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Towards globally optimal operation

of water supply networks∗

Ambros M. Gleixner† Harald Held‡ Wei Huang§

Stefan Vigerske‖

July 25, 2012

Abstract

This paper is concerned with optimal operation of pressurized water supply
networks at a fixed point in time. We use a mixed-integer nonlinear program-
ming (MINLP) model incorporating both the nonlinear physical laws and the
discrete decisions such as switching pumps on and off. We demonstrate that for
instances from our industry partner, these stationary models can be solved to
ε-global optimality within small running times using problem-specific presolving
and state-of-the-art MINLP algorithms.

In our modeling, we emphasize the importance of distinguishing between
what we call real and imaginary flow, i.e., taking into account that the law of
Darcy-Weisbach correlates pressure difference and flow along a pipe if and only
if water is available at the high pressure end of a pipe. Our modeling solution
extends to the dynamic operative planning problem.

1 Introduction

Water supply networks form a vital part of public, municipal infrastructure. Commu-
nal life and industrial activity base not only on the availability, but also the reliable
distribution of, in particular, potable water. Installation, maintenance, and opera-
tion of a water supply network incur substantial costs. This article is concerned with
mathematical optimization for cost- and energy-minimal network operation. For work
on optimal network design using similar methodology, see, e.g., the recent article of
Bragalli et al. [9] and references therein.

The article is organized as follows. In Section 2, we introduce the application
background and put our research into the context of existing solution methodolo-
gies. Section 3 models the optimization problem as a mixed-integer nonlinear program
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(MINLP) and Section 4 explains how this can be solved to globally proven optimal-
ity gaps. In Section 5 we describe a set of straightforward presolving steps reducing
the size and difficulty of the model without cutting off optimal solutions. Section 6
presents results of computational experiments conducted on real-world instances pro-
vided by our industry partner Siemens AG, Corporate Technology, Modeling, Simu-
lation & Optimization.1 Finally, Section 7 contains concluding remarks.

2 Motivation

A pressurized water supply network is a system of pipes, valves, and pumps con-
necting the sources of water with the consumers. Operative planning must ensure
that requested water is transported from the sources to the consumers, possibly using
tanks as intermediate storage facilities. If gravitation does not suffice, pumps need
to be activated thereby consuming energy at a certain cost. The second matter of
expense is the resource itself: providing water at a source comes at different costs
depending, e.g., on modes of extraction or purification at the facility.

The full-scale operative planning task typically covers the time span of one day
with hourly demand forecasts for each consumer and comprises the decision when
and which pumps are switched on and off, when and which tanks are filled for storage
(typically at low demand), when they are deflated again (typically at peak demand),
and where water is obtained. The benefit of minimum cost operative planning is both
economical and ecological. Minimizing energy cost equals saving energy itself and
preferring water from cheap sources usually means avoiding chemical treatment.

The resulting optimization problem includes discrete and continuous decisions and
features nonconvex nonlinearities in constraints and objective function. The time di-
mension adds another difficulty. Due to this complexity, solution approaches found in
the literature either simplify the physics involved, e.g., by dropping or linearizing the
nonlinearities, or resort to locally optimal solution procedures such as solving NLP
formulations to local optimality or applying (meta-)heuristic procedures without guar-
anteed optimality gaps. For an overview on work before 2004, see, e.g., Burgschweiger
et al. [10]. For recent work, see, e.g., the theses of Huang [12], which has been the
base for our paper, and Kolb [14], which adresses this problem heuristically from an
optimal control perspective.

Although heuristic trade-offs may currently be necessary to obtain acceptable solu-
tion times, sacrificing global optimality remains unsatisfactory both from a theoretical
and practical point of view. An interesting approach is investigated in [11, 13]. The
authors describe how to approximate nonlinearities by piecewise linear functions in
order to obtain a mixed-integer linear program (MIP), for which sophisticated so-
lution algorithms are readily available. The approximation has to be determined a
priori, but violation of the nonlinear constraints can be checked a posteriori and the
approximation can be refined if necessary to obtain an ε-feasible solution. However,
even then the approach does not guarantee a valid dual bound and optimal solutions
may be cut off since precisely speaking a different problem is solved.

In our paper, we focus on solving a stationary version of the planning problem
to ε-global optimality: Given fixed starting levels of tanks and constant demands of
consumers, compute a pump configuration and a feasible flow through the network
such as to minimize the variable operational cost incurred by purchase of energy
and water. Although this alone does not address the full operative planning task,
it arises naturally, e.g., as one-period subproblem in a time-discretized formulation.

1http://www.ct.siemens.com/
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Figure 1: Schematic diagram of water supply network instance n88p64a64 with
88 nodes (15 reservoirs, 11 tanks, 62 junctions), 22 consumers, 64 pipes, 55 pumps,
and 9 valves.

