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Abstract 

The paper presents a new application of computer algebra to the treatment of steady 
states of reaction systems. The method is based on the Buchberger algorithm. This 
algorithm was modified such that it can exploit the special structure of the equations 
derived from reaction systems, so even large systems can be handled. In contrast 
to numerical approximation techniques, the algebraic solution gives a complete and 
definite overview of the solution space and it is even applicable when parameter 
values are unknown or undetermined. The algorithm, its adaptation to the problem 
class and its application to selected examples are presented. 





1. Introduction 

Usually, chemical reaction systems for mass action kinetics are described by a set of 
ordinary explicit first order differential equations 

Cm = Yl k-+3 I I CV (Vjm. - Vim) , m = 1, . . . , JV (1.1) 
R \l=l J 

where cm is the (time dependent) concentration of a species am, R is the set of all 
elementary reactions (reaction network), &,-_>,• is the rate constant for the elementary 
reaction at- —• a,j and has a nonnegative real constant value, and yu is the stoi
chiometric coefficient of species a; in the ith complex [9]. The yu are nonnegative 
integer constants (usually 0, 1, or 2) and so the right-hand side of (1.1) is a vector 
of multivariate polynomials with variables c/. 

A steady state of the reaction system is a composition {cm} such that all deriva
tives c'm vanish. So the steady state is described by : 

0 = £ k^j ( ft cf" ) (yjm - Vim) , m = l,...,N (1.2) 
R M=l / 

This is a system of homogeneous algebraic equations and we are looking for solu
tions of (1.2) with real values C/ > 0 or c; > 0 (positive steady state). 

Until now solutions of such systems are nearly exclusively sought by numerical 
methods. The possible advantages of an algebraic approach over the numerical treat
ment could be: 

a) applicability even if some or all constants are unknown (formal parameters), 

b) giving a complete and definite answer including the information about the 
dimension of the solution space (= number of solutions). 

FEINBERG analyzes the steady state behaviour of a chemical reaction system in 
the deficiency zero and deficiency one theorems by analyzing the network structure 
with graph theoretic methods. The algebraic approach allows to do a similar analysis, 
even in cases which these theorems do not cover. 

The following examples (taken from [9]) may serve as a first illustration. Their 
processing will be discussed in part 5. 

c'i = aci — ßc\ — jcic2 + ec3 

c2 = -7C1c2 + (e + 2ö)c3-277c2
2 (1.3) 

c3 = 7C1C2 + r)c\ - (e + 6)c3 
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Here the deficiency zero theorem states, that there is only one positive steady 
state. The algebraic treatment of the homogeneous version of the above system 
leads to three distinct solutions: 

ci = c2 = c3 = 0 

Cl = J , C2 = C3 = 0 ( 1 4 ) 

a ay 9 a2 72 6 

So there is only one solution with positive (ci, c2, C3) and the algebraic approach in 
this case confirms the deficiency zero theorem. 

For the second system (EDELSTEIN) the deficiency zero theorem is not applicable: 

c"i = a ci — ßc\ — 7CiC2 + ec3 

c2 = -7CiC2 + (e + 6)c3 - rjc2 (1.5) 

c'3 = 7C1C2 + r/c2 - (e + 0)c3 

This system has a one dimensional solution space; taking C\ as parameter the com
plete solution is: 

-^7C? + {aß - ßr))c! + arj 
c3 = cx 

(-ße + ß6)cx +ae + ad 
c2 = d 

"foci — erj 
which describes c2 and c3 as functions of C\ and shows, that for 

er] 
Cl = Te 

there is a pole. 

The kernel for the algebraic treatment of (1.2) is the Buchberger algorithm [4, 5]. 
This algorithm transfers a system of multivariate polynomials into a Groebner basis, 
which gives direct information about the solutions. Although this algorithm has 
a simple structure, it can achieve great complexity when executed: even for simple 
looking problems the intermediate results can grow dramatically in number and size, 
especially if the coefficients are parameters. This effect limits the applicability of the 
algorithm, even if it is performed by an efficient computer algebra system. 

In the case of chemical reaction systems, however, we can find results for systems 
with a number of variables which usually is too large for the algorithm; additional 
structure helps to reduce the computational complexity. Particular items are: 

a) the low degrees of the polynomials, 

b) the sparse pattern of the coefficient matrix, 
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c) the decomposability of polynomials by factorization, 

d) the restriction to nonnegative real solutions. 

The purpose of the present paper is to introduce a variant of the Buchberger 
algorithm which takes advantage of the above properties. 

In this paper we describe the Buchberger algorithm and its modifications in detail 
in the first part (sections 2, 3, and 4). The expository presentation is illustrated by 
bivariate examples. Its purpose is to enable the reader to use the algorithm for 
solving of simple examples by hand or, if polynomial manipulations turn out to be 
complicated, by means of a minicomputer. In the second part (section 5), we give 
some application examples. These were computed with the Groebner package, now 
implemented in the computer algebra system REDUCE [10, 12]. 
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2. Mult ivariate Polynomials and Groebner Bases 

Multivariate polynomials are linear combinations of power products, i.e. of terms 

a?!1 * • • • * x*n with nonnegative integers i\, . . . , in . 

In the bivariate case n = 2 we have for instance 

fi{xi, £2) = xx + 2x\x2 - x2 - 7 , 

and 
f2(x1,x2) — x\x2 — 2 . 

These two polynomials will be used in the following for illustrating the definitions 
and the Groebner basis construction. The coenicients of the multivariate polynomials 
(here 1, 2, — 1, —7 for f\ and 1 , - 2 for f2) are integers, rationals or parameter expres
sions (multivariate rational functions over the integers), or more generally elements 
of a field or a unique factorization domain. 

All power products occuring with nonzero coefficients in the power product rep
resentation of a polynomial / constitute supp(f), the support of f. This is a nonvoid 
set if and only if / ^ 0. We have for instance 

supp(f1) = { x f , x i i f , x | , l } , 

supp(f2) = {x1x2,l} . 

The main tool for the Groebner basis method is that the set of power products 
is ordered by a relation < satisfying in the bivariate case 

1 < x[xi, if i > 0 or j > 0 , 

and for arbitrary nonnegative integers a, b, i, j , k, I 

x\x{ < x\xl
2 implies x?ax3

2
+h < x$+ax2

+b . 

Examples for such (bivariate) orderings are the lexicographical ordering 

1 < xa < x\ < ... < x\ < ... 

< x2 < X\x2 < x\x2 < ... < x\x2 < ... 

^ Xn ^ •^l^'O ^ *^i^2 ' " " ^ •^1*^2 ^ . . . 

and the graduated lexicographical ordering 

1 < xi < x2 < x\ < x\X2 <x\<x\< ... . 
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The multivariate analogy of the lexicographical and the graduated lexicographical 
ordering are (<iex for short): 

x \ ' ' ' x
n ^lex xi ' ' ' x

n •*' ' ' 

3i <n : (a,- < b{ A V7 > i : aj = fcj) 

and (<ff;ea: for short): 
Xl '"'Xn "^glex x l ' ' ' x

n
 :> ^ 

\t=i t=i / \t=i t=i / 

Using such an ordering, the elements in a support can be ordered; and two poly
nomials / and g can be compared by saying that / is simpler than g if supp(f) and 
supp(g) are different and supp(g) contains a power product which is greater ( w.r.t. 
< ) than every power product in supp(f) \ supp(g). Both in the lexicographical and 
the graduated lexicographical ordering, f2 is simpler than / l 5 because Xix\ is greater 
than XiX2, the maximal (and only) power product in supp(f2)\supp(f1). In this way 
any two polynomials with different supports can be compared, but no two ones with 
same support. 

