
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

SEBASTIAN DRESSLER, THOMAS STEINKE

A Novel Hybrid Approach to
Automatically Determine Kernel

Interface Data Volumes

This work is funded by the German BMBF project ENHANCE, grant no. 01IH11004A-G.

ZIB-Report 12-23 (July 2012)

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

3

A Novel Hybrid Approach to Automatically
Determine Kernel Interface Data Volumes

Abstract—Scheduling algorithms for heterogeneous platforms
make scheduling decisions based on several metrics. One of these
metrics is the amount of data to be transferred from and to
the accelerator. However, the automated determination of this
metric is not a simple task. A few schedulers and runtime
systems solve this problem by using regression models, which are
imprecise though. Our novel approach for the determination of
data volumes removes this limitation and thus provides a solution
to obtain exact information.

I. INTRODUCTION

For heterogeneous systems, schedulers and runtime systems
like those from Beisel et al. [1] and Pienaar et al. [2]
require several runtime information to select the optimal target
accelerator for a kernel. Here we denote the term kernel as
one or more functions of an algorithm which are best suited
for acceleration. The two most important of these information
are the expected wall-clock time of the kernel and the data
volumes to be transferred to and from the accelerator device.

The named metrics are useful for determining whether the
runtime of the kernel justifies the required data transfer, which
consumes additional non-computational time. However, the
difficulty is originated by the acquisition of these metrics.
Pienaar et al. [2] developed a runtime system for scheduling
heterogeneous tasks using parallel-operator directed acyclic
graphs (PO-DAGs). This runtime system implements among
others a communication model as well as a kernel model.
The kernel model estimates the runtime of the kernel with
heuristics of previous kernel runs while the communication
model estimates by a regression model the amount of data to
be transferred.

The above communication model has two limitations:

1) The result is only an estimate and thus too inexact for
kernels where the amount of data to be transferred is
critical for scheduling.

2) The approach is not well suited for complex data struc-
tures like trees.

We present a novel approach for collecting the amount
of data to be transferred from the host to the accelerator
and vice versa associated with kernel call on accelerator. We
refer to this specific data as kernel data volumes (KDV). Our
approach does not possesses the discussed limitations and
requires only a minimal effort of the application developer
for implementation.

The paper is organized as follows. Section II describes the
proposed method and tool flow. Within Section III we explain
how data structures are analyzed. Section IV provides test
results for the tool flow. The related work is given in Section V.
In Section VI we provide a conclusion as well as an outlook.

II. METHOD

To overcome the limitations of a priori estimates of KDV,
we have to reflect in which state of an application the exact
amount of data is known. The sole state where an exact
statement of KDV can be made is during the applications
runtime prior the call of the kernel function. Therefore, the
central question is how one can extract the KDV information
of such a pending kernel call.

A simple approach is to make the application developer
implement an additional function collecting and returning the
current KDV. However, this is not a feasible solution since it
tends to be error-prone due to the manual modification of the
code by the application developer. For example, the application
developer could simply forget components of the desired KDV
or perform wrong calculations. Furthermore, when porting
kernels to heterogeneous architectures with specialized tool
flows (e.g. described in [3]) possibly no knowledge regarding
the data structures exists.

A more practicable solution is to automatically determine
the KDVs for given kernels with an appropriate tool flow. To
implement such a tool flow we use the functionality provided
by the Low Level Virtual Machine (LLVM, [4]). The tool flow
is described within the following sections. It is a hybrid tool
flow, since it uses both static and dynamic analysis.

A. Prerequisites and Term Definitions

First we define terms that are used within this paper.
Furthermore, we present necessary prerequisites.

1) LLVM IR: For utilization of the LLVM framework
the original source code needs to be transformed into an
intermediate language LLVM can work with. This language
is called LLVM Intermediate Representation (LLVM IR) and
is comparable to a machine independent assembly language.
A complete overview of the language elements used by LLVM
IR is given in [5].

2) Compiler and linker infrastructure: To generate LLVM
IR, an appropriate compiler and linker has to be used. For C
and C++ applications we use clang [6]. Furthermore, the GNU
binutils linker ld provides an appropriate plugin architecture.

3) Directional size variable: To record the sizes of the sub-
jected KDVs we introduce a variable, referred to as directional
size variable (DSV), since we have to differentiate between
host to device and device to host transfers. Thus, whenever
we state that a specific amount of data is added to the DSV,
the direction of the data transfer is also taken into account.

