restrictive). The results of this section
are proved in Section 4.

2.1 The main result

We start with an algebraic characterization of the semidefinite packing problems that are feasible
and bounded.

Theorem 1. Problem (P) is feasible if and only if every bi is nonnegative. Moreover if Prob-
lem (P) is feasible, then this problem is bounded if and only if the range of C is included in the
range of

∑
iMi.

The reader should note that the range inclusion condition in Theorem 1 is in fact equivalent
to the feasibility of the Lagrangian dual of Problem (P):

min
µ≥0

µT b (D)

s.t.
∑
i

µiMi � C.

The main result of this article follows:
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Theorem 2. We assume that the conditions of Theorem 1 are fulfilled, so that Problem (P) is
feasible and bounded. If rankC = r, then the semidefinite packing problem (P) has a solution
which is a matrix of rank at most r.

A consequence of Theorem 2 is that when the matrix in the objective function is of rank 1
(C = ccT ), the computation of a solution X of Problem (P) reduces to the computation of a
vector x such that X = xxT . The next result shows that this can be done very efficiently by a
Second Order Cone Program (SOCP).

Corollary 3. We assume that the conditions of Theorem 1 are fulfilled, and that C = ccT for
a vector c ∈ Rn (i.e. rank C = 1). Then, Problem (P) reduces to the SOCP:

max
x∈Rn

cTx (2)

s.t. ‖Aix‖2 ≤
√
bi, i = 1 ∈ [l],

where the matrices Ai are such that Mi = ATi Ai. Moreover, if x is any optimal solution of
Problem (2), then X = xxT is an optimal solution of Problem (P), and the optimal value of (P)
is (cTx)2.

Proof. The SOCP (2) is simply obtained from (P) by substituting xxT from X and ATi Ai from
Mi. The objective function 〈C,X〉 becomes (cTx)2, and we can remove the square by noticing
that cTx ≥ 0 without loss of generality, since if x is optimal, so is −x.

In fact, the proof of Theorem 2 relies on the projection of Problem (P) on an appropriate
subspace, which lets the reduced semidefinite packing problem be strictly feasible, as well as its
dual. This reduction is not only of theoretical interest, since in some cases it may yield some
important computational savings. Therefore, we next state this result as a proposition.

Let I0 := {i ∈ [l] : bi = 0} and I := [l] \ I0. Let the columns of the n × n0 matrix U
form an orthonormal basis of Im(

∑
i∈[l]Mi), and the columns of the n0 × n′ matrix V form an

orthonormal basis of Ker(UT
∑
i∈I0 MiU). We further define C ′ := (UV )TC(UV ) ∈ S+n′ and

M ′i := (UV )TMi(UV ) ∈ S+n′ (for i ∈ I), and we consider the reduced problem

max
Z∈S+

n′

〈C ′, Z〉 (P’)

s.t. 〈M ′i , Z〉 ≤ bi, i ∈ I.

Proposition 4. We assume that the conditions of Theorem 1 are fulfilled, so that Problem (P)
is feasible and bounded. Then, the following properties hold:

(i) Problem (P’) is strictly feasible, i.e. ∃Z � 0 : ∀i ∈ I, 〈M ′i , Z〉 < bi;

(ii) The Lagrangian dual of (P’) is strictly feasible, i.e. ∃µ > 0 :
∑
i∈I µiM

′
i � C ′;

(iii) If Z is a solution of Problem (P’), then X := (UV )Z(UV )T is an optimal solution of
Problem(P) (which of course satisfies rank X ≤ rank Z and 〈C,X〉 = 〈C ′, Z〉).

The present work grew out from an application to networks [BGS08], in which the traffic
between any two pairs of nodes must be inferred from a set of measurements. This can be
modeled by the theory of optimal experimental design, which leads to a large SDP. Standard
solvers relying on interior points methods, like SeDuMi [Stu99], cannot handle problems of this
size. However, in a followup work relying on the present reduction to an SOCP [SGB10], we
solve within seconds the same instances in SeDuMi. We next present this application.
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2.2 Application to the optimal design of experiments

An interesting application arises in statistics, in the design of optimal experiments (for more
details on the subject, the reader is referred to Pukelsheim [Puk93]). An experimenter wishes to
estimate the quantity cT θ, where θ is an unknown n−dimensional parameter, and c is a vector
of n coefficients. To this end, she disposes of l available experiments, each one giving a linear
measurement of the parameter yi = Aiθ, up to a (centered) measurement noise. If the amount
of experimental effort spent on the ith experiment is wi, it is known that the variance of the
best linear unbiased estimator for cT θ is cT (

∑
i wiMi)

†c, where Mi = ATi Ai, and M† denotes
the Moore-Penrose inverse of M . The problem of distributing the experimental effort so as to
minimize this variance is called the “c−optimal problem”, and can be formulated as:

min
w≥0

cT (
∑
i

wiMi)
†c (3)

s.t.

l∑
i=1

wi = 1.

It is classical to reformulate this problem as a semidefinite program, by using the Schur comple-
ment lemma and duality theory (see e.g. [Ric08, Sag11]). The c−optimal SDP already appeared
in Pukelsheim and Titterington [Puk80], hidden under a more general form:

max cTXc (4)

s.t. 〈Mi, X〉 ≤ 1, i ∈ [l],

X � 0.

In this problem, the design variable w is proportional to the dual variable associated to the
constraints 〈Mi, X〉 ≤ 1. Note that this is a semidefinite packing problem, in which the matrix
defining the objective function has rank 1 (C = ccT ). More generally, if we want to estimate
simultaneously r linear functions of the parameter ζ = (cT1 θ, . . . , c

T
r θ), the best unbiased esti-

mator ζ̂ is now an r−dimensional vector with covariance matrix

Covw(ζ̂) := KT (

l∑
k=1

wkMk)†K,

where K = [c1, . . . , cr]. Several criteria can be used for this experimental design problem.
Popular ones are the A−criterion and the E−criterion, which aim at minimizing respectively the
trace and the largest eigenvalue of Covw(ζ̂). These optimization problems can also be formulated
as semidefinite packing problems. For A−optimality, this packing formulation is given in [Sag11]:

max c̃TX c̃ (5)

s.t. 〈M̃i, X〉 ≤ 1, i ∈ [l],

X � 0,

where c̃ = [cT1 , . . . , c
T
r ]T , and M̃i is a block-diagonal matrix which contains r times the block

Mi on its main diagonal. The matrix in the objective function is of rank 1 (C = c̃c̃T ), and
so Problem (5) reduces to a SOCP by Corollary 3. This reduction is of great interest for the
computation of optimal experimental designs, because SOCP solvers are much more efficient
than SDP solvers, and take advantage of the sparsity of the matrices Ai (whereas the matrices
Mi = ATi Ai used in the original SDP formulation (5) are not very sparse in general).
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The E−optimal design SDP is presented in [VBW98] (for the special case in which C = I),
and takes exactly the form of the semidefinite packing problem (P), with bi = 1 for all i ∈ [l]
and C = KKT =

∑r
i=1 cici

T . Here, the matrix C has rank r, and so Theorem 2 indicates that
the E−optimal design SDP has a solution which is a matrix of rank at most r. This suggests
the use of specialized low rank solvers for this SDP when r is small (cf. the paragraph “Related
work” at the end of the introduction), which can lead to a considerable improvement in terms
of computation time.