In heuristic or decomposition-based solution approaches these subproblems may have
to be solved iteratively. Not least, the ability to compute proven optimal solutions
to these stationary models can help in evaluating and improving heuristic solution
techniques.

3 Model

The goal of this paper is to optimize the operation of a water supply network at
a fixed point in time. Given filling levels of tanks and demands of consumers we
wish to compute a feasible flow through the network such as to minimize the variable
operational cost incurred by purchase of energy and water. In the following, we model
this problem as a nonconvex mixed-integer nonlinear program (MINLP).

3.1 Network elements

Our model of a water supply network is based on a directed graph G = (N ,A). The
set of nodes N = J ∪W consists of junctions j ∈ J and water sources w ∈ W such as
reservoirs or tanks. Consumers are located at junctions with nonzero demand Dj > 0.
The arc set A = S ∪P ∪V, where S is the set of pipe segments, P is the set of pumps,
and V is the set of valves.

In general, the direction of an arc does not prescribe the direction of flow through
this element, but only defines the meaning of positive flow. Some arcs such as pumps,
however, only permit one-directional flow. For a node i, we denote the set of in-
and out-going arcs as δ−(i) := {ki ∈ A : k ∈ N} and δ+(i) := {ik ∈ A : k ∈ N},
respectively.

Figure 1 shows an example of a real-world water supply network provided to us
by Siemens AG. It consists of 88 nodes – 11 tanks, 15 reservoirs, 62 junctions, and

3



22 consumers – as well as 64 pipes, 55 pumps, and 9 valves.

3.2 Flow balance

Each arc a = ij carries a signed flow qa ∈ [Qmin
a , Qmax

a ]; if positive then from i to j,
if negative then |qa| is transported backwards. At each junction j, the classical flow
balance equation ∑

a∈δ−(j)

qa −
∑

a∈δ+(j)

qa = Dj (1)

must be satisfied. Junctions with positive demand Dj > 0 correspond to consumers,
all others satisfy Dj = 0. The remaining nodes, the water sources w ∈ W, provide
the flow necessary to match the demand:

Dmin
w 6

∑
a∈δ+(w)

qa −
∑

a∈δ−(w)

qa 6 Dmax
w . (2)

While reservoirs allow for outflow only, i.e., Dmin
w = 0, tanks are used to store water

and admit both in- and outflow.

3.3 Pressure

Water flow through the network is induced by different pressure levels at the nodes.
Since water is approximately incompressible, static water pressure may be assumed
proportional to the elevation h (in meter) above a fixed point of measurement: pres-
sure equals ρgh, where ρ is water density and g is gravitational acceleration. According
to convention, we measure pressure and pressure differences by the so-called head hi
of a node i and the head difference ∆ha along an arc a.

While the pressure at water sources w is fixed,

hw = H0
w,

the head at a junction j may exceed the geodetic height,

hj > H0
j .

Their values are determined by pressure loss in pipes and valves and pressure increase
in pumps according to the laws described in the following.

3.4 Pipe model

The flow of water through a pipe s = ij is a function of the pressure levels hi and hj at
its ends. The pressure loss along the pipe is described by the law of Darcy-Weisbach,

hi − hj = λssgn(qs)q
2
s , (3)

where sgn(qs) denotes the sign of qs. The loss coefficient λs in this equation is com-
puted as

λs =
8Ls
π2gd5s

fs

involving properties of the pipe – length Ls and inner diameter ds – and the Darcy
friction factor fs. The highly nonlinear dependency of fs on the flow rate qs is taken
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into account by simulation software, see, e.g., EPANET [22], but appears to be too
detailed for an optimization model.

We use the law of Prandtl-Kármán,

fs =
(

2 log10

εs
3.71ds

)2
,

which eliminates the dependency on qs by assuming large Reynolds number and is
a good approximation for hydraulically rough pipes. It tends to underestimate the
induced flow for small pressure differences, hence yielding conservative solutions. The
roughness parameter εs only depends on the inner pipe surface. For more details on
mathematical modeling of the physics of pressure loss, see, e.g., [10].

Remark 1. Because we handle the Darcy-Weisbach equation with bidirectional flow
algorithmically, see Section 4.2, we do not need to include a forward and backward
arc in our model with one nonlinear pressure loss constraint each as, e.g, in Sherali
and Smith [17].

3.5 Valve model

A valve v = ij can be used to block flow completely or decrease its pressure by a
controlled amount in direction of the flow. We introduce a binary variable yv denoting
the flow direction through the valve, yv = 1 if positive, i.e., from i to j. Then, we
may model feasible valve states by

M(1− yv) 6 hi − hj 6Myv (4)

and
M(1− yv) 6 qv 6Myv, (5)

where M is chosen sufficiently large. If qv = 0, the valve is closed and the pressure
levels at i and j are uncoupled since yv can take either value. If qv 6= 0, the pressure
decreases in direction of the flow by |∆hv| = |hi − hj |, possibly zero.