B. Proposed Tool Flow

1) Kernel annotation and compilation to LLVM IR: The
application developer has to annotate all kernel functions,

4

Listing 1. Kernel annotation example for C code, showing how to insert
a special label ”kernel” to mark the kernel function, that is visible within
LLVM IR after compilation.
1 __attribute__((annotate("kernel")))
2 <retval> <fname>(<params>) {
3 [...]
4 }

which is done with so-called attributes. This style of kernel
function annotation is preferred since the annotation is also
visible within the LLVM IR. This is not the case for #pragma
statements, being the reason why these are not used, although
they may be more familiar.

An example for kernel annotation for C code is given in
Listing 1. The same method is usable for C++ code, since
this language is also supported by the clang compiler.

2) Code analysis and transformation: This phase of the
tool flow builds the analytical basis and includes a mechanism
for injecting code evaluated at runtime. The procedure of this
LLVM pass for a single kernel function is described next.

First, we do not differentiate between the return value and
the function arguments, and thus consider all of them simply
as parameters, and are further represented by a DSV.

Each parameter consists of two distinct elements, namely
a parameter type and a parameter value. Both elements are
necessary for extracting the KDV. Thus, when the type of a
parameter is a basic data type it is possible to directly apply
the value of the parameter to the DSV. Examples for basic
data types are scalars and characters. If the parameter type
consists of a complex data type this specific parameter has to
be analyzed in depth. Complex data types are all remaining
data types like pointers, strings, structs, classes and trees for
instance. We provide a detailed description of this analysis
process in Section III.

It is important to note that not all information are available
after the static analysis. That is, whenever dynamic structures
are present – like pointers – the exact evaluation of their size
needs to be made at runtime.

After the analysis step is finished the collected KDV in-
formation are summarized and injected into to application.
This part is known as code transformation. For this purpose
we use the capability of LLVM to inject specific instructions
like arithmetic operations and function calls. Thus, a call to a
function, which processes the collected KDVs at runtime, is
injected right before the corresponding kernel call. With this
we ensure that the exact KDV information are provided before
they are needed.

The described sequence of code analysis and code transfor-
mation is repeated for every additional annotated kernel.

3) Re-compilation and runtime evaluation: When the com-
bined analysis and transform pass is finished the LLVM IR
needs to be re-compiled, since several additional functions
were injected. In the re-compilation step the binary LLVM
IR code is first translated into x86 assembler code and then
compiled to the target instructions, e.g. x86 machine code.

III. PARAMETER ANALYSIS

This section describes how various data types are processed
by the analysis and transformation pass.

A. Scalars

The analysis of scalars is fairly simple since the data type
of a scalar is always of fixed size. Thus, only the bit width
of its data type is considered. Within the transformation pass
this bit width is added to the analogue DSV.

B. Vectors and Matrices

Regarding this data type we make a clear distinction be-
tween the used programming language.

For C, we assume that a vector or matrix is represented
as pointer with one or more dimensions. Furthermore, it is
assumed that the pointer is allocated exactly once before the
kernel function is called. Thus, only the functions malloc and
calloc are used for memory allocation. A reallocation with
realloc is currently not supported, yet.

If C++ is the used language we assume that the vector or
matrix is either implemented as C pointer or by as a container
of the standard template library (STL). For the implementation
as C pointer the same rules defined prior are valid.

We now describe the analysis of the two different imple-
mentations in detail.

1) Pointer based implementation: For this case the param-
eter is back-traced in the IR by using its value which provides
a reference to all other uses of the parameter. The back-trace
is performed until a call instruction to a malloc or calloc
function is found. This instruction call is decoded and thus
it provides the arguments issued to the called function. The
further processing depends on the type of the argument of the
allocation function:

1) If the argument is a constant, its value is directly used
and the DSV is incremented by the value of the variable.
Thus, the argument is evaluated statically.

2) If the argument is a variable, the transformation pass
injects another call to a size function. This method is
used since the content of the variable is not known
at compile time. Therefore, the injected size function
evaluates the size of the variable at runtime. Here, the
argument is evaluated dynamically and thus the DSV is
incremented at runtime.

If the pointer points to a multi-dimensional array, multiple
calls to the allocation function are discovered. Then, the
process of incrementing the DSV or injecting a corresponding
function call is repeated.

When the allocation function is called within a loop, the
loop is examined to extract the loop counter and end condition.
With these additional metrics the increment operation to the
DSV is extended accordingly.