2.3 Relation with combinatorial optimization

SDP relaxations of combinatorial optimization problems have motivated the authors of [IPS11]
to study semidefinite packing problems. Hence, we discuss the significance of our result for this
class of problems in this section.

Semidefinite programs have been used extensively to formulate relaxations of NP-hard com-
binatorial optimization problems after the work of Goemans and Williamson on the approx-
imability of MAXCUT [GW95]. These SDP relaxations often lead to optimal solutions of the
related combinatorial optimization problems whenever the solution of the SDP is of small rank.
As shown by Iyengar et. al. [IPS11], SDP relaxations of many combinatorial optimization prob-
lems can be cast as semidefinite packing programs. Our result therefore identifies a subclass
of combinatorial optimization problems which are solvable in polynomial time. Unfortunately,
this promising statement only helped us to identify trivial instances so far. For example, the
MAXCUT semidefinite packing problem [IPS11] yields an exact solution of the combinatorial
problem whenever it has a rank 1 solution. The matrix C in the objective function of this SDP
is the Laplacian of the graph, and so it is known that

rank C = N − κ,

where N is the number of vertices and κ is the number of connected components in the graph.
Our result therefore states that if a graph of N vertices has N − 1 connected components, then
it defines a MAXCUT instance that is solvable in polynomial time. Such graphs actually consist
in a pair of connected vertices, plus N − 2 isolated vertices, and the related MAXCUT instance
is trivial.

Another limitation for the application of our theorem in this field is that most semidefinite
packing problems arising in combinatorial optimization (including but not limited to the Lovász
ϑ function SDP [Lov79] and the related Szegedy number SDP [Sze94], the vector colouring
SDP [KMS98], the sparsest cut SDP [ARV09] and the sparse principal components analysis
SDP [dAEJL07]) can be written in the form of (P), with an additional trace equality constraint
trace(X) = 1. In fact, we can show that if such an “equality constrained” problem is strictly
feasible, then it is equivalent to the following “classical” semidefinite packing problem:

max 〈C + λI,X〉 − λ (6)

s.t. 〈Mi, X〉 ≤ bi, i ∈ [l],

traceX ≤ 1,

X � 0,

where λ is any scalar larger than |λ∗|, where λ∗ is the optimal Lagrange multiplier associated
to the constraint trace(X) = 1 (we omit the proof of this statement which is of secondary
importance in this article). Since C + λI is a full rank matrix, our result does not seem to yield
any valuable information for this class of problems.
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3 Extension to “combined” problems

The proof of our main result also applies to a wider class of semidefinite programs, which can be
written as:

sup
X,Y,λ

〈C,X〉+ 〈R0, Y 〉+ h0
Tλ (PCMB)

s.t. 〈Mi, X〉 ≤ bi + 〈Ri, Y 〉+ hi
Tλ, i ∈ [l],

X ∈ S+n , Y ∈ S+p , λ ∈ Rq,

where every matrix Mi and C are positive semidefinite, while the Ri are arbitrary
symmetric matrices. The vectors hi are in Rq. We denote by H the q × l matrix formed by
the columns h1, . . . ,hl. The Lagrangian dual of Problem (PCMB) is:

inf
µ≥0

bTµ (DCMB)

s.t.

l∑
i=1

µiMi � C,

R0 +

l∑
i=1

µiRi � 0.

h0 +Hµ = 0.

We have seen in Section 2.1 that the feasibility of both the primal (P) and the dual (D) is
sufficient to guarantee that Problem (P) has a solution of rank at most r := rank C. For combined
problems however, the feasibility of the couple of programs (PCMB)–(DCMB) is not sufficient to
guarantee the existence of a solution (X,Y,λ) of Problem (PCMB) in which rank X ≤ r. We give
indeed an example (Example 1) where the optimum in Problem (PCMB) is not even attained.
However, we show in the next theorem that an asymptotic result subsists. Moreover, we shall
see in Theorem 6 that a solution in which X is of rank at most r exists as soon as an additional
condition holds (strict dual feasibility). The proof of Theorem 6 essentially mimics that of
Theorem 2 and is therefore presented in Appendix A. Theorem 5 turns out to be a consequence
of Theorem 6 and is proved in Appendix B.

Theorem 5. We assume that Problems (PCMB) and (DCMB) are feasible. If rank C = r, then
there exists a sequence of feasible primal variables (Xk, Yk,λk)k∈N such that rank Xk ≤ r for all
k ∈ N and 〈C,Xk〉+ 〈R0, Yk〉+h0

Tλk converges to the optimum of Problem (PCMB) as k →∞.

Theorem 6. We assume that Problem (PCMB) is feasible, and a refined Slater condition holds
for Problem (DCMB), i.e. there is a feasible dual variable which strictly satisfies the non-affine
constraints:

∃µ ≥ 0 :
∑
i

µiMi � C, R0 +
∑
i

µiRi ≺ 0, h0 +Hµ = 0.

If rank C = r, then Problem (PCMB) has a solution (X,Y,λ) in which rank X ≤ r. Moreover, if
C 6= 0, then every solution (X,Y,λ) of Problem (PCMB) is such that rank X ≤ n− r + r, where
r := min

i∈[l]
rank Mi.
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Example 1. Consider the following combined semidefinite packing problem:

sup
X∈S+2 , λ∈R2

3

100

〈(
81 9
9 1

)
, X

〉
− λ1 − 3λ2 (7)

s.t. 0 ≤ 1 + λ1

X1,1 ≤ 1 + λ2

X2,2 ≤ 1 + 3λ1 + λ2.

This problem is in the form of (PCMB) indeed, with C = ccT , c =
√
3

10 [ 9 1]T , h0 = [ –1 –3]T ,

M1 = 0, M2 =

(
1 0
0 0

)
, M3 =

(
0 0
0 1

)
and H =

(
1 0 3
0 1 1

)
.

