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Abstract

We present an adaptive Rothe method for two–dimensional problems
combining an embedded Runge–Kutta scheme in time and a multi-
level finite element discretization in space. The spatial discretization
error is controlled by a posteriori error estimates based on interpola-
tion techniques. A computational example for a thermodiffusive flame
propagation model illustrates the high accuracy that is possible with
the proposed method.
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Introduction

The permanently increasing complexity of practically relevant models re-
quests new numerical methods to solve the underlying extensive systems of
time–dependent partial differential equations. Here, adaptivity in both time
and space not only leads to a drastic reducing of the computational effort,

but also improves the solution in selected domains. Furthermore, the adap-
tive process furnishes error estimates that permit to determine the reliability
of the modelling process.
Over the years, several methods of adaptive techniques have been deve-

loped. Some of them have also been applied to time–dependent systems.
Bietermann and Babuška [7, 8] developed regridding methods for one–
dimensional parabolic problems using finite element methods of lines proce-
dures. Adjerid and Flaherty [1] additionally allowed to move the mesh

during the temporal integration. Later they applied the method of lines
to solve vector systems of parabolic partial differential equations on two–
dimensional rectangular regions using bilinear finite element approximations



[2]. Nowak [30] discussed static and dynamic regridding methods for non-
linear parabolic systems in one space dimension using finite difference pro-
cedures on nonuniform meshes. The resulting software package PDEX1M is
based on the efficient time–extrapolation code LIMEX which was theoreti-

cally treated by Deuflhard et al. [16, 17]. Another software specifically
designed for the method of lines is the SPRINT package of Berzins et al.
[6]. It contains a selection of spatial discretizations, time integrators and
linear algebra routines.

In contrast to the widespread method of lines there are several approaches
exploiting the discretization sequence first in time then in space, well–known
as classical Rothe method. So, Smooke [33] et al. applied an implicit Euler
discretization and a two–dimensional spatial refinement that equidistributes

a positive weight function over a given mesh interval in each direction at
each time level. Bornemann established a new mathematical framework
to analyze fully adaptive multilevel discretizations for scalar linear parabolic

PDEs. First he treated extrapolation methods to discretize the time opera-
tor [9]. Yet structural drawbacks of these methods led to the insight that
variable–order time discretizations based on a multiplicative error correc-
tion are better fit for linear time–space problems [10]. He developed further

the program KASTIO including a multilevel nodal basis preconditioner to
solve efficiently the linear systems arising from two–dimensional heat pro-
blems [11]. In a next step Lang and Walter [25] presented a space–time
fully adaptive method for unsteady one–dimensional reaction–diffusion sy-

stems, employing different variable–time step Runge–Kutta schemes. The
resulting methods have been discussed and applied to a variety of nonlinear
problems each demonstrating a different source of numerical difficulties [24].
This approach has now been extended to the two–dimensional case. For this

a higher–order time scheme is utilized and the inner spatial loop is carried
out with the help of the elliptic solver KASKADE [19] which is based on the
multilevel ideas of Deuflhard et al. [15].
Let us consider the time–dependent partial differential equations of the form

P (x, y)∂tu−∇ · (D(x, y) ∇ u) = F(x, y, t,u)(0.1)

(x, y) ∈ Ω ⊂ R
2, t > 0,

with the initial condition

u(x, y, 0) = u0(x, y) , (x, y) ∈ Ω ∪ ∂Ω,(0.2)

2



and the boundary conditions

uj(x, y, t) = ξj(x, y, t) , (x, y) ∈ ∂ΩD
j ,(0.3)

nTDij∇uj + σij(x, y)uj = ζij(x, y, t) , (x, y) ∈ ∂ΩC
j .(0.4)

t > 0, i, j = 1, . . . , m.

The functions u(x, y, t) and F(x, y, t,u) are m–vectors, P (x, y) is a m×m–
matrix, D(x, y) is a 2× 2–matrix of m×m–blocks, that means

D(x, y) =

(
D11(x, y) D12(x, y)

D21(x, y) D22(x, y)

)

where Dkl = (dklij )i,j=1,...,m , k, l = 1, 2, and D12(x, y) = D21(x, y). Especially
we set

Dij(x, y) =

(
d11ij (x, y) d12ij (x, y)

d21ij (x, y) d22ij (x, y)

)
.

For a shorter presentation, we use the grad– and div–operator in vector sense,
namely

∇ u = (∂xu, ∂yu)
T , ∇ · (u,v)T = ∂xu+ ∂yv .