Polynomials can be simplified with respect (to the given ordering < and) to 
a finite set G of nonzero polynomials. Denoting by /£(/) the maximal power product 
in supp(f) for / ^ 0, we say / reduces modulo G to /*, briefly / —>a f*, if a power 
product x"1 • • • x£n of supp(f) is a multiple of a lt(g) with g 6 G and 

T a i . . . fan 

f = C l / _ C 2 lt(g) 9> 

where the constants c1? c2 are chosen such that supp(f*) does not contain x"1 • • • x£n. 
All power products in supp(f*) greater than xj1 • • • x°n are identical with those in 
supp(f), but Xj1 • • • x£n is contained only in supp{f). Therefore, /* is simpler than / . 
This reduction procedure modulo G can be applied iteratively until a polynomial is 
obtained, which is no more reducible modulo G. (It is easy to show, cf. the survey by 
BUCHBERGER [5] for the case of polynomials over a field, that every iterated applica
tion of a reduction modulo a finite polynomial set G terminates after a finite number 
of steps at an irreducible polynomial or at the zero polynomial.) We abbreviate by 
/ — > Q / * the sequence 

/ — > G 9\ — > G • • • — > G g3 = / * , 

if /* is 0 or no more reducible modulo G. If / is already irreducible modulo G or if 
/ = 0, then we write for short also / —>Q f. 

Let for instance G := {/2} and / := / i . Then 

f = Xj + 2xjx2 — x2 — 7 —*a xi + 3x2 — 7 = / i — 2x2 /2 = : /* 
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with supp(f*) = {x\,x\,l} and supp(f) = {xiX^x^Xj, 1} and hence /* is simpler 
than / . /* is irreducible modulo G, because supp(f) contains no power product, 
which is a multiple of an lt(g),g 6 G. Therefore, we may also write 

/ —>G r • 

When the common zeros of a finite set of polynomials H = {/i1; . . . , hs} have to 
be computed, every 

s 

h = ]T g{hi, with polynomials gu ... , gs 

t = i 

vanishes at these common zeros, and conversely the set of all such h's 

1(H) := I ]T g{hi | gu ... , gs polynomials \ 

has the same set of common zeros like H, because H is a subset of it. 1(H) is called 
the ideal generated by H. Therefore, for computing the common zeros of H, another 
finite set of polynomials generating 1(H), a so-called basis of 1(H), can be taken in 
place of H. We are dealing with Noetherian rings, where all ideals are generated by 
a finite subset. Therefore we may speak of an ideal instead of an ideal generated by 
a finite polynomial set H, if H is of no relevance for the forthcoming. 

Definition. A finite set G of nonzero polynomials is called a Groebner basis of an 
ideal I, if for arbitrary / £ I 

/ — * G 0 -

R e m a r k 1. A Groebner basis of an ideal generates in fact the ideal. The Groebner 
bases depend on the given ideal and also on the given ordering of the power products. 
But even if ideal and ordering are fixed, the Groebner basis is not unique. We obtain 
a uniquely determined Groebner basis, if we replace every polynomial g of a Groebner 
basis G by the (modulo G \ {g}) irreducible g*, g —*h\{g\ 9* an<^ ^ w e normalize the 
coefficient belonging to lt(g*) to 1 in case the coefficient domain is a field, cf. [5], or 
to another special element for other coefficient domains. 

Remark 2. If G is a Groebner basis of an ideal I with respect to <iex, then 
every polynomial f € I depending only on x1} . . . , x,- is already reducible to 0 
modulo the polynomials in G which depend also only on xi, . . . , x,-, because the 
other polynomials in G have /i-parts which are multiples of an Xj, j > i and hence 
these It do not divide a power product in supp(f). Thus, the ideal of all polynomials 
in J depending only on xi, . . . , x,- has the set of all polynomials in G depending only 
on xi, . . . , x,- for Groebner basis, i = 1, . . . , n — 1. 
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This is useful for rinding the common zeros of the polynomials in I. First the 
polynomials in G depending only on i j are considered. Their common zeros de
termine all possible first components for the required zeros. Then substituting the 
first component in all polynomials in G depending only on xi, x2 we get a univariate 
problem for determining all possible second components, etc. 

E x a m p l e . For finding the common zeros of the polynomials fi,f2 as introduced 
above, we consider the ideal I generated by {fi,f2}- As seen before, 

/ 3 := xl + 3xl-7 = fr- 2x2
2f2 

belongs to I. But also 

/ 4 := x1f3 - 3x2/2 = x\ - 7xx + 6x2 

and 
/ 5 := Z1/4 - 6/2 = x\- 7x1 + 12 

are in I. We will see, that {/4, f$} constitute a Groebner basis of I , when we consider 
all polynomials as polynomials with rational coefficients. The common zeros of / x , f2 

can be easily detected by considering / 4 and f5. The roots of f5 , {2, —2, \ / 3 , —s/3} 
are the first components of all possible zeros in common to fi and f2. Inserting these 
roots into / 4 = 0, we get for each choice of X\ one choice of x2: 

(2,1), ( - 2 , - 1 ) , (x/3, | V 3 ) , ( - x / 3 , - | V s ) 

are the common zeros of / j and f2. 
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3. The Computat ion of Groebner Bases 

For the construction of Groebner bases, the notion of S-polynomials is essential. For 
every two nonzero polynomials / , g the S-polynomial is denned by 

c*lcm{lt(f),lt(g)} c*lcm{lt(f),lt(g)} 

ex * lt(f) c2 * lt{g) 

where cx and c2 denote the coefEents of lt(f) and lt(g) in the respective power 
product representation of / and g and where c := Zcm{ci,c2}. Then the following 
characterization of Groebner bases for polynomials over fields [5] and over principal 
ideal rings [19] allows a construction of such bases. 

Theorem 1: A finite set of nonzero polynomials H = {hi, . . . , hT} is a Groebner 
basis of 1(H), if and only if S(/ij, hj) —>*H 0 holds for every hi, hj 6 H. 

Using this theorem, we can show, that the set {/4,/s} of the example is in fact 
a Groebner basis. We show first, that H := {/i, • • •, /s} is a Groebner basis. This 
holds if S(fi, fj) —>*H 0 for i < j because the remaining S-polynomial reductions are 
trivial (5(/j,/,-) = 0) or follow by symmetry (S(fiifi) = -5(/ ,- , / ,•)) . 

We have / 3 = 5 ( / i , / 2 ) . Hence 

S(fi,f2)-^HS(fi,f2)-f3 = 0. 

Similarly 
S( /2 , /s )—>JjS( /2 , / 8 ) + /4 = 0 

and 
Sfaf*) —*H S(fa,f4)- fB = 0 . 

More computation is required for the reduction of 5( /3 , f^): 

S(f3, A) = 2/3 - X2/4 = —x\x2 + lxxx<i + 2x\ - 14 = : pi 

• t f Pi + \xlf4 = 711x2 + !*i - \x\ + 2x\ - 14 = 
*H P2-\xifA = I x 6 _ 7 x 4 + S . a . 2 _ 1 4 

>H P 3 - H / 5 = - } * * + ¥ * ? - 1 4 

>H P 4 + | / 5 = 0. 

P2 

P3 

P4 

The remaining tests S(fi,fj) —>*H 0 for i < j are as hard as the test of 
5 ( / 3 , / 4 ) —>*H 0. We omit these technicalities. (The criteria quoted in the following 
will show, that these remaining tests are in fact superfluous.) 

Therefore, H = {/1, . . . , f$} is a Groebner basis. Using / 3 = S(fi,f2) and the 
definition of S(fi,f2), we get /1 = / 3 -f 2x\f2. Hence each reduction step using fx for 
reduction can be replaced by a reduction step using / 3 followed by a reduction step 
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using / 2 . Hence / j is redundant in H, i.e. {f2,fz,f4, fs} is also a Groebner basis of 
the ideal 1(H). By the same argument, using / 2 = \xifA + | / 5 , f2 is redundant in 
{/2, fz, IA-, fs}- And using the reduction of S( / 3 , f4) to 0, we find the redundancy of 
h in {/3,/4,/s}- Thus {/4,/s} is a Groebner basis. 