Problem (7) is clearly feasible (e.g. for X = 0, λ = 0), and the reader can verify that µ =
1
10 [ 1 27 3]T is dual feasible (in fact, this is the only dual feasible vector, and hence the dual
problem does not satisfy the Slater constraints qualification). The value of the optimum is 31

10 ,
and can be approached arbitrarily closely for the sequence of feasible variables (xkx

T
k ,λk)k∈N,

where for all k ≥ 0, xk = [
√

3 + k
√
k]T , λk = [ –1 k+2]T , while this optimum is not attained

by any couple (X,λ) of (bounded) feasible variables.

As in the previous section, we have a result of reduction to a SOCP, which holds when C is
of rank 1, every Ri = 0 and h0 = 0. Recall that H denotes the matrix formed by the columns
h1, . . . ,hl.

Corollary 7. Consider the following “combined” semidefinite packing problem:

sup
X∈Sn, λ∈Rq

〈C,X〉 (8)

s.t. 〈Mi, X〉 ≤ hiTλ+ bi, i ∈ [l],

X � 0.

Assume that C = ccT has rank 1. If Problem (8) and its Lagrangian dual are feasible, i.e.

(i) ∃λ ∈ Rq : HTλ+ b ≥ 0;

(ii) ∃µ ≥ 0 :
∑
i µiMi � C, h0 +Hµ = 0,

then, Problem (8) is bounded, and its optimal value is the square of the optimal value of the
following SOCP:

sup
x∈Rn, λ∈Rq

cTx (9)

s.t.

∥∥∥∥[ 2Aix

hi
Tλ+ bi − 1

]∥∥∥∥
2

≤ hiTλ+ bi + 1, i ∈ [l],

where the matrices Ai are such that Mi = ATi Ai. Moreover, if (x,λ) is a solution of Problem (9),
then (xxT ,λ) is a solution of Problem (8), and the optimal value of (8) is (cTx)2.

Proof. Theorem 5 guarantees the existence of a sequence of feasible variables (Xk,λk)k∈N in
which Xk has rank 1, i.e. Xk = xkxk

T , and 〈C,Xk〉 = (cTxk)2 converges to the optimum of
Problem (8). This optimal value is therefore equal to the supremum of (cTx)2, over all the pairs
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of vectors (x,λ) ∈ Rn × Rq such that (xxT ,λ) is feasible for Problem (8). As in the proof of
Corollary 3, we notice that if (xxT ,λ) is feasible for Problem (8), so is ((−x)(−x)T ,λ), hence
we can remove the square in the objective function.

The SOCP (9) is simply obtained from (8) by substituting xxT from X and ATi Ai from Mi.
We also used the fact that for any vector z and for any scalar α, the hyperbolic constraint

‖z‖22 ≤ α

is equivalent to the second order cone constraint∥∥∥∥[ 2z
α− 1

]∥∥∥∥
2

≤ α+ 1.

Application: c−optimal design of experiments with multiple resource constraints
In a more general setting than the classical c−optimal design problem (3) presented in the
previous section, w no longer represents the percentage of experimental effort to spend on each
experiment, but describes some resource allocation to the available experiments, that is subject
to multiple linear constraints Pw ≤ d, where P is a q × l matrix with nonnegative entries
and d is a q × 1 vector. This problem arises for example in a network-wide optimal sampling
problem [SGB10], where w is the vector of the sampling rates of the monitoring devices on all
links of the network, and is subject to linear constraints that limit the overhead of the routers.
We next show that this problem is a “combined” semidefinite packing problem which reduces to
an SOCP. The resource constrained c−optimal design problem reads as follows:

inf
w≥0

cT (
∑
i

wiMi)
†c (10)

s.t. Pw ≤ d.

We assume that the optimal design problem is feasible, i.e. there exists a vector ŵ ≥ 0 such
that P ŵ ≤ d and c is in the range of

∑
i ŵiMi. Note that we can assume without loss of

generality that ŵ > 0. Otherwise, this would mean that the constraints Pw ≤ d, w ≥ 0 force
the equality wi = 0 to hold for some coordinate i ∈ [l], and in this case we could simply remove
the experiment i from the set of available experiments.

We can now express the latter problem as an SDP thanks to the Schur complement lemma:

inf
t∈R, w≥0

t (11)

s.t.

( ∑
i wiMi c
cT t

)
� 0.

Pw ≤ d.

Since the optimal t is positive (we exclude the trivial case c = 0), the latter matrix inequality
may be rewritten as ∑

i

wiMi �
ccT

t
,

by using the Schur complement lemma again. Finally, we make the change of variables µ = tw
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and Problem (11) is equivalent to

inf
µ≥0,t≥0

t (12)

s.t.

l∑
i=1

µiMi � ccT

Pµ ≤ td.

This problem is exactly in the form of Problem (DCMB), for C = ccT , µl+1 = t, b =
[0, . . . , 0, 1]T ∈ Rl+1, Ml+1 = 0, h0 = 0, H = [P,−d], and for all i ∈ 0, . . . , l + 1, Ri = 0 (we
also need to introduce a nonnegative slack variable to handle the inequalities as equalities).

Let λ := cT (
∑
iMi)

†cT , so that λ
∑
iMi � ccT . We set t = maxi∈[l](λ/ŵi) (t is well defined

because ŵ > 0). The vector µ := tŵ is dual feasible, because Pµ ≤ td, and
∑l
i=1 µiMi �

λ
∑l
i=1Mi � ccT . In addition, the corresponding primal problem is clearly feasible (for λ = 0,

since b ≥ 0), and thus we can use Corollary 7: the c−optimal design problem with resource
constraints (10) reduces to the SOCP (9). We give below this SOCP (with the parameters b,
Mi, H and the slacks defined as above), as well as its dual:

sup
x∈Rn

λ∈Rq

cTx∥∥∥∥[ 2Aix
pi
Tλ− 1

]∥∥∥∥
2

≤ piTλ+ 1 (∀i ∈ [l]),

dTλ ≤ 1,

λ ≥ 0.

inf
µ≥0,t≥0

α≥0,(zi)i∈[l]

l∑
i=1

αi + t

l∑
i=1

ATi zi = c,

Pµ ≤ td,∥∥∥∥[ zi
αi − µi

]∥∥∥∥
2

≤ αi + µi

(∀i ∈ [l]),

where the vectors p1, . . . ,pl ∈ Rq are the columns of the matrix P , and for all i ∈ [l], Ai
is such that ATi Ai = Mi. The dual problem satisfies the (refined) Slater condition, because

c ∈ Im(
∑
iMi) =

∑
i Im(ATi ), so that ∃z1, . . . ,zl :

∑l
i=1A

T
i zi = c, Pµ ≤ td and for α > 0

large enough, the non-affine cone constraints are satisfied with a strict inequality. Hence, strong
duality holds and the values of these two problems are equal. By construction, the optimal design
variable w is related to the dual optimal variables µ and t by the relation w = t−1µ. Moreover,
Corollary 7 shows that the optimal value of Problem (10) is the square of the optimal value of
these SOCPs.

