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Abstract

In this paper we modify Buchberger’s S-pair reduction algorithm for computing a Gröbner
basis of a toric ideal so as to apply to an integer program in inequality form with fixed right
hand sides and fixed upper bounds on the variables. We formulate the algorithm in the
original space and interpret the reduction steps geometrically. In fact, three variants of this
algorithm are presented and we give elementary proofs for their correctness. A relationship
between these (exact) algorithms, iterative improvement heuristics and the Kernighan-Lin
procedure is established.

Keywords: integer programming, upper bounds, test sets, Buchberger algorithm, Gröbner
bases, iterative improvement heuristics.

1 Introduction

In this paper we consider an integer programming problem of the type

max {cTx : Ax ≤ b, 0 ≤ x ≤ u, x integral},(IP)

where A ∈ INm×n is a given matrix, b ∈ INm is the right hand side vector, u ∈ INn denotes a
vector of upper bounds for the variables and c ∈ ZZn is the objective function. (Here and in the
following IN denotes the natural numbers including 0.) We note at this point that without loss
of generality we may assume ci > 0 for all i: otherwise we can set xi = 0 for the corresponding
variable and eliminate a column from our program. If upper bounds are not explicitly given,
they may be generated by setting ui := min{bj/aij : aij > 0}. The algorithms and proofs that
we present can easily be adapted to the solution of families of integer programs with varying
right hand sides b, as long as finite upper bounds for the variables are given.

Integer programs (IP) can, in principle, be solved by applying the Buchberger algorithm [4]
for computing the Gröbner basis of a toric ideal. The connection between test sets for integer
programming and Gröbner bases of certain ideals was first established by Conti & Traverso [5],
see also Thomas [16]. Whereas the algorithms of [5] and [16] deal with families of integer
programming problems of the form Ax = b, x ≥ 0 for varying right hand side vectors b, we here
show how to handle the case of a fixed right hand side and fixed upper bounds on the variables.

∗Address after January 1, 1995: Department of Mathematics 6–1, Technical University of Berlin, 10623 Berlin,
Germany, ziegler@math.tu-berlin.de
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This is essential, since most integer programs arising “in practice” have upper bounds, often
ui = 1.

Moreover, the procedures formulated in [5] and [16] are applied to an “extended” integer
program with additional variables, of the form

min {cTx+ M1T y : Ax+ Ey = b, x ∈ INn, y ∈ INm, x, y integral},(EIP (b))

where M ∈ IN is a “large” integer, E is the m × m identity matrix, and 1 denotes the vector
of all ones. In practice the additional variables may lead to considerable increase in the space
and time requirements of the algorithms considered. The original proofs for correctness and
finiteness of those algorithms needed an algebraic machinery (which only applies in the case
c ≥ 0); however, the geometric version by Thomas [16] only needed the Gordan-Dickson lemma.

We formulate our algorithm in the original space and interpret all steps geometrically. In
fact, three variants of a (simple) algorithm are presented, and we give elementary geometric
proofs for their correctness. A relationship between these (exact) algorithms, iterative impro-
vement heuristics and the Kernighan-Lin procedure is established as well. Finally, preliminary
computational results show that this type of algorithms has a potential for becoming a powerful
tool in the solution of practical integer programming problems.

As mentioned above, our variant of the Buchberger algorithm deals with an integer program-
ming problem of the type

max {cTx : Ax ≤ b, 0 ≤ x ≤ u, x integral}.(1)

In order to handle more general programs

max {cTx : Ax ≤ b, Cx = d, 0 ≤ x ≤ u, x integral},(2)

we apply the following simple transformation. We define c′ := c+M1TC (where 1 is the vector
with all components equal to 1 and M is a large integer), and solve the integer programming
problem

max {c′Tx : Ax ≤ b, Cx ≤ d, 0 ≤ x ≤ u, x integral}.(3)

Then every optimal solution x0 of (3) will satisfy Cx0 = d, provided that the program (2) is
feasible. If (2) is infeasible, then the objective function value of an optimal solution to (3) is
less than M1Td. Therefore, in terms of optimal solutions both formulations (2) and (3) are in
a one-to-one correspondence, and we can always assume that the integer programming problem
is given in the form (1).

Throughout the paper we use the following notation. N denotes the set {1, . . . , n}. We say
that x ≤ y holds for vectors x, y ∈ ZZn if xi ≤ yi for all i ∈ N . Thus “≤” is a partial order
on ZZn.

From the objective function c we obtain a linear order on ZZn as follows: we choose an
arbitrary term order ≺0 (for example, lexicographic), and use it as a “tie breaker” on the points
that have the same objective function value under c; that is, we define

x ≺c y :⇐⇒
{
cTx < cTy, or
cTx = cTy and x ≺0 y.

In the following “≺” always denotes a linear order ≺c that refines the (fixed) objective function c
in this way. One might note that ≺ is a term order in the sense of Gröbner basis theory if and
only if c ≥ 0. (In case of doubt we write “≺c” for “≺.”)

For a vector d ∈ ZZn we define d� := d if d � 0; in case that d ≺ 0, we set d� := −d. For
v ∈ ZZd we denote by v+ the vector with v+i = vi if vi ≥ 0 and v+i = 0, otherwise. Accordingly,
v− is the vector with v−

i = −vi if vi ≤ 0 and v−
i = 0, otherwise. Clearly v = v+ − v−.
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Definition 1.1 Given a matrix A ∈ INm×n, objective function coefficients ci ∈ ZZ, i ∈ N and a
right hand side vector b ∈ INm, we denote by IPA,b,c,u the optimization problem

max{cTx : Ax ≤ b, 0 ≤ x ≤ u, x integral}.(IPA,b,c,u)

We say that x is feasible for the integer programming problem IPA,b,c,u if Ax ≤ b, 0 ≤ x ≤ u
and x is integral.