Furthermore, subscripts ∂x, ∂y, and ∂t denote partial differentation, Ω is an
open bounded polygonal domain in R

2 with boundary ∂Ω = ∂ΩD
j ∪ ∂ΩC

j ,
j = 1, . . . , m, i.e. boundary conditions are prescribed for each component uj

individually and independently. The real functions ξj, σij and ζij are suffi-
ciently smooth. Note that the Cauchy boundary conditions may be different
for each equation described by the parameter i in (0.4). Finally, n = (n1, n2)

T

is a unit outer normal vector to ∂Ω. It is assumed here that the partial dif-
ferential system (0.1)–(0.4) is of parabolic type and that it has a unique
solution.
Our analysis requires the use of the L2 inner product and norm

(u,v) :=
∫
Ω

vT (x, y, t)u(x, y, t)dxdy ,(0.5)

||v||0 := (v,v)1/2 .

Given a function v and the multi-index δ = (δ1, δ2) with |δ| := δ1 + δ2, we
define the usual seminorms and norms of the Sobolev spaces H s(Ω), s = 1, 2,
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|v|s :=

⎛
⎝∑

|δ|=s

s!

δ1!δ2!
||(∂x)δ1(∂y)δ2v||20

⎞
⎠

1/2

,

||v||s :=

(
||v||20 +

s∑
i=1

|v|2i
)1/2

.

Function v belonging to the space Hs
D(Ω) must satisfy any Dirichlet boun-

dary condition in (0.3), while functions in Hs
0(Ω) are further restricted to

satisfy homogenous Dirichlet boundary conditions. Norms that are related
to other integration domains are obtained by replacing Ω in (0.5) and adding
the new domain subscript to the corresponding norm.
A large number of phenomena in chemistry, biology, and physics are governed

by systems of reaction–diffusion equations. Typically, the solutions possess
sharp moving spatial transitions induced by emerging boundary and inter-
nal layers, or strong reaction terms. The adaptive method described in the
present paper will be useful in resolving critical regions of high spatial and

temporal activity.
Our discretization sequence can be characterized as follows: first we dis-
cretize (0.1)–(0.4) in time using an efficient time integrator. There is a gene-
ral understanding that only implicit methods promise good results for stiff

reaction–diffusion systems. From this point of view the most prominent mul-
tistep, one–step or extrapolation methods are applicable [21]. To make an
appropriate choice we have to take into account the second part of the whole

discretization: find a spatial mesh at each time level well–adapted to the
solution. That means, methods using a wide stencil of different time levels
to construct higher order solutions, such as multistep and extrapolation me-
thods, seem not to be favourable when the underlying spatial discretization

is permanently changing. The effort of interpolation and the need of memory
would quickly become too expensive. It remains the class of one–step me-
thods that request only two different meshes: one on which the starting value
is given, and a second on which the new solution is computed. Among them,

linearly implicit Runge–Kutta methods have shown to give very satisfactory
results for stiff equations. Their main advantage over fully–implicit methods
is that nonlinear systems are completely avoided. Last but not least they are
nearly as simple to implement as explicit Runge–Kutta methods.

We use a special embedded Rosenbrock method of order 3(2). Thus, the
above nonlinear system is replaced by a fixed sequence of linear elliptic sy-
stems that are solved by a multilevel finite element method (FEM) with
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linear elements. The spatial refinement process is controlled by error indica-
tors based upon traditional interpolation techniques. They can be computed
locally and are fairly inexpensive. Both components lead to temporal inte-
gration with sufficient accuracy in time and space.

The program used to manage the occuring dynamic tree data structure is
a two–dimensional extension of the code KARDOS described in [26]. The
underlying package KASKADE [19] permits efficient and easy access to the
data when deleting or adding finite elements.

This paper is outlined as follows. In Section 1, we describe the adaptive
time discretization. The space discretization and spatial error estimation
follow in Section 3. Therein a special error indicator that does not penalize
small angles is discussed. In Section 4, we present computational examples

to illustrate the high accuracy of the proposed adaptive method.

� Time Discretization of the Problem

We discretize (0.1)–(0.4) in time using a special linearly implicit Runge–

Kutta method. For a moment we set

f(t,u) := F(t,u) +∇ · (D∇u) ,(1.1)

and get

(
1

τγ
P − ∂uf(0,u

0)

)
li = ri ,(1.2)

ri := f(0 + αiτ,u
0 +

i−1∑
j=1

aijl
j) + P

i−1∑
j=1

(
cij
τ

)
lj + γiτ∂tf(0,u

0)

lij(x, y) = γi (ξj(x, y, τ )− ξj(x, y, 0)) , (x, y) ∈ ∂ΩD
j ,(1.3)

nTDkj∇lij + σkjl
i
j = γi (ζkj(x, y, τ )− ζkj(x, y, 0)) , (x, y) ∈ ∂ΩC

j ,

i = 1, 2, 3, k, j = 1, . . . , m ,

u1(τ ) = u0 +
3∑

j=1

b1j l
j ,(1.4)

u2(τ ) = u0 +
3∑

j=1

b2j l
j ,(1.5)
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as a 3–stage embedded Rosenbrock method with a variable time step τ . Here,
the stage values li, i = 1, 2, 3, are m–vectors, ∂uf is the Jacobian matrix of
f with respect to u. The real coefficients γ, γi, aij, αi, cij, b

1
j , and b2j are

chosen in such a way that the solution u1 is of third order and u2 of second

order, respectively. Furthermore, we request L–stability making the method
stiffly accurate. The corresponding set of coefficients, see Table 2.1, was de-
rived from a method first proposed by Roche [32] for differential–algebraic
equations.