Feasible valve states could alternatively be modeled by the nonlinear constraint
∆hvqv > 0, however, introducing an auxiliary binary variable yv improves the com-
putational behavior of our branch-and-cut solution approach presented in Section 4.

Remark 2. For clarity of presentation, we use the same M constant in all big-M
constraints of our model. In our computations we choose M for each constraint
individually as small as possible, depending on the bounds of the variables involved.

3.6 Pump model

The geographically given head differences in a water supply network usually do not
generate sufficient flow between water sources and consumers to satisfy the demand.
Pumps are used to increase the pressure at water sources or within the network,
thereby consuming energy.

The pressure increase generated by a pump depends on the speed at which it is
operated and the flow through the pump. This relationship is measured empirically
and recorded as characteristic curve of the pump. For a pump p = ij operated at
constant speed – all pumps in the instances available to us operate at a single fixed
speed –, it may be approximated as

∆hp = ∆Hmax
p − γ1pq

γ2
p
p , (6)
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where parameters ∆Hmax
p , γ1p , and γ2p are chosen to fit the characteristic curve. The

more water flows through the pump, the less the pressure increases.
If a pump is switched off it acts like a closed valve, i.e., qp = 0 and hi and hj

are uncoupled. If it is active then the flow must be within some interval [Qmin
p , Qmax

p ]
and the head increase is enforced as in (6). Using a binary variable xp for the pump
status, we can model this by

Qmin
p xp 6 qp 6 Qmax

p xp (7)

and
M(xp − 1) 6 hi − hj −∆hp 6M(1− xp). (8)

Note that pumps allow for positive flow direction only and qp is a semi-continuous
variable, Qmax

p > Qmin
p > 0.

The energy consumed to generate a head difference of ∆hp at flow rate qp can be
approximated by ρg∆hpqp/ηp, where ηp is the pump efficiency. We assume that the
range of feasible flow rates [Qmin

p , Qmax
p ] is chosen such that the pump operates close

to its maximum efficiency and hence ηp can be treated as constant. For more detailed
mathematical models of water pumps, see, e.g., [10].

3.7 Real and imaginary flow

As explained above, different pressure levels at the ends of a pipe induce nonzero
flow according to the law of Darcy-Weisbach as given by equation (3). However, this
only holds if water is indeed present at the high-pressure node. With active elements
like closed valves or inactive pumps, pipes may become empty. In this case, strict
enforcement of (3) leads to a physically unsound model.

As an example, consider the subnetwork shown in Figure 2 taken from the real-
world instance in Figure 1. An elevated tank t1 is connected to the network via valve
k1. Pipe s3 leads downwards, i.e., H0

j2
> H0

j1
. Suppose now valve k1 is closed. By

flow balance, qs3 = 0, and for (3) to hold we need hj1 = hj2 , i.e., the head at j1 must
lie strictly above its geodetic height. In reality, however, the subnetwork functions as
if s3, j2, k1, and t1 were not present, hence hj1 = H0

j1
might be a valid state.

We call head levels at nodes without water and the flow that would be induced
by these head levels according to the law of Darcy-Weisbach imaginary as opposed
to real. In the above example, the incorrect assumption was to enforce equation (3)
although the head at j2 is imaginary in solutions with closed valve k1.

Remark 3. So far we have not seen this distinction being made in the literature.
Although it may be that depending on the structure of the network all head levels
can be validly assumed to be real, we believe this to be a potential source for harm-
ful modeling gaps. Note that this distinction is equally necessary for the full-scale
operative planning problem and can be made by the same constraints proposed here.

To distinguish between real and imaginary heads, we introduce a binary variable zj
at each junction j ∈ J forced to 1 if the head is strictly greater than its geodetic
height,

hj 6 H0
j +Mzj , (9)

or if flow passes through j, i.e.,

−Mzj 6 qa 6Mzj (10)

for all a ∈ δ(j). Water supply networks are usually operated such that water sources
are never completely empty and may be assumed as real, zw = 1 for all w ∈ W.
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s1 s2

j1

j2

k1

t1

s3

t1

Figure 2: Subnetwork with imaginary flow for closed valve k1.