A subset B ⊆ ZZd is a test set for the integer program IPA,b,c,u if and only if −b ≤ Av ≤ b,
−u ≤ v ≤ u, v � 0 for all v ∈ B, and if for every non-optimal point x ∈ INn, there is some v ∈ B
such that x+ v is feasible.

The paper is organized as follows. In Section 2 we give an brief sketch of the approach of
Conti & Traverso [5] and Thomas [16]. Section 3 presents the new variants of the Buchberger
algorithm to compute test sets for integer programs. A link of these variants to iterative impro-
vement heuristics and to the Kernighan-Lin heuristic is established in Section 4. We also show
preliminary computational results when our algorithms are applied to small and medium sized
real world problems in Section 5.

2 The Buchberger algorithm

In this section, we review the “Buchberger algorithm for integer programming” of Conti &
Traverso [5]. Our presentation follows Thomas [16]. See Cox, Little & O’Shea [6] for basics
on Gröbner bases and Buchberger’s algorithm in the original setting (ideals in commutative
rings) that motivated the constructions, and Hosten & Sturmfels for a recent report about
computational results [11].

For the following exposition, we consider the integer programs for which A ∈ INm×n is a fixed,
non-negative integer matrix. The right hand side vector, b ∈ INm, is considered as variable. Let
c ≥ 0 be a (fixed) linear objective function. We will also assume that the linear program

min cTx : Ax = b, x ≥ 0(LP (b))

is bounded for every b. This is not much of a restriction: for example, it is satisfied if c ≥ 0. In
particular, this implies that the integer programs

min cTx : Ax = b, x ∈ INn(IP (b))

are bounded. With respect to the refined objective function ≺, we get that IP (b) either has no
feasible solution, or it has a unique optimal solution. We use IPA,c to denote the whole family
of these integer programs, with fixed A and c, but varying right hand side b. The key idea is to
consider this whole class of programs simultaneously. The following is immediate from Dickson’s
lemma [6, p. 70].

Lemma 2.1 There is a unique minimal (finite!) set of vectors {a1, . . . , at} ⊆ INn such that

{x ∈ INn : x non-optimal} = {x ∈ INn : x ≥ ai for some i}.

Definition 2.2 A subset B ⊆ ZZd is a test set for the family IPA,c of integer programs if

• Ag = 0 and g � 0 for all g ∈ B, and

• for every non-optimal point x ∈ INn, there is some g ∈ B with x− g ≥ 0.
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The definition of a “test set” immediately provides the following algorithm for integer pro-
gramming — provided we have a feasible point to start with, and we know how to compute a
test set.

Algorithm 2.3 to solve programs in a family IPA,c:

(1) Input B, some x ∈ INn (feasible for IP (Ax)).

(2) While x non-optimal

(2.1) find g ∈ B such that x− g ≥ 0.

(2.2) x −→ x− g.

Theorem 2.4 (Thomas [16, Cor. 2.1.10])
The unique minimal test set for the family IPA,c of integer programs is

Bc =
{
ai − bi : ai ∈ MIN≤{x ∈ INn non-optimal}, Aai = Abi, bi optimal

}
,

where the symbol MIN≤ denotes the set of minimal elements with respect to the partial order ≤.

The key observation is an identification between this “geometric” test set and an algebraic
gadget: the minimal test set corresponds to a Gröbner basis of the “toric ideal”

IA := 〈xa+ − xa
−
: Aa = 0, a ∈ ZZn〉

with respect to the term order ≺.
The information that Bc is a Gröbner basis of IA is by itself not too helpful, since in general

one does not know a generating set for the ideal — so one cannot compute a Gröbner basis,
either. Thus Conti & Traverso [5] create a larger integer program, which has an obvious integer
feasible point, and for which the ideal has a nice generating set to start from. However, this
leads to a problem of higher dimension, which tends to be computationally more difficult.

Conti & Traverso’s “extended integer programs” are given by

min≺(M1,c) : Ey+ Ax = b, x ∈ INn, y ∈ INm(EIP (b))

where M ∈ IN is a large integer, E is the m×m identity matrix, and 1 denotes the vector of all
ones. We use EIPA,c to denote the whole family of these integer programs, with fixed A and c,
but varying right hand side b. What have we gained? On the one hand, all of the programs
EIP (b) are feasible: they have the obvious solutions x = 0, y = b. However, an optimal solution
will satisfy y = 0, x = x0 if the program IP (b) is feasible, because M is sufficiently large. If
IP (b) is infeasible, then the extended program EIP (b) has an optimal solution with y > 0.
Putting both cases together, we see that it is sufficient to solve the extended programs.

Proposition 2.5 (Conti & Traverso [5]) The ideal

I(E,A) := 〈ya+1 xa+2 − ya
−
1 xa

−
2 : (E,A)

(
a1
a2

)
= 0,

(
a1
a2

)
∈ ZZm+n〉

is generated by the binomials

yAej − xj for 1 ≤ j ≤ n.
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The reduced Gröbner basis of I(E,A) with respect to the term order ≺(M�,c) yields the minimal
test set B(M�,c) for that family EIPA,c, via the canonical bijection

(
a1
a2

)
←→ ya

+
1 xa

+
2 − ya

−
1 xa

−
2 .

Proof. The binomials yAej −xi form a Gröbner basis for I(E,A), for any lexicographic term order
with xi �lex yj . Thus they generate the ideal.

Putting things together, we have a simple algorithm for integer programming: we “only”
need to compute a reduced Gröbner basis with respect to the term order ≺(M�,c), and then use
this with the above algorithm to solve the programs IPA,c.