The test of a polynomial set for Groebner basis will be simpler, if not all £(/,-, /_,-) 
with i < j have to be tested for being reducible to 0. BUCHBERGER [4] developed 
criteria for predicting that an S-polynomial reduces to 0. These criteria have been 
generalized by himself and by other authors. 

Definition. Let H be a set of nonzero polynomials, H := {/l5 . . . , / r } . Using the 
notation T(/,-,/j) for lcm{lt(fi),lt(fj)} and T(/,) for lt(fi), we say 

a) Criterion D holds for (/,-, / s ) , if /,• and fs have a common (eventually constant) 
divisor g, such that /,• = g * /*, fs — g * f* and lt(f*), lt(f*) without common 
divisor. 

b) Criterion M holds for (fi,fs), if a j < s exists, such that T(fj,fs) divides 

c) Criterion F holds for (/,-, fs), if a j < i exists, such that T(fj, fs) = T(/,-, / s ) . 

d) Criterion Bs holds for (/,-,/,-), if s > j , f3 € H and T(fs) divides T( / j , / j ) , but 
TVufJtTUuMtTifjJ.). 

If one of the criteria M, F, and Bs holds for (/,-, fj), then the S-polynomial 5(/,-, fj) 
reduces to 0, as shown in [11]. Criterion D is an easy generalization of Buchberger's 
criterion 2 [5]. 

These criteria simplify the Groebner basis computation. In our example, only the 
S-polynomials S(f1,f2) = / 3 , S(f2, /s) = ~h, S(f2, /4) = fs, and S( / 3 , / 4 ) have to be 
computed and reduced. For criterion M holds for (/x, / 3 ) , (/x, f4), ( / i , / 5 ) , and (/3, / 5 ) , 
F for (/2,/s) and D for (/4,/s). The example indicates the way, in which Groebner 
bases can be computed. The idea for this computation is due to BUCHBERGER [4]. 
Using the criteria and using, that a polynomial fk is redundant in the final Groebner 
basis G, if an / ; € G exists such that /<(/,•) divides lt(fk) and using that in this case 
every (fk, fj) for j > k satisfies criterion M or a slightly modified criterion F allowing 
the cancellation of all such (fk,fj), provided the input polynomials are ordered by 
^ ( / i ) ^ ^(h) — • • • ' * n e algorithm for computing Groebner bases can be formulated 
in the following way. 

Buchberger Algorithm. 
Input: nonzero polynomials / 1 , . . . , fr ordered , 

such that U(f-i) >...> U(fr). 
Output: A Groebner G basis for I(f\, • • •, fr) . 
Initialization: 
G : = 0 ; P : = 0 ; 
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For s = 1 to r do 
P I := usecritMFD( { ( / , / , ) | for all / € G}); 
P := join(Pl , usecritB(P,/,)); 
G := update(/ s ,G); 

s := r ; 

Iteration: 
Let (/,-,/,) G P ; 

P : = - P \ { ( / » / i ) } ; 
L e t S ^ , / , - ) —•Jjfc; 

If Ä ^ 0 then 
s := s + 1; 
/ s := h; 
P I := usecritMFD( { ( / , / , ) | for all / € G}); 
P := join(Pl , usecritB(P,/,)); 
G := update(/ s , G); 

If P 7̂  0 then goto iteration 
else return G 

The subalgorithm usecritMFD applies the criteria M, F, and D to a set P i of 
polynomial pairs (fi,fs) with fixed s and some i < s by comparing the elements 
of P i against each other. It returns the subset of P i consisting of all elements for 
which neither M nor F nor D holds true. usecritB applied to a set of polynomial 
pairs P and a polynomial fs cancels all pairs in P , for which criterion Ba holds true. 
update( / s ,G) cancels every polynomial g € G, for which lt(f) divides lf(g), and 
returns this reduced set after enlarging it by fs. 

The correctness and the termination of the algorithm in the present form are 
shown in [11], when the polynomial coefficients are elements of a field like the field 
of rational numbers. For other coefficient domains see [19]. 

For simple examples, this algorithm can be applied successfully by hand calcu
lation as our example showed. For more complicated cases the use of a Computer 
Algebra System is recommended. Apart from the bivariate and the trivariate case, 
bounds for the complexity of the algorithm are in general unknown. Examples sug
gest, that these bounds will be huge, if the input polynomials or the ordering of the 
power products are badly chosen. We developed some special tools for constructing 
Groebner bases in order to solve also problems, which cannot be solved by other 
Computer Algebra Systems [18]. For the problem of finding the common zeros of 
a given set of polynomials, we installed a variant of the algorithm, which will be 
presented in the following. 
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4. Solution of Systems of Algebraic Equations 

We look for the solutions of a system of algebraic equations 

/ i (x i , . . . , xn) = 0 , . . . , / r ( x i , ... , xn) = 0. (4.1) 

Let us denote the solutions of this system by Z( / i , . . . , / r ) . Then Z(fi, . . . , / , . ) is 
the set of common zeros of /1 } . . . , fr, or as already mentioned in Section 2, the 
set of vcommon zeros of any basis of the Ideal I generated by / l 5 . . . , fr. So we 
transform (4.1) into a Groebner basis with lexicographical ordering gx, ... , gn and 
(4.1) is equivalent to gi = 0, . . . , gn = 0. On the other hand a lexicographical 
Groebner basis has a full or partial triangular dependency pattern, in the best case 
n = m and 

01(31» 
•Z-2) . . . , Xn_j, Xn) 

#2(zi, x2, ..• , x„_i) 

9{m-l}(Xi, X2) 

This triagonal pattern can be exploited for the solution of (4.1), e.g. finding the 
roots of the last equation, substituting it into the others and so on. 

But the calculation of the Groebner basis in lexicographical ordering can be ex
tremely hard. So we have modified the Buchberger algorithm for the purpose of 
equation solving, such that it decomposes the problem wherever possible. 

The algorithm (3) started with the set of polynomials G^{fi, . . . , / r } generates 
in iteration step n a new set G<w>. If in one of these G^%> there is a polynomial p with 
a decomposition 

p (x i , . . . , xn) = 0 <£=}> (qn(xi, . . . , xn) = 0 A g1 2(xi, . . . , xn) = 0 A . . . ) 

V 92i(xi, . . . , xn) = 0 A 922(^1, . . . , x„) = 0 A . . . ) 

V gfci(xi, . . . , xn) = 0 A 9fc2(xi, . . . , xn) = 0 A . . . ) ) 

where the g,j are "simpler" than p, then each of the righthand alternatives represents 
one (possible empty) part of the complete sets of solutions. By substituting them 
into G^ one after the other, we get k calculation branches and so a decomposition 
of the complete calculation. The effect is twofold, 

a) the algorithm becomes less complicated: the polynomials are often less in de
gree; 
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b) the final result is partitioned too, in the best case into individual solutions. 

There are two sources for decomposition: factorization and arithmetic restrictions. 

Factorization. If we find in the ideal / a polynomial ft, which can be factorized 
into 

ft = hi * • • • * hm, 

then Z(fu ... , fr) splits into the sets Z(fx, ..., fr, hi), ... , Z(fu ... , fr, hm). 