4 Proofs of the theorems

Proof of Theorem 1. The fact that Problem (P) is feasible if and only if every bi is nonnegative
is clear, since X = 0 is always feasible in this case and Mi � 0, X � 0, implies 〈Mi, X〉 ≥ 0.

Now, we assume that each bi is nonnegative, and we show that Problem (P) is bounded if and
only if ImC ⊂ Im

∑
iMi. The positive semidefiniteness of the matrices Mi implies that there

exists matrices Ai (i ∈ [l]) such that ATi Ai = Mi, and [AT1 , · · · , ATl ][AT1 , · · · , ATl ]T =
∑
iMi. We

also consider a decomposition C =
∑r
k=1 ckck

T . For any factorization M = ATA of a positive
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semidefinite matrix M , it is known that ImM = ImA, and so the following equivalence relations
hold:

ImC ⊂ Im
∑
i

Mi ⇐⇒ ∀k ∈ [r], ck ∈ Im(
∑
i

Mi) = Im([AT1 , · · · , ATl ])

⇐⇒ ∀k ∈ [r], ck ∈

(
l⋂
i=1

Ker(Ai)

)⊥
. (13)

We first assume that the range inclusion condition does not hold. Relation (13) shows that

∃k ∈ [r],∃h ∈ Rn : ∀i ∈ [l], Aih = 0, ck
Th 6= 0.

Now, notice that X = αhhT is feasible for all α > 0, since α〈ATi Ai,hh
T 〉 = 0 ≤ bi. This

contradicts the fact that Problem (P) is bounded, because 〈C,X〉 ≥ α(ck
Th)2, and α can be

chosen arbitrarily large.
Conversely, if the range inclusion holds, we consider the Lagrangian dual (D) of Problem (P):

The range inclusion condition indicates that this problem is feasible, because it implies the
existence of a scalar λ > 0 such that λ

∑
iMi � C (we point out that a convenient value for

λ is
∑r
k=1 ck

T (
∑
iMi)

†ck; this can be seen with the help of the Schur complement lemma).
This means that Problem (D) has a finite optimal value OPT ≤ λ

∑
i bi, and by weak duality,

Problem (P) is bounded (its optimal value cannot exceed OPT ).

Before proving Theorem 2, we need to show that we can project Problem (P) on a subspace
such that the projected problem (P’) and its Lagrangian dual are strictly feasible (Proposition 4).

Proof of Proposition 4. Let I0, I, U and V be defined as in the paragraph preceding the state-
ment of the proposition. Note that every matrix Mi can be decomposed as Mi = UM̃iU

T for a
given matrix M̃i, because its range is included in the range of

∑
iMi (we have M̃i = UTMiU).

The same observation holds for C, which can be decomposed as C = UC̃UT (we have assumed
the range inclusion ImC ⊂ Im

∑
iMi). Hence, Problem (P) is equivalent to:

max
X�0

〈C̃, UTXU〉

s.t. 〈M̃i, U
TXU〉 ≤ bi, i ∈ [l].

After the change of variable Z0 = UTXU (Z0 is a positive semidefinite matrix if X is), we obtain
a reduced semidefinite packing problem

max
Z0�0

〈C̃, Z0〉 (14)

s.t. 〈M̃i, Z0〉 ≤ bi, i ∈ [l].

By construction, if Z0 is a solution of (14), then X := UZ0U
T is a solution of (P). Note that

the projected matrices in the constraints now satisfy
∑
i M̃i = UT (

∑
iMi)U � 0.

We shall now consider a second projection, in order to get rid of the constraints in which
bi = 0. Note that each constraint indexed by i ∈ I0 is equivalent to imposing that Z0 belongs
to the nullspace of the matrix M̃i. Since the columns of V form a basis of ∩i∈I0 Ker M̃i, any
semidefinite matrix Z0 which is feasible for Problem (14) must be of the form V ZV T for some
positive semidefinite matrix Z. Hence, Problem (14) reduces to:

max
Z�0

〈V T C̃V, Z〉 (15)

s.t. 〈V T M̃iV,Z〉 ≤ bi, i ∈ I.
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which is nothing but Problem (P’), because V T M̃iV = V TUTMiUV = M ′i and V T C̃V = C ′. By
construction, If Z is a solution of (15)≡(P’), then V ZV T is a solution of (14), and (UV )Z(UV )T

is a solution of the original problem (P). This proves the point (iii) of the proposition.
We have pointed out above that

∑
i M̃i � 0. Therefore, there exists a real λ > 0 such that

λ
∑
i M̃i � C̃, and λ

∑
iM
′
i = V T

(
λ
∑
i M̃i

)
V � V T C̃V = C ′. This proves the strict dual

feasibility of Problem (P’) (point (ii) of the proposition). Finally, since every bi is positive for
i ∈ I, it is clear that the matrix Z = εI � 0 is strictly feasible for Problem (P’) as soon as ε > 0
is sufficiently small. This establishes the point (i), and the proposition is proved.

We can now prove the main result of this article. We will first show that the result holds
when every Mi is positive definite, thanks to the complementary slackness relation. Then, the
general result is obtained by continuity. We point out at the end of this section the sketch of an
alternative proof of Theorem 2 for the case in which r = 1, based on the bidual of Problem (P)
and Schur complements, that shows directly that Problem (P) reduces to the SOCP (2).

Proof of Theorem 2. We will show that the result of the theorem holds for any semidefinite
packing problem which is strictly feasible, and whose dual is strictly feasible. Then, by Propo-
sition 4, we can say that Problem (P’) has a solution Z of rank at most r′ := rank C ′, and
X := (UV )TZ(UV ) is a solution of the original problem which is of rank at most r′ ≤ r.

So let us assume without loss of generality that (P) and (D) are strictly feasible:

∀i ∈ [l], bi > 0 and ∃λ > 0 : λ
∑
i

Mi � C.