2) STL based implementation: Every STL container pro-
vides a size function. Therefore, we inject a function call that
invokes this function of the corresponding object. This call is
executed at runtime and its result is used for incrementing the
DSV. However, the direct use of the size function is only valid

5

Listing 2. Excerpt of the HD algorithm. Code snippet shows the memory
allocation for the matrix with N being the size of the matrix.
1 float **datapoints_g =
2 (float**)malloc(N * sizeof(float*));
3

4 for (i = 0; i < N; i++) {
5 datapoints_g[i] =
6 (float*)malloc(N * sizeof(float));
7 }

if the template parameter of the container is a scalar. If this
is not the case, a helper function for determining the size is
called. For example, with elements of varying sizes, the helper
function iterates through all elements of the vector and adds
up the size of every element thus returning the size of the
whole container.

C. Complex Data Structures

Our definition of complex data structures includes trees and
custom classes / structures. These structures are all handled
as LLVM structures internally. Thus, all of the named data
structures can be analyzed in a similar way.

In the analysis step the data structure is parsed and every
element is stored as an internal object. This object contains
condensed information regarding the data type of the observed
element. These information are, for example, the base type of
an element and its bit width as well as an occurrence count.

Additionally, different data types of the structure elements
are differently addressed. That is, for scalars the element count
can be simply incremented. Pointers and references are traced
to its source, thus enabling the analysis of tree structures.

IV. RESULTS

We implemented the proposed tool flow for several ba-
sic data structures. Currently it supports scalars, pointers,
multi-dimensional arrays and the STL containers string and
vector. For multi-dimensional arrays the loop used for allo-
cation has to be a simple for loop. Trees and custom classes
are currently not yet supported. We tested the implementation
with two different applications. All tests were executed on a
64-bit Linux operating system.

A. Test Case 1: Heat Distribution

The heat distribution algorithm (HD) is implemented in C.
It calculates the heat distribution of a single heat source over
a fixed period. The algorithm operates on a N × N matrix,
implicating that two-dimensional arrays are used. Therefore,
the memory allocation must be done within a loop. We depict
the memory allocation for this particular example in Listing 2.
In Listing 3 we show the declaration and annotation of the
kernel function. To provide a reference measurement of the
KDV for the HD algorithm we implemented an appropriate
function, which calculates the KDV separated from the code
injected by our tool.

Within the analysis pass all of the three parameters were
analyzed separately with the method described before. The

Listing 3. Annotation of the kernel function of the HD algorithm.
1 __attribute__((annotate("kernel")))
2 void heat_calc_cpu(
3 float **datapoints_g,
4 float **datapoints_h,
5 int M
6);

Listing 4. Annotation of the kernel function for the TF algorithm.
1 __attribute__((annotate("kernel")))
2 void tf(
3 int k,
4 std::string &genome,
5 vector<int> &count,
6 vector<string> &kmer
7);

first two parameters are pointers to two-dimensional arrays,
which contain the matrices needed for calculation. Both of
these were traced back until calls to malloc were found.
Within this particular case multiple calls of this type could
be detected. Therefore, it was tested whether these calls are
enclosed in a loop body. Whenever this was the case, the
tool tried to detect the loop counter variable and used it
for calculating the resulting memory transfer size. This led
to the result that the size of one matrix sM is given by
sM = N · 8 byte +N ·N · 4 byte.

The first part of the allocation shows a different base size
since within this case a pointer is allocated. Since the size
of N is only known at runtime the tool placed a call to this
variable, evaluating its content at runtime.

For the remaining parameter M the tool could identify this
variable as scalar integer type with a bit width of 4 byte. The
size of this variable simply increments the DSV.

After completion of the tool-flow the application was run
with different random sizes of N . The results of both, the
KDV calculated with the automated tool-flow as well as the
reference measurement, were provided as text output. During
all tests the results were always identical, which proves that the
tool works with two-dimensional arrays of scalar data types.

B. Test Case 2: Sequence Term Frequency

The sequence term frequency application (TF) is written
in C++. The TF algorithm matches several substrings against
a single large string and counts the occurrences. We show
the interface of this algorithm in Listing 4. For reference
measurements a function determining the size of the arguments
was implemented.

The analysis pass again parsed all arguments of the function
call. For this case, the first parameter was identified as scalar,
so its bit width of 4 byte was added to the DSV.

All remaining parameters are considered as containers.
Thus, a deep analysis was performed, due to the complexity
of this task we further describe every parameter in the
following paragraphs.

