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Abstract

In the last 20 years competitive analysis has become the main tool
for analyzing the quality of online algorithms. Despite of this, compet-
itive analysis has also been criticized: It sometimes cannot discriminate
between algorithms that exhibit significantly different empirical behavior,
or it even favors an algorithm that is worse from an empirical point of
view. Therefore, there have been several approaches to circumvent these
drawbacks. In this survey, we discuss probabilistic alternatives for com-
petitive analysis.

1 Introduction
Classical optimization techniques assume knowledge of all the data relevant
to solve the optimization problem. However, this assumption is not always
realistic, since quite often decisions need to be made without having access to
the complete data. Such problems are called online optimization problems. The
major feature of these problems is that the input is only revealed over time,
while an online algorithm has to take decisions that cannot be revoked once
more information becomes known. The following three problems are classical
examples. We will use these problems to illustrate different kinds of analysis
that have been developed for online algorithms.

Paging This problem models an optimization problem occuring in a two-level
memory system. The slow memory stores a fixed set M of pages. To speed
up access to the pages, up to k pages can be put in the fast memory or cache.
The task is to serve a sequence σ ∈ Mn of n page requests. In order to serve
a page request p ∈ M , the page has to be in the cache, otherwise a page fault
occurs. The requested page must then be loaded into the cache, and if the cache
contains k pages, at least one page must be evicted from the cache. An online
paging algorithm needs to decide which page(s) will be evicted from the cache
on a page fault without knowing the remaining request sequence or its length.
The goal is to minimize the number of page faults.
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Bin Packing There is an (unlimited) number of unit capacity bins and a
sequence of items, described by their item sizes s1, . . . , sn. The task is to pack
each item into a bin that still has sufficient capacity. Once an item has been
packed in one bin, it is not possible to repack it into another bin. An online
algorithm has to determine the bin for each item without knowing the number
of items to come and their sizes. The goal is to minimize the total number of
bins used.

Scheduling In machine scheduling, there are n jobs, each of which needs to
be processed on one of m machines. A machine can process at most one job
at a time, and each job can be processed by at most one machine at a time.
Moreover, it cannot be processed before its release date. Processing a job j
takes pj amounts of time, and we consider both a model in which the processing
may be interrupted (preemptive model) and one in which a job needs to be
processed until completion once started (non-preemptive model). The goal is
to schedule the jobs on the machines in such a way that a certain objective
function is minimized. In this paper, we consider the total weighted completion
time and the total flow-time. The completion time of job j, Cj , is the earliest
point in time at which a job has received pj units of processing time, whereas
the flow-time, Fj , is the time a job is in the system, i. e., its completion time
minus its release date. The total weighted completion time is then

∑
j wjCj

and the total flow time is
∑
j Fj .

In addition to the uncertainty about the future, there may be another type of
uncertainty for online scheduling problems: Even if a job is known, its processing
time may still be unknown until it has completed. We refer to this as non-
clairvoyant scheduling.

When designing an online algorithm, one faces the question of how to mea-
sure the quality of the solution obtained by this algorithm. By far the most
often used measure is competitive analysis [46], in which an online algorithm
is compared to an optimal offline algorithm that knows the entire input in ad-
vance. In some cases, competitive analysis does not provide satisfying answers,
e. g., it sometimes cannot discriminate between algorithms that exhibit signif-
icantly different empirical performance. The approach of competitive analysis
and some of the criticism voiced against it are discussed in Section 2.

There are several different approaches to circumvent these drawbacks. In
this survey, we focus on probabilistic approaches to analyze online algorithms to
obtain more detailed results than possible with competitive analysis. Section 3
gives an overview on these approaches and shows how they help to get improved
results for the three problems introduced above.