Algorithm 2.6 “Integer programming via Buchberger’s algorithm” [5]
The following procedure solves the integer program

min≺c : Ax = b, x ∈ INn(IP (b))

for A ∈ INm×n, b ∈ INm, c ∈ INn.

(1) Compute a test set

(1.1) Input A, c.

(1.2) Compute the reduced Gröbner basis B(M�,c) for I := 〈yAej − xj〉.
(1.3) Output the test set B(M�,c).

(2) Optimization

(2.1) Input B(M�,c), b.

(2.2) Reduce yb with respect to B(M�,c), to get ya1xa2.

(2.3) if a1 �= 0, output “IP (b) is infeasible”
if a1 = 0, output “x0 = a2 is optimal.”

While the first phase of this algorithm is hard work, the second one is quite trivial (if we
manage to efficiently search the Gröbner basis, which may be huge). If we don’t have a complete
Gröbner basis, then we can still use any partial basis to reduce the monomial yb, which may
yield a feasible, or even the optimal, point.

The Buchberger algorithm for integer programming is just a special case of the general
Buchberger algorithm. However, there is a lot of special features in the situation of “toric
ideals” we consider here. In particular, one only has to deal with “binomials with disjoint
supports”: thus we can get an entirely geometric formulation of the algorithm, dealing with
lattice vectors in ZZn — no polynomials whatsoever appear. This simplifies the data structures
considerably.

The first observation is that one is dealing with

I := 〈yAej − xj〉,

a binomial ideal. (See [7] for more on binomial ideals.) The S-pair of any two binomials is a
binomial. Also the reduction of a binomial by binomials yields a binomial. Thus the reduced
Gröbner basis of I consists of binomials.
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As a second step, notice that in this situation, if xa − xb ∈ I (with a, b ≥ 0) is a binomial
such that the two monomials have common factors, then we can remove them: x(a−b)+−x(b−a)+

is also contained in I . Let

L := ZZm+n ∩ {
(
y

x

)
: Ey+ Ax = 0}.

Then the reduced Gröbner basis of I consists of binomials of the form xa
+ − xa

−
with a ∈ L.

Thus we are really dealing with a geometric algorithm operating on lattice vectors. This is
worked out very nicely in Thomas [16]. In particular, one can translate the complete procedure
for computing the (unique!) reduced Gröbner basis into this geometric setting.

In this vein, the following two geometric algorithms compute the reduced Gröbner basis of a
lattice, that is, the finite subset B ⊆ L�0 that corresponds to the reduced Gröbner basis of IL.
The assumption for this is that we know a “good” generating set for the lattice, i.e., a subset of
the lattice corresponding to a set of binomials that generates IL.

Algorithm 2.7 “Reduction”
The following algorithm computes the reduction of a vector f ∈ ZZm+n by a set B of integer
vectors.

(1) Input B ⊆ L�0, f � 0.

(2) As long as possible perform the following steps:

(2.1) If there is some g ∈ B with g+ ≤ f+, then replace f by (f − g)�.

(2.2) If there is some g ∈ B with g+ ≤ f−, then replace f by f + g.

(3) Output f := f .

Algorithm 2.8 “Buchberger algorithm on lattice vectors” [16]
The following algorithm computes the reduced Gröbner basis of the lattice L, for a fixed term
order �.
(1) Construct a Gröbner basis

(1.1) Input a basis {a1, . . . , an} ⊆ L of the lattice L such that the binomials xa
+ − xa

−

generate IL.

(1.2) Set Bold := ∅, B := {a1, . . . , an}
(1.3) While Bold �= B, repeat the following steps

(1.3.1) Bold := B

(1.3.2) (S-pairs) construct the pairs f := a− a′ � 0 with a, a′ ∈ B.

(1.3.3) (Reduction) reduce the vectors f by the vectors in Bold, obtain f ,

(1.3.4) if f �= 0, set B := B ∪ f .

(2) Construct a minimal Gröbner basis

(2.1) As long as possible perform the following step:
If for some g ∈ B the point g+ can be reduced by some g′ ∈ B\g, then delete g
from B.

6



(3) Construct the reduced Gröbner basis

(3.1) As long as possible perform the following step:
If for some g ∈ B the point g− can be reduced by some g′ ∈ B\g, then replace g by
the corresponding reduced vector: B := B\g ∪ g.

(3.2) Output Bred := B.

For a successful implementation it is important to reduce earlier, otherwise the Gröbner bases
as constructed in the “First Step” will be too large. See Conti & Traverso [5] and Moulinet &
Pottier [14] for further ideas about how to make this efficient.

3 Three variants of the Buchberger algorithm

In this section we present three variants of an algorithm that computes a test set for the integer
programming problem

max{cTx : Ax ≤ b, xi ∈ {0, 1, . . . , ui}, i ∈ N}(IPA,b,c,u)

where A ∈ INm×n, c ∈ INn, b ∈ INm is a fixed right hand side vector, and u is the vector of upper
bounds on the variables. In the following ≺ always denotes a term order refining c.

We start with an outline of the basic form of the algorithm. Having proved that this version
of the algorithm terminates after finitely many steps with a test set for IPA,b,c,u, we show how
to speed up the computations by excluding certain vectors in the computation of the test set.

Roughly speaking, a test set B can be computed as follows. Start with the n unit vectors,
B := {ei : i ∈ N}. Iteratively, compute the difference vectors between all pairs of vectors in B
and direct each such difference vector such that it is greater than 0 with respect to the order. All
such difference vectors that are not in B and that are differences of feasible vectors for IPA,b,c,u

are added to B. The algorithm terminates if no more vectors are added to B.

Algorithm 3.1

(1) Set Bold := ∅, B := {ei : i ∈ N}.
(2) While Bold �= B perform the following steps:

(2.1) Set Bold := B.

