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Abstract. We derive a simple accuracy matching strategy for inexact Gauss Newton methods
and apply it to the numerical solution of boundary value problems of ordinary differential equations by
collocation. The matching strategy is based on an affine contravariant convergence theorem, i.e., the
characteristic constants are invariant under affine transformations of the domain. The inexact Gauss
Newton method is applied to an integral formulation of the BVP. As discretization for the arising
linear subproblems we employ adaptive collocation at Gaussian nodes with varying local orders and
stepsizes. The grids are chosen via adaptive refinement and order selection.
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Introduction. The standard approach to the solution of nonlinear boundary value problems is

to first discretize them, e.g. using collocation on a suitable grid, and then to solve the arising finite

dimensional nonlinear equation by Newton’s method up to the discretization error. This procedure

may be iterated using more and more suitable discretizations until the required tolerance is achieved.

Due to the mesh independence principle, only very few Newton iterations are necessary on the fine

grids, which makes these methods very efficient. This is clearly demonstrated e.g. by the code Col-

sys/Colnew by Ascher, Christiansen, Russell [ACR79] and Bader [Bad88] as the most prominent

example.

On the other hand, one could also exchange the order of the two approximation steps and

first linearize the problem by Newton’s method and then discretize the arising linear subproblems.

This approach is often called quasilinearization or multilevel Newton method . In the context of time

dependent problems, these two viewpoints correspond to the method of lines and Rothe’s method,

respectively. The latter has attracted increasing attention in recent years, which led to highly efficient

codes for time dependent problems. We only want to mention the integration methods for parabolic

[Bor92] equations and reaction diffusion equations [LW92].

As in the time dependent case, the quasilinearization approach to nonlinear problems appears

to be closer to the infinite dimensional nature of the problem, which is reflected by the occurrence of

so-called spurious solutions in the standard approach: there may be solutions of the finite dimensional

discretized equation which do not correspond to a solution of the original infinite dimensional nonlinear

problem. This phenomenon has been observed in particular in the context of continuation methods

(see e.g. [Rhe86]).

Applying Newton’s method first, it obviously has to be an inexact one, since we cannot solve

the infinite dimensional linear subproblems exactly. Hence, we have to think about how to control

the accuracy of the linear solvers. To meet the efficiency requirements, we should solve the linear

subproblems only as accurately as neccessary for an optimal convergence of Newton’s method. Thus,

the key is an efficient accuracy matching strategy for the inexact Newton method.

So, this is our program: we derive a simple accuracy matching strategy for inexact Gauss Newton

methods and apply it to the numerical solution of boundary value problems of ordinary differential

equations by collocation. The matching strategy is based on an affine contravariant convergence

theorem, i.e., the characteristic constants are invariant under affine transformations of the domain.

The inexact Gauss Newton method is applied to an integral formulation of the BVP. As discretization

for the arising linear subproblems we employ adaptive collocation at Gaussian nodes with varying

local orders and stepsizes. The grids are chosen via adaptive refinement and order selection.
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1. Inexact Gauss Newton Methods. In this section we tackle the question of how to control

the accuracy of the linear subproblems in an inexact Gauss Newton method. We put our emphasis on

an implementable accuracy matching strategy that preserves the quadratic convergence of the overall

method.

Inexact Newton methods have been attacked by many authors, we only mention Bank and

Rose [BR81], Dembo, Eisenstat and Steihaug [DES82], Ypma [Ypm84], Deuflhard [Deu91] and the

references therein. Dembo et. al. obtained precise results on how to control the relative residual of

the correction equation to obtain a prescribed order 1 < q ≤ 2 of convergence. Unfortunately, they

use problem dependent constants, such as bounds for the Jacobian and its inverse, that in many

applications cannot be estimated algorithmically or tend to grow with the dimension of the problem

(e.g., for successively finer discretizations of nonlinear PDE’s).

Deuflhard and Heindl start with a convergence theorem for Newton’s method that is invariant

with respect to linear transformations of the image space of the nonlinear mapping and therefore only

uses the norm in the domain. Due to this affine invariant approach, it is possible to give bounds

for the relative error of the Newton correction which can be estimated algorithmically. In [Deu91]

these methods are extended to the damped (or global) Newton method. The main difficulty of this

approach is the control of the relative error which is in many cases much more complicated than the

control of the relative residual.