The Slater condition is fulfilled for this pair of programs, and so strong duality holds (the optimal
value of (P) equals the optimal value of (D), and the dual problem attains its optimum). In
addition, the strict dual feasibility implies that (P) also attains its optimum. The pairs of primal
and dual solutions (X∗,µ∗) are characterized by the Karush-Kuhn-Tucker (KKT) conditions:

Primal Feasibility: ∀i ∈ [l], 〈Mi, X
∗〉 ≤ bi;

X∗ � 0;

Dual Feasibility: µ∗ ≥ 0,

l∑
i=1

µ∗iMi � C;

Complementary Slackness: (

l∑
i=1

µ∗iMi − C) X∗ = 0,

∀i ∈ [l], µ∗i (bi − 〈Mi, X
∗〉) = 0.

Now, we consider the case in which Mi � 0 for all i, and we choose an arbitrary pair of
primal and dual optimal solutions (X∗,µ∗). The dual feasibility relation implies µ∗ 6= 0, and so∑
i µ
∗
iMi is a positive definite matrix (we exclude the trivial case C = 0). Since C is of rank r,

we deduce that
rank(

∑
i

µ∗iMi − C) ≥ n− r.

Finally, the complementary slackness relation indicates that the columns of X∗ belong to the
nullspace of (

∑
i µ
∗
iMi − C), which is a vector space of dimension at most n− (n− r) = r, and

so we conclude that rankX∗ ≤ r.
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We now turn to the study of the general case in which Mi � 0. To this end, we consider the
perturbed problems

max 〈C,X〉
s.t. 〈Mi + εI,X〉 ≤ bi (Pε)

X � 0,

and

min
µ≥0

l∑
i=1

µibi, (Dε)

s.t.

l∑
i=1

µi(Mi + εI) � C.

where ε ≥ 0. Note that the strict feasibility of the unperturbed problems (P) and (D) implies
that of (Pε) and (Dε) on a neighborhood ε ∈ [0, ε0], ε0 > 0. We denote by (Xε,µε) a pair of
primal and dual solutions of (Pε)–(Dε).

If ε > 0, Mi + εI � 0 and it follows from the previous discussion that Xε is of rank at most
r. We show below that we can choose the optimal variables (Xε,µε)ε∈]0,ε0] within a bounded
region, so that we can construct a converging subsequence (Xεk ,µεk)k∈N, εk → 0 from these
variables. To conclude, we will see that the limit (X0,µ0) satisfies the KKT conditions for
Problems (P)–(D), and that X0 is of rank at most r.

Let us denote the optimal value of Problems (Pε)–(Dε) by OPT (ε). Since the constraints of
the primal problem becomes tighter when ε grows, it is clear that OPT (ε) is nonincreasing with
respect to ε, so that

∀ε ∈ [0, ε0], OPT (ε0) ≤ OPT (ε) ≤ OPT (0).

We have:
λ(
∑
i

Mi + εI)− C � λ(
∑
i

Mi)− C,

and so we can write

〈λ
∑
i

Mi − C,Xε
〉
≤ 〈λ

∑
i

(Mi + εI)− C,Xε
〉

= λ〈
∑
i

(Mi + εI), Xε
〉
−OPT (ε)

≤ λ
∑
i

bi −OPT (ε0)

where the equality comes from the expression of OPT (ε) and the latter inequality follows from
the constraints of the Problem (Pε). The matrix λ

∑
iMi −C is positive definite by assumption

and its smallest eigenvalue λ′ is therefore positive. Hence,

λ′ trace Xε ≤ 〈λ
∑
i

Mi − C,Xε
〉
≤ µT b−OPT (ε) ≤ λ

∑
i

bi −OPT (ε0).

This shows that the positive semidefinite matrix Xε has its trace bounded, and therefore all its
entries are bounded.

12



It remains to show that the dual optimal variable µε ≥ 0 is bounded. This is simply done
by writing:

∀i ∈ [l], biµ
ε
i ≤ b

Tµε = OPT (ε) ≤ OPT (0).

By assumption, bi > 0, and the entries of the vector µε ≥ 0 are bounded.

We can therefore construct a sequence of pairs of primal and dual optimal solutions
(Xε,µεk)k∈N that converges, with εk −→

k→∞
0, εk > 0. The limit X0 of this sequence is of

rank at most r, because the rank is a lower semicontinuous function and rank Xεk ≤ r for all
k ∈ N. It remains to show that X0 is a solution of Problem (P). The ε−perturbed KKT con-
ditions must hold for all k ∈ N, and so they hold for the pair (X0,µ

0) by taking the limit (the
limit of any sequence of positive semidefinite matrices is a positive semidefinite matrix because
S+n is closed). This concludes the proof.

Sketch of an alternative proof of Theorem 2 when r = 1
By Proposition 4, we only need to show that the result holds for the reduced problem (P’), and so
we assume without loss of generality that strong duality holds for all the optimization problems
considered below.

When r = 1, there is a vector c such that C = ccT and the dual problem of (P) takes the
form:

min
µ≥0

µT b (16)

s.t. ccT �
∑
i

µiMi.

Now, setting t = µT b, and w = µ
t , so that the new variable w satisfies wT b = 1, the constraint

of the previous problem becomes cct

t �
∑
i wiMi. This matrix inequality, together with the

fact that the optimal t is positive, can be reformulated thanks to the Schur complement lemma,
and (16) is equivalent to:

min
t∈R,w≥0

t (17)

s.t.

( ∑
i wiMi c
cT t

)
� 0.

wT b = 1.

We dualize this SDP once again to obtain the bidual of Program (P) (strong duality holds):

max
β∈R,Z∈S+n+1

− β − 2vT c (18)

s.t. 〈W,Mi〉 ≤ βbi, i ∈ [l]

Z =

(
W v
vT 1

)
� 0.

We notice that the last matrix inequality is equivalent to W � vvT , using a Schur complement.
Since Mi � 0, we can assume that W = vvT without loss of generality, and (18) becomes:

max
β∈R,v∈Rn

− β − 2vT c (19)

s.t. ‖Aiv‖2 ≤ βbi, i = 1 ∈ [l],
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where Ai is a matrix such that ATi Ai = Mi.
We now define the new variables α =

√
β, and x = v

α , so that (19) becomes:

max
x∈Rn

(
max
α
−α2 − 2αxT c

)
(20)

s.t. ‖Aix‖ ≤
√
bi, i = 1 ∈ [l].

The reader can finally verify that the value of the max within parenthesis is (cTx)2, and we
have proved that the SDP (P) reduces to the SOCP (2). By the way, this guarantees that the
SDP (P) has a rank-one solution.
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A Proof of Theorem 6

Before we give the proof of Theorem 6, we need one additional technical lemma, which shows
that one can assume without loss of generality that the primal problem is strictly feasible, and
that the vector space spanned by the vectors h0,h1, . . . ,hl coincides with the cone generated
by the same vectors. One can consider this lemma as the analog of Proposition 4 for combined
problems.

