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Abstract

The multicommodity linear formulation of the Fixed Charge Network Flow Design
problem is known to have significantly sharp linear relaxation lower bounds. However the
tradeoff is the introduction of a large amount of artificial variables. We exhibit a class of
special instances for which the lower bound is tight. Further we completly describe the
polyhedron in the space of the natural variables.
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1 Introduction

1.1 The Network Flow Design problem

An instance of the Fixed Charge Single Source Network Flow Design (SSNFD) problem is
constituted of directed graph with node set V and arc set A, denoted by (V, A), of a root node
r and of a set of commodities M , where a destination node sm (sm ∈ V ) and a non-negative
volume dm (dm ∈ IR+) are given for every commodity m in M . Let G = (V, A, r,M) denote
the instance. Furthermore, a non-negative variable cost coefficient ca is given for every arc a
in subset C of A and a non-negative fixed cost, or fixed charge, fa is given for every arc a in
a subset F of A.

A set of arcs Y (Y ⊆ A) is a network in G if and only if every commodity m in M can
be shipped from the root node r to its specific destination node sm by arcs of the network.
In other terms a set of arcs Y is a network if it contains a directed path Zm from r to sm

for every commodity m in M . A solution for the (SSNFD) problem in the instance G is a
network Y ⊆ A plus a collection of r − sm directed path Zm (m ∈ M) included in Y . Let
X = (Y, Zm : m ∈ M) denote a solution in G, and let XG denote the set of solutions in the
instance G.

The cost of a solution X = (Y, Zm : m ∈ M), denoted by c(X), is the sum of the fixed
costs fa for every arc a of the network contained in F , plus the sum of the variable cost
coefficient ca times the total volume of the commodities flowing through a for every arcs in
C. So we have

c(X) =
∑

a∈Y∩F
fa +

∑

m∈M

∑

a∈Zm∩C
cad

m.

The (SSNFD) problem is to select a network Y in G such that there is a solution X =
(Y, Zm : m ∈ M) whose cost is minimal. Let WG denote this cost. We have

(SSNFD) WG = min c(X)
s.t. X ∈ XG.

The (SSNFD) is a general network design model with numerous special cases such as
facility location problems and production planning problems. Its generality resides in its
ability to mix discrete costs (the fixed charges) and continuous costs (the variable costs). This
permits to model tradeoffs between fixed costs and operating costs in decision for investments.

Considering fixed charges only, that is assuming C = ∅, the (SSNFD) problem reduces
to a Directed Steiner Tree problem. As the latter is NP-complete for general graphs, the
(SSNFD) problem is NP-complete for general graphs as well.

In [EMV87], a polynomial algorithm is presented, solving the problem on planar graphs
with all demand nodes lying on a same face. It is shown in [Sch90] that the problem can be
solved in polynomial time for any Series-Parallel graphs.

1.2 The multicommodity linear formulation

Consider an (SSNFD) instance G and a solution X = (Y, Zm : m ∈ M) in XG.
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Let ya be the {0, 1}-variable indicating if arc a belongs to the network Y for every arc a
in F and let xa be the non-negative real variable holding the total volume of the commodities
flowing through arc a, for every arc a in C. Finally let zma be the {0, 1}-variable indicating if
arc a is used by commodity m in the solution X , for every arc a in A and every commodity
m in M .

To the solution X = (Y, Zm : m ∈ M) corresponds the vector (x, y, z) in IR
|C|
+ × IR

|F |
+ ×

IR
|A||M |
+ defined by

xa =
∑

Zm�a
dm (a ∈ C)

ya = 1 (a ∈ Y ∩ F )
= 0 (a ∈ F \ Y )

zma = 1 (m ∈ M, a ∈ Zm)
= 0 (m ∈ M, a �∈ Zm).

Let (xX , yX) denote the vector (x, y) associated with solution X . The cost of solution X
is given by

c(X) = cx+ fy.