We shall try to combine the advantages of both approaches to obtain algorithmically available

bounds for the relative residuals. To this end, we only have to transfer the affine invariant theorems

into results which are invariant with respect to affine transformations of the domain and therefore

only use the norm given in the image space.

Throughout this chapter we consider a nonlinear problem

F (x) = 0

where F : D ⊂ X → Y is a differentiable mapping from some open subset D ⊂ X of a Banach space

X in another Banach space Y . Newton’s method is given by

xk+1 = xk +Δxk, F ′(xk)Δxk = −F (xk) for k = 0, 1, . . .,

which already includes underdetermined problems solved by a Gauss Newton method. More explicitly,

we think of parameter dependent nonlinear problems, where X is the product of the state space and

some finite dimensional parameter space.

Substituting approximations sk for the Newton corrections Δxk, we obtain an inexact Newton

method

xk+1 = xk + sk , rk = F ′(xk)sk + F (xk)

where the inner residuals rk have to be small enough. The accuracy of the approximations sk may

be controlled either by its relative error

||sk −Δxk|| ≤ εk ||sk|| ,(1)

or its relative residual

||rk|| ≤ εk ||F (xk)|| .(2)

Note that (1) requires an error estimate which may be hard to get, whereas the residual in (2) is in

most cases cheaply available. Moreover, (1) requires a unique solution Δx of the linearized problem

to be defined and thus does not apply to the underdetermined situation directly.
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To make the invariance properties precise, let Aff(X) denote the ring of affine isomorphisms of X ,

i.e. maps of the form Tx = Ax+b with some continuously invertible linear map A = T′ ∈ GL(X) and

b = T (0) ∈ X . Then, Aff(Y ) and Aff(X) act on the maps F : X → Y by the covariant transformation

F �→ T∗F := T ◦ F for T ∈ Aff(Y ) and the contravatiant transformation F �→ T∗F := F ◦ T for

T ∈ Aff(X), respectively. Obviously, the covariant transformation T∗ does not alter the solution of

the nonlinear problem F (x) = 0, since

F (x) = 0 ⇐⇒ TF (x) = (T∗F )(x) = T (0) .

What is changed, is the solution’s characterization . This is different from the contravariant transfor-

mation T∗. Since

F (x) = 0 ⇐⇒ (T∗F )(T−1x) = 0 ,

we do not change the nonlinear problem but the representation of its solution x.

Newton’s method is (as successive linearization) invariant with respect to both transformations.

More precisely, if we consider the covariant transformation T∗ for T ∈ Aff(Y ) and apply Newton’s

method to the transformed equation T∗F (x) − T (0) = 0, the Newton iterates xk remain the same.

On the other hand, the iterates transform in the same way as the solution does if we apply the

contravariant transformation T∗ for T ∈ Aff(X).

It is natural to ask for convergence theorems for Newton’s method that respect at least one

of these invariance properties. Concentrating on the covariant transformations of the image space,

Deuflhard and Heindl [DH79] were led to so-called affine invariant Lipschitz conditions of the form

||F ′(y)−1(F ′(x+ tv) − F ′(x))v|| ≤ tω ||v||2

for all x, y ∈ D, v = y−x, and t ∈ [0, 1]. They only employ the norm in the domain X . In the context

of an inexact Newton method (see [Deu91] and [Hoh93] for convergence theorems of that type), we

encounter some problems. Most importantly, the affine covariant characterization naturally leads to

an accuracy matching for the error as in (1) which, as already mentioned, is often hard to apply.

Accordingly, one may use an affine contravariant Lipschitz condition like

||(F ′(x+ tv)− F ′(x))v|| ≤ tω ||F ′(x)v||2(3)

which only uses the norm in the image space Y . The following theorem states a convergence result

based on this condition. It is a bit lengthy, because we include the undetermined case by restricting the

corrections to suitable subsets V (x) of X . Moreover, we introduce a parameter 0 ≤ β ≤ 1 describing

the “exactness” of the method in order to obtain a smooth transition from exact to inexact Newton

methods. Setting β = 0 corresponds to the exact Newton iteration, while β = 1 distributes the error

in equal parts on the Newton iteration and the inexact solution of the Newton equation.