2 Competitive analysis and its variants
The standard theoretical tool used to assess online algorithms is competitive
analysis, which is widely used. Probably the first time competitive analysis has
been performed was in 1966 by Graham [22]. However, he did not mention the
name competitive analysis nor online optimization. Only with the seminal paper
of Sleator and Tarjan [46] competitive analysis became the standard yardstick.
The term competitive analysis was first proposed by Karlin et al. [30].
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The basic idea is to evaluate the “loss” in solution quality due to lack of
information in the worst case. Competitive analysis compares the performance
of a given online algorithm ALG to that of an algorithm that knows the complete
request sequence in advance and can serve the requests at minimum cost. This
benchmark algorithm is called optimal offline algorithm OPT. For a request
sequence σ, we denote the corresponding optimal offline cost and the cost of
ALG by OPT(σ) and ALG(σ), respectively. The algorithm ALG is said to be
c-competitive for c ≥ 1 and some b ≥ 0, if

ALG(σ) ≤ c ·OPT(σ) + b (1)

for all request sequences σ. The competitive ratio of ALG is the smallest value
c such that ALG is c-competitive. ALG is called competitive if ALG is c-
competitive for some constant c ≥ 1 that does not depend on the length of the
sequence. Frequently, only the case b = 0 is considered, which makes the results
less asymptotic.

Ideally, competitive analysis helps to identify and to design algorithms that
offer good performance both in theory and in practice. Clearly, an algorithm
that is c-competitive for a small constant c is a good algorithm from a theo-
retical point of view; there are many cases where such results can be shown.
However, there are also online optimization problems for which all algorithms
have a competitive ratio depending on some problem-specific parameter that
can be arbitrarily large. This is due to the worst-case nature of competitive
analyis: The competitive ratio is large, if there is a single instance on which
an online algorithm is much worse than the optimal offline algorithm. Even
if competitiveness results with small constants can be shown, it happens that
algorithms with the same competitive ratio have perform different empirically.
We will highlight these issues for our three example problems.

Paging Well-known paging algorithms are flush-when-full (FWF), which evicts
every page on a page fault, first-in-first-out (FIFO), which evicts the page that
has been in the cache the longest, and least-recently-used (LRU), which evicts
the page whose most recent request was earliest.

Sleator and Tarjan [46] showed that the competitive ratio of every online
algorithm is at least k. They also proved that both LRU and FIFO attain this
ratio and are thus optimal, whereas some other algorithms are not k-competitive.
Later it was shown that any online algorithm that is a marking algorithm is k-
competitive [50], which includes FWF and LRU.

These results did not match empirical observations, see e. g., [55, 1, 39]:
LRU was observed to be much better than FWF and to outperform FIFO.
Moreover, the “empirical” competitive ratio of LRU was much smaller than k.

Bin Packing Probably the simplest online algorithm for bin packing is NextFit,
which looks only at the most recently opened bin. If the next item fits, it is
put into this bin; if not, the item is put in a new bin and the other bin is never
considered again. It was shown by Johnson [27] that the competitive ratio of
NextFit is 2. The algorithm FirstFit scans through the bins in their opening
order and puts the item in the first bin with sufficient capacity. If no bin is
found, a new bin is opened to accomodate the item. BestFit works similar but
puts the item in the open bin with least remaining capacity that suffices for
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the item. Both FirstFit and BestFit have the small competitive ratio 1.7 [28],
but BestFit gives better results in practice. Yao [54] proposed RefinedFirstFit,
which achieves a competitive ratio of 5/3 based on a classification of items and
bins according to sizes / remaining capacity. The Harmonic algorithm by Lee
and Lee [35] classifies items by size and puts different items into the same bin
if and only if they belong to the same class. Successively, this idea was pushed
further and the best known algorithm so far achieves competitive ratio not more
than 1.589 [41]. Van Vliet [51] proved a lower bound of 1.540 for the competitive
ratio of any online algorithm.

Csirik and Johnson [19] present experimental results indicating that on av-
erage, BestFit performes significantly better than FirstFit. Moreover, BestFit
also outperforms the Harmonic algorithm and achieves an empirical competitive
ratio better than 1.01.