Lemma 8. We assume that the conditions of Theorem 6 are fulfilled. Then, there exists a
subset I ⊂ [l], as well as matrices C ′ � 0 and M ′i � 0 (i ∈ I), so that the reduced “combined”
semidefinite packing problem

max
Z�0, Y�0, λ

〈C ′, Z〉+ 〈R0, Y 〉+ h0
Tλ s.t. ∀i ∈ I, 〈M ′i , Z〉 ≤ bi + 〈Ri, Y 〉+ hi

Tλ

has the same optimal value as (PCMB) and satisfies the following properties:

(i) ∃(Z ′ � 0, Y ′ � 0,λ′) : ∀i ∈ I, 〈Mi, Z
′〉 < bi + 〈Ri, Y ′〉+ hi

Tλ′;

(ii) The cone K generated by the vectors (hi)i∈{0}∪I is a vector space.

(iii) rank C ′ ≤ rank C;

(iv) There is a matrix U with orthonormal columns such that if (Z, Y,λ) is a solution of the
reduced problem, then (X := UZUT , Y,λ) is a solution of Problem (PCMB) (which of course
satisfies rank X ≤ rank Z).

Proof. In this lemma, (i) and (ii) are the properties that we will need to prove Theorem 6.
Properties (iii) and (iv) ensure that if the theorem holds for the reduced problem, then the
result also holds for the initial problem (PCMB). We handle separately the cases in which the
initial problem does not satisfy the property (i) or (ii). If both cases arise simultaneously, we
obtain the result of this lemma by applying successively the following two reductions.

Let (X∗, Y ∗,λ∗) be an optimal solution of Problem (PCMB) ; the existence of a solution
is guaranteed by the (refined) Slater condition satisfied by the dual problem indeed (see e.g.
[Roc70, Ber95]). We denote by I0 ⊂ [l] the subset of indices for which bi + 〈Ri, Y ∗〉+hiTλ∗ = 0
(note that we have bi+ 〈Ri, Y ∗〉+hiTλ∗ ≥ 0 for all i because Mi � 0 implies 〈Mi, X

∗〉 ≥ 0). We
define I := [l]\I0. In Problem (PCMB), we can replace the constraint 〈Mi, X〉 ≤ bi+〈Ri, Y 〉+hiTλ
by 〈Mi, X〉 = 0 for all i ∈ I0 , since (X∗, Y ∗,λ∗) satisfies this stronger set of constraints. For a
feasible positive semidefinite matrix X, this implies 〈

∑
i∈I0 Mi, X〉 = 0, and even

∑
i∈I0 MiX =

0. Therefore, X is of the form UZUT for some positive semidefinite matrix Z, where the columns
of U form an orthonormal basis of the nullspace of M0 :=

∑
i∈I0 Mi (U is obtained by taking

the eigenvectors corresponding to the vanishing eigenvalues of M0). Hence, Problem (PCMB) is
equivalent to:

max 〈UTCU,Z〉+ 〈R0, Y 〉+ h0
Tλ (A.1)

s.t. 〈UTMiU,Z〉 ≤ bi + 〈Ri, Y 〉+ hi
Tλ, i ∈ I,

Z � 0, Y � 0.

We have thus reduced the problem to one for which bi+ 〈Ri, Y ∗〉+hiTλ∗ > 0 for all i, and strict
feasibility follows (i.e. property (i) holds, consider λ′ = λ∗, Y ′ = Y ∗ + η1I, and Z ′ = η2I for
sufficiently small reals η1 > 0 and η2 > 0). Moreover, the projected matrix C ′ := UTCU in the
objective function has a smaller rank than C (i.e. (iii) holds). Finally, (iv) holds for the reduced
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problem by construction: if (Z, Y,λ) is a solution of Problem (A.1), then (X := UZUT , Y,λ)
is a solution of Problem (PCMB), both problems have the same optimal value, and of course
rank X ≤ rank Z.

We now handle the second case, in which Property (ii) does not hold for Problem (PCMB).
The set K = { [h0, H]v, v ∈ Rl+1,v ≥ 0} is a closed convex cone. Hence, it is known that it can
be decomposed as K = L+Q, where L is a vector space and Q ⊂ L⊥ is a closed convex pointed
cone (L = K ∩ (−K) is the lineality space of K). The interior of the dual cone Q∗ is therefore
nonempty, i.e. ∃λ : ∀q ∈ Q \ {0},λTq > 0. Let λ0 be the orthogonal projection of λ on L⊥, so
that λ0

Tq = λTq > 0 for all q ∈ Q \ {0}, and λ0
Tx = 0 for all x ∈ L. Now, we define the set

of indices I = {i ∈ [l] : hi ∈ L}, and its complement I0 = [l] \ I. For all i ∈ I0, hi = xi + qi for
a vector xi ∈ L and a vector qi ∈ Q \ {0}, so that λ0

Thi = λ0
Txi + λ0

Tqi = λ0
Tqi > 0. For

the indices i ∈ I, it is clear that λ0
Thi = 0. Finally, since h0 +Hµ = 0, we have −h0 ∈ K, so

that h0 ∈ L and h0
Tλ = 0. To sum up, we have proved the existence of a vector λ0 for which

∀i ∈ {0} ∪ I, λ0
Thi = 0 and ∀i ∈ I0,λ0

Thi > 0.

Let (X∗, Y ∗,λ∗) be an optimal solution of Problem (PCMB). For all positive real t, (X∗, Y ∗,λ∗+
tλ0) is also a solution, because it is feasible and has the same objective value. Letting t → ∞,
we see that the constraints of the problem that are indexed by i ∈ I0 may be removed without
changing the optimum. We have thus reduced the problem to one for which (ii) holds.

We can now prove Theorem 6. The proof mimics that of Theorem 2, i.e. we first show that
the result holds when each Mi is positive definite, and the general result is obtained by continuity.
The only difference is how we show that we can choose optimal variables (Xε, Y ε,λε,µε)ε∈]0,ε0]
for a perturbed problem within a bounded region.

