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Abstract

We investigate the generating sets (“Gröbner bases”) of integer lattices which
correspond to the Gröbner bases of the associated binomial ideals. Extending results
in [22], we obtain a geometric characterization of the universal Gröbner basis in
terms of the vertices and edges of the associated corner polyhedra. We emphasize
the special case where the lattice has finite index. In this case the corner polyhedra
were studied by Gomory [14], and there is a close connection to the “group problem
in integer programming” [20, p. 363]. We present exponential lower and upper
bounds for the size of a reduced Gröbner basis. The initial complex of (the ideal
of) a lattice is shown to be dual to the boundary of a certain simple polyhedron.
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1 Introduction

For any integer lattice L ⊂ ZZn there is an associated binomial ideal

IL := 〈xa+ − xa−
: a ∈ L〉 ⊂ k[x1, . . . , xn].

Here k is any field, and, given any lattice point a = (a1, . . . , an), we use the abbreviation

xa+ − xa−
:=

∏
i:ai>0

xai
i − ∏

j:aj<0

x
−aj
j .

Our aim is to study the combinatorics, geometry, and complexity of Gröbner bases for
the ideals IL. These occur (under different guises) in quite diverse areas of application:

• optimization and sensitivity analysis in integer programming [9, 22, 23]

• primary decomposition of general binomial ideals [12]

• certain sampling algorithms in computational statistics [11]

• the computation of short lattice vectors in the geometry of numbers [16],

• the “group problem” in integer programming [14, 20].

The quotient ZZn/L can be expressed as the direct sum of a finite abelian group and
a free abelian group. What happens when either of these constituents is trivial? If
ZZn/L is free abelian, then the lattice L is saturated and IL is a prime ideal [12]. Such
primes are called toric ideals. Gröbner bases for toric ideals and their application to
integer programming have been studied by several authors (including Conti & Traverso
[9], Moulinet & Pottier [18], Sturmfels [21], Thomas [22, 23]), and what follows is a natural
continuation and extension of their results. Our paradigm in this paper, however, is the
other extreme case when L has finite index in ZZn. This index is the order of the finite
abelian group ZZn/L. It is called the determinant of the lattice L and is denoted det(L).
Here the ideal IL is zero-dimensional, and the k-dimension of k[x1, . . . , xn]/IL equals
det(L). The study of such binomial ideals arises naturally from the “group problem in
integer programming”, as will be explained in Section 6.

A main algorithmic step in understanding an integer lattice L is the computation of
a Gröbner basis for the ideal IL, for a term order that refines the partial order given by a
linear functional. Such a Gröbner basis can be computed by an adaptation of Buchberger’s
classical S-pair reduction algorithm [2, 5, 6, 10]. The action of Buchberger’s algorithm in
our specific setting can be understood in entirely combinatorial terms. This was worked
out by Thomas in her “Geometric Buchberger Algorithm” [23].

In the following section we collect basic properties of the ideals IL. Some of them
appear in more general form in [12], but we include proofs for completeness. In Section 3
we give an explicit combinatorial characterization of the reduced Gröbner basis of IL with
respect to any term order. In the toric case this characterization is due to Moulinet &
Pottier [18]. In Section 4 we estimate the size of reduced Gröbner bases of a lattice of
finite index in ZZn. This size can be exponential even for n = 3.
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In Section 5 we examine the universal Gröbner basis of IL. We characterize it geome-
trically in terms of the vertices and edges of the associated corner polyhedra. In Section
6 we turn to applications in integer programming. An algebraic localization relates the
“global” Gröbner basis of an integer program (as studied in [2, 9, 23]) and the “local”
situation where L has finite index in ZZn. Finally, in Section 7 we study the simplicial
complex associated with the (radical of the) initial ideal initω(IL). As an application we
obtain a new algebraic method for computing face posets of simple polyhedra.

2 The ideal of a lattice

The symbol IN denotes the positive integers including 0. We write 0 for the zero vector
in INn and 1 for the vector with all components equal to 1. The componentwise partial
order on INn is denoted by “≤”. If we write u < v for vectors, then this means u ≤ v and
u �= v, that is, v−u is nonnegative and at least one coordinate of v−u is positive. We use
the notation xa for the monomial xa1

1 xa2
2 . . . xan

n , and the usual decomposition a = a+−a−

into positive and negative part, where (a+)i = max{ai, 0}, and a− = (−a)+ ≥ 0. The
partial order a ≤ b corresponds to divisibility of monomials, xa divides xb. Note that
a ≤ b implies ωa ≤ ωb for every ω ≥ 0. We write supp(a) := {i : ai �= 0} ⊆ {1, . . . , n}
for the support of a vector, and similarly for monomials supp(xa) := supp(a).

Let L ⊆ ZZn be an integral lattice. Our basic object of study is the binomial ideal
IL = 〈xa+ − xa−

: a ∈ L〉. Every generating set of binomials for IL corresponds to a
generating set of L (this follows from Corollary 2.4), but the converse is not true, unless

we impose a certain positivity hypothesis. (For example, {
(

2
−1

)
,
(

−3
2

)
} is a basis for ZZ2,

but the ideal 〈x2 − y, y2 − x3〉 is properly contained in IZZ2 = 〈x− 1, y − 1〉.)