Furthermore, we need to model how water is propagated along pipes: If a pipe ij
is level then water is present at i if and only if it is present at j, i.e.,

zi = zj (11)

for all ij ∈ S with H0
i = H0

j . For pipes with nonzero slope two implications hold:
First, if the geodetically higher node, node i, say, is real, so is the lower node j,

zi 6 zj . (12)

Second, if the lower node j is real and contains water with higher pressure than H0
i ,

then also i must be real,
hj 6 H0

i +Mzi. (13)

Finally, we enforce equation (3), the law of Darcy-Weisbach, between (and only
between) real nodes:

∆hs = λssgn(qs)q
2
s (14)

and
M(zi + zj − 2) 6 hi − hj −∆hs 6M(2− zi − zj) (15)

for all pipes s = ij ∈ S.

Remark 4. Note that both in reality and in our model a node may be real in spite of
zero flow through the node: zj = 1 and qa = 0 for all a ∈ δ(j). As an example, imagine
an additional, closed valve at node j1 in Figure 2, while valve k1 is open. Then pipe s3
would be completely filled with water from the tank, hence nodes j1 and j2 would be
real. At the same time, the water column in the pipe yields pressure hj1 = hj2 and
so the law of Darcy-Weisbach is satisfied by zero flow, qs3 = 0.

3.8 Objective function

Our goal is to minimize the variable operational costs incurred by purchasing water fed
into the network and the energy needed to operate pumps. The energy consumption
of a pump p equals

ρg∆hpqp
ηp

(6)
=
ρg

ηp

(
∆Hmax

p qp − γ1pq
1+γ2

p
p

)
.
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variable interpretation

hi pressure potential (head) at node i ∈ N [m]
∆ha pressure increase/decrease at pump or pipe a ∈ P ∪ S [m]
qa volumetric flow rate in arc a ∈ A [m3/s]
xp binary indicator whether pump p ∈ P is switched on
yv binary indicator for direction of valve v ∈ V
zi binary indicator whether node i ∈ N is real

Table 1: Variables of the optimization model.

The total objective function has the form∑
w∈W

αw

( ∑
a∈δ+(w)

qa −
∑

a∈δ−(w)

qa

)
+
∑
p∈P

βρg

ηp
∆hpqp

=
∑
w∈W

αw

( ∑
a∈δ+(w)

qa −
∑

a∈δ−(w)

qa

)
+
∑
p∈P

βρg

ηp

(
∆Hmax

p qp − γ1pq
1+γ2

p
p

)
, (16)

where β > 0 is the energy cost and αw > 0 the cost for purchasing water at source w,
which may vary from source to source. Tanks function as storage facilities within the
network – the only water sources allowing for inflow – and do not incur costs. Note
that the objective function can be expressed in terms of flow variables only and each
summand is a univariate function.

3.9 Summary

Table 1 summarizes the variables used in our optimization model. The complete
nonconvex MINLP now reads

min
∑
w∈W

αw

( ∑
a∈δ+(w)

qa −
∑

a∈δ−(w)

qa

)
+
∑
p∈P

βρg

ηp

(
∆Hmax

p qp − γ1pq
1+γ2

p
p

)
s.t. (1− 2), (4− 5), (6− 8), (9− 15),

xp ∈ {0, 1}, qp ∈ [0, Qmax
p ],∆hp ∈ [0,∆Hmax

p ] for all p ∈ P,
yv ∈ {0, 1}, qv ∈ [Qmin

v , Qmax
v ] for all v ∈ V,

qs ∈ [Qmin
s , Qmax

s ] for all s ∈ S,
zj ∈ {0, 1}, hj ∈ [H0

j , H
max
j ] for all j ∈ J ,

zw = 1, hw = H0
w for all w ∈ W.



(17)

It features two types of nonlinearities, the energy consumption of pumps in the ob-
jective function and the Darcy-Weisbach equation along each pipe, both of which are
nonconvex. Together with the discrete states encoded in the binary variables this
yields a highly nonconvex solution space.

4 Global solution approach

The problem formulation given in the previous section is a nonconvex MINLP. Its
combination of discrete and continuous nonconvexities – binary decision variables for
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pump status, valve direction, and imaginary flow plus nonconvex nonlinear terms (6)
and (14) – results in a challenging optimization problem. In the following we describe
how well-known algorithmic techniques can be applied to solve them to ε-global op-
timality.

4.1 Branch-and-bound

A common methodology to handle nonconvex optimization problems is branch-and-
bound [15], where the problem is successively divided into smaller subproblems until
the individual subproblems are sufficiently easy to solve. Additionally, bounding
is used to detect early whether improving solutions can be found in a subproblem
and avoid enumerating suboptimal parts of the feasible region. Thereby, bounds on
the optimal objective function value are computed from a computationally tractable
relaxation of the current subproblem.

