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Network-related problems in Optimal Experimental Design

and Second Order Cone Programming

Guillaume Sagnol

March 27, 2012

Abstract

In the past few years several applications of optimal experimental designs have emerged
to optimize the measurements in communication networks. The optimal design problems
arising from this kind of applications share three interesting properties: (i) measurements
are only available at a small number of locations of the network; (ii) each monitor can
simultaneously measure several quantities, which can be modeled by “multiresponse experi-
ments”; (iii) the observation matrices depend on the topology of the network. In this paper,
we give an overview of these experimental design problems and recall recent results for the
computation of optimal designs by Second Order Cone Programming (SOCP). New results
for the network-monitoring of a discrete time process are presented. In particular, we show
that the optimal design problem for the monitoring of an AR1 process can be reduced to
the standard form and we give experimental results.

1 Network monitoring and optimal design

The approximate theory for the optimal design of experiments is an important branch of statis-
tics, and we refer the reader to the monograph of Pukelsheim [5] for a comprehensive review
on the subject. In the classical version of the problem, an experimenter wants to estimate a
vector of unknown parameters θ ∈ Rm. To this end, he has s experiments available. The ith

experiment yields a measurement yi ∈ Rli such that E[yi] = Xiθ and Var[yi] = Σi. Experiments
are uncorrelated, i.e. E[yiyj

T ] = 0 for i 6= j. The matrix Xi ∈ Rli×m is called the observation
matrix of the ith experiment. Given a matrix of coefficients K ∈ Rm×k, the goal is to decide the
fraction wi of the optimal effort to allocate to the ith experiment (for all i ∈ [s] := {1, . . . , s}), so
as to estimate the vector KTθ ∈ Rk with the best possible accuracy. The vector w ∈ Rs+ sums
to 1 and is called a design.

We define the information matrix of the design w by M(w) :=
∑s
i=1 wiX

T
i Σ−1

i Xi. The
standard approach is to minimize, with respect to the design variable w, a spectral information
function Φ which is applied to the information matrix:

min
w

{
Φ(M(w)) : w > 0,

s∑
i=1

wi = 1

}
.

Common choices for the function Φ are the criterions of E−optimality (E stands for Eigenvalue),
A−optimality (for Average), and D−optimality (for Determinant), defined respectively on the
set of positive semidefinite matrices Z whose range includes the columns of K by (see Chapter 6
in [5]):

Φ
(E)
K (Z) = λmax(KTZ†K), Φ

(A)
K (Z) = traceKTZ†K, Φ

(D)
K (Z) = detKTZ†K,
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(a)

Optimal designs on the edges for K = I
Edge 1 2 3 4 5 6 7 8 9
E-optimal 11.1 11.1 16.6 5.5 11.1 16.6 5.5 11.1 11.1
A-optimal 11.2 11.0 14.5 7.3 11.5 14.5 7.3 11.2 11.0
D-optimal 11.0 10.8 14.1 7.9 11.9 14.1 7.9 11.0 10.8

(b)

Figure 1: (a): Graph of a toy example with 5 nodes and 9 edges. The dashed lines represent the 4 flows
traversing edge 5 (A→ D, B → D, A→ E, B → E). (b): weights of the E−, A−, and D−optimal designs for
this network (in %), for the observation matrices Xi of the subvector observation model and the variance matrices
Σi of the toll evasion model described in the text, when K is the identity matrix.

where M† its Moore-Penrose pseudo-inverse of M and λmax denotes the largest eigenvalue.
In most common situations, the number m of unknown parameters is rather small (m ≤ 10),

while the number s of possible experiments is very large, typically coming from the discretization
of a multidimensional, compact set X . Recently however, a new class of instances has arisen from
network monitoring problems. Here, the number s of experiments remains reasonably small (in
the order of the number of nodes in the graph), while the number m of unknown parameters is
very large (m = O(s2)). The problem is not ill-posed despite the relation s ≤ m (less experiments
than unknowns), because the experiments are multiresponse, meaning that the ith experiment
yields li > 1 simultaneous observations.