This splitting method can be combined with the algorithm for Groebner basis 
computation. For the computation of Z(fi,...,fT) a Groebner basis of 
I := J ( / i , . . . , fr) can be used. Each polynomial ft, obtained by reducing an S-
polynomial belongs to I. Therefore if such h is factorizable, h = hi * • • • * hm, 
then the Groebner basis computation for I can be stopped and the Groebner basis 
computations with input /1? . . . , fr,hk, k = 1, . . . , m, can be started, because the 
union of the sets Z(f\, . . . , fr, hk), k = 1 . . . , m is the required set of solutions. A 
consequent application of this factorization gives a tree of Groebner basis compu
tations. Whenever a factorizable polynomial h is found, the computation branches 
into several Groebner basis computations, and the old Groebner basis computa
tion is discarded. However, the initial Groebner basis calculations for the ideals 
Ik := I ( / i , . . . , / r , h/,), k = 1, . . . , m, are identical with those for the ideal I, until 
the factored polynomial h appears. Then the algorithms usually differ. This is used 
in our installation of the procedure. We substitute in the algorithm for computing 
a Groebner basis of / the factorizable polynomial h by the respective factor hk and 
obtain the identical beginnings of the Groebner basis calculations for the ideals I*. 
(Some additional calculations may be in parallel too. Therefore before branching the 
algorithm, we perform also S-polynomial reductions which are known to be identical 
for all Groebner basis computations with respect to Ji, . . . , Im.) 

For avoiding a multiple computation of the same zeros, we use in our installation 
a practical criterion. When a Groebner basis for finding Z(fi, . . . , / r ) is computed 
and a factorization of a reduced S-polynomial h, h = hi * • • • * hm, is found, then the 
Groebner basis calculation for finding Z(fi, ... , fr, hk) can be discarded, if a previ
ous hi,i < k, is detected in the ideal generated by / 1 : . . . , / r , hk, because then the 
set Z(fi, ..., fT, hk) = Z(fu ... , fr, hk, hi) is contained in Z{fx, ... , fT, ft,-)- The 
same argument holds, if after forthcoming branchings a Groebner basis for a subset 
of Z(fi, ... , fT,hk) is computed and its corresponding ideal contains ft,-, because 
then this subset of Z( / i , . . . , fT, hk) is contained in Z ( / i , ..., fr, ft,). 

The algorithm for computing Groebner bases is fast, when low degree polynomial 
are found early in the algorithm. This is forced by the method of factorizing. We 
decrease 'artificially' the degrees of the reduced S-polynomials by substituting the 
true reduced S-polynomial by each of its factors. The increased number of simpler 
Groebner basis computations does not destroy this effect. On the contrary, the more 
factorizations are found, the faster the branching method is, as our examples show. 
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Only if no or if very few factorizations of polynomials h are found, then by the 
overhead of testing polynomials for divisibility this branching method is slower than 
the algorithm presented in section 3. 

Arithmetic restrictions. A second source for decomposition is the restriction, 
that only nonnegative real values make sense as components of solutions. So we can 
exploit a set of inequalities 

Xi > 0 i = 1, . . . , TV. 

In generalizing Descartes rule of sign we can state for a multivariate polynomial 

p = a0 + 0 lx* n • • • < " + ••• + amx[ml • • • x™n 

where all a,- are real and have the same sign: 

a) if ÜQ ^ 0 then p(x\, . . . , xn) = 0 implies that at least one a;,- < 0; 

b) for a0 = 0 then p(xi, . . . , xn) = 0 and £,• > 0 implies, that each monomial in 
p is zero already. 

In other words: If ao ^ 0 there cannot exist a solution which satisfies the above 
inequalities and the calculation branch can be cancelled. For a0 = 0 p is decomposed 
into a list of monomials each of which has to be zero. As these monomials are 
factorizable immediately, we easily get a twofold decomposition. For example, the 
polynomial 

17xy2r + Ax2z 

leads to the decomposition 

x = 0 V (y = 0 A z = 0) V (r = 0 A 2 = 0) 

which describes the nonnegative real solutions. 

Experience has shown, that in the chemical application area the above criterion 
plays an important role as source of decomposition and as test for the nonexistence of 
a relevant solution. In the last case a calculation branch can be cancelled immediately. 

The arithmetic decomposition uses the same hook in the algorithm as the factor
ization: when it hits, it generates sets of zero polynomials each of which is root of 
a separate calculation tree. 

If the coefficients contain formal parameters, the same technique can be applied 
for determining their sign. 
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5. Computat ions for Chemical Reaction Systems 

5.1 Polynomial equations 

Chemical reaction systems for isothermal reactors are described by reaction networks 
or by systems of chemical reaction equations: 

ki-*j '• J/«ncn T • • • "T yimcm = * • VjkCk + ••• + VjiQ (5.1) 

where cs denotes the overall molecular concentration of the species with number 
s,ysj is the stoichiometric coefficient of species 5 in the complex j and fc;_>j is the 
rate constant for the reaction from complex i to j . For the numerical simulation 
of their kinetics they are transformed into systems of ordinary differential equations 
(ODEs), which in the case of mass action have the general form 

c3 = X ^ . ^ j I I cT\y°i - Vsi) > s = l, ... ,n . (5.2) 
»"—»j 1 = 1 , n 

The transformation from (5.1) (or other equivalent input forms) to (5.2) can be 
done automatically with REDUCE: the right-hand sides of the ODEs are initialized 
with zeros and the contributions of each reaction read into the species are added into 
the corresponding ODE: 

LET p = k^j * cn * *yin * . . . * cmt- * *yim ; (5.3) 

FOR EACH cp in left side of (5.1) subtract (Jb< * yip) from ODE (cp) ; (5.4) 

FOR EACH cp in right side of (5.1) add (fc,- * yip) to ODE (cp) ; (5.5) 

If we now are interested in the steady states of sytem (5.2), we have to set cs to 
zero. (5.2) is transformed into a system of homogeneous algebraic equations 

0 = $ > w j I I c?'(ys: ~ Vsi) , 5 = 1, . . . , n (5.6) 
t'->j 1=1, n 

which can be investigated with algebraic methods. The "variables" in (5.6) are the 
c;. The yf- are small nonnegative integer constants (typically 0,1 or 2). The fc,_j may 
be numerical constants (nonnegative numbers, typically floating point fractions) or 
they may be formal parameters (all or some of them). In all cases we are interested 
to solve (5.6) or to look for criteria for the solvability. 
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5.2 Computations with algebraic coefficients 

Example EDELSTEIN: As a first detailed example we look at the Edelstein system 
with the reaction graph: 

a 

7 e 
Ax + A-i "^- A3 7^ A2 e r) 

The corresponding algebraic equations are given in (1.5). For the Groebner basis 
calculation we use the variable sequence {c3, c2, Cx}, which is the optimal one because 
it represents "growing" degrees in the equations [3]. Rewritten in this variable order 
the system is 

Pi = -c3e-C3Ö +c2Ci7 +c277 

p2 = c3e + c36 - C2C17 - c2r\ 

Pz = c 3 e - c 2 c i 7 - ciß + Cia 

Here the Groebner basis computation is extremely simple: p2 is redundant and can 
be omitted and the only h-polynomial is the sum of pi and p3, eliminating the c3 

term. The resulting Groebner basis is 

&! = -c30 + c2r] -Cxß + Cia 

h — —c2cx^6 + c2e?7 — c\ßt 

-clßQ + Cxae + ciCiO 

This basis has an incomplete triangular dependency: {61 (c3, c2, cx); b2(c2, Ci)} . 
We now can determine the complete solution by solving b2 either wrt cx (using c2 

as formal parameter) or wrt c2 (c\ as parameter), substitute the result into 61 and 
solve 61 wrt c3. If we select ci as parameter, the final result is 

Ci(-c\ßj + Cia7 - ci/?77 + 0177) 
C3 = 5 

cxi-cxße - cxß6 + ae + ad) 
c2 = 2 

Cijv — eq 
representing c2 and c3 as formal functions of Cj. 