For nonconvex MINLPs, typically an efficiently solvable convex (linear or nonlin-
ear) relaxation is used for bounding, obtained by dropping integrality conditions and
replacing nonconvex nonlinear functions by convex estimators [18]. Branching (prob-
lem division) is done with respect to either discrete variables that take a fractional
value in the relaxation’s solution or variables that appear in violated nonconvex con-
straints. The purpose of the latter is, that a reduction of a variable’s domain yields
tighter convex estimators, which in turn may allow to cut off the infeasible solution
from the relaxation.

Branch-and-bound algorithms for general MINLPs are implemented by the solvers
BARON [18], Couenne [3], LINDO API [16], and SCIP [2, 19]. By default, all of them
employ a linear relaxation.

We used the solver SCIP, a framework for solving constraint integer programs by
a branch-and-bound algorithm. Arguably, from the solvers listed above, it provides
the strongest support for solving mixed-integer programs (MIPs), which is necessary
to address the combinatorial aspect of our optimization problem. Its state-of-the-art
MIP features include cutting plane separators, primal heuristics, domain propagation
algorithms, and support for conflict analysis [1, 2]. Recently, SCIP has been extended
to handle also nonlinear constraints [8, 19].

4.2 Outer approximation

For the nonlinear functions qs 7→ λssgn(qs)q
2
s from constraint (14) and qp 7→ −γ1pq1 + γ2

p
p

in the objective function (16), SCIP generates a linear outer approximation along
their convex and concave envelopes. If the relaxation’s solution violates nonlinear
constraints, the outer approximation is tightened by branching on the flow variables
qs and qp. For qs 7→ λssgn(qs)q

2
s , this is illustrated in Figure 3. For further details,

we refer to [19].

-0.5 0.0 0.5 1.0
f

-0.5

0.0

0.5

1.0

-0.5 0.0 0.5 1.0
f

-0.5

0.0

0.5

1.0

-0.5 0.0 0.5 1.0
f

-0.5

0.0

0.5

1.0

Figure 3: Linear outer approximation of the nonlinear function qs 7→ λssgn(qs)q
2
s and

effect of branching on qs.
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To improve performance, SCIP uses the constraints to propagate a reduction in
one variable’s domain to other variables. For example, if the bounds on variable ∆hs
in constraint ∆hs = λssgn(qs)q

2
s are reduced to [∆hs,∆hs], the bounds of qs can be

tightened to [
sgn(∆hs)

√
|∆hs|/λs, sgn(∆hs)

√
|∆hs|/λs

]
,

which allows for a tighter linear outer approximation. Similarly, tighter bounds
for ∆hs may be deduced from domain reductions for qs.

4.3 Primal solutions

Although in theory, it suffices to collect feasible solutions of the relaxation at leaves
of the branch-and-bound tree, in practice, it is highly beneficial to apply heuristic
procedures interleaved with the global search. Finding good solutions early in the
search allows the user to stop the solution early if he is already satisfied with the
achieved solution quality. Algorithmically, better primal bounds allow the branch-
and-bound tree to be pruned earlier and can hence improve solver performance.

SCIP uses several primal heuristics to find feasible solutions early in the search.
First, SCIPs default MIP primal heuristics [4] are applied to find a point that is
feasible for the linear relaxation plus the integrality requirements, but may violate
some of the nonlinear constraints. Subsequently, the binary variables (x, y, z) are
fixed to their value in this solution and the resulting nonlinear program (NLP) is
solved to local optimality using Ipopt [20]. If the NLP is feasible, any solution is also
feasible for the original MINLP.

Second, SCIP employs various large neighbourhood search heuristics extended
from MIP to MINLP [4, 7] or specifically designed for MINLP [5, 6]. These heuris-
tics use the relaxation solution or previously found feasible solutions to construct a
hopefully easier sub-MINLP by restricting the search space, e.g., via variable fixings.
The reduced problem is then partially solved by a separate SCIP instance.

5 Reformulation and presolving

This section outlines a set of straightforward problem-specific presolving steps that
help to reduce both size and difficulty of given instances of type (17). The reductions
explained in the following are exact in the sense that a feasible solution is cut off only
if another essentially identical solution remains.

5.1 Fixing and propagating z variables

At junctions with nonzero demand, flow balance requires nonzero flow on at least one
incident arc. Trivially, (10) implies that the head is real:

j ∈ J , Dj > 0 =⇒ zj = 1.

Using these fixings and the water sources known to be real, some of the constraints
(11−13) may then become redundant or can be used to fix further z variables to one.

5.2 Breaking symmetry in pump stations

A design commonly found in water supply networks is a collection of identical pumps
p1, . . . , pN ∈ P that are connected in parallel within a so-called pump station as
depicted in Figure 4.

10



p1 p2 pn

Figure 4: Pump station with pumps connected in parallel.

All active pumps increase the pressure by an equal amount and their flow rates
add up. Since only the number of active pumps is relevant and not which pumps are
active, the standard symmetry breaking constraints

xp1 6 . . . 6 xpN

are valid. This reduces the search space for feasible choices of active pumps signifi-
cantly from 2N to N + 1.