These special instances of optimal experimental design appear when the experimenter wants
to set monitors over a network, in order to estimate certain quantities such as a performance
indicator of an Internet network [10], or the volume of each origin-destination flows [8, 7]. A
common point to these network-related problems is that the observation matrices only depend
on the topology and the routing of the flows in the graph, and the variance matrices depend on
a prior estimate of the flow volumes. We give below a toy-example showing how to construct
a network-monitoring optimal design problem. Then, we will review in Section 2 recent results
based on Second Order Cone Programming (SOCP) for the computation of these optimal designs.
Finally, we will show in Section 3 that the optimal monitoring of a discrete time process over
a network can also be formulated under the standard form, and we show some experimental
results.

We consider the simple network represented in Figure 1. The unknown parameter θ can be
any measurable feature of the origin-destination (OD) flows, for example the volume of each flow
during a given period of time, the average length of the individuals in each flow (e.g. length of
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Internet packets or vehicles), or the proportion of each flow belonging to a special category (e.g.
fraction of FTP traffic). The experimental effort should be distributed over monitors located on
the edges of the network (in a computer network, the monitors correspond to a measurement
software, while in a road network they can be human pollers who stop the vehicles). We shall
now distinguish two cases. The first case appears when the monitors are able to infer the source
and the destination of the sampled individuals. For all edge e in the network, this results in an
observation of every OD pair whose path includes e (for simplicity, we assume here that every
individual chooses the shortest path from his source to his destination). For example, a monitor
on edge 5 observes the four flows which traverse it, θA→D, θB→D, θA→E , and θB→E . Hence the
observation matrix X5 has 4 rows (one per observed flow) and 5× 4 = 20 columns (one per OD
pair):

X5 =

A
→

B

A
→

C

A
→

D

A
→

E

· · ·

B
→

D

B
→

E

· · ·


0 0 1 0 · · · 0 0 · · ·
0 0 0 1 · · · 0 0 · · ·
0 0 0 0 · · · 1 0 · · ·
0 0 0 0 · · · 0 1 · · ·

We obtain in a similar manner an observation matrix for each edge: if the flows traversing
edge e are j1, . . . , jle , the entry (k, jk) of Xe is a 1 for all k ∈ [le], the other entries are 0. We call
this case the subvector observation model, because each experiment directly gives an estimate of
a subvector of θ.

In the second case, which we shall call the destination only model, the monitors are only
able to infer the destination of the sampled individuals (and not their origin –which makes sense
on an computer network, because the packets do not store the history of the nodes they have
visited [7]). In this situation, we obtain, for all edge e, an observation for every destination D
that is reachable from e, by summing the desired feature for the OD pairs that traverse e and
have the destination D. Practically, the new observation matrix X ′e is obtained by summing the
rows of Xe that correspond to flows having a common destination. In the example above, since
the flows traversing edge 5 go to either D or E, we can measure two quantities on this edge,
namely (θA→D + θB→D) and (θA→E + θB→E):

X ′
5 =

A
→

B

A
→

C

A
→

D

A
→

E

· · ·

B
→

D

B
→

E

· · ·( )
0 0 1 0 · · · 1 0 · · ·
0 0 0 1 · · · 0 1 · · ·

The variance-covariance matrix Σe depends on the sampling scheme and the feature of interest
which the experimenter wants to estimate. An example with a randomized sampling to measure
Internet flow volumes can be found in [7]. We now give another example which is motivated by
an application to toll enforcement on German motorways [1]. Here, the control tours of inspectors
should be optimized, in order to make the the toll enforcement more efficient. We propose to
compute a design (i.e., an allocation of the control density to the road segments of the network)
which leads to the most accurate estimation of the number of toll evaders on each OD pair. In
a follow-up work, we want to use this design as a target for the integer program described in [1].