6

a) std::string &genome: For this parameter the tool
detected that it is a string container. Therefore it placed a call
to the size function of the corresponding variable genome.
A multiplication operation was placed to ensure that the size
of the string is multiplied with 1 byte, being the size of a
single character. This computational chain will be evaluated
at runtime, providing the current size of the string in bytes.

b) vector<int> &count: This parameter belongs to
the vector class provided by the STL. The in-depth analysis
showed that the allocated object of the container is an integer
type with a bit width of 4 bytes. Since this type always has
a fixed bit width, the tool placed a call to the size function
of the corresponding variable count. Again, a multiplication
operator was injected to multiply the result of the size

function with the bit width of the base type. Similar to
the previous parameter this computational chain will also be
evaluated at runtime.

c) vector<string> &kmer: Regarding this parameter
the tool detected that it is a vector class, but with a different
allocated object. Since the allocated object again is a complex
type, it was also analyzed in depth. The analysis showed that
the surrounding container could contain strings of arbitrary
length. Therefore it is not possible to just call the size function
and multiply it with a fixed factor. To solve this conflict the
tool placed a call to a helper function. This function iterates
over all components of the vector, returning the summarized
size of every single string. Since std::string uses ASCII
characters internally, the size of the string equals the size in
bytes.

The results of the analysis and transform pass were evalu-
ated at runtime in addition with the reference size function. We
randomly varied the sizes of the parameters. All runs showed
equal results for both, automatic estimated KDV as well as
reference KDV.

V. RELATED WORK

Beisel et al. [1] and Pienaar et al. [2] both reveal the
need for automated KDV extraction. However, only in [2] a
solution is provided by using a regression model. We exposed
that this solution is not feasible in terms of precision, since
the regression model only provides estimations for different
problem sizes. Furthermore, a history of kernel runs with
different KDV must exist, whereas our tool provides direct
access to the information.

Another approach is made by Tian et al. [7], presenting a
dynamic scheduling mechanism for MapReduce jobs within
a heterogeneous environment. Here, the assumption that the
scheduled tasks are approximately equally sized. Again this
approach is not feasible, since it is limited to MapReduce
and furthermore the condition on equally sized tasks is not
applicable on generic applications.

Furthermore, Jimenez et al. [8] introduces a predictive
scheduling algorithm. A need for KDV could be identified.
However, the algorithms implementation makes the developer
to explicitly provide the KDV as a distinct variable.

VI. CONCLUSIONS AND FUTURE WORK

Within this paper we presented the idea of automatic deter-
mination of the data volume associated with a kernel call. For
this, we introduced a hybrid approach consisting of static and
dynamic analysis. With this concept study, we proved that our
concept is usable and provides correct information.

Our future work concentrates on the support of complex
data structures like trees, structs and custom classes. Further-
more, we will focus on the extension of the tool flow being
capable of analyzing applications written in FORTRAN.

ACKNOWLEDGMENT

The tested source code of the Sequence Term Frequency and
the Heat Distribution application are kindly provided by Daniel
Langenkämper (CeBiTec, University Bielefeld) and by Dustin Feld
(Fraunhofer, SCAI), respectively.

REFERENCES

[1] T. Beisel, T. Wiersema, and C. Plessl, “Programming and Scheduling
Model for Supporting Heterogeneous Accelerators in Linux,” in Computer
Architecture and Operating System Co-design, 2012.

[2] J. A. Pienaar, W. Lafayette, and S. Chakradhar, “MDR: Performance
Model Driven Runtime for Heterogeneous Parallel Platforms Categories
and Subject Descriptors,” in International Conference on Supercomputing.
ACM, 2011, pp. 225–234.

[3] ENHANCE, “BMBF project ENHANCE - enabling heterogeneous
hardware acceleration using novel programming and scheduling models,”
2011. [Online]. Available: http://www.enhance-project.de/en/project.html
16.06.2012

[4] C. Lattner, “LLVM: A compilation framework for lifelong program
analysis & transformation,” Code Generation and Optimization, no. c,
pp. 75–86, 2004.

[5] ——, “LLVM Language Reference.” [Online]. Available:
http://llvm.org/docs/LangRef.html 16.06.2012

[6] Clang, “clang: a C language family frontend for LLVM.” [Online].
Available: http://clang.llvm.org/ 16.06.2012

[7] C. Tian, H. Zhou, Y. He, and L. Zha, “A Dynamic MapReduce Scheduler
for Heterogeneous Workloads,” in 2009 Eighth International Conference
on Grid and Cooperative Computing. IEEE Computer Society, 2009,
pp. 218–224.

[8] V. Jimenez, L. Vilanova, I. Gelado, and M. Gil, “Predictive runtime
code scheduling for heterogeneous architectures,” High Performance
Embedded Architectures and Compilers, vol. 5409, 2009.