γ = 0.435866521508459

γ1 = 0.435866521508459 α1 = 0.0
γ2 = 0.6044552840655588 α2 = 0.7
γ3 = 6.3797887993448800 α3 = 0.7

b11 = 2.236727045296589 b21 = 2.059356167645941

b12 = 2.250067730969645 b22 = 0.169401431934653
b13 = -0.209251404439032 b23 = 0.0

a21 = 1.605996252195329 c21 = 0.8874044410657823
a31 = 1.605996252195329 c31 = 23.98747971635035
a32 = 0.0 c32 = 5.263722371562130

Tab. 2.1: Coefficients for 3(2)–Rosenbrock time scheme

All the above features are based on the assumption that the exact Jacobian
is available. This is a crucial point in the context of PDE solvers where

spatial discretization errors are really present. However, the usage of an
approximation of the Jacobian only, well known as W–method, leads to the
computation of rather more stage values necessary to get the same accuracy
as a comparable Rosenbrock method. Furthermore, high dynamics in the

system under consideration or additional algebraic equations request a nearly
exact Jacobian at each time step.
The embedding strategy directly supplies us with an estimator εt of the main
error term describing the local error of the second order method,

εt := ||u2 − u1||0 .(1.6)

Given a tolerance TOLt for the time discretization, the usual proposal for

the new step size is

τnew := ρ
(
TOLt

εt

)1/3

τ(1.7)
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where ρ denotes a safety factor, presently set to be 0.9.
The remaining boundary value problems (1.2)–(1.3) are solved applying a
multilevel FEM.

� Space Discretization of the Problem

The starting point for the use of the FEM is the weak formulation of the

corresponding boundary value problem. Assuming that li ∈ H1
D(Ω), i =

1, 2, 3, multiplying (1.2) by a test function v ∈ H1
0 (Ω), and integrating it on

Ω applying additionally integration by parts of the diffusion terms, we obtain

Bτ(l
i,v) = ri(v) for all v ∈ H1

0 (Ω) , i = 1, 2, 3,(2.1)

where

Bτ(l
i,v) := (D∇li,∇v) +

(
1

τγ
P li − Fu(0,u

0)li,v

)
+

+
m∑

j,k=1

∫
∂ΩC

j

σkj l
i
jvkds ,

ri(v) := (ri,v) +
m∑

j,k=1

∫
∂ΩC

j

ζ ikjvkds .

Selecting finite–dimensional approximations Li ∈ Sk
D ⊂ H1

D(Ω) and V ∈
Sk
0 ⊂ H1

0 (Ω) of li and v, respectively, we construct finite element solutions
Li of (2.1) solving the equations

Bτ (L
i,V) = ri(V) for all V ∈ Sk

0 .(2.2)

The spaces Sk
D and Sk

0 consist of piecewise linear continuous polynomials over
a fixed triangulation Tk. In the spirit of spatial adaptivity the solution space
H1

D(Ω) is now replaced by a sequence of discrete spaces Sk
D, k = 0, 1, 2, . . .,

with successively increasing dimension to improve the approximation pro-
perty [15]. Clearly, new degrees of freedom should be placed only in those
regions where the refinement leads to a significant reduction of the spatial
error. For that, we employ the standard ”red“– and ”green“– refinement

used e.g. in the PLTMG– and in the KASKADE–code: Selected triangles
are refined into four congruent triangles (”red“) and the new triangulation
is made compatible by further special refinements (”green“).
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Once the approximate solution Li ∈ Sk
D has been computed, a posteriori

error indicators and estimators can be utilized to give specific assessment of
the error distribution being a basis to form adaptive refinements. Over the
years, several error estimators have been developed. Excellent surveys of ad-

aptivity and a posteriori error estimation have appeared in [29, 31]. We turn
our attention to error indicators that are based upon traditional interpola-
tion techniques in the finite element approximation theory. Here, the work of
Diaz et al. [18] brought in some new ideas in the area of multidimensional

error control. Unfortunately, they still used a very rough estimate of the
interpolation error. Better estimates on quadrilateral meshes were developed
by Demkowicz and Oden [13]. Our aim is to establish asymptotic inter-
polation errors for triangular meshes, trying not to loose any dependency of

the error on the mesh geometry.
Although a priori estimated upper bounds of the approximation error can
provide pessimistic indications, the corresponding error indicators are cheap

and can often be quite useful to improve the grids. These indicators only
require a posteriori estimation of higher–order derivatives, thus a local and
fairly inexpensive computation is available.
The new approximate solutions Ui of ui, i = 1, 2, are obtained by solving

three different linear systems (2.2). As experienced in the one–dimensional
case, it is not necessary to include all these three problems in the spatial
estimation process. According to the fact that

uE := u0 +
l1

γ
(2.3)

is exactly the semi–implicit Euler solution of (0.1), it can be assumed that
a space grid well–fitted to l1 also works well for the solutions u1 and u2.