We consider an edge e traversed by l OD pairs, which we denote by 1, . . . , l for simplicity.
The volume of traffic xj on each OD pair is known, as well as the total volume of traffic ye
traversing edge e (during a given period of time). Let κ denote the number of trucks that an
inspector can control. We denote by N+ ∈ Rl (resp. N− ∈ Rl) the vector of counts of toll
evaders (resp. payers) from the OD pairs 1, . . . , l checked by the inspector (this is the subvector
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observation model described above, because the inspector knows the origin and the destina-
tion of the trucks he checks). The joint distribution of (N+,N−) is multinomial (modulo the
standard approximation of the hypergeometric law by a multinomial), with κ trials and pro-

portions [(
xjpj
ye

)j=1,...,l, (
xj(1−pj)

ye
)j=1,...,l], where pj is the proportion of evaders on the jth OD

pair. The Cramer Rao bound shows that any unbiased estimator for the number of evaders
θj = xjpj (for j = 1, . . . , l), satisfies Var[θ̂] � Ve (in the Löwner ordering sense), where Ve is the
l × l−diagonal matrix with elements κ−1xjyepj(1 − pj). Moreover, the unbiased estimators for
θj are of the form

θ̂j =
ye
κ

(
(1− αj)N+

j + αj(κ
xj
ye
−N−j )

)
,

and the lower bound for Var[θ̂] is attained for αj = pj . In practice, pj is not known and we
replace it by a prior estimate p̂j , i.e. we set Σe to the diagonal matrix with elements κ−1xjyep̂j(1−
p̂j), (for j = 1, . . . , l). In the toy example of Figure 1, the traffic on edge 5 satisfies the relation
y5 = xA→D + xB→D + xA→E + xB→E , and if we take the same prior p̂j for the evasion rate on
every OD pair, the matrix Σ5 will be proportional to Diag(y5xA→D, y5xA→E , y5xB→D, y5xB→E).
The optimal designs indicated on Figure 1 were computed for a traffic set to xj = 1 on every
OD pair.

2 The Second-Order Cone Programming approach

We have shown in [6] that an A−optimal design for KTθ, i.e. a design which solves

min
w

{
φK(w) := traceKT

(∑
i∈[s]

wiX
T
i Σ−1

i Xi

)†
K : w ≥ 0,

s∑
i=1

wi = 1
}
, (1)

with the additional implicit constraint Range(M(w)) ⊇ Range(K), is obtained by normalizing
any vector µ∗ which solves the following Second Order Cone Program (SOCP):

min
µ∈Rs

Hi∈Rli×k

∑
i

µi (2)

s. t. K =
∑
i

XT
i Σ
− 1

2
i Hi

‖Hi‖F ≤ µi (for all i ∈ [s]).

In this optimization problem, ‖M‖F := (
∑
i,jM

2
i,j)

1/2 denotes the Frobenius norm of M . SOCP
is a general class of optimization problems [4] which can be solved efficiently by interior point
codes such as SeDuMi [11]. When the dimension of the problem becomes large (typically
m ≥ 104, which occurs in network monitoring problems), classical algorithms fail to be effi-
cient: Wynn–Fedorov exchange algorithm [13] has a slow convergence, and multiplicative up-
date algorithms [12] require a prohibitive full-rank update of the Cholesky factorization of an
m × m−matrix at each iteration. In contrast, computational results of [6] show that SOCP
solvers perform well as long as the observation matrices are sparse (this is the case indeed for
network problems) and the number of columns k of K is small (in particular, for c−optimality
where k = 1 and K = c is a column vector).

If both k and m are large however (in particular when the full parameter θ is of interest,
i.e. K = I), no tractable algorithm is known to compute an A−optimal design. (Except in
the easy case where the information matrix M(w) is diagonal, which happens in the subvector
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observation model.) Based on the observation that E[φc(w)] = φK(w), where the expectation is
taken with respect to c ∼ N (0,KKT ), a heuristic approach based on c−optimality was proposed
in [7] to find a design w such that φ(w) approximates the optimal value of Problem (1). Some
vectors c1, . . . , cN are generated from the distribution N (0,KKT ), and we take the mean of the
corresponding ci−optimal designs. In the latter article, the design found with this procedure
is essentially tested for its performance with respect to the applied networking problem. To
go further, we have tested this heuristic design on several networks from topology-zoo.org [2].
The first column of Table 1 describes the instance: name of the network, type of information
that the monitor can read from the flows (‘OD’ for the subvector observation model, ‘D’ if
only the destination of the flows can be inferred), and location of the measurements (‘links’ or
‘nodes’). The four next columns describe the size of the instance. The last two columns give the