Scheduling On a single machine, the problem of minimizing the flow-time in
the preemptive model can be solved optimally by an online algorithm known
as Shortest Remaining Processing Time [43]. This algorithm processes at any
time the unfinished job that has smallest remaining processing time. On the
other hand, in non-clairvoyant scheduling, in which nothing is known about
a job’s processing time until the job is completed, it can be shown that any
deterministic online algorithm has a competitive ratio of Ω(n1/3) or Ω(P ) [38],
where n is the number of jobs and P is the ratio between the maximum and
minimum processing time. For the non-preemptive problem on a single machine
to minimize the total weighted completion time there is a 2-competitive online
algorithm [2], which is the best possible [26]. For multiple machines, the best
known online algorithm achieves a competitive ratio of 2.62 [18], whereas no
online algorithm can be better than 1.309-competitive [52]. For an overview on
other results in online scheduling we refer to [40].

Competitive analysis of online algorithms can be viewed as a two player
game. The online player, i. e., the online algorithm, tries to achieve a small
competitive ratio, whereas the other player, the adversary, tries to generate the
request sequence such that he can serve it with small cost, but incurring high
cost for the online player, which gives a large competitive ratio.

Basically there are three approaches to remedy the drawbacks of competitive
analysis in order to get more realistic and useful results.

1. Keep the idea of comparing to the offline optimum, but reduce the power
of the adversary online algorithms are compared to.

2. Compare online algorithms to a weaker optimum, and use this to compare
the algorithms.

3. Compare online algorithms directly instead of indirectly via the offline
optimum.

The first approach is the most prominent one. An obvious way to reduce the
power of the adversary is to restrict the set of request sequences it may generate.
This problem-specific technique is quite successful. Examples for paging are the
restriction to sequences that exhibit locality of reference [1, 50] or that are
derived from an access graph [11]. Another possibility is to allow the online
algorithm to use more resources (e. g., faster machines) than the adversary [29];
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this is known as resource augmentation. Many more deterministic models have
been proposed; see e. g., see the article by Souza [47] in this issue for an overview
on the paging problem.

The second and third approach are less common; some results of this type
will be discussed in Section 3.5. From now on, we focus on probabilistic measures
for online algorithms.

3 Alternative probabilistic measures
Randomness can be used in two ways in the analysis of online algorithms. First,
the request sequence may be assumed to be drawn from some probability distri-
bution. This is equivalent to replacing the adversary by some random process,
which allows to study the “typical” or “average” behavior instead of a worst case.
Second, the online algorithms themselves may be randomized, which makes it
harder for the adversary to come up with bad sequences.

3.1 Randomized Online Algorithms
Using randomization to improve online algorithms has been suggested by Borodin et
al. [12]. Usually, analyses are done with respect to an oblivious adversary, i. e.,
this adversary knows the probability distribution employed by the randomized
online algorithm but not the random outcomes. The competitive ratio is then
determined by replacing ALG by its expectation E [ALG] in Equation (1).

Paging For the paging problem, Fiat et al. [20] showed a lower bound of Hk

(Hk is the kth harmonic number) on the competitive ratio of every random-
ized paging algorithm. Moreover, they provided a randomized paging algo-
rithm that is 2Hk-competitive against the oblivious adversary. McGeoch and
Sleator [36] presented an optimal randomized algorithm with competitive ra-
tio Hk. Since Hk ∈ O(log k), both results show that randomized paging algo-
rithms can achieve a significantly better competitive ratio than deterministic
ones. Similar improvements have been achieved for many online optimization
problems.

Bin Packing Interestingly, randomized algorithms for bin packing can only
be slightly better than deterministic ones. Chandra [13] proved a lower bound
of 1.536 for the competitive ratio of any randomized online algorithm, whereas
the best-known deterministic algorithms achieves 1.589.