5.3 Contracting subsequent pipes

Suppose a zero demand junction j is incident with two pipes, one entering, ij, and one
leaving, jk. Flow balance enforces qij = qjk =: q̃ and if nonzero flow passes through j
the Darcy-Weisbach equations read hi−hj = λijsgn(q̃)q̃2 and hj −hk = λjksgn(q̃)q̃2.
These two constraints are equivalent to

hi − hk = (λij + λjk)sgn(q̃)q̃2

and

hj =
λjkhi + λijhk
λjk + λij

.

We want to exploit this to replace pipes ij and jk by a new, aggregated pipe ik with
loss coefficient λij + λjk and consequently remove junction j from the network.

In case nonzero flow q̃ 6= 0 is guaranteed to pass through the pipe, we only need
to ensure satisfiability of hj > H0

j by

λjkhi + λijhk
λjk + λij

> H0
j . (18)

To account for q̃ = 0, however, we need to keep variable zj in the model, since it
may be zero even if zi = zk = 1. (As an example consider the case that junction j is
located much higher than i and k and can hence block flow even if water is available
at i and k.)

Darcy-Weisbach holds if and only if all three nodes i, j, and k have real head, i.e.,
constraint (15) becomes

M(zi + zj + zk − 3) 6 hi − hk −∆hik 6M(3− zi − zj − zk). (15a)

Constraints (9−13) involving zj remain unchanged. To ensure (18) if j is real, we add
constraint

λjkhi + λijhk
λjk + λij

> H0
j −M(1− zj). (19)
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The cases of two pipes entering or leaving a zero demand junction work anal-
ogously. Pipe sequences with several inner nodes ij1, j1j2, . . . , jNk can be treated
identically – for each inner node we only need to add its z variable to (15a) and
include constraint (19).

Note that these presolving steps do not just yield a smaller problem, but most
importantly a more linear one because we remove nonlinear equations of type (14).

5.4 Contracting pipe-valve-sequences

Suppose a pipe ij ∈ S and a valve jk ∈ V are connected by a zero demand junction
j. Flow balance enforces qij = qjk =: q̃. Figure 5 shows the feasible values of
pressure loss hk−hi versus q̃. While the Darcy-Weisbach equation forces the pressure
loss along the pipe onto the dashed line, the valve allows for larger pressure loss in
absolute value. The feasible region is hence a union of two convex sets, the dotted
area for backward flow and the shaded area for forward flow.

q̃

hk − hi

1

Figure 5: Feasible values of pressure loss versus flow through a pipe-valve-sequence
ij ∈ S, jk ∈ V.

This can be exploited replacing pipe ij and valve jk by a new arc a = ik and
relaxing valve constraints (4) and (5) and pipe constraints (14) and (15) to

M(ya − 1) 6 qa 6Mya (5)

for flow direction as before,
∆ha > λijq

2
a (14a)

for the minimum pressure loss, and

M(zi + ya − 2) 6 hi − hk −∆ha (15b)

and
hi − hk + ∆ha 6M(1− zk + ya) (15c)

for the relaxed Darcy-Weisbach equation.
This reduction replaces the nonconvex, nonconcave constraint (14) by a convex

quadratic constraint. Again, other combinations of arc directions work analogously.

Remark 5. The above presolving steps simplify the model in two ways. First, they
reduce the problem size by eliminating variables and constraints. Second, and even
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more importantly, they remove some of the nonconvex Darcy-Weisbach equations
either completely – when contracting pipe sequences – or replace them by convex
constraints – when contracting a pipe-valve-sequence. This significantly reduces the
amount of spatial branching needed in the branch-and-bound solution procedure.

6 Computational experiments

This section presents the results of our computational experiments on two networks
provided by our industry partner Siemens AG. Figure 6 shows a small water supply
network n25p22a18 on 25 nodes (1 reservoir, 4 tanks, 20 junctions), 4 consumers,
22 pipes, 12 pumps, and 6 valves. The second network n88p64a64 on 88 nodes
(15 reservoirs, 11 tanks, 62 junctions), 22 consumers, 64 pipes, 55 pumps, and 9 valves
is depicted in Figure 1. Each network comes with hourly demand forecast for one day.

6.1 Experimental setup

The goal of our experiments was to investigate whether and how fast the stationary
version of the operative planning problem in form of the MINLP model (17) can
be solved to ε-global optimality and to evaluate the computational impact of the
presolving reductions described in Section 5.

Exemplarily, we selected the demand forecasts for 0-1 am (low demand), 6-7 am
(first peak demand), 12-1 pm (medium demand), and 6-7 pm (second peak demand).
The results for these scenarios were representative for the other hours.