Lemma 2.1 Let A = {a1, . . . , aN} ⊆ ZZn be a generating set for the lattice L (i.e.,
L = {∑N

i=1 λiai : λi ∈ ZZ}). If the sum of the vectors in A ∩ INn has all its coordinates
positive, then the ideal IL coincides with

IA := 〈xa+
i − xa−

i : 1 ≤ i ≤ N〉.

Proof. Clearly we have IA ⊆ IL. The following computation will show that the two
ideals coincide. For a,b ∈ A ∩ INn we have xa − 1,xb − 1 ∈ IA, and thus also

xa+b − 1 = xa(xb − 1) + (xa − 1) ∈ IA.

Hence for every integer M > 0 the ideal IA contains an element xm − 1 with mi ≥ M for
all i. Thus, for g = g+ − g− ∈ L, we can use

xg+ − xg−
= −(xg+ − xg−

) (xm − 1) + xm(xg+ − xg−
)

to see that is suffices to show xm(xg+ − xg−
) ∈ IA for large enough mi ≥ M . Now since

ai and −ai determine the same binomial (up to a sign), we may assume that g is written
in the form g =

∑K
k=1 aik ∈ L (i.e., as a sum of copies of the vectors ai with coefficients
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all 1). With this we write

xm(xg+ − xg−
) = xm+g−

(xg − 1) = xm+g−
(

K∏
k=1

xaik − 1)

=
K∑
k=1

(x
m+g−−a−

ik

k−1∏
l=1

xail) (x
a+
ik − x

a−
ik ),

where the last sum is clearly in IA, provided mi ≥ M is large enough for all i.

The “positive vector condition” on A is satisfied in two basic situations: first, if A is
a nonnegative basis for the lattice L (with ai ≥ 0 for all i), and second, if A is any basis
of L together with a strictly positive vector in L. Such a positive vector exists if L has
finite index in ZZn but not in general (see also Proposition 3.7).

We will use � to denote term orders on ZZn, that is, additive total orders such that
a � 0 for all a ∈ INn\0. (We refer to [5] and [10] for the basics about term orders,
Gröbner bases, S-pairs, reduction, and the Buchberger algorithm.) It is known (Robbiano
[19, Sect. 2]) that every term order can be obtained by refinement of a linear function,
that is, for every � there exists a nonzero, nonnegative vector ω ∈ (IR≥0)

n such that
ωa > ωb implies a � b. The refinement is in general obtained lexicographically via a
sequence of linear functions. However, every Gröbner basis can also be obtained from a
“rank one” term order of the form �ω, for some ω ∈ (IR>0)

n whose components ωi are
linearly independent over the rationals, by Mora & Robbiano [17, Thm. 2.7]. Thus, we
do not loose anything when, from now on, we assume that � is represented by a positive
weight vector ω. We will sometimes write initω(f) instead of init�(f) to denote the initial
(leading) monomial of a polynomial f with respect to �=�ω .

For every nonzero binomial in IL the initial monomial is given by

init�(x
a+ − xa−

) :=
{
xa+

if a+ � a−,
xa−

otherwise.

Using the term order �, we define the positive part of the lattice:

L�0 := {a ∈ L : a � 0},

where a � 0 is equivalent to a+ � a−. We can view init� as a map from L�0 to INn.
We recall that a subset F of an ideal I is a Gröbner basis of I if and only if the set

of initial terms {init�(f) : f ∈ F} generates the initial ideal init�(I) := 〈init(f) : f ∈ I〉.
If F is minimal and no trailing term appearing in any f ∈ F lies in init�(I) then F
is unique and is called the reduced Gröbner basis of I with respect to �. Every reduced
Gröbner basis of a binomial ideal I consists of binomials. Indeed, starting with a binomial
generating set of I , the Buchberger algorithm produces a reduced binomial Gröbner basis,
since S-pairs and reduction are binomial-friendly operations.

Proposition 2.2 The initial ideal of a lattice ideal is given by

init�(IL) = 〈xu+

: u ∈ L�0 〉.
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Proof. Clearly, the right hand side is contained in the left hand side. For the converse
let xa be a minimal generator of init�(IL). Since the reduced Gröbner basis consists of
binomials, there exists a monomial xb with ωb < ωa such that xa − xb appears in the
reduced Gröbner basis of IL. We have a − b ∈ L because the operations of forming
S-pairs and reduction (of binomials) preserve the lattice spanned by the differences of the
exponent vectors. Let u := a−b and write u = u+−u− ∈ L. Since ωu+ > ωu−, we have
xu+ ∈ init�(IL). By construction xu+

divides xa, and since xa is a minimal generator of
init�(IL), we conclude xa = xu+

, as desired.

This proposition motives the following definition.

Definition 2.3 Fix a term order � on INn. A Gröbner basis of the lattice L is a family
G ⊆ L�0 such that {xg+−xg−

: g ∈ G} is a Gröbner basis of IL. We denote by RGB�(L)
the set of vectors in L�0 that corresponds to the reduced Gröbner basis of IL.

Corollary 2.4 A binomial xa − xb is contained in IL if and only if a − b ∈ L.
Proof. We must show the only-if direction. Suppose xa − xb ∈ IL. Then the monomials
xa and xb have the same normal form, say xc, under reduction with respect to the reduced
Gröbner basis of IL. A simple calculation shows that reduction of a monomial by lattice
binomials preserves the residue class of the exponent vector with respect to the lattice
spanned by the binomials in the Gröbner basis. Therefore a− c ∈ L and b− c ∈ L, and
hence a − b ∈ L.