Scheduling Becchetti and Leonardi [7] proposed a randomized online algo-
rithm that achieves a competitive ratio of O (log n) for the non-clairvoyant single
machine scheduling problem of minimizing the total flow-time, which matches
the lower bound of [38]. For the nonpreemptive problem of minimizing the total
weighted completion time on multiple machines no randomized online algorithm
can be better than 1.157 [44], whereas Correa and Wagner [18] provided a ran-
domized online algorithm with competitive ratio strictly less than 2, which is
the optimal competitive ratio for deterministic algorithms.
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3.2 Average-case competitive analysis
Probably the first alternative for worst case analysis that comes to mind is av-
erage case analysis. In average case analysis, the request sequence is chosen
according to some probability distribution. In most average case competitive
analyses, the requests are chosen independently and identically distributed. In
this context, the optimal value for a request sequence of length n, OPTn, be-
comes a random variable, just as ALGn, the value obtained by an (online)
algorithm. The expected competitive ratio is defined as

RALG(n) = E
[

ALGn

OPTn

]
.

An alternative measure for the average case performance would be the ratio of
the expectations, i. e., the ratio E [ALGn] /E [OPTn]. This is the performance
measure that is common to evaluate approximative stochastic scheduling poli-
cies, see, e. g., [37]. For an overview of results in stochastic (online) scheduling,
we refer to the survey paper [53] which also appeared in this special issue. Schar-
brodt et al. [42] and Souza and Steger [48] elaborate on the difference between
the two measures. Although the ratio of the expectations is normally easier to
compute, they prefer the expected competitive ratio for several reasons. First,
they say that the ratio of expectations favours algorithms that perform well
on instances for which the optimal solution value is large, due to the fact that
instances with small solution value contribute little to the expected value of an
algorithm. On the other hand, the expectation of the ratio compares the algo-
rithm to the optimum on each instance separately and favours algorithms that
perform well on many instances. Furthermore, by Markov’s inequality, one can
easily derive bounds on the probability that for a randomly generated instance
the ratio ALGn/OPTn is more than a certain factor away from the expected
competitive ratio.

Bin Packing There is a vast literature on average case analysis of bin packing
algorithms (see e. g., [15, 14] for surveys). Many results for bin packing focus
on the asymptotic expected competitive ratio of ALG, i. e.,

R∞ALG(F ) := lim
n→∞

RALG(n),

assuming that the input sequence is generated by choosing each item size i. i. d.
from distribution F . In most cases, F is a uniform distribution, e. g., U [0, 1], the
uniform distribution on [0, 1]. The first precise average case asymptotic analysis
was given by Coffman et al. [17] for the Next Fit algorithm. They showed
that the asymptotic expected competitive ratio for Next Fit is R∞NF(U [0, 1]) =
4/3 (the deterministic competitive ratio is 2). Lee and Lee [35] proved that
their Harmonic algorithm achieves R∞H (U [0, 1]) < 1.306, which is better than
the deterministic lower bound of 1.540. Bentley et al. [10] were able to show,
somewhat suprisingly, R∞FF(U [0, 1]) = 1, i. e., that FirstFit is asymptotically
optimal. The result was surprising since the empirical value is significantly larger
than 1 in simulations, even for large numbers of items. This motivated the study
of the expected waste after n items, i. e., the expected difference between the
number of bins used by ALG and the total size of n items. Analyzing the waste,
Shor [45] was able to separate the performance of FirstFit and BestFit: While
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the expected waste of FirstFit grows as Ω(n2/3), BestFit has expected waste
Θ(
√
n log3/4 n). Both FirstFit and BestFit are thus asymptotically optimal,

but the performance of BestFit converges faster.

Scheduling In the area of scheduling, the studies that make an average case
analysis assume that the processing times are independent random variables
whereas all other data may be given by a (deterministic) adversary. The on-
line aspect is that the algorithm does not know whether and/or when a new
job arrives. The expected competitive ratio has been studied by Coffman and
Gilbert in 1985 [16], which appears to be the first result on non-asymptotic
expected competitive ratio. They consider list scheduling algorithms for mini-
mizing the makespan, i. e., the completion time of the entire schedule, on iden-
tical machines when processing times are independent, identically distributed
from the uniform or exponential distribution. Scharbrodt et al. [42] considered
the scheduling problem on identical machines so as to minimize the total com-
pletion time. They performed an expected competitive ratio analysis for the
SEPT list scheduling algorithm that schedules jobs according to nondecreasing
expected processing time. Note that SEPT is only a semi-online algorithm as
the jobs need to arrive in a specified order. They showed that SEPT has a
constant expected competitive ratio whenever the processing times are expo-
nentially distributed (not necessarily i. i. d.). Their analysis extends to a more
general class of distributions. In the deterministic case, if the jobs are ordered in
non-decreasing realized processing times, then Kawaguchi and Kyan [32] showed
that the worst case performance ratio is bounded by (1+