Therefore, our aim is to construct an adaptive refinement process appropriate
for the first stage value l1 satisfying (2.1).
To get a priori error estimates for the finite element solution L1, we will
use the Lax–Milgram theory. For that, the following assumptions are made:

There exist constants cPi > 0, cHi > 0, i = 0, 1, and λH ≥ 0 such that

|(Pv,w)| ≤ cP0 ||v||0 ||w||0 ,
|(Hv,w)| ≤ cH0 ||v||1 ||w||1 , v,w ∈ H1(Ω) ,

(Pv,v) ≥ cP1 ||v||20 ,(2.4)

(Hv,v) ≥ cH1 ||v||21 − λH ||v||20 , v ∈ H1
D(Ω) ,
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with
Hv := −∇ · (D∇v)− ∂uF(0,u

0)v .

Here, the operators P and H are imposed with the corresponding boundary
conditions and should be understood in the weak sense. All assumptions are

quite general in the context of linear elliptic operators, see for instance [12].
Especially, the last inequality is related to the fact that the strict positivity
of the operator H is in general disturbed by large positive eigenvalues of
the Jacobian matrix Fu describing time-dependent growth of some solution

components. These dynamics request sufficiently small time steps to ensure
existence and uniqueness of the solutions li in (1.2). Therefore, we further
assume

cP1
γ

− τλH ≥ cH > 0 .(2.5)

This condition is similar to those we have got from analyzing time discreti-

zations derived from Newton’s method [24].
Defining the τ–dependent norm

||v||21,τ :=
1

τ
||v||20 + ||v||21 , v ∈ H1(Ω) , τ > 0 ,(2.6)

we are now able to establish the H1
D–ellipticity of the bilinear form Bτ(·, ·)

with respect to this norm.

Lemma 1. With all assumptions (2.4) and (2.5) fulfilled, we have

|Bτ (v,w)| ≤ c0||v||1,τ ||w||1,τ for all v,w ∈ H1(Ω) ,

and
Bτ(v,v) ≥ c1||v||21,τ for all v ∈ H1

D(Ω) ,

with constants c0 > 0 and c1 > 0 independent of τ .

Proof: Applying the Cauchy–Schwartz inequality, setting c0 := max{cP0 /γ, cH0 }
and c1 := min{cH, cH1 }, we get

|Bτ (v,w)| =

∣∣∣∣∣
((

1

γτ
P +H

)
v,w

)∣∣∣∣∣
≤ 1

γτ
cP0 ||v||0||w||0 + cH0 ||v||1||w||1

≤ c0

(
1

τ
||v||20 + ||v||21

)1/2 (1
τ
||w||20 + ||w||21

)1/2

.

9



Furthermore,

Bτ (v,v) =

((
1

γτ
P +H

)
v,v

)
≥ cP1

γτ
||v||20 + cH1 ||v||21 − λH ||v||20

≥ cH

τ
||v||20 + cH1 ||v||21 ≥ c1

(
1

τ
||v||20 + ||v||21

)
. �

In direct consequence of the relations Sk
D ⊂ H1

D ⊂ H1 and Sk ⊂ H1, the
above lemma holds also for the finite element subspace pair (S k, Sk

D).

Lemma 2. With all assumptions (2.4) and (2.5) fulfilled, we have

|Bτ(V,W)| ≤ c0||V||1,τ ||W||1,τ for all V,W ∈ Sk ,

and
Bτ (V,V) ≥ c1||V||21,τ for all V ∈ Sk

D ,

with constants c0 > 0 and c1 > 0 independent of τ and the triangulation Tk.

As a first result in the direction of abstract error estimates, we can now apply
Cea’s lemma: There exists a constant C independent of the subspace Sk (and
τ ) such that

||l1 − L1||1,τ ≤ C inf
V∈Sk

D

||l1 −V||1,τ .(2.7)

The constant C can be specified by the quotient c0/c1. The inequality (2.7)
describes the quasi–optimality of the finite element approximation L1 with
respect to the τ–norm.