For the tank levels, we considered two scenarios. In the medium tank level scenario,
we assume all tanks to be half-full; in this case, a large portion of the demand may
be satisfied by emptying the tanks only, without significant pump activity. However,
such a solution will be very greedy and also the difficulty of the MINLPs may be
reduced. Therefore, for a second test, we select the tanks that—if the first solution
was implemented—would run empty first and set them to their minimum filling level,
hence only allowing for inflow into these tanks; for network n25p22a18 we reset the
first, for n88p64a64 we reset the first four tanks that would run empty to their
minimum filling levels. We refer to this as low tank level scenario.

For our experiments we solely used academic software that is available in source
code. We ran SCIP 2.1.1 [24] with SoPlex 1.6.0 [25] as LP solver, Ipopt 3.10.1 [23] as
NLP solver, CppAD 20110101.5 [21] as expression interpreter for evaluating nonlinear
functions, and Zimpl 3.2 [26] as modeling language. SCIP was run with default
settings and a time limit of one hour. We conducted the experiments on an AMD
Opteron 6174 with 2.2 GHz and 128 GB RAM.

6.2 Computational results

First, we evaluate the impact of the problem-specific presolving steps described in
Section 5. Table 2 shows how these help to reduce the size of the problems in number of
variables “vars”, binary variables “bin”, number of constraints “cons” and number of
nonlinear constraints “nlin”. Note that the problem reductions apply to the structure
of the network and are indepent of demand forecast or tank levels. The numbers
given are computed before applying SCIP’s presolving. Fixed variables and bound
constraints are not counted. The largest reduction occurs in the number of binary
variables, which are reduced by 14% and 18%, respectively. The number of nonlinear
constraints is only slightly reduced.
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Figure 6: Schematic diagram of water supply network n25p22a18 with 25 nodes
(1 reservoir, 4 tanks, 20 junctions), 4 consumers, 22 pipes, 12 pumps, and 6 valves.

Table 3 compares running times and number of branch-and-bound nodes explored
by SCIP when solving to optimality with a tolerance of 10−6. It can be seen that
the scenarios for the smaller instance n25p22a18 can all be solved within one second
and can only improve minimally when using presolving. The most difficult instances
are the low tank level scenarios for the larger network n88p64a64. Here, both solu-
tion time and number of branch-and-bound nodes decrease drastically when applying
presolving. Due to smaller branch-and-bound trees, the instances are solved faster
by a factor between 3.8 and 89.5. The only slowdown occurs on “0-1 am med” and
“6-7 am med” because SCIP’s primal heuristics do not find the optimal solution at
the root node anymore. Nevertheless, these are solved within less than two seconds.
All in all, the presolving steps presented in Section 5 proved highly beneficial in our
experiments.

Finally, Table 4 presents our computational results for the presolved instances
in more detail. From column “objval” listing the objective value of the optimal
solution found, we can confirm the expectation that the low tank level scenarios
always require more pumps being active, except for demand “6-7 pm” in n25p22a18,
where the objective value remains at the same level. In all cases, the “low” scenarios
take at least as long as the “med” scenarios. In particular for n88p64a64, this seems
to explain why the “med” scenarios are computationally much easier: a solution with
no active pumps is feasible and can be found and proven to be optimal very fast.

The last three columns analyze the solution progress in more detail, giving the
time to find a first feasible solution, the time to achieve a proven primal-dual gap of

network without presolving with presolving

vars bin cons nlin vars bin cons nlin

n25p22a18 145 28 332 42 139 24 322 40
n88p64a64 561 99 1098 171 542 81 982 170

Table 2: Problem sizes without and with problem-specific presolving as described in
Section 5.
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scenario without presolving with presolving

demands tanks time nodes time nodes

n
2
5
p
2
2
a
1
8

0-1 am med 0.7s 247 0.4s 67
low 0.9s 663 0.8s 85

6-7 am med 0.6s 219 0.4s 60
low 1.0s 478 0.8s 77

12-1 pm med 0.5s 76 0.6s 76
low 1.0s 239 0.9s 172

6-7 pm med 0.5s 54 0.5s 80
low 0.4s 54 0.5s 80

n
8
8
p
6
4
a
6
4

0-1 am med 0.4s 1 1.1s 75
low 11.2s 3518 1.1s 16

6-7 am med 0.6s 1 1.6s 181
low 595.4s 334128 12.8s 5495

12-1 pm med 3.6s 1044 2.4s 430
low 1941.4s 1195329 21.7s 6738

6-7 pm med 4.2s 1413 1.0s 85
low 399.8s 236966 104.0s 64940

Table 3: Running times and number of branch-and-bound nodes to optimal solution
without and with presolving as described in Section 5.