3 Combinatorics of the reduced Gröbner basis

In this section we present a combinatorial characterization of the reduced Gröbner basis
of a lattice L, for a fixed term order � = �ω. This characterization was first proved by
Moulinet & Pottier [18, Thm. 3] in the toric case. We here extend their result to arbitrary
integer lattices.

Fix a term order � on INn. We introduce a new partial order � on ZZn as follows:

a � b :⇐⇒ either a+ > b+,

or a+ = b+, and a− � b−.

Note that this partial order uses and extends the componentwise partial order “≤” on INn.
The extension is different from ≤ on ZZn, which is why we need a different symbol. The
crucial point is that the partial order � depends on the term order �.

Lemma 3.1 The partial order � has no infinite antichains, and no infinite decreasing
chains. Thus � defines a well-ordering of ZZn, and thus, in particular, of (ZZn)�0.

Proof. This is immediate from the fact that both ≥ and � do not have infinite antichains,
or infinite decreasing chains, on the positive orthant INn.

If P is any subset of ZZn then MIN�(P ) denotes the set of minimal elements in P
under the partial order �. The main result of this section expresses the reduced Gröbner
basis of a lattice as the image of its “positive half” under the operator MIN�.
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Theorem 3.2 The reduced Gröbner basis of the lattice L equals the set of all minimal
elements of L�0 in the partial order �:

RGB�(L) = MIN�(L�0).

Proof. With Proposition 2.2 and Corollary 2.4, we see that MIN�(L�0) is a minimal
Gröbner basis, whose elements cannot be reduced.

Note that in Theorem 3.2 one cannot replace � by the similar partial order �′ on ZZn

defined by

a �
′ b :⇐⇒ either a+ > b+,

or a+ = b+, and a− > b−.

which is independent of �. Since the term order � is a linear extension of the divisibility
order >, we see that �′ is coarser than � and hence

RGB�(L) = MIN�(L�0) ⊆ MIN�′(L�0).

However, the right hand side may be much larger than the left hand side, as the following
example shows. For N ≥ 1 let L ⊂ ZZ3 denote the kernel of the 1×3-matrix [N, 1, 1], and
let “�” be the purely lexicographic term order. The reduced Gröbner basis is a lattice
basis, MIN�(L�0) = {(1, 0,−N), (0, 1,−1)}, while

MIN�′(L�0) = MIN�(L�0) ∪ { (1,−i,−N + i) : i = 1, 2, . . . , N − 1 }.
A basic problem in the algorithmic theory of numbers is finding short lattice vectors.

Here is a Gröbner basis perspective on this problem.

Corollary 3.3 The set MIN�(L�0) contains the shortest nonnegative vector in L ∩ INn,
that is, the vector that is minimal with respect to the linear ordering on L ∩ INn given
by the term ordering �. In particular, if we take a term order that refines the order of
monomials by degrees (like the degree-lexicographic term order), then G contains a vector
g ∈ L ∩ INn\{0} that minimizes the sum of coordinates

∑n
i=1 gi.

Proof. If b is the unique nonzero vector in L ∩ INn that minimizes ω, then it cannot
be reducible: if we could reduce it by a ∈ L�0 with a �= b, then we would immediately
obtain a nonnegative vector of smaller weight.

Corollary 3.4 The nonnegative vectors in a reduced Gröbner basis of L have disjoint
supports; in particular, RGB�(L) contains at most n nonnegative vectors. If it contains
a strictly positive vector, then it does not contain any other nonnegative vectors.

Proof. If b′,b′′ ∈ RGB�(L) ∩ INn have b′i, b
′′
i > 0 for some i, with b′ � b′′, then we can

use the vector b′ − b′′ to reduce b′: a contradiction.

However, although we have just seen that RGB�(L) ∩ INn cannot be large, we will
show in Section 4 that the cardinality of RGB�(L) can be exponentially large. If L is a
lattice of finite index in ZZn, then the complement of the initial ideal has the following
geometric interpretation.
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Corollary 3.5 Let L be a lattice of finite index in ZZn. Then the set

S :=
{
a ∈ INn : there is no b ∈ MIN�(L�0) with b+ ≤ a

}
is a fundamental domain of L, and thus has cardinality det(L).
Proof. A monomial xa is called standard if it does not lie in init�(IL), that is, if a lies
in the set S.

Every monomial reduces to a standard monomial via Buchberger reduction. Thus
every point in INn is mapped to a unique point in the fundamental domain by a sequence
of steps which correspond to subtraction of lattice vectors. Furthermore, if two monomials
xa and xb are in the same equivalence class modulo L and (without loss of generality)
a−b ∈ L�0, then xa is not standard. This proves that there is a bijection between ZZn/L
and the set S of standard monomials.

Example 3.6 Let LA ⊆ ZZ2 be the 2-dimensional lattice of determinant 13 generated by

the columns of A =
(
1 4
4 3

)
.

1

2

3

2,3

1

2

3

4

3

4

2

1

4

There are four different reduced Gröbner bases for the corresponding zero-dimensional
ideal IL. For example, if we choose a total degree term order that refines the weight vector
ω = (1, 1), then L�0 is the set of lattice points above the dotted line. The corresponding
Gröbner basis is

G(1,1) = {xy2 − 1, x3 − y, y5 − x2}.
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The corresponding three vectors in the Gröbner basis of L are marked by “2”; the cone of
all vectors −ω such that ω defines this Gröbner basis is also labelled “2”. The dashed line
surrounds the integral points corresponding to the standard monomials.