The next step is to estimate the distance of the right–hand side of (2.7) by
means of the Lagrangian interpolant Lkl

1 of the solution l1. The interpola-
tion process is carried out componentwise on the triangulation Tk such that

Lkl
1(xi, yi) = l1(xi, yi) for all nodes (xi, yi). This gives the inequality

||l1 − L1||1,τ ≤ C ||l1 − Lkl
1||1,τ .(2.8)

Here, we have to ensure that the solution l1 is smooth enough in order that
its Lagrangian interpolant is well defined. According to Sobolev’s embedding
lemma, H 2–regularity of l1 is supported in the following.
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The polygonal domain Ω̄ can be written as a union of all triangles T that
belong to the triangulation Tk. Defining LT l

1 := (Lkl
1)|T , we can split up

the norm in (2.8) and get

||l1 − L1||1,τ ≤ C

⎛
⎝ ∑

T∈Tk

||l1 − LT l
1||21,τ,T

⎞
⎠

1/2

.(2.9)

Consequently, the problem of finding an a priori error estimate of the finite
element solution L1 is reduced to the problem of estimating the local inter-
polation error on the triangulation Tk. This is the object of the following

section.

2.1 Local Interpolation Error Bounds

General error bounds of local interpolation processes have been studied inten-

sively, and are nowadays standard for the finite element theory. Nevertheless
it is worthwhile to have a closer look at the assumptions obviously being
made. To derive uniform estimates some regularity of the triangulation is
often requested. It requires the quotient of the diameter and the inner circle

radius of the triangle to be bounded, or the well–known minimal angle con-
dition to be satisfied. These assumptions are not useful for adaptive mesh
refinement, where often small and long elements are needed. Synge [34] was
probably the first who suggested that it is better to pay attention to angles

that tend to π rather than to those that tend to zero. There are several later
approaches connected with this problem [3], [23].

�

�

�

�
� �
�
�
�
��
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αhT

hT

Tφ

y

x

�

�

η

ξ

1

1

Δ

�
�
�
�
�
�

Fig. 2.1: Triangles T and Δ

Here, we want to use only the maximum angle condition, that means

�(T ) ≤ �0 < π , for all T ∈ Tk ,
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where �(T ) denotes the maximum angle of T . According to the compo-
nentwise applied interpolation process, we can restrict ourselves to scalar
functions v within this section.
Since the norms of Hs(Ω) are invariant with respect to the rotation of the

coordinates, we can consider the case when one side of the triangle T ∈ Tk

is along a coordinate axis (see Fig. 2.1).
Without loss of generality, we set 0 < α ≤ 1 and |φ| < π/2. Further, let
λ := tan φ. Denoting by Δ the unit triangle with the vertices P1 = (0, 0),

P2 = (1, 0) and P3 = (0, 1) the affin–linear mapping F : Δ → T is provided
by

x = hT ξ + α λhT η ,(2.10)

y = αhT η , (ξ, η) ∈ Δ .

For the Jacobian matrix J of this mapping, the determinant is |J | = αh2
T .

The inverse mapping F −1 : T → Δ is given by

ξ =
1

hT

x− λ

hT

y ,(2.11)

η =
1

αhT
y , (x, y) ∈ T .

Next we define the space

EΘ := {v ∈ H2(Θ) : v(x, y) = 0 in the vertices of Θ} ,

which is employed with Θ = T and Θ = Δ. The results of the following

Lemmas will be used in the subsequent proof.

Lemma 3. (Babuška & Aziz [3])
For v ∈ EΔ let

I1(α) :=
∫
Δ

⎡
⎣(∂v

∂ξ

)2

+ α−2

(
∂v

∂η

)2
⎤
⎦ dξdη

and

I2(α) :=
∫
Δ

⎡
⎣
(
∂2v

∂ξ2

)2

+ 2α−2

(
∂2v

∂ξ∂η

)2

+ α−4

(
∂2v

∂η2

)2
⎤
⎦ dξdη .
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Then there exist A2 > 0, such that for all α with 0 < α ≤ 1

A2 ≤ inf
v∈EΔ

I2(α)

I1(α)
.

Lemma 4. (Weiss, in [28])
Let v ∈ EΔ. Then

||v||21,Δ ≤ 0.2587 |v|22,Δ .

We note that the constant c = 0.2587 was computed as the smallest positive

eigenvalue μ of the eigenvalue problem

M(v, w) = μN(v, w) , v, w ∈ EΔ \ {0} ,

where M and N are the corresponding bilinear forms for the seminorm | · |22,Δ
and the norm || · ||21,Δ, respectively.
We now formulate the main result of this section.