Proof of Theorem 6. By Lemma 8, we may assume without loss of generality that K =
cone{h0, . . . ,hl} ⊃ −K and that the primal problem is strictly feasible. The strict feasibil-
ity of the primal problem ensures that strong duality holds, i.e. the optimal value of (PCMB)
equals the optimal value of (DCMB), and the optimum is attained in the dual problem. More-
over, the (refined) Slater constraints qualification for the dual problem guarantees the existence of
primal optimal variables as well (see e.g. Theorem 28.2 in [Roc70]). The pairs of primal and dual
solutions

(
(X∗, Y ∗,λ∗),µ∗

)
are characterized by the Karush-Kuhn-Tucker (KKT) conditions:

Primal Feasibility: ∀i ∈ [l], 〈Mi, X
∗〉 ≤ bi + 〈Ri, Y ∗〉+ hi

Tλ∗,

X∗ � 0, Y ∗ � 0;

Dual Feasibility: µ∗ ≥ 0,

l∑
i=1

µ∗iMi � C, R0 +

l∑
i=1

µ∗iRi � 0, h0 +Hµ∗ = 0;

Complementary Slackness: (

l∑
i=1

µ∗iMi − C) X∗ = 0, (R0 +

l∑
i=1

µ∗iRi) Y
∗ = 0,

∀i ∈ [l], µ∗i (bi + 〈Ri, Y ∗〉+ hi
Tλ∗ − 〈Mi, X

∗〉) = 0.

Now, we consider the case in which Mi � 0 for all i, and we choose an arbitrary pair of primal
and dual optimal solutions

(
(X∗, Y ∗,λ∗),µ∗

)
. The dual feasibility relation implies µ∗ 6= 0, and

so
∑
i µ
∗
iMi is a positive definite matrix (we exclude the trivial case C = 0). Since C is of rank

r, we deduce that

rank(
∑
i

µ∗iMi − C) ≥ n− r.
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Finally, the complementary slackness relation indicates that the columns of X∗ belong to the
nullspace of (

∑
i µ
∗
iMi − C), which is a vector space of dimension at most n− (n− r) = r, and

so we conclude that rankX∗ ≤ r.

We now turn to the study of the general case in which Mi � 0. To this end, we consider the
perturbed problems

max 〈C,X〉+ 〈R0, Y 〉+ h0
Tλ

s.t. 〈Mi + εI,X〉 ≤ bi + 〈Ri, Y 〉+ hi
Tλ i ∈ [l], (P εCMB)

X � 0, Y � 0,

and

min
µ≥0

l∑
i=1

µibi,

s.t.

l∑
i=1

µi(Mi + εI) � C, (Dε
CMB)

R0 +

l∑
i=1

µiRi � 0,

h0 +Hµ = 0.

where ε ≥ 0. Note that the refined Slater constraints qualification for the unperturbed prob-
lems (PCMB) and (DCMB) (i.e. simultaneous feasibility (resp. strict feasibility) of all the affine
constraints (resp. non-affine constraints)) implies the qualification of the constraints for (P εCMB)
and (Dε

CMB) on a neighborhood ε ∈ [0, ε0], ε0 > 0. We denote by
(
(Xε, Y ε,λε),µε

)
a pair of

primal and dual solutions of (P εCMB)–(Dε
CMB). If ε > 0, Mi + εI � 0 and it follows from the

previous discussion that Xε is of rank at most r. We show below that we can choose the optimal
variables (Xε, Y ε,λε,µε)ε∈]0,ε0] within a bounded region, so that we can construct a converging
subsequence (Xεk , Y εk ,λεk ,µεk)k∈N, εk → 0 from these variables. To conclude, we will see that
the limit (X0, Y 0,λ0,µ0) satisfies the KKT conditions for Problems (PCMB)–(DCMB), and that
X0 is of rank at most r.

Let us denote the optimal value of Problems (P εCMB)–(Dε
CMB) by OPT (ε). Since the constraints

of the primal problem becomes tighter when ε grows, it is clear that OPT (ε) is nonincreasing
with respect to ε, so that

∀ε ∈ [0, ε0], OPT (ε0) ≤ OPT (ε) ≤ OPT (0).

Now let ε ∈]0, ε0]. By assumption, there exists a vector µ ≥ 0 such that∑
i

µi(Mi + εI) �
∑
i

µiMi � C, and R0 +
∑
i

µiR0 ≺ 0. (A.2)

Therefore, we have

OPT (ε) = 〈C,Xε〉+ 〈R0, Y
ε〉+ h0

Tλε ≤
〈∑

i

µi(Mi + εI), Xε
〉

+ 〈R0, Y
ε〉+ h0

Tλε

≤
∑
i

µi
(
bi + 〈Ri, Y ε〉+ hi

Tλε
)

+ 〈R0, Y
ε〉+ h0

Tλε

= µT b+ 〈
∑
i

µiRi +R0, Y
ε〉+ (h0 +Hµ︸ ︷︷ ︸

=0

)Tλε,
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where the first inequality follows from (A.2), and the second one from the feasibility condition
〈Mi+εI,X

ε〉 ≤ bi+〈Ri, Y ε〉+hiTλε. The assumption (A.2) moreover implies that −(
∑
i µiRi+

R0) is positive definite, so that its smallest eigenvalue λ′ is positive, and

λ′ trace Y ε ≤
〈
− (
∑
i

µiRi +R0), Y ε
〉
≤ µT b−OPT (ε) ≤ µT b−OPT (ε0).

This shows that the trace of Y ε is bounded, and so Y ε � 0 is bounded.
Similarly, to bound Xε, we write:

〈
∑
i

µiMi − C,Xε
〉
≤ 〈
∑
i

µi(Mi + εI)− C,Xε
〉

= 〈
∑
i

µi(Mi + εI), Xε
〉
−OPT (ε) + 〈R0, Y

ε〉+ h0
Tλε

≤
∑
i

µi
(
bi + 〈Ri, Y ε〉+ hi

Tλε
)
−OPT (ε) + 〈R0, Y

ε〉+ h0
Tλε

= µT b−OPT (ε) + 〈
∑
i

µiRi +R0, Y
ε〉︸ ︷︷ ︸

≤0

+(h0 +Hµ︸ ︷︷ ︸
=0

)Tλε,

where the first equality comes from the expression of OPT (ε). The matrix
∑
i µiMi − C is

positive definite and its smallest eigenvalue λ′′ is therefore positive. Hence,

λ′′ trace Xε ≤ µT b−OPT (ε) ≤ µT b−OPT (ε0),

and this shows that the matrix Xε � 0 is bounded.
Now, note that the feasibility of λε implies that the quantity bi+〈Ri, Y ε〉+hiTλε is nonneg-

ative for all i ∈ [l]. Since Y ε is bounded, we deduce the existence of a lower bound mi ∈ R such
that hi