√
2)/2. This worst case

bound actually holds also for the weighted version of the problem, whenever the
jobs are ordered in nondecreasing realized processing time over weight. Souza
and Steger [48] extended the result of Scharbrodt et al. to the weighted ver-
sion and showed that the WSEPT rule admits a constant expected competitive
ratio whenever the jobs are identically distributed, satisfying some additional
probabilistic property.

3.3 Diffuse adversaries
As competitive analysis is often criticized for being too pessimistic due to its
worst case character, average case analysis is often considered to be too op-
timistic. Moreover, in many cases the probability distributions analyzed are
quite special and/or realistic probabilistic models cannot be analyzed or are not
available.

In order to address these issues and to improve upon standard competitive
analysis, Koutsoupias and Papadimitriou [33] proposed the diffuse adversary
model. In this model, the offline adversary is replaced by the diffuse adversary,
which chooses a probability distribution D out of a family of distributions ∆.
The class ∆ of distributions may be used to express some structural property
of the inputs without sticking to a certain distribution. An algorithm ALG is
called c-competitive against class ∆ of request sequence distributions if there is
a b ≥ 0 such that

ED [ALG(σ)] ≤ c · ED [OPT(σ)] + b (2)

for all D ∈ ∆, where the request sequence σ is drawn according to D. Note that
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this definition generalizes both competitive analysis and average case analysis
for the ratio of expectations.

Paging To apply this approach to the paging problem, Koutsoupias and Pa-
padimitriou proposed a class of distributions ∆ε. This class contains all distri-
butions D such that the conditional probability D[p|σ] of page p being requested
after request sequence σ satisfies D[p|σ] ≤ ε for all p and σ. Clearly, a small ε
limits the power of the adversary since he has less control over the next request
(note that ∆1 is equivalent to all request distributions). Koutsoupias and Pa-
padimitriou showed that LRU attains the optimal competitive ratio against ∆ε

for any ε ∈ [0, 1]. However, they could not determine this ratio. In subsequent
work, Young [56] gave lower and upper bounds for the optimal competitive ratio
in terms of a function ψ(ε, k) that match up to a factor of two. The function
ψ(ε, k) exhibits the following threshold behavior around ε = 1/k:

ψ(ε, k) is


≤ 1 + ln 1

δ ε = (1− δ)/k,
≈ ln k ε = 1/k,

≤ k δ
1+δ ε = (1 + δ)/k.

Thus the optimal competitive ratio (that of LRU) is constant for small ε and
almost k for large ε. This bound holds for randomized algorithms, too, except
for the case ε ≥ 1/k where both the lower and upper bounds are O (log k).
Moreover, Young showed that FIFO and FWF have competitive ratio k for
ε ≥ 1/k. Hence, these results generalize the standard competitive analysis
results and those for randomized algorithms. They are able to discriminate
between FWF or FIFO and LRU.

Becchetti [6] proposed a different diffuse adversary for the paging problem.
The class ∆ comprises distributions D whose conditional distributions D[p|σ]
favor pages p that are more recent w. r. t. σ in order to model the locality of
reference often encountered in practice. He then showed that LRU achieves a
constant competitive ratio against ∆, whereas that of FWF is Ω(k) if locality
of reference is high.