(2.2) For all pairs of vectors v, v′ ∈ B with v ≺ v′ that satisfy −b ≤ A(v′ − v) ≤ b and
−u ≤ v′− v ≤ u, set B := B ∪ {v′− v}.

Whenever Step (2) of this algorithm is executed (except for the last time), a new vector is
added to the set B. Since the number of different vectors w = v′ − v satisfying −u ≤ w ≤ u is
bounded by

∏
i∈N (2ui + 1), the above algorithm terminates after finitely many steps.

We now show that the set B generated by Algorithm 3.1 is a test set for IPA,b,c,u. Suppose
that x is a feasible point (Ax ≤ b, 0 ≤ x ≤ u) that is not optimal and that cannot be improved by
adding an element in B. Let x′ be some feasible vector with x′ � x. Then x′− x can be written
as an integral combination of unit vectors: we can decrease from x to reach 0 (staying feasible),
then increase to reach x′, using only vectors in B. Hence, there is a sequence P = (x0, . . . , xp)
of vectors xi with the following properties:

(i) x0 = x, xp = x′,

7



(ii) for all i = 1, . . . , p, (xi − xi−1)� ∈ B, and

(iii) all the points xi ∈ P are feasible.

In fact, in the specific current situation, we know more for (ii): there is some i0 such that
−(xi − xi−1) ∈ B for i ≤ i0, and (xi − xi−1) ∈ B for i > i0.

In the following sketches, the vertical direction “upwards” represents increasing objective
function. Thus the small vectors, depicting elements of B, are directed upwards.

x = x0
cx1

x2

xp = x′

xi0

Among all sequences that satisfy (i), (ii) and (iii), let P = (x0, . . . , xp) be a sequence such that
the minimum point in P , xi0, is maximal with respect to the order ≺. (Such a sequence exists
since the number of feasible points is finite. The minimum point xi0 is unique since � is a total
order.)

We have i0 �= 0 (otherwise x = x0 could be improved by x1−x0 ∈ B), and i0 �= p (otherwise
we would have x′ = xp ≺ x0 = x).

Both vectors xi0+1 and xi0−1 are feasible. It follows that

w :=
(
(xi0+1 − xi0) − (xi0−1 − xi0)

)�
= (xi0+1 − xi0−1)�

satisfies −b ≤ Aw ≤ b and −u ≤ w ≤ u. Moreover, since xi0−1 − xi0 ∈ B and (xi0+1 − xi0) ∈ B,
the difference vector w has been computed in Step 2.2 of Algorithm 3.1, and was added to B.

x = x0
c

xi0−1

xi0
xi0+1

w

xp = x′

Thus
P ′ := (x0, . . . , xi0−1, xi0+1, . . . , xp)

again satisfies properties (i) to (iii), yet the minimum element in P′ is larger than xi0 : a contra-
diction.

With this we have proved the following theorem.

Theorem 3.2 Algorithm 3.1 terminates after a finite number of steps. The output is a test set
for the integer programming problem IPA,b,c,u.

Example 3.3 Consider the 0/1 knapsack problem

max{x1 + 2x2 + 3x3 : x1 + 2x2 + 3x3 ≤ 3, xi ∈ {0, 1}, i = 1, 2, 3}.
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The algorithm starts with the vectors e1, e2, e3. Then the vectors e2 − e1, e3 − e1 and e3 − e2
are added to the set B. In the next iteration the vectors e3 + e1− e2 and e1+ e2− e3 are added.
The algorithm terminates with the set

B = {e1, e2, e3, e2 − e1, e3 − e1, e3 − e2, e3 + e1 − e2, e1 + e2 − e3},

since in Step (2) no new vectors are found.
This set is, indeed, a test set for the above 0/1 knapsack problem. Yet, not all of these

vectors are really needed to guarantee that one can go from any feasible point of this program
to the optimal solution without decreasing the objective function value in each step. Namely,
the vector e3 + e1 − e2 can always be replaced by the two vectors e1 and e3 − e2, both being
elements in B. In this situation we call e3 + e1 − e2 reducible. Elimination of reducible vectors
from the computation of a test set is a very important issue in order to keep the size of the test
set small. We now formalize this situation.

Definition 3.4 For an integer programming problem IPA,b,c,u, let B be a family of improvement
vectors (that is, all v ∈ B satisfy −u ≤ v ≤ u and −b ≤ Av ≤ b, as well as v � 0).

A vector w �= 0 can be reduced by v ∈ B if v+ ≤ w+, v− ≤ w−, and (Av)+ ≤ (Aw)+. In this
situation, we say that we obtain (w− v)� by reducing w.

v

w

(w − v)�

In this situation, a trivial computation shows that if at any feasible point x ∈ ZZn the
vector w can be applied (that is, if x+w is feasible as well), then one could also apply v instead
of w, and obtain a feasible point x+ v � x (and after that one can apply w− v to reach x+w).
Thus we note:

• if x and x+ w are feasible, then so is x + v,

• |v|1 ≤ |w|1, with equality only if v = w, and |w− v|1 < |w|1, and
• x+ v � x.

We have not assumed that w � 0, because in the following proofs of this section we need to
reduce difference vectors of the form w − w′.

Algorithm 3.5 “Reduction”

This algorithm computes the reduction w
B

of a vector w ∈ ZZn by a set B of improvement
vectors.

(1) Input B ⊆ (ZZn)�0, w ∈ ZZn.

(2) As long as possible, find v ∈ B such that r ∈ {w,−w} can be reduced by v, and replace w
by r − v.

(3) Output w
B
:= r�.