Tλε ≥ mi (∀i ∈ [l]). Similarly, since h0
Tλε ≥ OPT (ε0)− 〈C,Xε〉 − 〈R0, Y

ε〉, there is a
scalar m0 such that h0

Tλε ≥ m0. We now use the fact that every vector (−hi) may be written
as a positive combination of the hk, (k ∈ {0}∪ [l]), and we obtain that the quantities hi

Tλε are
also bounded from above. Let us denote by H0 the matrix [h0, H]; we have just proved that the
vector HT

0 λ
ε is bounded:

∃m ∈ R : ‖HT
0 λ

ε‖2 ≤ m
(the latter bound does not depend on ε). Note that one may assume without loss of generality
that λε ∈ ImH0 (otherwise we consider the projection λεP of λε on ImH0 which is also a
solution since HT

0 λ
ε = HT

0 λ
ε
P . We know from the Courant-Fisher theorem that the smallest

positive eigenvalue of H0H
T
0 satisfies:

λ>min(H0H
T
0 ) = min

v∈ImH0\{0}

vTH0H
T
0 v

vTv
.

Therefore, since we have assumed λε ∈ ImH0:

‖λε‖2 ≤ ‖HT
0 λ

ε‖2

λ>min(H0HT
0 )
≤ m2

λ>min(H0HT
0 )
.

It remains to show that the dual optimal variable µε is bounded. Our strict primal feasibility
assumption (which does not entail generality thanks to Lemma 8) ensures the existence of a
matrix Y � 0 and a vector λ such that

∀i ∈ [l], 〈Ri, Y 〉+ bi + hi
Tλ = ηi > 0.
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By dual feasibility, R0 +
∑
i µ

ε
iRi is a negative semidefinite matrix, and we have:

0 ≥ 〈R0, Y 〉+

l∑
i=1

µεi 〈Ri, Y 〉 = 〈R0, Y 〉+

l∑
i=1

µεi (ηi − bi − hi
Tλ).

Hence, we have the following inequalities:

∀k ∈ [l], ηkµ
ε
k ≤

l∑
i=1

ηiµ
ε
i ≤ b

Tµε + λ
T
Hµε − 〈R0, Y 〉

= OPT (ε)− λTh0 − 〈R0, Y 〉

≤ OPT (0)− λTh0 − 〈R0, Y 〉,

and we have shown that µε ≥ 0 is bounded.

We can therefore construct a sequence of pairs of primal and dual optimal solutions
(Xεk , Y εk ,λεk ,µεk)k∈N that converges, with εk −→

k→∞
0, εk > 0. In this sequence, the limit X0 of

Xεk is of rank at most r, because the rank is a lower semicontinuous function and rankXεk ≤ r for
all k ∈ N. It remains to show that (X0, Y 0,λ0) is a solution of Problem (PCMB). The ε−perturbed
KKT conditions must hold for all k ∈ N, and so they hold for the pair

(
(X0, Y 0,λ0),µ0

)
by

taking the limit (this works because S+n is closed). This concludes the proof of the existence of
a solution in which rank X ≤ r.

It remains to show the second statement of this theorem, namely that if C 6= 0 and r :=
min
i∈[l]

rank Mi, then the rank of X is bounded by n− r + r for any solution (X,Y,λ) of (PCMB).

Let (X∗, Y ∗,λ∗) be a solution of Problem (PCMB). If the primal problem is strictly feasible,
then there exists a Lagrange multiplier µ∗ ≥ 0 such that the KKT conditions described at the
beginning of this proof are satisfied. Since C 6= 0, we have µ∗ 6= 0, and we can write:

rank (
∑
i∈[l]

µ∗iMi − C) ≥ r − r.

Hence, since by complementary slackness, X∗ belongs to the nullspace of (
∑
i∈[l] µ

∗
iMi −C), we

find rank X∗ ≤ n− r + r.
If the primal problem is not strictly feasible, there must be an index i ∈ [l] such that

〈Mi, X
∗〉 = 0 (otherwise, (η1I, Y

∗ + η2I,λ
∗) would be strictly feasible for sufficiently small

positive reals η1 and η2). Therefore, X∗ is in the nullspace of a matrix of rank larger than r,
and rank X∗ ≤ n− r ≤ n− r + r.

B Proof of Theorem 5

We assume that Problems (PCMB) and (DCMB) are feasible, and for η ≥ 0 we consider the following
pair of primal and dual perturbed problems.

sup 〈C,X〉+ 〈R0, Y 〉+ h0
Tλ

s.t. 〈Mi, X〉 ≤ bi + 〈Ri, Y 〉+ hi
Tλ i ∈ [l], (Pη)

η (trace X + trace Y ) ≤ 1,

X � 0, Y � 0,

20



and

inf
µ≥0, σ≥0

l∑
i=1

µibi + σ,

s.t.

l∑
i=1

µiMi + σηI � C, (Dη)

R0 +

l∑
i=1

µiRi − σηI � 0,

h0 +Hµ = 0.

It is clear that the feasibility of Problem (PCMB) implies that of (Pη) if η > 0 is sufficiently
small. Let µ be a dual feasible variable for Problem (DCMB), and σ > 0 be sufficiently large so

that
∑l
i=1 µiMi + σηI � C and R0 +

∑l
i=1 µiRi − σηI ≺ 0: the refined Slater condition holds

for the perturbed problem (Dη). Hence, by Theorem 6, there exists a solution (Xη, Y η,λη) of

Problem (Pη) in which rank Xη ≤ r. We next show that 〈C,Xη〉+ 〈R0, Y
η〉+h0

Tλη converges
to the value of the supremum in Problem (PCMB) as η → 0+, which will complete this proof.

Let ηk be a positive sequence decreasing to 0, and define γk := 〈C,Xηk〉+〈R0, Y
ηk〉+h0

Tληk .
It is clear that γk is a nondecreasing sequence, because the constraints in Problem (Pη) become
looser as η gets smaller, and γk is bounded from above by the value of the supremum γ∗ in
Problem (PCMB). Therefore, (γk)k∈N converges. Assume (ad absurdum) that the limit of this
sequence is γ∞ < γ∗. Then, there are some variables (X0, Y0,λ0) that are feasible for (PCMB),
and such that 〈C,X0〉 + 〈R0, Y0〉 + h0

Tλ0 > γ∞. But then, (X0, Y0,λ0) is also feasible for
Problem (Pη), when η ≤ η0 := (trace X0 + trace Y0)−1. For any k ∈ N such that ηk ≤ η0, this
contradicts the optimality of (Xηk , Y ηk ,ληk) for Problem (Pηk). Hence, γ∞ = γ∗ and the proof
is complete.
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