Equation (2) defines the competitive ratio against a diffuse adversary essen-
tially as a ratio of expectations. As for average-case analysis, it is also possible
to consider the expecation of the ratio between online algorithm performance
and the optimum offline cost. Panagiotou and Souza [39] consider a diffuse
adversary which chooses a sequence, but the cache size is chosen at random
without control of the adversary. They show that for this adversary, the ratio
of expections approach as in Equation (2) gives misleading results, whereas the
expectation of the ratios provides the correct picture.

3.4 Smoothed competitive analysis
An alternative compromise between worst case and average case analysis is to
consider smoothed inputs. The notion of smoothed complexity was introduced by
Spielman and Teng [49] in an attempt to explain the success of algorithms that
are known to work well in practice while having a poor worst case performance.
It can be seen as a hybrid between worst case and average case complexity. The
basic idea is to randomly perturb the initial input instances and to analyze the
expected performance of the algorithm on the perturbed instances. Becchetti et
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al. [8] extended the idea of smoothed complexity to smoothed competitive ratio.
Following the idea of Spielman and Teng, they smoothed the input instance
according to some probability distribution f . Given an input instance Ī, let
N(Ī) denote the set of instances that can be obtained by smoothing the input
instance Ī according to f . The smoothed competitive ratio is defined as

sup
Ī

E
I

f←N(Ī)

[
ALG(I)

OPT(I)

]
,

where the supremum is taken over all input instances Ī, and the expectation is
taken according to f over all instances I in N(Ī).

The adversarial input instance may be smoothed according to different smooth-
ing models. The first class of models are symmetric models, which smooth a
value by adding a random value. The distribution that is used to draw this
random value from has mean 0 and is symmetric around this mean. The length
of the interval from which the random value is taken may or may not depend
on the original value.

The partial bit randomization model, introduced by [5, 9], is particularly
useful if the input instance consists of K-bit integers. In this model the input
values are not smoothed symmetrically. Assuming that each x̄j is a K-bit
integer, we perturb each x̄j by replacing the k least significant bits, for 0 ≤ k ≤
K, with some random number. Let f be a probablility distribution over the
interval [0, 2k − 1]. Then we define the smoothed value as

xj = 2k
⌊ x̄j

2k

⌋
+ ε, where ε→ f.

For k = 0, the smoothed values are equal to the initial values, whereas for k = K
the smoothed values are independent identically distributed from [0, 2K − 1].

Scheduling Becchetti et al. [8] considered the so-called multilevel feedback
(MLF) algorithm for preemptive scheduling on a single machine so as to min-
imize the total flow-time. When all processing times are between 1 and 2K ,
any nonclairvoyant deterministic online algorithm has a competitive ratio of
Ω(2K) and Ω(n1/3). Becchetti et al. showed that when the processing times are
smoothed according to the partial bit randomization model using a probabil-
ity distribution with standard deviation σ, the smoothed competitive ratio of
MLF is O

(
(2k/σ)3 + (2k/σ)22K−k

)
. Whenever f is the uniform distribution

over [0, 2k−1], this simplifies to O
(
2K−k

)
. Becchetti et al. also showed that for

the other smoothing models MLF has a lower bound of Ω(2K) on the smoothed
competitive ratio.

3.5 Other measures
As mentioned before, one weakness of competitive analysis is the comparison
to the offline optimum, which is due to the fact that in a deterministic setting
there is no reasonable concept of “optimal online algorithm” that can serve as
a yardstick. In contrast, such an optimal online algorithm can be defined if the
input is generated by some random process.

This approach has been applied in the analysis of paging algorithms even
before the advent of competitive analysis. Franaszek and Wagner [21] studied
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the paging problem with request sequences generated according to the indepen-
dent reference model. In this model, each request is generated independently
and identically from the same fixed page distribution. They considered the page
fault rate, i. e., the (asymptotic) expected number of page faults per time unit,
instead of the number of page faults as their performance measure for paging
algorithms. It was shown that no paging algorithm from a certain class of al-
gorithms including LRU and FIFO achieves a page fault rate that is at most a
constant factor larger than the optimal one. However, it turns out that if LRU
is allowed to use (slightly) larger cache than the optimal online algorithm, the
ratio of the page fault rates becomes bounded, which is not true for FIFO.