We close this section with a well-known algorithmic technique for computing the re-
duced Gröbner basis RGB�(L). (For toric ideals this technique was introduced in [9].)
We embed ZZn into ZZn+1 by adding a zeroth coordinate, so that ZZn+1 = ZZe0⊕ZZn. Any
term order � on ZZn is extended to ZZn+1 as follows: if a,b ∈ ZZn then a0e0+a � b0e0+b
if and only if either a0 > b0, or a0 = b0 and a � b.

Proposition 3.7 Given any lattice L ⊂ ZZn, we let L̂ denote the sublattice of ZZn+1

spanned by L and the vector e =
∑n

i=0 ei. Then

RGB�(L) = RGB�(L̂) ∩ ZZn.

To compute RGB�(L̂) from any basis for L one can use the remark after the proof
of Lemma 2.1. When computing RGB�(L) in practice, many improvements are possible
(and yet to be explored). For instance, experiments by Serkan Hosten show a significant
speed-up if one precomputes a basis of L which is reduced in the sense of Lovász [16].

4 On the size of the Gröbner basis

In this section we examine the size of reduced Gröbner bases of a finite index sublattice
L ⊆ ZZn. We provide upper and lower bounds which are exponential in the bit complexity
of a basis for L, even for fixed rank n = 3.

Proposition 4.1 The cardinality of any reduced Gröbner basis of an n-dimensional lat-
tice L ⊆ ZZn is bounded above by (n− 1) det(L) + 1.

Proof. At most one of the minimal generators of initω(IL) has full support {1, . . . , n}.
All other minimal generators xa contain at most n− 1 variables xi. The monomial xa/xi

is one of the det(L) many standard monomials. Hence the number of minimal generators
of initω(IL) not having full support is at most the product (n− 1) det(L).

The slightly weaker upper bound ndet(L) is given by Faugère, Gianni, Lazard & Mora
[13, Cor. 2.1]. A similar but more careful argument gives the even better upper bound
(n − 2) det(L) + n + 1. Bounds for |G| in terms of n and det(L) that are essentially
best possible follow from theorems in extremal set theory. The sharp bounds are quite
complicated (see Clements [7, 8]), but they imply the following.

Theorem 4.2 The cardinality #RGB of the reduced Gröbner basis of an n-dimensional
lattice L ⊆ ZZn is bounded above by the implication

det(L) ≤
(
k

n

)
=⇒ #RGB ≤

(
k

n − 1

)

for any integer k ≥ n. In particular, for a fixed number n of variables we have

#RGB = O
(
(det(L))1−1/n

)
.
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Proof. In the terminology of extremal set theory, the initial monomials of a reduced
Gröbner basis form an “antichain of multisets”, and together with the corresponding
standard monomials one has the “multicomplex” generated by this antichain. Therefore,
one can apply the results of Clements [7, 8].

(One may note that the preceding proposition and theorem are more general: with
the same proofs, they give upper bounds for the maximal size of a minimal Gröbner basis
of a zero-dimensional ideal in terms of the degree and the number of variables.)

We next present a lower bound which matches the upper bound in Proposition 4.1 up
to a factor of 2, provided n is allowed to vary.

Proposition 4.3 For each integer n > 1 there exists a lattice Ln ⊆ ZZn with det(Ln) =
n+ 1 such that the reduced Gröbner basis of Ln with respect to the total degree order has
cardinality 1

2
n(n+ 1) = 1

2
ndet(Ln).

Proof. Consider the lattice

Ln := { (u1, u2, . . . , un) ∈ ZZn : u1 + 2u2 + 3u3 + · · ·+ nun ≡ 0 mod n+ 1 }.
With respect to the total degree ordering on k[x1, x2, . . . , xn], the reduced Gröbner basis
of Ln equals

{xixj − xi+j : i+ j ≤ n } ∪ {xixj − 1 : i+ j = n+ 1 }
∪ {xixj − xi+j−n−1 : i+ j ≥ n+ 2}.

Indeed, there are 1
2
n(n + 1) elements in this set, and each of them is easily seen to lie

in ILn. They form a Gröbner basis because precisely n + 1 = det(Ln) monomials are
not divisible by any of the underlined leading terms. These standard monomials are
1, x1, x2, . . . , xn.

We next present an exponential lower bound for fixed dimension n = 3.

Theorem 4.4 The reduced Gröbner basis of a finite index sublattice L of ZZ3 may have
exponential size in the bit complexity of a positive basis of L

Consider the following family of trivariate ideals:

Ir := 〈xryrzr − 1, xr−1yr+1zr−1, zr−2 − 1〉, r ≥ 4.

The bit complexity of this presentation is O(log(r)). The vector space dimension of the
residue ring k[x, y, z]/Ir equals 2r(r − 2), which is the determinant of the corresponding
lattice

Lr = ZZ〈(r, r, r), (r − 1, r + 1, r − 1), (0, 0, r − 2)〉 ⊂ ZZ3.