Theorem 1.1. Let F : D ⊂ X → Y be a Gâteaux-differentiable mapping D ⊂ X an open convex

subset of X, and {V (x)}x∈D a family of subsets V (x) ⊂ X with V (x) ∩ kerF ′(x) = {0}. We assume

that there is a constant ω > 0 such that

||(F ′(x+ tv)− F ′(x))v|| ≤ tω ||F ′(x)v||2(4)

for all x ∈ D, t ∈ [0, 1], and v ∈ V (x) such that x+v ∈ D. Moreover, suppose that an inexact Newton

sequence {xk}k=0,1,... exists in D such that for all k ∈ N and some 0 ≤ β ≤ 1

a) the corrections sk = xk+1 − xk are in V (xk),
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b) the residuals rk = F (xk) + F ′(xk)sk are bounded by

||rk|| ≤ εk ||F ′(xk)sk|| where εk =
β

2
min(1, ω ||F ′(xk)sk||) ,(5)

c) the initial guess x0 satisfies

ω ||F (x0)|| < hmax :=
2− β

1 + β
.(6)

Then the residuals F (xk) converge quadratically to zero.

The proof is simple and to be found in [Hoh93]. As for almost all convergence theorems for

Newton-like methods, the whole key is the judicious application of the fundamental theorem of cal-

culus. The whole formulation only involves the norm in the image space Y . That is why we can not

prove convergence of the iterates xk but only of the residuals F (xk).

If X is a Hilbert space and β = 0, i.e., in the exact case, we may substitute the orthogonal

complement of the Jacobian’s kernel for the restriction space:

V (x) := (kerF ′(x))⊥ .

This results in the Gauss Newton method. In the inexact case β �= 0, this choice is not realistic, since

sk is in most cases only approximately orthogonal to the kerF′(xk). Hence, the most suitable choice

for V (x) appears to be the ‘algorithmic’ restriction

V (x) :=

{
{sk} if x = xk

∅ if x �∈ {xk}.

Introducing the Kantorovitch quantities hk := ω ||F ′(xk)sk||, the demand (5) on the inner residuals

reads

||rk|| ≤ εk ||F ′(xk)sk|| , where εk :=
β

2
min(1, hk) .(7)

This may be easily transferred into a matching strategy for the relative residuals

||rk|| ≤ ηk ||F (xk)||, where ηk :=
εk

1 + εk
= εk + O(εk) ,

which obviously implies (7). This argument also holds in what follows: Up to O(εk) the residual norm

||F (xk)|| and ||F ′(xk)sk|| are interchangeable.

Computational Estimates. To arrive at an implementable control mechanism, we have to replace

the analytic quantities hk with computational available estimates. Here, we proceed as in [Deu91].

From Theorem 1.1 we obtain the inequalities

||F (xk+1)|| ≤ 1 + β

2(1− εk)
hk ||F (xk)||(8)

and

hk+1 ≤ 1 + β

2(1− εk+1)
h2
k .(9)

The first inequality (8) leads to the affine contravariant a posteriori Kantorovitch estimate

[hk] :=
2(1− εk)

1 + β

||F (xk+1)||
||F (xk)|| ≤ hk .(10)
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For the accuracy matching (7) we also need an estimate for hk before the correction sk is computed.

Employing the quadratic convergence property, we derive the a priori estimate

[hk] :=
1 + β

2(1− εk−1)
[hk−1]

2 .(11)

Thus, we arrive at the affine contravariant matching strategy

[εk] :=
β

2
min(1, [hk]) .(12)

remark 1. It is rather easy in incorporate the inexact Gauss Newton iteration in the framework

of a continuation method. Regarding the results by of Deuflhard, Fiedler and Kunkel [DFK87] from

the residual oriented viewpoint, we arrive at almost the same stepsize control mechanism. For details,

we refer to [Hoh93].