Karlin et al. [31] generalized this approach by considering a request sequence
generated by a fixed Markov chain, which is a probabilistic version of the access
graph model. Using the theory of Markov decision processes, they were able to
characterize the optimal online algorithm for the given Markov chain, which is a
deterministic algorithm whose decisions depend only on the current request and
the state of the cache. They showed that there are Markov chains such that all
marking algorithms exhibit a page fault rate that is Ω(k) times the optimal one.
Surprisingly, this includes LRU, which performs well under deterministic locality
of reference models. The authors describe a polynomial-time algorithm whose
page fault rate is not more than a constant times the optimal one. In contrast
to most paging algorithms, this algorithm is not independent of the input but
depends crucially on the Markov chain generating the request sequence.

All the measures discussed so far use a single number to evaluate the per-
formance of an algorithm, e. g., the maximum or the average. It may be more
descriptive to look at the distribution of the performance of an algorithm for
various inputs to assess the algorithm.

This approach was successfully applied by Hiller and Vredeveld [25] to the
analysis of bin coloring algorithms. For the bin coloring problem [34], the input
consists of a sequence of unit-sized items, each of which has one of C colors.
These items need to be packed sequentially into one of m initially empty bins of
capacity B. As soon as a bin is full, i. e., has exactly B items, it is replaced by
an empty one. As for bin packing, repacking is not allowed. An online algorithm
must decide upon the bin for each item without knowing future item colors. The
goal is to minimize the maximum number of different colors in one bin, which
is called colorfulness. A natural algorithm for this problem is the algorithm
GreedyFit: it packs an item with an already present color in the bin with that
color. Otherwise, it chooses a bin which currently has the least number of
different colors. Another simple algorithm, OneBin, packs all items in the same
bin. Krumke et al. [34] analyzed these algorithms, showing that the competitive
ratio of the trivial algorithm OneBin is strictly better than that of GreedyFit.
However, GreedyFit outperforms OneBin significantly in simulations.

Hiller and Vredeveld studied the bin coloring problem with random input,
where a color sequence is generated by choosing each color i. i. d. according to a
fixed color distribution. To compare the performance of algorithms, they used
the concept of stochastic dominance. A random variable X is stochastically
dominated by a random variable Y , written X ≤st Y , if

Pr [X ≥ x] ≤ Pr [Y ≥ x] for all x ∈ R.

Note that a stochastic dominance relation is a statement about the distributions
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of the random variables. Hiller and Vredeveld showed that for every color dis-
tribution the maximum colorfulness of GreedyFit after n items is stochastically
dominated by that of OneBin.

This result is particularly interesting for the uniform color distribution, since
in this case the color sequences are uniformly distributed, too. It is then pos-
sible to interpret the probabilistic result deterministically as a counting result:
Stochastic dominance of the maximum colorfulness distribution implies that
GreedyFit achieves a low colorfulness on more instances than OneBin. In fact,
stochastic dominance in this special case is equivalent to a recent deterministic
way to compare online algorithms known as Bijective Analysis [3]. Let Sn de-
note the sequences of length n and consider two online algorithms ALG1 and
ALG2. ALG1 is said to dominate ALG2 w. r. t. Bijective Analysis if there is
a bijective mapping φ : Sn → Sn such that ALG1(σ) ≤ ALG2(φ(σ)) for any
σ ∈ Sn.

Very recently, Angelopoulos and Schweitzer [4] applied this idea to pag-
ing and showed that LRU is the unique optimal algorithm w. r. t. to Bijective
Analysis for a restricted class of sequences exhibiting locality of reference. For
the more general analysis of stochastic dominance, Hiller and Vredeveld [24, 23]
showed that LRU is optimal with respect to probability distributions that model
locality of reference.

Observe that both stochastic dominance analysis and Bijective Analysis com-
pare two online algorithms directly, without using any other (hypothetical) ref-
erence algorithm.
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