Theorem 4.4 is implied by the following lemma:

Lemma 4.5 The reduced Gröbner basis of Ir with respect to degree lexicographic term
order equals the following set of 2r − 2 binomials:

{xz − y, xr−2 − yr−2, y2r − 1} ∪ { yizr−2−i − xi : i = 0, . . . , r − 3}
∪ {xiy2r−i − zr−2−i : i = 1, . . . , r − 3}.
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Proof. This set lies in Ir because the vectors

(1,−1, 1), (r − 2, 0, 2 − r), (0, 2r, 0), (−i, i, r− 2 − i), (i, 2r − i, r − 2− i)

lie in the lattice Lr . It suffices to show that there are precisely 2r(r − 2) monomials
outside the ideal generated by the underlined leading monomials. We give the complete
list of these monomials in three disjoint groups:

(a) xayb for 0 ≤ a ≤ r − 3, 0 ≤ b ≤ r + 2,

(b) xbya for r + 3 ≤ a ≤ 2r − 1, 0 ≤ b ≤ 2r − a− 1, and

(c) ybza for 1 ≤ a ≤ r − 3, 0 ≤ b ≤ r − 3− a.

Each monomial not listed under (a), (b) or (c) is a multiple of one of the underlined
terms. The group (a) consists of (r + 3)(r − 2) monomials, while (b) and (c) consist of(
r−2
2

)
monomials each. Thus we have (r + 3)(r − 2) + 2

(
r−2
2

)
= 2r(r − 2) in total.

We close with the observation that n = 3 is best possible.

Remark 4.6 Every reduced Gröbner basis of a sublattice L ⊂ ZZ2 has at most three
elements.

Proof. Let G be the reduced Gröbner basis of IL with respect to ω. If rank(L) ≤ 1 then
IL is principal and G is a singleton. If rank(L) = 2 then the minimal generators of initω(IL)
must have distinct supports. For the support {1, 2} this holds by Corollary 3.4, for the
supports {1} and {2} this holds because any two univariate monomials are comparable
with respect to divisibility.

5 Geometry of the universal Gröbner basis

The universal Gröbner basis of a sublattice L ⊆ ZZn is the union of all reduced Gröbner
bases of the ideal IL as the cost function varies. In this section we study this set from the
point of view of polyhedral geometry. Our results are direct generalizations of Theorem
5.1 in [22], which dealt with the special case where L is saturated and contains no positive
vector. Also the proof techniques in this section are extensions of the techniques in [22].
To begin with, we show that the universal Gröbner basis is a finite set, and we present a
method for computing a superset of it.

Given any sublattice L of ZZn, we define a sublattice L̂ of ZZ2n as follows:

L̂ := {u ⊕ (−u) ∈ ZZ2n : u ∈ L}.

Here ZZ2n is to be identified with ZZn ⊕ ZZn. Note that any basis of L lifts immediately
to a basis of L̂. However, L̂ has no positive basis, so that one needs the algorithm in
Proposition 3.7 to compute a generating set for the corresponding ideal IL̂. We view IL̂
as an ideal in the polynomial ring k[x1, . . . , xn, y1, . . . , yn].
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Proposition 5.1 Let xa − xb be an element of some reduced Gröbner basis of IL. Then
xayb − xbya appears in every reduced Gröbner basis of IL̂. Thus if Ĝ is any reduced

Gröbner basis of IL̂, then {a ∈ ZZn : xa+
ya− − xa−

ya+ ∈ Ĝ} is a finite set that contains
the universal Gröbner basis of L.

Proof. Suppose there exists a reduced Gröbner basis of IL̂ which does not contain xayb−
xbya. Then there exists xcyd − xdyc in IL̂ such that xcyd divides xayb. This implies
c ≤ a and d ≤ b. Given any term order, the binomial xa − xb can be reduced by
xc − xd ∈ IL.

For our main result in this section we shall need the following lemma.

Lemma 5.2 Let xa − xb be an element of the reduced Gröbner basis of L with respect
to ω. If c is a point in (a+L)∩ INn with ωc ≤ ωa and c �= a, then supp(a)∩ supp(c) = ∅.

Proof. Suppose xa and xc have a common factor xi, and consider the binomial f :=
(xa − xc)/xi = xa−ei − xc−ei ∈ IL. If ωc < ωa, then xa−ei is the leading term of f ,
which is a contradiction to the hypothesis that xa is a minimal generator of initω(IL). If
ωa = ωc, then a = c.

For any vector b ∈ ZZn the translate b + L is considered as a residue class of the
quotient ZZn/L. With this residue class we associate the polyhedron

P [b] := conv
(
(b+ L) ∩ INn

)
If L has finite index in ZZn then there are det(L) residue classes. In that case the polyhedra
P [b] are called the corner polyhedra of L. They were introduced and studied by Gomory
in connection with the group problem in integer programming [14],[20, p. 363]. We shall
discuss this problem in Section 6. We also define the polyhedron

Q := conv(L ∩ INn \ {0}).

In [22] and [23] the polyhedra P [b] were called fibers, and it was assumed that they are
polytopes (i.e. bounded). This assumption holds if and only if Q is the empty set.

Theorem 5.3 Let L ⊂ ZZn be any integer lattice and IL its ideal. Then the universal
Gröbner basis of IL consists of the following two sets:

• the binomials xa−1, where a is a vertex of the polyhedron Q = conv(L ∩ INn\{0}),
• the binomials xa−xb, where a−b is a primitive vector in L, supp(a)∩supp(b) = ∅,
and conv{a,b} is an edge of the corner polyhedron P [a] = P [b].