Lemma 5. Let v ∈ ET . Then

||v||20,T ≤ 0.2587 (1 + |λ|+ λ2)2 h4
T |v|22,T(2.12)

and

|v|21,T ≤ A−2 (1 + |λ| + λ2)3 h2
T |v|22,T .(2.13)

Proof: To prove this lemma we shall employ the standard technique using
the transformation of T ∈ Tk into Δ. However, all estimates will be done
with sufficient care to ensure that reliable computational error estimates can

be derived. Transforming the integrals over T to Δ by means of (2.10), we
obtain with

v̂(ξ, η) := v(x(ξ, η), y(ξ, η)) ∈ ET

for all α with 0 < α ≤ 1

||v||20,T =
∫
Δ

|v̂(ξ, η)|2 |J |dξdη = αh2
T |v̂|20,Δ(2.14)
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and

|v|21,T =
∫
Δ

|J−T∇v̂(ξ, η)|2 |J |dξdη

≤ α
∫
Δ

⎡
⎣(1 + |λ| + λ2)

(
∂v̂

∂ξ

)2

+ α−2(1 + |λ|)
(
∂v̂

∂η

)2
⎤
⎦ dξdη(2.15)

≤ α (1 + |λ|+ λ2)
∫
Δ

⎡
⎣(∂v̂

∂ξ

)2

+ α−2

(
∂v̂

∂η

)2
⎤
⎦ dξdη .

According to Lemma 4 and 3, we immediately get in (2.14)

||v||20,T ≤ αh2
T ||v̂||21,Δ(2.16)

≤ 0.2587α h2
T |v̂|22,T ≤ 0.2587α h2

T I2(α) .

Due to Lemma 3 there exists A2 > 0 such that in (2.15)

|v|21,T ≤ α (1 + |λ|+ λ2) A−2I2(α) .(2.17)

It remains transformation of I2(α) back to the triangle T . We have by (2.11)

I2(α) =
∫
Δ

⎡
⎣(∂2v̂

∂ξ2

)2

+ 2α−2

(
∂2v̂

∂ξ∂η

)2

+ α−4

(
∂2v̂

∂η2

)2
⎤
⎦ dξdη

= h4
T

∫
T

⎡
⎣
(
∂2v

∂x2

)2

+ 2α−2

(
αλ

∂2v

∂x2
+ α

∂2v

∂x∂y

)2

+

+ α−4

(
α2λ2 ∂

2v

∂x2
+ 2α2λ

∂2v

∂x∂y
+ α2∂

2v

∂y2

)2
⎤
⎦ |J−1|dxdy .

Squaring the three expressions and applying the inequality 2ab ≤ a2 + b2 to
the mixed terms, we easily find that

I2(α) ≤ (1 + |λ|+ λ2)2α−1h2
T |v|22,T .(2.18)

Combining the inequalities (2.17) and (2.16) we arrive at the lemma. �

The unknown constant A2 in Lemma 3 was specified in [3] as

A2 = inf
v∈Θ

|v|21,Δ
||v||20,Δ

,
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with Θ := {v ∈ H1(Δ) :
∫ 1
0 v(0, η)dη = 0}/{0}. For practical computation

one can estimate A2 in the following way

A2 ≥ inf
v∈Θ̃

|v|21,Δ
||v||20,Δ

= π2 ,

Θ̃ = {v ∈ H1(Δ) : v 	= const.}. The inequality is a direct consequence

of Θ ⊂ Θ̃. The minimization of the new Rayleigh quotient is equivalent to
seeking for the minimal positive eigenvalue of the Neumann problem for the
Laplacian on the standard triangle Δ [22].

An immediate consequence of Lemma 5 is the inequality

||l1 − LT l
1||21,τ,T ≤ C(τ, λ)|l1|22,T(2.19)

where

C(τ, λ) =
(
1 + |λ|+ λ2

)2
h2
T

(
0.2587

(
1 +

1

τ

)
h2
T +

1

π2

(
1 + |λ| + λ2

))

for all T ∈ Tk. The constant C(τ, λ) is an increasing function of the maximum
angle �(T ), but independent of the minimum angle of the triangle T .

2.2 Control of the Spatial Error

As the mesh only consists of linear elements, the seminorm |L1|2,T vanishes
for each element T , independent of the solution. This is remedied by exten-

ding the elements slightly beyond its boundary and integrating the second
derivatives of the linear function L1 in the sense of distributions. Then the
local H2 seminorm of L1 is related to gradient jumps across the boundaries
of the element. In this way we obtain the approximation

|l1|22,T ∼ D2
TL

1 := meas(T )
1

2

∑
δ∈∂T

m∑
i=1

(∣∣∣[∇L1
i

]
δ

∣∣∣ /hδ

)2
,(2.20)

where [·]δ is the jump across the edge δ of T being of length hδ. The factor
1/2 comes from distributing the jump across ∂T over the two finite elements
interfacing at ∂T . A similar operator was proposed in [20]. Of course, more

sophisticated techniques are available [14]. One advantage of the suggested
technique is that it is suited for arbitrary irregular meshes and that its com-
putational effort is very low.
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Summarizing all the above inequalities and the approximation (2.20) we end
up with the a posteriori error estimate

||l1 − L1||1,τ ≤ C

⎛
⎝ ∑

T∈Tk

η2T

⎞
⎠

1/2

,(2.21)

η2T := C2(τ, λ) D2
TL

1 .