For the interpretation of this result in the style of the deficiency theorems, we 
have to do further algebraic investigation. The question here is "are there multiple 
steady states within one stoichiometric compatibility class"? Two compositions c and 
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c' are members of one stoichiometric compatibility class, if their difference is a linear 
combination of reaction vectors. The reaction vectors for the Edelstein network are 

ex — 2e; 1e.\ — &x 

ei + e2 - e3 e3 - tx - e2 

e3 - e2 e2 - e3 

These vectors generate a 2 dimensional subspace, e.g. with the basis 
{e l5 e3 — e2}. We now want to evaluate, which steady states are in the same sto
ichiometric compatibility class as a given concentration vector {c^, c2, c3}. The 
corresponding equation system is 

ex "4" ' l ' 0 " 

ca(ci) - c2 + h 0 + h - 1 

. cs(ci) . . 4 . 0 1 

where ci, /i and 72 are variables, while the c[, c2, c3 and the rates are formal 
parameters (constants). The linear system is solvable if and only if the determinant 
of the matrix 

ex ~ c[ , 1 , 0 

c 2 ( c i ) - c 2 , 0 , - 1 

. C3(Cx) - C3 , 0 , 1 _ 

vanishes. This leads to the polynomial 

—a^c\ — aeci — arjcx — cx6c\ + ß^c\ + ß ec\ 

+ß-q c\ + ß8c\ + 76Cx c2 + 79Cj c3 — tr\ c2 — e77 c3 

which does not depend from c[ because of the degenerate structure of the matrix. 
This cubic polynomial can be solved with respect to ex by the Cardano formula in full 
generality with a, /?, 7, 77, Ö, C\, c2 and c3 as formal parameters: c\ is expressed as 
function of the rate constants and the input concentration vector; this computation 
can be done with REDUCE. We receive three formal solutions, which, however, are 
bit lengthy in their full generality (several hundreds of lines of REDUCE output). The 
solutions contain formal imaginary parts and radicals with formally undetermined 
sign; so we are not able to determine the number of positive real solutions in full 
generality. By assigning numeric values to the rate constants and to the c,- however, 
they can be evaluated. 

E x a m p l e MODIFIED EDELSTEIN [9]: In the previous example, two of the equations 
are linearly dependent and in fact the algorithm eliminates the redundant equation 
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immediately. We now investigate a modification of the Edelstein system, where this 
dependence is no longer present: 

a 
Ax ̂ f 2A1 

7 8 
M + A2 <— A3 7^ 2A2 

e T] 

The corresponding algebraic equations are: 

0 = -c\ ß — ci c2 7 + ci a + c3 e 

0 = —ci C2 7 — 2 el r\ + c3 e + 2 c3 Ö 

0 = c: c2 7 + ĉ  77 - c3 e - c3 Ö 

Here the algorithm soon detects a H-polynomial 

-c\ß + cxa 

which reflects a typical behaviour of the whole application class: it can be factorized 
into a product variable * "polynomial, here 

c\ ( -c i ß + a) 

The algorithm detects more factorizations of this type and generates separate calcu
lation branches, which result in three Groebner basis: 

{cz,c2,ci} , 

{c3,c2,ciß-a} , 

{-c3ß
2e2rj + a2~f28, c2ßerj - ay$, cxß - a) 

Here the first basis represents the trivial solution c3 = c2 = c\ — 0; the second basis 
has one nonzero value C\ = a/ß. The third basis offers the unique positive solution 

a2-y29 ajO _ a 
C3 = ~W&) ' °2 = ifc? ' Cl ~ ß 

Here no futher processing is necessary. If we execute the algorithm with the restric
tion to positive real solutions, only the third basis and the last result is presented. 
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E x a m p l e HEINMETS [2]: 

{ -Z1P2-Z1P3 + Z3P1 , 

-x2 PA + £3 p15 , xi p2 + x1 pz + x2p4- xz pi - x3 Pis , 

—x4p7 + xex7pi2 , 

—£5 ps + £7 Pe,, xi pz - x6 x7 pi2 - £6 Ps , 

x4p7 + x5p8- xex7pi2 — x7p6 , 

-x8 x9p13 + £12 P14, 2:5 Ps - ^s £9P13 - ^9P9, £11 P11 , 

-Sil Pll + ̂ 12 PlO , ^8 ̂ 9 Pl3 + Zll Pll - ̂ 12 PlO - 3=12 Pl4 } 

Although still moderate in size, this system demonstrates a behaviour which we 
find as well with the "big" systems derived from reaction systems. The system 
cannot have a positive solution: e.g. the 10th equation forces £ n to zero already in 
the original system. During the calculation of reduction steps the polynomial x8 x7 

is found, which is of purely monomial type and so is easy factorizable; it causes the 
algorithm to branch. So the final set for Groebner bases is 

{ Z2P1P3P4 - Z 6 P 2 P 5 P l 5 _ X 6 P 3 P 5 P l 5 , X4,-Xx pz + X6p5 , 

- ^ 3 P l P 3 + 2:6P2P5 + Z 6 P 3 P 5 , X5 , £ n , £ 1 2 , £9 , X7} , 

{ -X2 P i P3 P4 + X6 X7 pi P12 P15 + X6 £7 p3 p 1 2 p15 

+X6P2P5P15 + XePzP5Pl5, X4p7 — XßX7p-L2 , 

Z l P 3 — X6X7p12 — X6p5 , 

Xz P i P3 - X6 £7 p 2 Pl2 - S6 X7 Pz Pl2 - X6 p2 p 5 

- a : 6 P 3 P 5 , X5p8-X
7p6, £ 8 , £ n , £12 , £ 7 P 6 ~ a ; 9 P 9 } 

and from that we can calculate (by an automatic postprocessor) the sets of solutions: 
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Z6 V2 P5 Pl5 + ^6 P3 P5 Pl5 

Pi P3 P4 

0, 

X6 P5 

P3 

^6 P2 P5 + X6 P3 P5 

Pi P3 

0, X5 = 0, X n = 0, X12 = 0, X9 = 0, X7 = 0} , 

J6 £7 P2 Pl2 Pl5 + Z6 Z7 pz p 1 2 p t 5 + Xß Vi P5 Pl5 + X6 P3 P5 Pl5 

Pi P3 P4 

X6 X7 Pl2 
j 

P7 

^6 ^7 Pl2 + Z6 P5 

P3 

^6 2T7 P2 Pl2 + ^6 #7 P3 Pl2 + ^6 P2 Vh + x6 P3 P5 

Pi P3 

X7 P6 

P8 

Xg = 0, I U = 0 , X12 = 0 , 

S7P6 | •, 

P9 

Note that some of the variables are not mentioned as left-hand sides of the solutions 
at all. So the value of x6 is arbitrary for both solutions and xT is arbitrary in the 
second solution. This is typical for larger systems. 

E x a m p l e SCHLOSSER [20]: Of course, computations with formal coefficients are 
not applicable in the general case for two reasons: 

a) during the internal computations the Buchberger algorithm has to combine co
efficients by the basic arithmetic operations +,-,*,/ very often, which produces 
a growth of coefficients in an exploding manner so that soon all resources of 
the machine are exhausted, 

b) the algebraic dependence in the case of many parameters is often so compli
cated, that general solutions, even if computable, are difficult to be interpreted. 
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As an example for the second effect we present the following system of algebraic 
equations derived from the ODEs for a continuous flow stirred reactor [20]: 

0 = — kl ca cb + 2k3 cc + (caf — ca)/9; 

0 = - kl cacb- k2 cb cc + (cbf — cb)/9; 

0 = - k2 cb cc - k3 cc + (ccf - cc)/9; (5.7) 

0 = fcl ca cb + (cdf - cd)/9; 

0 = k2 cb cc + (cef - ce)/9; 

The Buchberger algorithm almost immediately offers the base (LEX over 
Q [ kl, k2, k3, caf, cbf, ccf, cdf, cef, 6 ]). For technical reasons we here present 
only the last member of the base, which is a univariate polynomial of degree 3 in cb: 