The vector w
B
is called the reduced vector of w with respect to B.
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Proposition 3.6 Assume that x and x + w are feasible, and compute w
B
. Then there is a

sequence of distinct integral points x = y0, y1, . . . , yk−1, yk = x+w, with the following properties:

• each yj is feasible,

• y0 ≺ y1 ≺ . . . ≺ yj0 � . . . � yk = x+ w, for some 0 ≤ j0 ≤ k,

• in particular, for 0 < j < k we get yj � x, or yj � x + w, or both,

• (yj − yj−1)� ∈ B for each 1 ≤ j ≤ k, except that if w
B �= 0, then we either have

yj0 − yj0−1 = w
B
, or yj0 − yj0+1 = w

B
, and

• |yj − yj−1|1 ≤ |yk − y0|1 = |w|1, with equality only if k = 1.

The following sketch shows how this sequence of points yi may be generated, by reducing by
v, v′ and v′′ (in that order).

y1

x = y0

w
yk = x+ w

w
B

v

v′

v′′

Using reduction, we can modify our initial algorithm as follows.

Algorithm 3.7

(1) Set Bold := ∅, B := {ei : i ∈ N}.
(2) While Bold �= B repeat the following:

(2.1) Set Bold := B.

(2.2) For all pairs of vectors v, v′ ∈ Bold such that v ≺ v′ perform the following steps:

(2.2.1) If −b ≤ A(v′− v) ≤ b and −u ≤ v′ − v ≤ u, set w := v′− v.

(2.2.2) Compute r := w
B

by Algorithm 3.5.

(2.2.3) Set B := B ∪ {r}.

Again, Algorithm 3.7 terminates after finitely many steps, since there exists an upper bound
on the number of different vectors that can be added to the set B.

To show that it computes a test set, we can nearly proceed as before. For any non-optimal
feasible point x that cannot be improved by a vector in B, and every feasible x′ � x, there is a
sequence P = (x0, . . . , xp) that satisfies the properties (i) to (iii) above, for which the minimum
point xi0 occuring in P is maximal (with respect to ≺). We again have 0 < i0 < p, which means
that the difference vector

w = (xi0+1 − xi0−1)�

was considered by Algorithm 3.7. Thus, by Proposition 3.6 we get a new sequence of feasible
points

P ′ := (x0, . . . , xi0−1 = y0, y1, . . . , yk = xi0+1, . . . , xp),

where the minimum point of P′ is larger than that of P .
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Thus we have proved the following.

Theorem 3.8 Algorithm 3.7 terminates after a finite number of steps. The output is a test set
for the integer programming problem IPA,b,c,u.

As a postprocessing step, the size of the final output, B, of Algorithm 3.7 can be further
reduced by the following algorithm.

Theorem 3.9 “Post-Processing”
Let B be any test set for IPA,b,c,u. Then one can, successively for each w ∈ B, do

• if w is reducible by some v ∈ B\w, replace B by B\w, and

• if −w is reducible by some v ∈ B\w, replace B by (B\w) ∪ {wB\w}, otherwise.
After these operations, B is still a test set.

Next we deal with the following question: what are sufficient conditions for a vector b to be
successively reducible to 0? This question is of computational relevance, because vectors that
can be reduced to 0 (by a sequence of reduction steps) need not be added to the set B during
the run of Algorithm 3.7, but can be excluded in advance.

A first criterion in this respect can be adapted from Buchberger [4] (see also [6]). Suppose
that v, w ∈ B are two vectors in the current set B of Algorithm 3.7 with v � w. If the following
three conditions are satisfied:

• the vectors v+ and w+ have disjoint support,

• the vectors v− and w− have disjoint support,

• the vectors (Av)+ and (Aw)+ have disjoint support,

then the vector d = v − w (to be computed in Step 2.2 of Algorithm 3.7) is reducible by v and
can be reduced to 0 (see step 2.2.2). This follows, because under the above assumptions we
obtain:

d+ = v+ + w−, d− = v− + w+, and (Ad)+ = (Av)+ + (Aw)−.

Hence, every component in v− is less or equal than the corresponding component of d−; every
component in v+ is less or equal than the corresponding component of d+ and every component
in (Av)+ is less or equal than the corresponding component of (Ad)+. Therefore, d is reducible
by v and since r := v − d = w can certainly be reduced by w to 0, the statement follows.

Though such criteria help in reducing the running time of the overall procedure, the main
bottleneck is that iteratively for every pair of vectors in the current set B the associated difference
vector needs to be computed. Excluding parts of these computations in advance is one of the
main issues for applying this algorithm to the solution of integer programming instances of
nontrivial size.
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We have found one such criterion. Namely we show that for every element in the current
set B it is sufficient to compute just n difference vectors instead of |B| − 1. Then, however, the
reduction step cannot be as strong as in Algorithm 3.7.

Algorithm 3.10

(1) Set Bold := ∅, E := {ei : i ∈ N}, B := E.

(2) While Bold �= B repeat the following:

(2.1) Set Bold := B.

(2.2) For every v := (w − ei)
� with

(2.2.1) w ∈ B, ei ∈ E with w �= ei,

(2.2.2) −b ≤ Av ≤ b, −u ≤ v ≤ u, and

(2.2.3) v is not reducible by any v′ ∈ B with v − v′ ≥ 0

set B := B ∪ {v}.

Theorem 3.11 Algorithm 3.10 terminates after a finite number of steps. The output is a test
set for IPA,b,c,u.

Proof. Finiteness of the algorithm is clear.
Suppose that there exists a non-optimal feasible point x that cannot be improved by any

element of the set B that is computed by Algorithm 3.10. Let x′ be the feasible vector with
x′ � x. As for Algorithm 3.1, there exists a sequence P = (x0, x1, . . . , xi0, . . . , xp) with 0 < i0 < p
and

(i) x0 = x, xp = x′,

(ii) xi−1 − xi ∈ E for i ≤ i0, and xi+1 − xi ∈ E for i ≥ i0,
except that one of xi0−1 − xi0 and xi0+1 − xi0 is permitted to be in B\E.