Proof. With our discussion in Section 3, we can see that the two types of binomials listed
above have to lie in the universal Gröbner basis. Namely, the binomials of the first kind
are needed (for a suitable function ω) by Corollary 3.3. For binomials of the second type
we can choose an objective function ω such that xa is nonstandard and xb is the only
monomial of smaller weight in the lattice equivalence class of a. To see that a − b is
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contained in UGB(IL), it suffices to show that xa is a minimal generator of initω(IL). If
not, then there exists xa′ − xb′

with leading term xa′
such that a′ < a. Then a− a′ + b′

is a lattice point in P [a] having smaller weight than a, hence it must coincide with b. We
conclude that a − b = a′ − b′, which gives a contradiction to supp(a) ∩ supp(b) = ∅.

For the converse consider any element xa − xb with leading term xa in the reduced
Gröbner basis of IL with respect to ω. If b = 0 then a is the unique minimum of the
linear functional ω over all nonnegative nonzero elements of L, which means that a is a
vertex of Q. Hence it remains to analyze the case b �= 0. We must show that conv{a,b}
is an edge of its corner polyhedron. We may assume that all coordinates of ω are positive.
Let ω′ be the restriction of ω to the complement of supp(a), that is, ω ′

i = 0 if ai > 0 and
ω′
i = ωi if ai = 0. Our hypotheses imply 0 = ω′a < ω′b = ωb < ωa. We define the

positive weight vector

ω′′ := (ω(a− b)) · ω′ + (ω′(b− a)) · ω,

which has the property ω′′(a − b) = 0 by construction, and thus ω′′a = ω′′b. In order
to prove that conv{a,b} is an edge, it suffices to show ω′′a < ω′′c for all c ∈ INn\{a,b}
with c− a ∈ L.

We distinguish two cases. First suppose that ωc ≤ ωa. Then supp(a) ∩ supp(c) = ∅
by Lemma 5.2, and hence ωc = ω ′c. We also know ωc > ωb, otherwise xa − xb wouldn’t
be in the reduced Gröbner basis (by Theorem 3.2). This implies

ω′′c = (ω(a− b) + ω′(b− a))ωc > (ω(a− b) + ω′(b− a))ωb = ω′′b = ω′′a.

Next consider the case ωc > ωa. Then we have ω′c ≥ 0 = ω′a, and thus

ω′′c = (ω(a− b))ω′c+ (ω′(b − a))ωc > (ω(a− b))ω′a+ (ω′(b− a))ωa = ω′′a.

This completes the proof.

For any ideal I ⊂ k[x1, . . . , xn] there is a natural equivalence relation on the space IRn

of weight vectors: We say that ω and ω′ are equivalent if initω(I) = initω′(I). It was shown
by Mora & Robbiano [17] that the equivalence classes are the cones of a polyhedral fan
in IRn, called the Gröbner fan of I . If I is homogeneous then the Gröbner fan is complete,
and it was shown by Bayer & Morrison [3] that the Gröbner fan is the normal fan of a
polytope in IRn, called the state polytope of I . By an extension of the arguments in [3],
one can see that for any ideal I (not necessarily homogeneous) there exists a polyhedron
in IRn whose normal fan equals the Gröbner fan. Any such polyhedron will be called a
state polyhedron for I .

Theorem 5.4 The Gröbner fan of IL is the common refinement of the normal fans of
the corner polyhedra P [b], where b ranges over ZZn/L.

Proof. It suffices to show that two sufficiently generic weight vectors ω, ω′ ∈ IRn
+ define

the same initial ideal of I if and only if they support the same vertex of P [b] for all b.
(See [24] for the basic polyhedral notions used here).
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Given a polynomial f ∈ k[x1, . . . , xn], we write nfω(f) for its normal form modulo the
reduced Gröbner basis of IL with respect to ω. Note that if f =

∑
a cax

a is the monomial
expansion, then nfω(f) =

∑
a canfω(x

a); in other words, nfω(·) is a k-linear map.
Now, given ω, ω′ ∈ IRn

+ we have (cf. Mora & Robbiano [17])

initω(I) = initω′(I) ⇐⇒ nfω(f) = nfω′(f) for all f ∈ k[x1, . . . , xn] (1)

⇐⇒ nfω(x
a) = nfω′(xa) for all monomials xa, a ∈ INn.

However, the normal form of a monomial xa modulo the binomial ideal I is another
monomial, say xc. The vector c ∈ INn is characterized by the property that c ≡ a mod L,
and c has minimum weight ωc with this property. Equivalently, c is the unique vertex of
P [a] supported by ω. Therefore, (1) is equivalent to the statement that ω and ω′ support
the same vertex of P [a] for all a in INn.

We recall that the normal fan of a Minkowski sum of two polyhedra is the common
refinement of the normal fans of the two polyhedra. This fact extends to the Minkowski
sum of any finite number of polyhedra, and it even extends to Minkowski integrals of
infinite families of polyhedra (see e.g. [1]). This implies the following corollaries.

Corollary 5.5 Let L be a sublattice of finite index in ZZn. Then the Minkowski sum of
Gomory’s corner polyhedra ∑

γ∈ZZn/L
conv(γ ∩ INn).

is a state polyhedron for the associated zero-dimensional ideal IL.

Corollary 5.6 Let L be any sublattice of ZZn, and let db be any probability measure
with support INn such that

∫
bdb is a (finite) point in IRn

+. Then the Minkowski integral∫
P [b]db is a state polyhedron for the ideal IL.