(-kl 92 Jb2) cb3 + (-kl k3 92 - fcl caf 92k2 

+kl 92 k2 cbf - kl 92 k2 ccf - kl 9 - 9 fc2) cb2 

(5.8) 
+( - fc l £3 caf 92 + kl k3 92cbf - 2kl k3 92 ccf - kl caf 9 

+kl 0 cbf - k3 9 + 9 k2 cbf - 9 k2 ccf - 1) cb + (k3 9 cbf + cbf) 

This polynomial can be solved with respect to the variable cb by the Cardano for
mulas, but this computation is time consuming and the interpretation of the result 
will be difficult. In this case and even in more complicated cases, it makes sense to 
substitute some of the parameters with reasonable numerical values and to calulate 
the base with very few formal parameters. For example, if we subsitute in (5.8) the 
values proposed by SCHLOSSER [20] 

kl := 0.5; k2 := 0.9; fc3 := 0.8; caf := 16; cbf := 1; ccf := 4; cdf := 80; cef := 36 ; 

leaving 9 as formal parameter, we compute instead of (5.8) the much better readable 
polynomial 

(902) cb3 + (179 02 + 28 9)2 cb + (184 92 + 220 9 + 20) cb + ( - 1 6 9 - 20) . (5.9) 

5.3 Computations with numerical coefficients 

The following examples have their origin in "real" chemical reaction systems. The 
problems are formulated as chemical reaction equations including numerical values 
for the rate constants. The Buchberger algorithm is used with factorization and 
nonnegative restriction. The systems have low degrees and a sparse pattern. As 
a consequence of this specific structure even a Groebner basis with graduated order 
leads to the set of solutions; its main task is the decomposition. The solutions that 
contain a more or less big set of variables with zero values, and often values of other 
variables are arbitrary. 
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E x a m p l e PYRIDINE [13]: This example is the smallest member of the series. Re
action system: 

a =j> b (1.8) b => c (0.9) 

b + c =• d + f (29.) c + c =• e + f (9.) 

d =$> e (0.053) c =• f + g (2.) 

d =• b + g (0.06) e =• c + g (5.) 

b =• a (0.02) d + f =• b + c (0.5) 

e + f = > • c + c (2.) 

Algebraic equation system: 

0 = - 1.8 ca + 0.02cb, 

0 = 1.8 ca - 29.0 cb cc - 0.92 cb + 0.5 cd eg + 0.06 cd, 

0 = -29.0 cb cc + 0.9 cb - 18.0 cc 2 

= - 2.0 cc + 0.5 cd cf + 4.0 ce cf + 5.0 ce, 

0 = 29.0 cb cc - 0.5 cd cf - 0.113 cd, 

0 = 9.0 cc 2 + 0.053 cd - 2.0 ce c / - 5.0 ce, 

0 = 29.0 cb cc + 9.0 cc 2 + 2.0 cc - 0.5 cd cf - 2.0 ce c/, 

0 = 2.0 cc + 0.06 c<f + 5.0 ce 

A Groebner basis is {ca, cb, cc, cd, ce}. So all solutions of the system have the form 

ca = 0 , cb = 0 , cc = 0 , cd = 0 , ce = 0 

with c/ , eg» arbitrary (free variable). 

Example SMOG [8]: The reaction system SMOG is characterized by a high defi
ciency (=31). The set of algebraic equations has 50 polynomials in 37 variables (some 
of the species appear on the right -hand side of the reaction arrow only). The longest 
polynomial has 31 terms; there are some polynomials having only one term. 

6.0*c2*c25 + 6.0*c2*c27 + 6.0*c2*c30 + 4.0*c2*c33 + 6.0*c2*c35 + 6.0*c2*c38 + 8.0*c2*c43 
+ 0.32*c2*c45 + 0.2*c2*c46 + 0.2*c2*c47 + 280000.0*c2*c6 + 3.0*c2*c20 + 3.0*c2*c23 + 0.1*c2*c44 
+ 22.5*c2*c5 - 0.001*c2*cl + 30.0*c2*cl3 - 1470.0*cl0*cl + 2.76*c7 - 0.001*c25*cl - 0.001*c27*cl 
- 2.0*c43*cl - 858.0*c6*cl - 0.1*c20*cl - 0.1*c23*cl - 0.049*c5*cl - 0.001*cl*cl3 - 16.2*cl*c24 
- 16.2*cl*c28 - 5150.0*cl*c3 - 0.37*cl, 

- 10000.0*c2*cl0 - 6.0*c2*c25 - 6.0*c2*c27 - 6.0*c2*c30 - 4.0*c2*c33 - 6.0*c2*c35 - 6.0*c2*c38 
- 8.0*c2*c43 -0.16*c2*c45 - 0.1*c2*c46 - 0.1*c2*c47 - 140000.0*c2*c6 - 3.0*c2*c20 - 3.0*c2*c23 
- 0.1*c2*c44 - 22.5*c2*c5 - 0.001*c2*cl - 30.0*c2*cl3 + 0.01*c9 + 0.49*c6*cl + 5150.0*cl*c3 
+ 0.37*cl, 
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- 220.0*c21*c3 - 294.0*c22*c3 - 0.00125*cl5*c4*c3 - 3425.0*cl5*c3 - 5150.0*cl*c3 + 0.37*cl 
- 22.0*c4*c3, 

22.5*c2*c5 - 0.00098*cl0*cll*c4 - 0.125*cl0*cl5*c4 - 15.0*cl6*c4 - 15.0*cl8*c4 - 15.0*cl9*c4 
- 0.015*c32*c4- 0.005*c39*c4 + 0.49*c6*cl - 2.6*cl7*c4 + 2.45e-05*c21*c5 + 0.0005*c22*c5 
+ 0.049*c5*cl - 0.00125*cl5*c4*c3 + 0.001*cl*cl3 + 5150.0*cl*c3 - 0.26*c4*c24 - 0.26*c4*c28 
- 0.015*c4*c37 -22.0*c4*c3 + 70.0*cl32, 

- 22.5*c2*c5 - 2.45e-05*c21*c5 - 0.0005*c22*c5 - 0.014*c5*cl5 - 0.049*c5*cl + 22.0*c4*c3, 

- 140000.0*c2*c6 + 2.76*c7 + 0.01*c45 + 0.05*c46 + 0.05*c47 - 858.49*c6*cl + 0.1*c20*cl 
+ 0.1*c23*cl + 0.049*c5*cl, 

- 3.51*c7 + 858.0*c6*cl, 

1470.0*cl0*cl + 1.5*c7, 

10000.0*c2*cl0 + 0.002*c2*cl - 0.01*c9 + 0.001*cl*cl3, 

- 10000.0*c2*cl0 + 30.0*c2*cl3 - 0.00098*cl0*cll*c4 - 36000.0*cl0*cl7 - 25000.0*cl0*c21 
- 25000.0*cl0*c22 - 0.125*cl0*cl5*c4 - 5000.0*cl0*cl5 - 1470.0*cl0*cl + 0.01*c9 + 3000.0*c34 
+ 2000.0*c39 + 0.3*c23 + 2.45e-05*c21*c5 + 220.0*c21*c3 + 0.0005*c22*c5 + 294.0*c22*c3, 

- 0.00098*cl0*cll*c4 + 36000.0*cl0*cl7 + 2.6*cl7*c4, 

0.00098*010*011*04 + 0.0001*c44, 

- 30.0*c2*cl3 + 0.00098*cl0*cll*c4 + 0.001*c30 + 0.001*c33 + 0.001*c35 + 0.001*c38 
+ 0.005*c39*c4 + 2.6*cl7*c4 - 0.001*cl*cl3 + 0.26*c4*c24 + 0.26*c4*c28 - 140.0*cl32, 

70.0*cl32, 

- 0.125*cl0*cl5*c4 - 5000.0*cl0*cl5 - 0.014*c5*cl5 - 0.00125*cl5*c4*c3 - 3425.0*cl5*c3, 