The error indicator ηT may be viewed as an asymptotical upper bound for
the norm of the error on T ∈ Tk. In order to produce a nearly optimal mesh,

triangles with a large error should be refined. This technique usually equili-
brates the local errors on the whole mesh in several iterations and improves
locally the finite element solution.

k := 0

Tk := T0

compute Li

i = 1, 2, 3

estimate error

of L1 on Tk

refine Tk

k := k + 1

Z
ZZ
�
��

�
��
Z
ZZ

�

�

�

�

�

�
�
�

�
�time control

NO

YES

refine

Fig. 2.2: Flow diagram for a multilevel iterative solver

Implementing the adaptive mesh algorithm we first solve the boundary value
problem for l1 on a coarse mesh T0. Then the average value of all the error
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indicators ηT is obtained and all triangles having a greater indicator are re-
fined. The procedure is continued until a desired local tolerance is reached.
Once the refined grid is formed, we solve the linear systems with the BI–
CGStab algorithm preconditioned by a SSOR method. Its convergence be-

haviour is very smooth and in most of the cases it converges considerably
faster than other methods.
In order to get good starting values for the multilevel iteration process of
the values l2 and l3 all stage problems are solved on each refinement level.

In Figure 2.2 the flow diagram for the whole adaptive iteration approach is
pictured.

� Numerical Examples

Example 1: To demonstrate the reliability of the proposed spatial error esti-
mator, we consider the linear problem

−Δu+ u = f(x, y) , (x, y) ∈ Ω = {(x, y)| 0 < x, y < 1},(3.1)

u(x, y) = ξ(x, y) , (x, y) ∈ ∂Ω,

where the functions f(x, y) and ξ(x, y) are such that the exact solution of

(3.1) is

u(x, y) =
1

2
[1− tanh(20x+ 16y − 4)] .

This solution exhibits a sharp transition between the nearly uniform states
– a typical situation for reaction–diffusion problems. We solved (3.1) with
our adaptive multilevel finite element method using the error indicator ηT

for τ → ∞.

N ||u− U ||1 Ξ

274 9.633e-3 0.14
787 8.228e-3 0.23
2459 4.535e-3 0.24
7706 2.652e-3 0.24

Tab. 4.1: Number of degrees of freedom, discretization error,
and effectivity index for adaptive solution of (3.1)
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The resulting H1-errors ||u− U ||1 and the effectivity index

Ξ := ||u− U ||1/
(∑

T

η2T

)1/2

with respect to the degrees of freedom N are presented in Table 4.1. The

convergence behaviour of the effectivity index indicates that the approximate
error is indeed an upper bound of the discretization error. The important
thing here is that the underlying inequalities and approximations lead to a
nearly uniform overestimation of the spatial error. Accepting this funda-

mental fact of interpolation error estimates we can use the proposed spatial
control mechanism to improve considerably the spatial discretization in the
course of temporal integration.

Example 2: We are now interested in the numerical simulation of a two–
dimensional premixed flame propagating in gaseous mixture. Some simplifi-
cations of the underlying physical processes lead to the so–called thermodif-

fusive model described by the reaction–diffusion equations

∂tT −�T = R(T, Y ) + V ∂xT ,(3.2)

∂tY − 1

Le
� Y = −R(T, Y ) + V ∂xY ,

where T is a normalized temperature variable, Y is the reduced mass fraction

of the reactant, and the Lewis number Le is the ratio of thermal and species
diffusion coefficient. We will use a normalized reaction rate given by

R(T, Y ) =
β2

2 Le
Y exp

[ −β(1− T )

1 − α(1− T )

]
.

Here β denotes the reduced activation energy and α is the positive heat

release parameter. The computational domain is a finite rectangular channel
Ω = {(x, y) : −8 < y < 8, 0 < x < 60}. The initial data is chosen to
represent a planar steady flame in the limit β → ∞:

T 0 =

{
exp(x− x0) for x ≤ x0 ,

1.0 otherwise ,

Y 0 =

{
1.0− exp(Le (x− x0)) for x ≤ x0 ,
0.0 otherwise .

Furthermore, homogenous Neumann conditions are imposed at the whole
tube wall except a special part. This part is A = {(x, y) ∈ ∂Ω : (y =
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8) or (y = −8), 30 ≤ x ≤ 37.5}, where the temperature is forced to be
equal to the adiabatic flame temperature TA = 1. This additional condition
represents a thermally anchoring of the flame and inhibits its propagation
through the reactor. The convection terms V Tx and V Yx on the right–hand

side of the equations (3.2) are due to the inflow of fresh mixture at the left
end of the channel. The problem is solved for the parameters Le = 1, β = 10,
α = 0.84, V = −5, and x0 = 28.