L1−relative error ‖w−wA‖1‖wA‖1 and the A−efficiency φI(wA)
φI(w) computed by comparing the average w

of N = 100 c−optimal designs and the true A−optimal design wA. Remarkably, although the
design found by this technique is not always very close to the A−optimal design, the A-efficiency
is excellent for every instance. The reasons of the good behaviour of this heuristic for network-
monitoring optimal design problems are still unknown. But we think that the present analysis
justifies the use of this technique when no tractable algorithm is available.

An independent SOCP formulation was discovered by Singhal and Michailidis for a particular
optimal design problem in a filtering context [9]. Here, the unknown parameter is observed over
time, and the process θt(t ∈ N) is assumed to be a random walk θt+1 = θt + εt, where the
noise vectors ε1, ε2, . . . are i.i.d., centered, and have a known diagonal covariance matrix Q. The
authors further assume that each Xi has only one nonzero per row (subvector observation model)
and each Σi is diagonal. They give an SOCP to compute a steady-state E−optimal design, i.e.
a design which maximizes the smallest eigenvalue of the asymptotic information matrix in the
steady state of the Kalman filter. In the next section, we also study a network monitoring
problem over time, but we want to allocate in advance the monitoring resource for one day of
measurements, when the experimental effort is not required to be spread uniformly during the
day.

3 Optimal monitoring of a discrete time process

Most network flows exhibit strong diurnal patterns [3]. Therefore, it makes sense to distribute
the experimental effort not only over different locations of the networks, but also over time.
Typically, the goal is to save monitoring resources at night in order to use them at day, when the
traffic is more important. If we divide the day in T periods t = 1, . . . , T , then a straightforward
approach is to consider the augmented vector of unknown parameters θ = [θ1

T , . . . ,θT
T ]T , so

that the observation equations

yi,t = Xiθt + εi,t, Var[εi,t] = Σi,t (for all i, t ∈ [s]× [T ])

may be rewritten in the standard form:

yi,t = [

(θ1)

0 , . . . ,

(θt)

Xi , . . . ,

(θT )

0 ] θ + εi,t, Var[εi,t] = Σi,t. (3)

Note that in this model, the dependence on time of the observation equations only appears
through the variance-covariance matrices Σi,t of the observations which usually depend on the
flow volumes at location i and time t. Also note that we have implicitly assumed that the
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instance exp. obs. par. nnz L1 error (%) A-efficiency (%)
Abilene OD links 51 743 121 1386 12.1 99.212
Abilene D links 50 285 121 693 6.0 99.242
Abilene OD nodes 12 501 121 1144 6.3 99.812
Abilene D nodes 11 274 121 572 2.5 99.928
Bellcanada OD links 225 29987 2304 59526 10.3 99.664
Bellcanada D links 224 5562 2304 29763 4.1 99.911
Bellcanada OD nodes 49 25379 2304 54918 5.6 99.827
Bellcanada D nodes 48 5514 2304 27459 3.1 99.797
Dfn OD links 291 27287 3364 53994 9.9 99.890
Dfn D links 290 8386 3364 26997 4.5 99.953
Dfn OD nodes 59 20559 3364 47266 3.9 99.846
Dfn D nodes 58 8328 3364 23633 4.8 99.655
Garr201012 OD links 253 26730 3136 52956 9.4 99.975
Garr201012 D links 252 7159 3136 26478 3.7 99.947
Garr201012 OD nodes 57 20458 3136 46684 5.0 99.741
Garr201012 D nodes 56 7103 3136 23342 6.6 99.351
Geant2010 OD links 187 13385 1369 26398 8.8 99.734
Geant2010 D links 186 3403 1369 13199 3.8 99.864
Geant2010 OD nodes 38 10647 1369 23660 5.2 99.753
Geant2010 D nodes 37 3366 1369 11830 4.7 99.673
Gtspoland OD links 141 9904 1089 19528 13.2 99.494
Gtspoland D links 140 2425 1089 9764 4.8 99.847
Gtspoland OD nodes 34 7726 1089 17350 5.5 99.840
Gtspoland D nodes 33 2392 1089 8675 3.8 99.650
Renater2010 OD links 171 13384 1369 26428 12.2 99.611
Renater2010 D links 170 3267 1369 13214 4.9 99.875
Renater2010 OD nodes 38 10646 1369 23690 6.0 99.748
Renater2010 D nodes 37 3230 1369 11845 2.8 99.891