- 15.0*cl6*c4 + 2925.0*cl5*c3, 

- 36000.0*cl0*cl7 + 25000.0*cl0*c21 - 2.6*cl7*c4 + 0.3*c20 + 0.3*c23 + 2.45e-05*c21*c5 
+ 220.0*c21*c3 + 3.3e-05*c21 + 0.0036*c22 + 2925.0*cl5*c3, 

- 15.0*cl8*c4 + 0.0001*c44 + 0.0036*c22 + 500.0*cl5*c3, 

0.1*c2*c44 + 25000.0*cl0*c22 - 15.0*cl9*c4 + 0.0005*c22* c5 + 294.0*c22*c3 + 500.0*cl5*c3, 

- 3.0*c2*c20 - 0.1*c20*cl - 0.3*c20 + 0.007*c5*cl5 + 0.00125*cl5*c4*c3, 

3.0*c2*c23 - 25000.0*cl0*c21 + 3000.0*c34 + 0.001*c33 + 0.1* c23*cl + 360000.0*c44*c24 
- 2.45e-05*c21*c5 - 220.0*c21*c3 - 3.3e-05*c21 + 0.007*c5*cl5 + 0.00125*cl5*c4*c3 + 0.26*c4*c24 
+ 0.015*c4*c37 + 360000.0*c242, 

3.0*c2*c20 - 25000.0*cl0*c22 + 0.015*c32*c4 + 0.001*c38 + 2000.0*c39 + 0.1*c20*cl 
+ 360000.0*c44*c28 - 0.0005*c22*c5 - 294.0*c22*c3 - 0.0036*c22 + 0.007*c5*cl5 + 0.26*c4*c28 
+ 360000.0*c282, 

- 3.0*c2*c23 - 0.1*c23*cl - 0.3*c23 + 0.007*c5*cl5, 

6.0*c2*c25 + 0.1*c2*c46 + 0.05*c46 + 0.3*c20 - 360000.0*c44 *c24 - 16.2*cl*c24 - 0.26*c4*c24 
- 720000.0*c242, 

- 6.0*c2*c25 + 15.0*cl8*c4 - 0.001*c25*cl, 

16.2*cl*c24, 

- 6.0*c2*c27 + 15.0*cl6*c4 - 0.001*c27*cl, 

6.0*c2*c27 + 0.1*c2*c47 + 0.05*c47 - 360000.0*c44*c28 - 16.2*cl*c28 - 0.26*c4*c28 - 720000.0*c282, 

16.2*cl*c28, 
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- 6.0*c2*c30 + 0.075*cl0*cl5*c4 - 0.001*c30, 

0.001*c30, 

6.0*c2*c30 - 0.015*c32*c4, 

- 4.0*c2*c33 + 0.015*c32*c4 - 0.001*c33, 

4.0*c2*c33 - 3000.0*c34, 

- 6.0*c2*c35 + 0.05*cl0*cl5*c4 - 0.001*c35, 

0.001*c35, 

6.0*c2*c35 - 0.015*c4*c37, 

- 6.0*c2*c38 - 0.001*c38 + 0.015*c4*c37, 

6.0*c2*c38 - 0.005*c39*c4 - 2000.0*c39, 

0.005*c39*c4 + 360000.0*c44*c24 + 360000.0*c44*c28, 

5000.0*cl0*cl5, 

36000.0*cl0*cl7 + 25000.0*cl0*c21 + 25000.0*cl0*c22 + 5000.0*cl0*cl5, 

- 8.0*c2*c43 + 15.0*cl9*c4 - 2.0*c43*cl, 

8.0*c2*c43 + 0.16*c2*c45 - 0.1*c2*c44 + 0.01*c45 - 360000.0*c44*c24 - 360000.0*c44*c28 
- 0.0001*c44, 

- 0.16*c2*c45 + 2.0*c43*cl - 0.01*c45, 

- 0.1*c2*c46 + 0.001*c25*cl - 0.05*c46, 

- 0.1*c2*c47 + 0.001*c27*cl - 0.05*c47, 

3.3e-05*c21, 

360000.0*c242, 

360000.0*c282 

The decomposition leads to 330 partial result bases which are shipped here. 
A postprocessing analysis detects, that most of these solutions are redundant in 
the sense, that they describe a subspace of other solutions. The final number of 
completely independent solution spaces is 11; most of them force some variables to 
be zero and leave other variables completely free. There is an important intersection 
between all solutions. 

S O L U T I O N S : 

common part of all solutions: 
c28 = 0 , c24 = 0 , cl3 = 0 , cl = 0 , c22 = 0 , c21 = 0 , c44 = 0 , 
c23 = 0 , c20 = 0 , c47 = 0 , c46 = 0 , c45 = 0 , c39 = 0 , c38 = 0 , 
c35 = 0 , c33 = 0 , c30 = 0 , c7 = 0 , c34 = 0 

solution 1: free variables: c6 e l l c3 c5 cl8 cl6 c32 c37 clO cl9 c43 c25 c27 
c2 = 0 , c4 = 0 , cl5 = 0 , cl7 = 0 , c9 = 0 
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Solution 2: free variables: c6 e i l c5 c4 c43 c25 c27 

c2 = 0 , clO = 0 , c l5 = 0 , c3 = 0 , cl7 = 0 , c37 = 0 , c32 = 0 , 

cl9 = 0 , cl8 = 0 , cl6 = 0 , c9 = 0 

solution 3: free variables: c6 e i l c3 c5 cl8 cl6 c32 c37 cl7 cl9 c43 c25 c27 

c2 = 0 , c4 = 0 , clO = 0 , cl5 = 0 , c9 = 0 

solution 4: free variables: c6 c5 clO c4 c43 c25 c27 

c2 = 0 , c l5 = 0 , c3 = 0 , cl7 = 0 , e i l = 0 , c37 = 0 , c32 = 0 , 

cl9 = 0 , cl8 = 0 , cl6 = 0 , c9 = 0 

solution 5: free variables: c6 e i l cl8 cl6 c32 c37 cl5 cl7 cl9 c43 c25 c27 

c2 = 0 , c4 = 0 , clO = 0 , c3 = 0 , c5 = 0 , c9 = 0 

solution 6: free variables: c6 e i l cl5 c4 c43 c25 c27 

c2 = 0 , clO = 0 , c3 = 0 , c5 = 0 , cl7 = 0 , c37 = 0 , c32 = 0 , 

cl9 = 0 , cl8 = 0 , cl6 = 0 , c9 = 0 

solution 7: free variables: e i l c3 cl8 cl6 c32 c37 cl9 

c4 = 0 , c l5 = 0 , c5 = 0 , cl7 = 0 , c6 = 0 , c43 = 0 , c27 = 0 , 

c25 = 0 , 

c2*cl0 - 1.0e-06*c9 = 0 

solution 8: free variables: e i l c3 cl8 cl6 c32 c37 cl7 cl9 c2 

c4 = 0 , clO = 0 , c l5 = 0 , c5 = 0 , c6 = 0 , c43 = 0 , c27 = 0 , 

c25 = 0 , c9 = 0 

solution 9: free variables: e i l cl8 cl6 c32 c37 cl5 cl7 cl9 c2 

c4 = 0 , clO = 0 , c3 = 0 , c5 = 0 , c6 = 0 , c43 = 0 , c27 = 0 , 

c25 = 0 , c9 = 0 

solution 10: free variables: e i l cl5 c4 c2 

clO = 0 , c3 = 0 , c5 = 0 , cl7 = 0 , c6 = 0 , c43 = 0 , c27 = 0 , 

c25 = 0 , c37 = 0 , c32 = 0 , cl9 = 0 , cl8 = 0 , cl6 = 0 , c9 = 0 

solution 11: free variables: c4 

cl5 = 0 , c3 = 0 , c5 = 0 , cl7 = 0 , c6 = 0 , c43 = 0 , c27 = 0 , 

c25 = 0 , e i l = 0 , c37 = 0 , c32 = 0 , cl9 = 0 , cl8 = 0 , cl6 = 0 , 

c2*cl0 - 1.0e-06*c9 = 0 
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6. Examples from Related Application Areas 