6 Localization in integer programming

The problem to minimize a linear functional over the nonnegative elements in a congruence
class of a lattice of finite index in ZZm was studied by Gomory [14]. It is known as the
group problem in integer programming (see Schrijver [20, p. 364]). We will show how
the group problem appears as a certain algebraic localization from the general integer
programming problem. This establishes an algorithmic bridge between the two extreme
cases discussed in the introduction, namely, saturated lattices and lattices of finite index.

Our presentation follows [20, p. 364]. It is informal in the sense that no theorems or
propositions are stated. Let A be an integer d×n-matrix of rank d, b ∈ ZZd and ω ∈ IRn.
The general integer programming problem can be written as follows:

minimize ω · u subject to u ∈ ZZn, Au = b, u ≥ 0. (2)

Let u0 ∈ ZZn be any feasible (but not optimal) solution of (2). Suppose we are also given
a basic optimal solution u∗ ∈ IRn for the LP-relaxation

minimize ω · u subject to u ∈ IRn, Au = b, u ≥ 0. (3)
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There exists a column basis {i1, . . . , id} ⊂ {1, 2, . . . , n} of A such that supp(u∗) ⊆
{i1, . . . , id}. We replace ω by the unique vector ω̃ ∈ IRn with support in [n]\{i1, . . . , id}
such that ω − ω̃ lies in the row space of A. Let π : ZZn → ZZn−d denote the projection
onto the nonbasic coordinates. The lattice L := π(kerZZ(A)) has finite index in ZZn−d.
Identify ω̃ with its image in ZZn−d, set b̃ := π(u0), and consider the group problem:

minimize ω̃ · v subject to v ∈ ZZn−d, v ≥ 0, v ≡ b̃ (modL). (4)

This problem is a relaxation of (2). Indeed, if v1 is an optimal solution to (4), then we
can choose u1 ∈ ZZn with π(u1) = v1 and Au1 = b. If u1 ≥ 0 then u1 is an optimal
solution to (2), otherwise ωu1 ≥ ωu∗ is a new lower bound for the optimum value of (2).

These transformations have a natural reformulation in the setting of Gröbner bases.
We recall the Gröbner basis approach to integer programming as presented in [2, 9, 23].
Let L′ ⊂ ZZn be the kernel of A. Then L′ is saturated and its ideal IL′ ⊂ k[x1, . . . , xn]
is the toric ideal of A. The optimal solution of the integer program (2) is obtained by
reducing the monomial xu0

with respect to the reduced Gröbner basis RGBω(L′).
Let X = {x1, . . . , xn} \ {xi1, . . . , xid} and consider the homomorphism

ρ : k[x1, . . . , xn] → k[X]

which maps the variables xi1, . . . , xid to 1 and leaves the other variables unchanged. (This
amounts to localizing at the prime ideal 〈xj : j �∈ {i1, . . . , id}〉, whence the title of this
section.) We have the following relation among the toric ideal and the zero-dimensional
ideal:

ρ( IL′ ) = IL.

The punchline of our discussion is that, instead of computing RGBω(L′), it is much
easier to compute RGBω̃(L), the reduced Gröbner basis of a zero-dimensional binomial
ideal. Indeed, the “local Gröbner basis” RGBω̃(L) has typically much smaller cardinality
than the “global Gröbner basis” RGBω(L′). The solution to the relaxation (4) is obtained

by reducing the monomial xb̃ modulo RGBω̃(L).
That the relaxation (4) may fail to have the same optimum as (2) can be explai-

ned by the fact that the “global” initial ideal initω(IL′) is smaller than the preimage in
k[x1, . . . , xn] of the “localized” initial ideal

initω̃(IL) = initω̃(ρ(IL′)) = ρ(initω̃(IL′)). (5)

More precisely, the set of right hand sides b for which (4) fails to solve (2) corresponds to
embedded primary components of the ideal initω(IA). This correspondence will be studied
in detail elsewhere.

We remark that, in spite of the identity (5), the reduced Gröbner basis RGBω̃(L) is ge-
nerally not a subset of ρ(RGBω(L′)). For instance, take n = 4, d = 1, A = [13, 19, 21, 29]
and ω = ω̃ = (41, 50, 10, 0). Here ρ maps the basic variable x4 to 1, and L is a sublattice
of index 29 in ZZ3. In binomial notation, we have

RGBω(L) = {x17
3 − x2

2, x2x
6
3 − 1, x3

2 − x11
3 , x1 − x2

3}.
The global Gröbner basis RGBω(L′) has 14 elements. The local Gröbner basis element
x3
2 − x11

3 does not appear in ρ(RGBω(L′)).
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7 The initial complex of a lattice

For any ideal I ⊆ k[x1, . . . , xn] and any term order ω ∈ IRn there is an associated simplicial
complex Δω(I) with vertex set {1, 2, . . . , n}. It is called the initial complex [15] and is
defined as follows: a subset F ⊆ {1, . . . , n} is a face of Δω(I) if there is no polynomial
f ∈ I whose initial monomial initω(f) has support F . Equivalently, Δω(I) is the simplicial
complex whose Stanley-Reisner ideal is the radical of initω(I).

It is our objective to determine the initial complex of a lattice L ⊂ ZZn. By this we
mean Δω(L) := Δω(IL). Let LIR := L ⊗ IR be the real vector space spanned by L, and
let L⊥

IR be its orthogonal complement in IRn. We define the closed convex polyhedron

Pω := IRn
+ ∩ (ω + L⊥

IR ).

Lemma 7.1 If the weight vector ω ∈ IRn defines a term order for the ideal IL then the
polyhedron Pω is simple.