(iii) every point xi is feasible.

x = x0
x1

x2

xp = x′

xi0

v
v′

Now choose a sequence of points P with these properties such that its minimum point xi0 is
maximal.

In the course of Algorithm 3.10, one has computed the difference vector v := (xi0+1−xi0−1)�.
This vector clearly satisfies (2.2.1) and (2.2.2). If it fails (2.2.3), then it can be written in the form
v = v′ +

∑s
k=1 eik for v′ ∈ B and ei1, . . . , eis ∈ E. Furthermore, we have that xi0±1 + v = xi0∓1

(where the sign “±” is “+” if xi0+1 ≺ xi0−1, and “−” otherwise), and thus all the points in the
sequence

xi0±1, xi0±1 + v′, xi0±1 + v′ + ei1, . . . , x
i0±1 + v′ +

s∑
k=1

eik = xi0∓1
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are feasible. From this we obtain a new sequence P′ that again satisfies the above properties,
yet the minimal point in this sequence is larger than xi0 : a contradiction.

It seems that after suitable post-processing, (cf. Algorithm 3.9, in analogy to the computation
of the reduced Gröbner basis in Algorithm 2.8) the Algorithms 3.1, 3.7 and 3.10 produce the
same (unique minimal?) test set. However, they proceed in different orders. While Algorithms
3.1 and 3.7 might produce exchange vectors of �1-norm 2k in their k-th iteration of Step (2),
Algorithm 3.10 will generate improvement vectors according to increasing �1-norm: it produces
all improvement vectors of �1-norm k in the k-th iteration of Step (2).

4 A relation to iterative improvement heuristics

To simplify the discussions we will now only consider 0/1 problems, which have ui = 1 for all
i ∈ N . (Generalizations of what follows to arbitrary upper bounds are straightforward.) We
furthermore assume that Aei ≤ b for all i ∈ N and that for i, j ∈ N the vectors Aei and Aej
do not have disjoint support. These assumptions are usually satisfied by instances coming from
travelling salesman problems, graph partitioning problems or knapsack problems etc.

One approach for obtaining good solutions for the problem

max
n∑

i=1

cixi,

Ax ≤ b for j = 1, . . . , m,
xi ∈ {0, 1} for i = 1, . . . , n,

is to start with some feasible solution, i.e., a set S ⊆ N such that AχS ≤ b. (For any subset
S ⊆ N , χS denotes the incidence vector, with χSi = 1 if i ∈ S and χSi = 0 otherwise.) Iteratively
we replace items which belong to S by items which are not in the current solution via a certain
rule such that the incidence vector of the resulting set, S′ say, is feasible. Exchange the role of
S with S′ and repeat these steps until a certain stopping criterion is satisfied.

This procedure is certainly too general to be analyzed and needs specification of (a) the rule
according to which items are replaced by others and (b) the stopping criterion.

In most implementations, exchange operations are allowed only if the number of items in-
volved is less than or equal to a certain threshold value, λ say. More precisely, the cardinality of
the symmetric difference between the sets S and S′ must not exceed λ. The reason for that is
simply to keep the running time of the procedure in acceptable limits. Indeed, usually a value of
λ = 2 or λ = 3 is chosen. (The resulting algorithms are the “2-OPT” and “3-OPT” heuristics.)
In addition, iterative improvement heuristics only allow exchanging items of S with items not
in S if the objective function value cχS increases by this. Those algorithms terminate if the
current solution x can not be improved by replacing items with xi = 1 against items with xi = 0
such that the number of items involved is less or equal than λ.

In case λ = 2 or λ = 3 there is a nice relationship between iterative improvement heuristics
and our Algorithm 3.7. Similar statements can be made for Algorithms 3.1 and 3.10.

Proposition 4.1 Let v ∈ {0,−1, 1}n be a vector such that
∑n

i=1 |vi| ≤ 3, −b ≤ Av ≤ b and
v � 0. After performing Step (2) in Algorithm 3.7 twice, the set B either contains v, or v is the
sum of vectors in B.

Proof. We start initially with the n unit vectors. When Step (2) is performed the first time all
the vectors ei − ej � 0, i, j ∈ {1, . . . , n} are computed and added to B. Note that under the
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assumptions introduced at the beginning of this section those vectors cannot be reduced. Thus,
after a first processing of Step (2) all vectors y � 0 with entries 0,+1,−1 and

∑n
i=1 |yi| ≤ 2,

−b ≤ Ay ≤ b have been generated.
Now let v ∈ {0, 1}n be a 0/1 vector such that

∑n
i=1 |vi| = 3, −b ≤ Av ≤ b and v � 0. v

can be written in one of the following forms: (i) v = ei − (eu − ew) with (eu − ew) � 0 or (ii)
x = (eu − ew) − ei with (eu − ew) � 0 or (iii) x = (eu − ew) + ei with (eu − ew) � 0 or (iv)
v = eu + ew + ei where i, u, w ∈ {1, . . . , n}, i �= u �= w �= i. Suppose that (iii) or (iv) holds.
Then v is a sum of elements in B. Otherwise, (i) or (ii) is true. Then v is the difference vector
of elements in B. This difference vector was computed by processing Step (2) of Algorithm 3.7
a second time. Since (iii) and (iv) are not true, this difference vector is not reducible via the
elements in the current set B.

As a corollary we obtain that via Algorithm 3.7 certain iterative improvement heuristics
can be simulated. In fact, this algorithm is a strong generalization of the idea of iterative
improvement heuristics and it is obvious that by restricting the number of times Step (2) is to
be processed, the output can be used to (iteratively) improve feasible solutions.