2. Application to BVPs of ODEs. We consider two point boundary value problems of ordi-

nary differential equations of m-th order in Rn

x(m) = f(x, t) on I = [a, b], and r(x) = r(x(a), x(b)) = 0.(13)

Here x not only denotes the function x(t) ∈Rn but also the vector x(t) ∈Rmn of the values of x and

its derivatives x′, . . . , x(m−1) up to order m− 1. Moreover, f : Rmn× I →R
n and r :Rmn×Rmn →

Z = Rmn are continuously differentiable mappings. The generalization to more general boundary

conditions is straightforward.

To apply the inexact Newton method, we reformulate (13) as a nonlinear integral equation

F (x) :=

(
V (x)

r(x)

)
= 0 ,(14)

where V (x) is the Volterra operator

V (x)(t) := x(t)− x(a) − (b− a)m−1

∫ t

a

(t− s)m−1f(x(s), s) ds .

If f and f ′ are uniformly bounded with respect to x by some polynomial, F is a well-defined Gâteaux-

differentiable mapping

F : Cm−1(I) −→ L2 × Z .

Of particular interest are non degenerate boundary conditions, e.g.

r(x) = βx− z, βx = B1x(a) +B2x(b),

where B1, B2 ∈ Rmn×mn and the restriction of β on the space Pm−1 = kerDm of polynomials of

degree less than m induces an isomorphism

β : Pm−1

∼=−→ Z = Rmn .(15)

In this particular case, we can incorporate the boundary conditions in the integral equation and solver

F (x) = 0, where F : Cm−1(I) −→ L2 is the Fredholm operator

(Fx)(t) := x(t)− (β−1z)(t)−
∫ b

a

G(t, s)f(x, s) ds(16)

with Green’s function G(t, s) for the linear differential operator L = Dm and the homogeneous boun-

dary conditions βx = 0. In any case, the integral equation fulfills the formal requirements of theorem

(1.1) for the inexact Newton method. Thus, we obtain a sequence of linear BVPs (again in their in-

tegral formulation) which have to be solved up to the residual prescribed by the surrounding inexact

Newton iteration.
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3. H-p Collocation for Linear BVPs. The two most successful approaches to the numerical

solution of boundary value problems of ODEs seem to be the local approach by multiple shooting

and the global one by collocation. Roughly speaking, multiple shooting is an efficient method for so-

called time-like problems (the independent variable t has a distinguished direction) and strict accuracy

demands, but needs good initial data (or lots of numerical insight) to converge at all. On the other

hand, collocation (of fixed low order) is actually often used to produce these initial data, since the

Newton method belonging to it converges much better. However, it becomes less efficient when it

comes to strong accuracy demands. Moreover, space-like BVPs are mainly the realm of symmetric

collocation methods.

The efficiency of shooting methods is mainly due to the adaptive order and stepsize control of the

numerical integrators used to compute the flow and to solve the variational equation. In this section we

try to combine the advantages of both methods and construct a collocation method with variable local

orders. This line of thought has already attracted much interest in the PDE community (cf. [GB86],

[DORH89], [ODRW89]), where the so-called h-p methods become more and more popular. The same

idea also led to the very efficient numerical methods for countable systems of ODEs (so-called CODEs,

cf. [Wul92] [DW94]).

The h-p collocation is based on local refinement by bisection and variable local orders. We

preferred this standard approach from finite elements over regridding techniques, because we can

store up local information due to the linearity of the BVP (in the context of the multilevel Newton

method). Furthermore, the transition to BVPs in two or more dimensions seems to be much easier.

Since space is limited, we can not explain the algorithm in full detail, but try to sketch its most

important ingredients. For more information we have to refer to the author’s thesis [Hoh93]. We start

with a short discription of the overall algorithm.

algorithm 1.

1. Compute the collocation solution on the present grid.

2. Estimate local and global residuals.

3. Check for convergence (overall residual estimate less than the required accuracy)

4. Choose for each subinterval the optimal refinement and order using an h-p error model.

5. Compute a threshold value which is to be the biggest local residual of the next level.

6. Apply the optimal refinement and order to all subintervals whose current residual estimate

is bigger than the threshold.

Steps 4 to 6 are responsible for the equidistribution of the local residual. We only refine a

subinterval or increase its order, if the residual is still too big. Observe that due to the linearity of the

BVP one may keep the local collocation matrices if the corresponding subinterval (inclusive its order)

remains unaltered. Thus, we directly use information computed on the previous levels. Proceeding

further, we give the notions mentioned above a more precise meaning.