Fig. 4.1: Adaptive grid at t=0.0, 2100 nodes

Fig. 4.2: Adaptive grid at t=1.35, 2900 nodes

Fig. 4.3: Adaptive grid at t=4.29, 14000 nodes

A simulation of the flame propagation requires a dense computational mesh
in the thin flame region, and especially in the boundary layer caused by the
time–fixed Dirichlet condition. The computation at each time level starts
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with a uniform coarse mesh of 64 triangles. First experiences have shown
that at least a time tolerance TOLt = 1.0e − 4 is needed to reflect exactly
the temporal dynamic. The spatial local tolerance is set to be 0.2 with re-
spect to the above introduced τ–norm. This tolerance forces the usage of

2000 nodes at the beginning and of 14000 nodes at the end, which means
about 30000 unknowns with respect to a refinement depth of 13 levels. Note,
that about 1010 triangles would be needed to guarantee the same accuracy
on a uniform mesh.

Fig. 4.4: Adaptive solution at t=0.0

Fig. 4.5: Adaptive solution at t=1.35

Fig. 4.6: Adaptive solution at t=4.29

The corresponding finite element triangulations are shown in Fig. 4.1–4.3.
Two special cuts through the computational domain show the high resolution
of the proposed scheme within the steep flame front.
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++++++ + + + + +++ + + ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ + + + + + +

Fig. 4.7: Cut 1 from
(30.0,0.0) to (60.0,0.0)

++++ + ++++++ + ++++ + +++++++ + +++++ + +++++ 

Fig. 4.8: Cut 2 from
(31.0,0.0) to (31.0,8.0)

� Conclusion

We developed a third order Runge–Kutta scheme and a multilevel linear
finite element approximation to calculate the solutions of parabolic partial

differential equations. Selfadaptive mesh refinement based on local interpola-
tion error estimates and time step control using an embedded strategy seem
to be suitable for an automatic solution of nonlinear problems governed by

the reaction–diffusion mechanism. The results of the example provide an
indication of the high resolution of the proposed method. This difficult non-
linear problem was solved without any a priori knowledge of the solution, no
special initial mesh was used.

Nevertheless, there is a great interest to improve the performance of our
spatial refinement process. Methods for elliptic problems [4, 5] that utilize
local auxiliary problems to compute error estimates should also be used for
two–dimensional parabolic systems. The relationship between spatial and

temporal accuracy in an adaptive approach is a further important area when
seeking software with high reliability. Lawson et al. [27] presented a ba-
lancing strategy in the method of lines approach. For the Rothe method,
Bornemann [10] and later Lang and Walter [24] advocate matching the

spatial errors in such a way that a prescribed global tolerance is achieved.
In addition, we plan to include anisotropic refinement strategies to enhance
further the resolution of the solutions.
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[8] M. Bieterman, I. Babuška : An adaptive method of lines with error
control for parabolic equations of the reaction–diffusion type. J. Comp.

Phys. 63, pp. 33–66 (1986)

[9] F. A. Bornemann : An adaptive multilevel approach to parabolic equati-
ons I. General theory and 1D–implementation. IMPACT Comput. Sci.
Engrg. 2, pp. 279–317 (1990)

22



[10] F. A. Bornemann : An adaptive multilevel approach to parabolic equati-
ons II. Variable-order time discretization based on a multiplicative error
correction. IMPACT Comput. Sci. Engrg. 3, pp. 93–122 (1991)

[11] F. A. Bornemann : An adaptive multilevel approach to parabolic equa-
tions III. 2D error estimation and multilevel preconditioning. IMPACT

Comput. Sci. Engrg. 4, pp. 1–45 (1992)

[12] R. Dautray, J.-L. Lions : Mathematical analysis and numerical methods
for science and technology, Vol. 2, Functional and Variational Methods
Springer-Verlag Berlin Heidelberg New York (1988)

[13] L. Demkowicz, J. T. Oden : On a mesh optimization method based on
a minimization of the interpolation error. Int. J. Engrg. Sci. , Vol. 24,
No. 1, pp. 55–68 (1986)

[14] L. Demkowicz, Ph. Devloo, J. T. Oden : On a h-type mesh-refinement

strategy based on minimization of interpolation errors. Comp. Meth.
Appl. Mech. Engrg. 53, pp. 67–89 (1985)

[15] P. Deuflhard, P. Leinen, H. Yserentant : Concepts of an adaptive hier-
archical finite element code. IMPACT Comput. Sci. Engrg. 1, pp. 3–35

(1989)

[16] P. Deuflhard, E. Hairer, J. Zugck : One-step and extrapolation methods
for differential-algebraic systems. Numer. Math. 51, pp. 501–516 (1987)

[17] P. Deuflhard, U. Nowak : Extrapolation integrators for quasilinear im-

plicit ODEs In: P. Deuflhard, B. Engquist (eds.): Large Scale Scienti-
fic Computing. Progress in Scientific Computing 7, pp. 37–50 (1987),
Birkhäuser
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