Table 1: A−efficiency and L1−relative error for the design found by averaging N = 100 c−optimal designs ; exp,
obs, par and nnz indicate respectively the number s of experiments, the total number

∑s
i=1 li of observations,

the number m of parameters, and the total number of nonzeroes in X1, . . . , Xs.

measurements are mutually independent, i.e. E[εi,tεj,τ
T ] = 0 whenever (i, t) 6= (j, τ), because

the noise is only due to sampling effects.
In the model relying on Equation (3), we ignore the fact that θ1,θ2, . . . is a structured

time process, and that the measurement of θt potentially carries some information about the
parameter at other time periods. To tackle this issue, we propose to study an optimal design
problem with a simple time model of the flows, based on an autoregressive process of the first
order: for all t ∈ [T ],

θt = θ̄ + dt (4)

dt+1 = Pdt + ηt, (5)

where θ̄ is the mean of the process, P is a coefficient matrix with a spectral norm smaller than 1,
and the process η1,η2, . . . is i.i.d. with E[ηt] = 0 and Var[ηt] = Q. If we define the augmented
parameter

θ̃ = [θ̄
T
,d1

T , . . . ,dT
T ]T ,

the observation equations can be written as:

yi,t = [

(θ̄)

Xi,

(d1)

0 , . . . ,

(dt)

Xi , . . . ,

(dT )

0 ] θ̃ + εi,t, Var[εi,t] = Σi,t (for all (i, t) ∈ [s]× [T ]). (6)

We also note that the autoregression equation (5) are equivalent to a collection of virtual
prior observations:

zt(= 0) = [

(θ̄)

0 ,

(d1)

0 , . . . ,

(dt)

P ,

(dt+1)

−I , . . . ,

(dT )

0 ] θ̃ + ηt, Var[ηt] = Q (for all t ∈ [T − 1]). (7)
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Figure 2: Optimal designs and total traffic volume vs. time in the region of Berlin Brandenburg, for the models
based on independent measurements (3) and an AR1 process (6)-(7).

Finally, the full parameter is θ = KT θ̃, where

KT =


I I 0 · · · 0
I 0 I · · · 0
...

...
. . .

. . .
...

I 0 0 · · · I

 ,

and an A−optimal design for KTθ can be found by SOCP or multiplicative algorithms (note
that we must use an SOCP whose form differs from (2), because of the prior observations in
Equation (7), see [6]).

We have computed the A−optimal designs associated to the observation models (3) and (6)-
(7), for the application to toll enforcement described in Section 1 on the motorways of the region
of Berlin-Brandenburg in Germany (s = 90 edges, m = 494 pairs). In the latter model we have
set P = 0.5I and Q1/2 = 0.025 Diag(x̄), where x̄j is the average flow volume on the jth OD. For
this experiment the day was divided in 8 time slots. The temporal components of the optimal
designs (i.e., wt =

∑s
i=1 wi,t) are plotted in Figure 2, together with the diurnal evolution of the

traffic volume. While the design for Model (3) follows the daily trend of the traffic, we see that
the design based on an AR1 process is mainly concentrated during the night, where flows are
less important and measurements are more accurate. Nevertheless, we point out that assuming a
time structure might not be adapted for this toll enforcement problem, because the estimation of
the number of toll evaders should rely on actual controls rather than sophisticated time models.
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