Collocation on h-p grids. We have to introduce some notation. We define an h-p grid Δ =

({ti}, {pi}) as a partition

a = t1 < t2 < · · · < tN+1 = b

of the basic interval [a, b] into N subintervals Ji = [ti, ti+1] of length hi = ti+1 − ti and local orders

pi for 1 ≤ i ≤ N . By Δ + k we denote the grid

Δ + k := ({ti}, {pi + k})

obtained by adding the integer k to the local orders. PΔ+k will denote the space of piecewise polyno-

mials of local degrees pi + k, i.e.,

x ∈ PΔ+k ⇐⇒ x|Ji ∈ Ppi+k for all i = 1, . . . , N .
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Collocation means that we are looking for a spline x ∈ SΔ,m :=PΔ+m−1∩ Cm−1[a, b] which satisfies

boundary conditions and the ODE at all collocation points. More explicitly, we have to compute

polynomials xi ∈ Ppi+m−1 on Ji such that

a) the overall solution is in Cm−1[a, b], i.e.,

xi−1(ti) = xi(ti) ∈Rmn for i = 2, . . . , N

b) the local collocation conditions

x
(m)
i (t) = f(xi(t), t)

are satisfied for t = ti + cjhi, 1 ≤ i ≤ N and 1 ≤ j ≤ pi,

c) the boundary condition is fulfilled, i.e.,

r(x) = 0 .

Here, the cj ∈ [0, 1] are the (typically Gaussian) collocation nodes.

Residual Estimation. In the framework of the inexact Newton method, we have to be able to

compute the norms ||F (xk)|| and ||rk|| of the outer and inner residuals, respectively. In our present

context this means to estimate the L2-norm of the Volterra (14) or Fredholm (16) operator applied to

the piecewise polynomial approximation x ∈ SΔ,m. To this end, we approximate the residual function

F (x) by a piecewise polynomial in SΔ,m+k , k > 0, and compute its L2-norm by an appropriate

quadrature formula. For details, see [Hoh93]. The same technique is also used to provide estimates

for the local residuals on each subinterval Ji.

Error model. Given a subinterval J of length h̄ and order p̄, we would like to know the local

residual obtained for different stepsizes h and orders p. To this end, we construct a local h-p error model

ε(h, p) that depends on three parameters to be estimated in the algorithm. By standard collocation

theory we know that the error of the collocation solution with respect to the norm || · ||∞ is O(hp) for

sufficiently smooth solutions. By continuity, the same estimate holds for the residual measured in the

L2-norm, i.e.,

||Fx|| ≤ Chp ,

where F is the Volterra or Fredholm operator as above. Of course, the constant C contains bounds for

the higher derivatives depending on p so that the error model ε(h, p) = Chp with the single parameter

C is not realistic. The standard choice for fixed order methods (e.g. linear finite elements) is

ε(h) = Chγ

including a second parameter γ > 0. Combining this approach with a third term describing the

variable order, we are lead to the h-p error model

ε(h, p) = Chγαp(17)

depending on the three parameters C,α, γ ≥ 0. The stepsize coefficient γ characterizes the influence

of refinement while the order coefficient α is responsible for order variations. Once we know the

coefficients α and γ, we obtain the desired estimate for the local residuals by

ε(h, p) = ε(h̄, p̄)
(
h

h̄

)γ

αp−p̄ .
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To compute the order coefficient α, we use the residual estimate for the order p = p̄− 1 leading to

α = p�p̄

√
ε(h̄, p)

ε(h̄, p̄)
=

ε(h̄, p̄)

ε(h̄, p̄− 1)
.

Using this estimate for α, we may employ any other residual estimate to compute γ by

γ = logh/h̄

(
ε(h, p)

ε(h̄, p̄)
αp̄−p

)
.

Optimal order and refinement. Now we have the main tools at hand to choose an optimal order

and refinement for the next level. Since the error model is only feasible in a neighbourhood of the

current stepsize and order (h̄, p̄), we only consider pairs (h, p) from a so-called order-stepsize window

W (h̄, p̄) := {(h̄, p̄+ 1} ∪
{
(h̄, p) | p̄/2 + 1 ≤ p ≤ p̄

}
.