5%, and the time until an optimal solution is found. A gap of 5% is always reached
within 2.4 seconds except for n88p64a64 “12-1 pm low”, where it takes 16.7 seconds.
In almost all cases, the optimal solution is found at the very end of the solution
process. For the instance n88p64a64 “6-7 pm low” with longest running time of
104 seconds, however, the situation is reversed: the optimal solution is found already
after 1.5 seconds and SCIP spends the remaining time to prove its optimality.

7 Concluding remarks

This paper has presented a small contribution to the task of optimal, i.e., energy-
and cost-minimal, operative planning of water supply networks. Our research has
focused on a stationary version of this challenging optimization problem and aimed
at ε-globally optimal solution techniques. The MINLP model used is detailed in the
sense that it incorporates the nonlinear physical laws as well as the discrete decisions
involved.

In our modeling, we have emphasized the importance of distinguishing between
what we call real and imaginary flow. The Darcy-Weisbach equation relating flow
and pressure loss along a pipe must only be enforced if water is actually available at
the high pressure end of the pipe. Our model to handle this distinction extends to
the full dynamic operative planning problem.

Through computational experiments on instances from industry, we demonstrated
that the stationary models presented can be solved to global optimality within small
running times using problem-specific presolving and a state-of-the-art MINLP solution
algorithm.
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scenario to optimality time to

demands tanks objval time nodes first sol 5% gap best sol
n
2
5
p
2
2
a
1
8

0-1 am med 42.63 0.4s 67 0.2s 0.4s 0.4s
low 64.55 0.8s 85 0.5s 0.6s 0.8s

6-7 am med 42.51 0.4s 60 0.2s 0.2s 0.4s
low 62.82 0.8s 77 0.5s 0.7s 0.8s

12-1 pm med 60.54 0.6s 76 0.3s 0.6s 0.6s
low 72.78 0.9s 172 0.8s 0.8s 0.9s

6-7 pm med 60.54 0.5s 80 0.1s 0.2s 0.5s
low 60.54 0.5s 80 0.1s 0.2s 0.5s

n
8
8
p
6
4
a
6
4

0-1 am med 0 1.1s 75 1.1s 1.1s 1.1s
low 4.45 1.1s 16 0.7s 1.1s 0.7s

6-7 am med 0 1.6s 181 1.6s 1.6s 1.6s
low 118.76 12.8s 5495 0.6s 0.9s 12.8s

12-1 pm med 0 2.4s 430 2.4s 2.4s 2.4s
low 86.58 21.7s 6738 12.2s 16.7s 21.7s

6-7 pm med 0 1.0s 85 1.0s 1.0s 1.0s
low 51.24 104.0s 64940 0.8s 1.0s 1.5s

Table 4: Detailed computational results for water supply networks n25p22a18 and
n88p64a64 after presolving as described in Section 5.
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ical Mathematics. Birkhäuser-Science, Basel, 2012.

[14] Oliver Kolb. Simulation and Optimization of Gas and Water Supply Networks.
PhD thesis, Technische Universität Darmstadt, 2011.

[15] Ailsa H. Land and Alison G. Doig. An automatic method for solving discrete
programming problems. Econometrica, 28:497–520, 1960.

[16] Youdong Lin and Linus Schrage. The global solver in the LINDO API.
Optimization Methods & Software, 24(4–5):657–668, 2009. doi:10.1080/

10556780902753221.

[17] Hanif D. Sherali and Ernest P. Smith. A global optimization approach to a water
distribution network design problem. Journal of Global Optimization, 11:107–
132, 1997. doi:10.1023/A:1008207817095.

[18] Mohit Tawarmalani and Nikolaos V. Sahinidis. Global optimization of mixed-
integer nonlinear programs: A theoretical and computational study. Mathemati-
cal Programming, Ser. A, 99:563–591, 2004. doi:10.1007/s10107-003-0467-6.

17

http://vs24.kobv.de/opus4-zib/frontdoor/index/index/docId/1463/
http://dx.doi.org/10.1007/978-1-4614-1927-3_15
http://dx.doi.org/10.1007/s11081-011-9141-7
http://dx.doi.org/10.1007/s11081-011-9141-7
http://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/823
http://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/823
http://dx.doi.org/10.1007/s00186-011-0354-5
http://dx.doi.org/10.1080/10556780902753221
http://dx.doi.org/10.1080/10556780902753221
http://dx.doi.org/10.1023/A:1008207817095
http://dx.doi.org/10.1007/s10107-003-0467-6


[19] Stefan Vigerske. Decomposition of Multistage Stochastic Programs and a Con-
straint Integer Programming Approach to Mixed-Integer Nonlinear Programming.
PhD thesis, Humboldt Universität zu Berlin, 2012. Submitted.
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