Proof. Let d = rank(L) and suppose Pω is not simple. Then there exists a point u ∈ Pω

such that |supp(u)| ≤ d − 1. This implies the existence of a nonzero vector a ∈ L with
supp(a) ∩ supp(u) = ∅. Moreover, we may choose a to have minimal support (i.e., a
is a circuit of LIR). This implies ua+ = ua− = 0. Moreover, since u − ω ∈ L⊥

IR, we
have ωa = ua = 0. Therefore both xa+

and xa−
are contained in the monomial ideal

initω(I). Hence there exists b ∈ L such that ωb = ub > 0 and xb+
divides xa+

. Since u
is nonnegative we conclude 0 < ub+ ≤ ua+. This is a contradiction.

Our main result in this section gives an algebraic expression for the combinatorial
structure of the polyhedron Pω. In the special case where IL is a homogeneous prime
ideal this theorem was proved in [21]. The following version is considerably more general
and its proof more direct. We thank Serkan Hosten for suggesting the use of LP-duality
in proving Theorem 7.2.

Theorem 7.2 The initial complex Δω(L) equals the simplicial complex polar to the bon-
dary complex of the simple polyhedron Pω.

Corollary 7.3 The initial complex of a lattice is either a sphere or a ball.

Proof. Our assertion is equivalent to the following statement: A subset F ⊆ {1, . . . , n}
is a face of Δω(L) if and only if there exists u ∈ Pω such that supp(u) = {1, . . . , n}\F .
We write eF :=

∑
i∈F ei for the incidence (row) vector of a subset F .

Let A be an integer d × n-matrix whose rows form a basis for the lattice L, and let
b := Aω. By linear programming duality [20, Cor. 7.1.g],

min{ eF · u : u ∈ IRn,u ≥ 0, Au = b } = max{v · b : v ∈ IRd,vA ≤ eF }.
This translates into the equivalent statement

min{ eF · u : u ∈ Pω } = max{a · ω : a ∈ LIR, a ≤ eF }.
Clearly, the left hand side is nonnegative. It is zero if and only if there is a point u ∈ Pω

whose support is contained in {1, . . . , n}\F . By Lemma 7.1, the family {supp(u):u ∈ Pω}
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is closed under taking supersets, so that “is contained in” can be replaced by “equals”
in the previous sentence. The maximum on the right hand side is positive if and only if
there exists a = a+ − a− ∈ L with a+ω > a−ω and supp(a+) ⊆ F . This holds if and only
if there exists f ∈ IL with supp(initω(f)) ⊆ F , which is equivalent to F not being a face
of Δω(L).

As an application we obtain the following algebraic method for computing the minimal
nonfaces of a simple polytope.

Corollary 7.4 Let A = (aij) be a nonnegative integer d× n-matrix with no zero column,
and let b ∈ IRd be a general point in the cone spanned by the columns of A. Then
P = {u ∈ IRn : u ≥ 0, Au = b } is a simple polytope. Its boundary complex is polar to
the initial complex, with respect to any weight vector ω ∈ P , of the ideal

I = 〈
n∏

j=1

x
aij
ij − 1 : i = 1, . . . , d 〉.

Proof. The assumption that A is nonnegative and has no zero column implies (using
Lemma 2.1) that I = IL where L is the lattice spanned by the rows of A. Corollary 7.4
now follows from Theorem 7.2 by identifying u = ω.

In order to compute the (supports of the) vertices of the polytope P , we need to find
the minimal associated primes of the initial ideal initω(I).

Corollary 7.5 Using the notation above, we have the prime decomposition

Rad(initω(I)) =
⋂

v vertexof P

〈xi : i ∈ supp(v)〉.

Naturally these corollaries are most useful for practical computations when the ideal
initω(I) is square-free to begin with. A sufficient condition for this property can be given
using [22, Thm. 3.17]: if L is the row span of a unimodular matrix then initω(I) is a
radical ideal. We illustrate our techniques for such a unimodular example.

Example 7.6 (A Simple 3× 5-Transportation Polytope)
Let X = (xij) be a 3 × 5-matrix of indeterminates, and let L be the sublattice of ZZ15 ∼=
ZZ3 ⊗ ZZ5 defined by the binomial ideal

IL = 〈x11x12x13x14x15 − 1, x21x22x23x24x25 − 1, x31x32x33x34x35 − 1,

x11x21x31 − 1, x12x22x32 − 1, x13x23x33 − 1, x14x24x34 − 1, x15x25x35 − 1〉.
Let ω be the 3× 5-matrix with all entries equal to 1. This weight matrix defines the total
degree term order for IL. The polytope Pω is the set consisting of all real nonnegative
3 × 5-matrices with all row sums equal to 5 and all column sums equal to 3. In order to
compute this transportation polytope, we compute the reduced Gröbner basis of IL with
respect to ω. It consists of 50 binomials of degrees three and four. Since L is unimodular,
the initial ideal is square-free:

initω(IL) = 〈x11x12x13x14, x11x12x13x15, x11x12x14x15, . . . , x32x33x34x35〉.
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Using a computer algebra system such as MACAULAY [4] it takes a fraction of a second to
determine the prime decomposition as in Corollary 7.5. We find that the simple polytope
Pω has dimension 7 and has 360 vertices. By computing the numerator of the Hilbert
series of initω(IL), we find its h-vector to be h(Pω) = (1, 7, 28, 79, 130, 79, 28, 7, 1).
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