E x a m p l e CYCLOHEXANE [6]: The molecular geometry of a cyclic carbon hydrogen 
molecule with six nodes is described by four equations; these are calculated from two 
determinants 

1 1 1 1 1 

1 8/3 2/i 8/3 1 

0 1 8/3 2/2 8/3 

1 0 1 8/3 2/3 

8/3 1 0 1 8/3 

2/2 8/3 1 0 1 

8/3 2/3 8/3 1 0 

T h e first equation is 0 = / i , the equations two and three are calculated from f\ by 
interchanging 2/1,2/2 and 2/3 in a cyclic manner and the fourth equat ion is 0 = f^. The 
complete system is 

0 = (-81 y\ y\ + 594 y\ y2 - 225 y\ + 594 yi y\ - 3492 yx y2 

-750 yi - 225 y\ - 750 y2 + 14575)/81 

0 = (-81 y\ y\ + 594 y\ y3 - 225 y\ + 594 y2 y% - 3492 y2 y3 

-750 y2 - 225 y\ - 750 y3 + 14575)/81 

0 = (-81 y\ y\ + 594 y\ y3 - 225 y\ + 594 Vl y\ - 3492 Vl y3 

-750 j/i - 225 y\ - 750 y3 + 14575)/81 

0 = (162 y? 2/f 1/3+ 162 j/? J/22/3-II88!/? 2/2 ys - 450 yj 2/2 

-450 y\ y3 + 3300 y\ + 162 yx y\ y\ - 1188 yx y\ y3 

-450 yi y\ - 1188 yi y2 y\ + 5184 y : y2 y3 + 5100 Vl y2 

-450 yi y\ + 5100 yx y3 - 7150 Vl - 450 y\ y3 + 3300 y| 

-450 y2y\ + 5100 y2 y3 - 7150 y2 + 3300 y\ - 7150 y3 - 60500)/81 

Here the Algori thm detects nonhomogeneous factorizations and splits t h e problem 
into seven separate Groebner basis: 

h = 

0 1 1 1 1 1 
1 0 1 8 / 3 yi 8/3 

1 1 0 1 8/3 y2 

1 8 / 3 1 0 1 8/3 

1 yi 8/3 1 0 1 

1 8/3 y2 8/3 1 0 

U = 

0 1 

0 
1 

8/3 

yi 

8/3 

1 
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{{3 in - 11,9 y 2 ~ 25,3 j /3-11}, {9 t / i -25 ,3 2/2-11,3 t /s-11} ,{3yi - l l ,3y 2 - l l ,3y 3 - 11} , 

{3 2/13/2 + 3 2/i y3 - 22 yx + 3 y2 y3 - 22 y2 - 22 y3 + 121 , 

27 y i y§ - 198 yi y3 + 75 yx + 27 y2 yg - 198 y2 y3 + 75 y2 - 198 yg + 1164 y3 + 250 , 

81 y2 ^ - 594 y | y3 + 225 yf - 594 y2 y | + 3492 y2 y3 + 750 y2 + 225 y3 + 750 y3 - 14575} , 

{3y1 + 5,3y2 + 5,3y3 + 5},{3yi-19,3y2 + 5,3y3 + 5 } , 

{3yi+5,3y7-l9,3y3 + 5}} 

Some of these (e.g. the first three) represent zero dimensional ideals, here with 
one unique solution each, others represent parameterized solutions. The variables 
yi here represent distances between molecules and so only nonnegative real values 
are interesting. So if we invoke the Buchberger with the additional restriction to 
nonnegativity, it detects the polynomial 3 y3 + 5 and cancels all calculation branches 
with this element; the result is the same as above without bases 5 to 8. The complete 
set of solutions calculated from this restricted set is 

f 11 25 111 f 25 11 111 f 11 11 111 
\vx = y , 3/2 = y , V3 = y j , |i& = y , 2/2 = y , 2/3 = y j , | y i = y , y2 = y , Vs = y j , 

_ 4 ̂ /486 y | - 6696 yg + 30564 yg - 52200 y3 + 23750 + 99 y§ - 582 y3 - 125 
2/1 ~ 27y | -198y 3 + 75 

2/2 
4 y/486 y | - 6696 yg + 30564 y\ - 52200 y3 + 23750 + 99 y\ - 582 y3 - 125 

27yg-198y3 + 75 

_ 4 x/486 y% - 6696 yg + 30564 yj - 52200 y3 + 2375Ö + 99 y | - 582 y3 - 125 
y i " 27yg-198y3 + 75 

_ 4 ̂ 486 yjf - 6696 yg + 30564 yg - 52200 y3 + 23750 + 99 y§ - 582 y3 - 125 
2/2 ~ 27yg-198y3 + 75 

Note that some of the isolated solutions are also contained in the parameterized 
ones (as double solutions). 

Example WALTER: Systems of polynomial equations arise in problems of param
eter identification too. The following example is taken from [22]: 
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0 = 04 + 02 - #4 

0 = 01 92 ~ 01 04 + 03 - 03 01 ~ 03 03 - 03 04 + 01 03 + 0'l 04 + 03 0~4 

0 = 02 02 — 02 04 ~ 03 + 03 01 + 03 02 + 03 03 ~ 01 02 

0 = —01 03 — 02 — 02 03 + 02 04 

0 = 03 — 03 0i — 03 03 — 03 04 + 03 0i 03 

+03 01 04 + 03 03 04 — 01 03 04 

The (01,82,63,64) are the variables, while the (61,82,63,64) are formal parameters. 
WALTHER, LECOURTIER and RAKSANYI describe a solution procedure which is very 
close to the Buchberger algorithm. With the factorizing variant however, the corre
sponding set of Groebner bases gives a better decomposition of the problem: 

{{—01 02 + 01 04 — 03 04, —02 02 + 02 04 + 02 

+02 03 — 02 04> 04 + 02 — 04i 03 — 01} i 

{ — 01 02 + 01 04 — 01 04, —02 02 + 02 04 + 01 02 + 02 ~ 02 04, 

04 + 02 — 04i 03 — 03} > 

{ — 01 02 + 01 04 — 01 03, —02 02 + 02 04 + 01 02 

+01 03 - 01 04 + 02 + 02 03 ~ 2 0~2 0"4 ~ 03 04 + 0\, 

04 + 02 — 04> 03 — 04}} 

Each of the solutions contains four linear polynomials. A further processing is not 
necessary. 

The same happens with the following system taken from [22]: 

0 = X1 — X\ X2 — X\ X3 + X2 X3 

0 = —x2 X3 + 82x2 

0 = Xj X3 — X\ — 2 X3 + 2 

Here the second polynomial is already factorizable; the factorizing Buchberger algo
rithm detects more factorizable polynomials in the ideal generated by this system, 
e.g. (x2 — Xi) (x3 — xx) and the final system is completely decomposed to degree 1: 

{{x2,x3-2,x1-2}, { a r 2 , a : 3 - l , S i - l } , {x2 ,x3 - l ,Xi} , {x2 - 2 ,x 3 - 82,xi - 2}} 

More calculations are cited in [18]. 
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Conclusion 

We have demonstrated, that Buchberger's algorithm is a useful tool for the anal
ysis of steady states of some reaction systems. This algorithm is one of the "modern" 
approaches to classical algebraic problems, which gain an increasing importance when 
supported by modern computer algebra systems. In the past the application of sym
bolic methods was limited to small problems. It has been shown, that the scope of 
solvable problems could be enlarged by a careful adaptation of the algorithm to the 
algebraic properties of the problem class and that algebraic computation can give 
useful results for problems in chemical engineering. However, the authors regard this 
paper as a first step only; the expansion of the application area of computer algebra 
towards the applied sciences and engineering remains a permanent challenge. 
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