In other words, we either increase the order by one or refine the interval and choose a new order

p̄/2 + 1 ≤ p ≤ p̄. We call an h-p pair (h, p) ∈ W (̄h, p̄) optimal , if it minimizes the work per accuracy

measured by the amount of work A(p) times the error model (as the expected residual), i.e.,

ε(h, p) · A(p) · h̄
h

= min!(18)

Here, we have to take into account that the local amount of work doubles if we subdivide a subinterval.

Moreover, we add the effort for the elimination of the local boundary values in that case. Nonetheless,

we neglect the increased effort necessary to solve the rest of the global system, if more subintervals

are present. This is part of our quite conservative strategy to use high orders only if they really pay

off.

Multilevel Newton Method. The last sections give us a black box solver for the solution of a linear

BVP up to a prescribed residual. The result is a collocation solution on an adaptively chosen h-p

grid. As the final task, we only have to fit this linear solver into the framework of the inexact Newton

method arriving at the adaptive h-p collocation for nonlinear BVPs.

4. Examples. In this section we give some examples for the new multilevel Newton h-p colloca-

tion algorithm, illustrating the h-p collocation for linear problems and the multilevel Newton method

for nonlinear problems based on the Fredholm (Example 1) and the Volterra formulation (Example 2).

example 1. Nonlinear transition layer. This example is a well-known test problem taken from

[AMR88] (Example 9.8). We consider the scalar nonlinear BVP given by

εx′′ + xx′ − x = 0 on [0, 1] and x(0) = x(1) =
1

2
.(19)

Here, the solution has for small 0 < ε � 1 a rapid transition layer at t = 0. Figure 1 presents

the solution process for ε = 10−3 and a required residual of tol = 10−6. We display the iterates of

the multilevel Newton method together with the corresponding h-p grids, i.e., the successively finer

grids obtained by adding the inexact Newton corrections. The left column shows the approximate

collocation solution on the indicated level while the right column displays the corresponding h-p

grid. Here, we plotted the local orders versus the midpoints of the intervals. Figure 2 displays the

corresponding Newton corrections obtained as the h-p collocation solutions of the linear subproblems.

Here we see that the grids for the linear subproblems may be much coarser then the resulting grid of

the nonlinear solution (obtained as the union of the correction grids). Hence, the linear systems are

much easier to solve than the linear problems obtained by the standard approach ‘linearization after

discretization’.
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Fig. 1. Adaptively chosen grids for (19) with ε = 10−3 and tol = 10−6
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Fig. 2. Newton corrections for (19) with ε = 10−3 and tol = 10−6

example 2. Chemical Oscillator. As a second example consider the following system of five

autonomous differential equations modelling a chemical oscillator (cf. [See81]).

x′
1 = j − k1x1 − k4x1x4 + k−4(Etot − x4 − x5)

9



x′
2 = k1x1 − k2x2

x′
3 = k2x2 − k3x3 − k5x3(Etot − x4 − x5) + (k−5 + k6)x5(20)

x′
4 = −k4x1x4 + k−4(Etot − x4 − x5) + k6x5

x′
5 = k5x3(Etot − x4 − x5)− (k−5 + k6)x5

We compute a periodic solution for the parameters Etot = 1, k1 = k2 = k3 = 1, k4 = k−5 = 2000,

j = 100, k−4 = k5 = 100, k6 = 600. Figure 3 shows the four Newton iterates necessary for a required
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Fig. 3. Newton iterates for the chemical oscillator

accuracy tol = 10−3. Here, we plotted x5 versus x4 in the left column. As initial guess we took the

linear interpolant at 5 points which we obtained by an integration from t = 0 to t = 3 using the

extrapolation code Eulsim. The initial value was x = (9, 7, 5, 0.05, 0.1) and as initial guess for the

period we set T = 3. The first picture clearly shows that this initial guess is far away from the periodic

solution.

remark 2. Results combing an adaptive continuation method with the new BVP solver may be

found in [Hoh93] and [Hoh94]. There, we compute a branch of periodic solution emanating at a Hopf

bifurcation for a realistic model of a railway bogie moving on a straight track.
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