Instead of admitting exchanges that always improve the current objective function value,
Kernighan & Lin [12, 13] used a slightly different strategy. Again suppose that a set S ⊆ N is
given such that AχS ≤ b. Iteratively we either exchange one item which belongs to S by one
item which does not so that the new solution is feasible again or we add to the current set S
a new item if this yields a feasible solution. In other words, in order to move from a feasible
solution x to a feasible solution x′ we either have that x+ (ei − ej) = x′ or x+ ei = x′ for some
i ∈ N (and j ∈ N \ {i}). Let B2 := {ei : i ∈ N} ∪ ⋃ei−ej�0{ei − ej} and B2

− =
⋃

b∈B2{−b}.
Then, at a current feasible point x, Kernighan and Lin choose a vector v in B2 ∪ B2

− with
cTv = max{cT b : b ∈ B2 ∪B2

−, x+ b is feasible}. The procedure terminates if a given number of
iterations have been performed.

Following this approach it is clear that at some point x an exchange operation may be
performed that (locally) yields a decrease in the objective function. However by a sequence of
exchanges, some of which might have a negative objective function value and some of which
have a positive objective function value, we might reach some feasible point x′ � x. Suppose,
this is the case and in order to make our analysis easy let us also assume that x′ can be reached
from x by first applying an exchange step v ∈ B2

− and then an exchange step w ∈ B2. We
have already seen that the set B2 is generated by performing Step (2) in Algorithm 3.7 once.
Therefore, −v ∈ B2 and w ∈ B2 and as x′ � x, so is v + w � 0. Since v + w = w − (−v), with
(−v), w ∈ B2, the vector x′ − x is computed by performing Step (2) in Algorithm 3.7 a second
time. Either, x′− x is not reducible or it is. In the first case, it is added to our set B generated
by Algorithm 3.7. In the latter case we can reach a point x̃ by using elements in B, such that
in each step the objective function is not decreased.

Computing a difference vector w between pairs of elements in a current improvement set B,
and directing it such that w � 0, can be viewed as a two step procedure, first locally getting
worse, but afterwards globally improving the objective function value.

5 Computational results

In this section we present preliminary computational results with Algorithms 3.7 and 3.10. We
have applied both algorithms to small and medium size instances coming from set covering
problems (Steiner triple systems, see [15]), knapsack and multidimensional knapsack problems
(see [9]), set partitioning problems [10] and experimental design problems (see [1]). For all
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examples, except for those arising in experimental design problems, the number of columns is
in the range of 6 to 105 and the number of rows is between 1 and 331. The set partitioning
instances reported in [10] involve up to several thousands of columns and rows. From these
original data we took subsets of the rows and columns and solved the set partitioning problem
associated with this subset. For the instances of experimental design problems the number of
columns varies from 147 to 2,205 and the number of rows is between 28 and 121.

We always start the computations with the vector 0, which is feasible for all instances (via
the transformation of Section 1 we replace conditions Ax = b by Ax ≤ b). Iteratively we improve
the current (feasible) solution by elements in the set B (computed according to Algorithms 3.7
and 3.10) until either we prove optimality or we exceed a time limit. We performed all tests on
a SUN Sparc10 workstation with a limit of 45 minutes CPU time.

The tables below summarizes our results. In order to distinguish the instances we use the
following convention: “knap” means that the instance is a (multidimensional) knapsack problem.
The prefix “cov” and “part” stands for instances of set covering and set partitioning problems,
respectively. The symbol is “des” used for experimental design problem instances. The first
number behind the prefix corresponds to the number of columns. The second number is the
number of rows. For example, knap.20.1 is an instance of a knapsack problem consisting of 20
items and 1 row, etc.

Column 2 of the tables gives the optimal solution of the corresponding problem. The optimal
values for the set partitioning problems were obtained by the cutting plane code of [3]. For the
knapsack problems this value was obtained with the cutting plane code reported in [8]. For
the experimental design problem we refer to [1] for the optimal values. The optimal values for
the set covering instances we took from MIPLIB [2]. Columns 3 and 4 report on the objective
function value of the best solution found via Algorithm 3.7 and the corresponding time that was
needed. Accordingly, columns 5 and 6 show the appropriate values if Algorithm 3.10 is applied.

The results show that in examples except for three the solution computed by Algorithm 3.10
is the same as the one given by Algorithm 3.7. In fact, both procedures nearly always behave
the same concerning both running time and quality of the solution. It seems that none of the
two variants is superior towards the other. Both procedures can prove optimality for the six
instances cov.9.13, knap.6.10, knap.10.10, knap.20.1, part.10.4 and part.39.3 within 2 minutes of
CPU time. For the remaining examples we did not succeed in proving optimality. Nevertheless
for 45 out of 59 examples Algorithms 3.7 or 3.10 found an optimal solution.

For the set partitioning instances with more than 60 columns the algorithms perform rather
poorly. In three cases the objective function values of the given solutions are still about 50 to
100% away from the optimal value and in two cases we do not even find a feasible set partitioning
solution at all. For the six knapsack examples and the instance cov.45.331, where we did not
find a solution with optimal value, the algorithms terminate with a feasible vector that is very
close to the optimum in terms of objective function value. Finally, the algorithms behave quite
specially on the experimental design instances: either the optimal solution is found immediately,
or we do not find any feasible solution.

Summarizing our experiments, we think that on very hard combinatorial problems such as
set partitioning we are still far from having a “real” optimization algorithm. It is not good
enough to run Algorithm 3.10 as a “black box” that will hopefully find a good solution. Here,
a combinatorial understanding of the test set B seems to be indispensible. For the knapsack,
multidimensional knapsack and set covering problems that we tested, the situation is different.
The Algorithms 3.7 and 3.10 work quite well on those instances and usually produce very
good solutions. Moreover, the performance is stable. Certainly, the running times are still
quite high and our implementation cannot in reasonable time handle instances with a couple of
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EXAMPLE OPT SOL (3.7) TIME (3.7) SOL (3.10) TIME (3.10)

cov.9.13 5 5 0:00 5 0:00
cov.15.36 9 9 0:00 9 0:00
cov.27.118 18 18 0:00 18 0:00
cov.45.331 30 29 0:01 29 0:01
knap.6.10 3800 3800 0:00 3800 0:00
knap.10.10 87061 87061 0:00 87061 0:00
knap.15.10 4015 4015 0:03 4015 0:03
knap.20.10 6120 6120 0:01 6120 0:01
knap.28.10 12400 12400 0:00 12400 0:00
knap.39.5 10618 10604 2:43 10604 2:40
knap.49.5 15223 15205 7:59 15205 7:53
knap.20.1 7708 7708 0:02 7708 0:02
knap.50.1 19928 19928 0:07 19928 0:07
knap.100.1 41773 41728 0:58 41728 0:58
knap.30.5 4561 4561 0:02 4561 0:02
knap.40.5 5557 5557 1:29 5557 1:29
knap.50.5 6159 6159 0:25 6159 0:25
knap.60.5 6954 6954 6:13 6954 6:16
knap.60.5 7486 7417 24:15 7486 33:01
knap.60.5 7289 7289 9:29 7289 9:31
knap.60.5 8633 8614 15:49 8614 15:50
knap.70.5 7698 7698 22:49 7698 22:48
knap.80.5 8947 8947 0:36 8947 0:36
knap.80.5 8344 8277 36:24 8277 35:57
knap.90.5 9492 9492 17:48 9492 17:51
knap.28.4 3418 3418 25:44 3405 9:01
knap.35.4 3186 3186 4:31 3186 4:31
knap.27.4 3090 3076 1:10 3076 1:10
knap.34.4 3186 3186 0:52 3186 0:52
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EXAMPLE OPT SOL (3.7) TIME (3.7) SOL (3.10) TIME (3.10)

knap.29.2 95168 95168 0:04 95168 0:04
knap.20.10 2139 2139 3:04 2122 0:03
knap.40.30 776 776 0:09 776 0:09
knap.37.30 1035 1035 9:23 1035 8:21
knap.28.2 130883 130883 1:11 130883 1:10
knap.105.2 624319 624319 1:39 624319 1:39
knap.60.30 7772 7772 0:26 7772 0:26
part.10.4 –4248 –4248 0:00 –4248 0:00
part.25.11 –7983 –7983 0:47 –7983 0:27
part.30.9 –1816 –1816 41:35 –1816 11:46
part.39.3 –2874 –2874 0:00 –2874 0:00
part.40.16 –8061 –8061 0:21 –8061 0:31
part.43.18 –11493 –11493 7:29 –11493 7:19
part.47.14 –7634 –7634 6:05 –7634 8:52
part.47.20 –6792 –6792 22:39 –6792 22:22
part.49.15 –22959 –22971 0:01 –22971 0:01
part.49.15 –5782 –5782 9:21 –5782 9:14
part.59.8 –2698 –3294 0:01 –3294 0:01
part.60.17 –11307 –22656 2:22 –22656 2:21
part.67.12 –5296 –8428 0:01 –8428 0:01
part.74.16 –11268 –15580 21:05 –15580 28:30
part.77.22 –16812 — — — —
part.86.22 –9933 — — — —
part.92.10 –2800 –2800 0:03 –2800 0:03
des.147.28 21 21 0:00 21 0:00
des.294.35 42 42 0:00 42 0:01
des.432.48 36 36 0:00 36 0:01
des.675.60 90 — — — —
des.1014.91 78 78 0:03 78 0:02
des.2205.126 210 — — — —
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hundreds of columns. Storing and computing all the difference vectors would exceed the memory
requirements.

To conclude, the algorithms that we presented here are very general, they are not adapted to
special purpose problems and we implemented the routines straightforwardly. The quality of the
solution that were produced on many of the test samples is quite high and very stable. We think
that there is still a lot of research to be done in order to understand test sets combinatorially,
but the results certainly indicate that the construction, analysis and adaption of such methods
are worth further efforts.

Conclusions

Whereas dual methods like cutting plane algorithms have proven to be extremely successful in
the solution of (large scale) integer programming problems, there is a lack of primal algorithms
that have the potential to prove optimality of an integer program. In particular, it would
be desirable to have both primal and dual algorithms that make it possible to systematically
and simultaneously improve current primal and dual solutions. The three algorithms that we
presented in this paper might have the potential to satisfy those needs and requirements.

Yet we are still far from applying our algorithms to large scale problem instances. From our
point of view the computational results in Section 5 show that the “Buchberger type” algorithms
generate very good solutions starting from scratch. Certainly the running time and the memory
requirements form a bottleneck. The number of exchange vectors that are generated might
even be squared when proceeding from one single iteration to the next. Hence, further research
must concentrate on the combinatorial understanding of the exchange vectors that need to be
contained in the test set. Then one could work with “classes of exchange vectors” implicitly
rather than having to generate all such vectors explicitly. This would be analogous to the
treatment of “classes of facets” in a cutting plane approach.

If one can make progress in this direction, then primal algorithms based on ideas as presented
in this paper might become a powerful tool in the solution of integer programming problems.
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[14] C. Moulinet & L. Pottier: Gröbner bases of toric ideals: properties, algorithms, and
applications, preprint, INRIA Sophia Antipolis, 10 pages.

[15] A. Sassano: On the facial structure of the set covering polytope, Math. Programming 44
(1989), 181-202.

[16] R. R. Thomas: A geometric Buchberger algorithm for integer programming, Math. Ope-
rations Research, to appear.

19