Let N be the node-arc |V | × |A|-incidence matrix of the directed graph (V, A), that is the
matrix for which the entry (t, a) is −1 if node t is the tail of arc a, +1 if node t is the head
of arc a and 0 otherwise. Let bm be the |V |-vector for which the entry corresponding to node
r is −1, the entry corresponding to node sm is +1 and the other entries are zero. The vector
zm is a unit flow vector with for unique source node node r and with for unique sink node
node sm (m ∈ M). It therefore satisfies the flow conservation constraints

Nzm = bm(m ∈ M). (1)

Clearly the volume constraints

xa ≥
∑

m∈M
zma dm(a ∈ C) (2)

and the capacity constraints
ya ≥ zma (a ∈ F,m ∈ M) (3)

are satisfied by the vector (x, y, z) associated with any feasible solution.

Define the polyhedron

Pxyz = {(x, y, z) ∈ IR
|C|
+ × IR

|F |
+ × IR

|A||M |
+ sat. (1), (2) and (3)}.

The (SSNFD) problem can be linearly formulated as follows. Consider the Mixed Integer
Program

(MIP ) W = min cx+ fy
s.t. (x, y, z) ∈ Pxyz

y ∈ {0, 1}|F |.

If the capacity variables y are fixed to some {0, 1}-values, then the (MIP) has an optimal
solution with variables z integral, to which corresponds a feasible solution X = (Y, Zm : m ∈
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M) (see [Wol89]). The (MIP) is thus equivalent to the (SSNFD) problem, in the sense that

both problems have same value (W = WG) for any cost function c, f in IR
|C|
+ , IR

|F |
+ respectively.

The linear relaxation

(LP ) ZG = min cx+ fy
s.t. (x, y, z) ∈ Pxyz

of the (MIP) gives a lower bounds to the optimal value of the network design problem:

ZG ≤ WG.

The multicommodity linear formulation is known to give very good lower bounds. In this
paper, we prove that it gives tight lower bounds for a particular class of (SSNFD) instances
G. So we prove

∀G ∈ G, ∀c ∈ IR
|C|
+ , ∀f ∈ IR

|F |
+ : WG = ZG.

That is we prove that the multicommodity linear formulation is a polyhedral characterization
valid in G for the (SSNFD) problem.

In [Sch94] it is proved that the multicommodity linear formulation is a polyhedral charac-
terization for the (SSNFD) problem on Series-Parallel graph, if it is valid for a well-structured
class of elementary instances Gele. The class of graphs G considered here is a part of the class
elementary instances Gele.

Let Pxy be the projection of the polyhedron Pxyz onto the space of the variables x, y:

Pxy = {(x, y) : ∃z s.t.(x, y, z) ∈ Pxyz}.

For a collection of vectors {xi : i ∈ I} in IRn, let < xi : i ∈ I >+ denote the dominant of
the convex hull of the vectors xi(i ∈ I), that is the polyhedron

{x ∈ IRn : ∃λi ∈ IR+(i ∈ I) s.t. x ≥
∑

i∈I
λixi, 1 =

∑

i∈I
λi}.

Let P I be the dominant of the convex hull of the characteristic vectors (xX , yX) of the
feasible solutions X in XG:

P I =< (xX , yX) : X ∈ XG >+ .

A tight linear relaxation for any non-negative cost function means that the dominant of
the polyhedron Pxy is the dominant of the convex hull of the characteristic vectors (xX , yX) of
the feasible solutions. As the polyhedron Pxy has for characteristic cone the positive orthant,
to prove a tight linear relaxation for every non-negative cost function is equivalent to prove
that

Pxy = P I

that is to prove that the extreme points of the polyhedron Pxy are characteristic vectors of
feasible solutions in XG.

Finding classes of inequalities valid for PI may permit us to solve the SSNFD problem
by using a Branch and Cut scheme. In [VRW85], a collection of inequalities, the Basic
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Network inequalities, is presented and their validity for PI is proved. Then, in [RW90], these
inequalities are generalised by a bigger class of valid inequalities, the Dicut inequalities.

Although no description of the polyhedron Pxy is known for general graphs, the class of
Dicut inequalities inequalities is proved to be sufficient in [RW90].

As the number of variables of the multicommodity formulation can be very large for
practical applications, an expression of the polyhedron Pxy in the space of the natural variables
can be potentially useful. In this paper, we completely describe Pxy = P I for any instance in
the particular class G considered, by giving the class of inequalities necessary and sufficient
for the description of Pxy = P I .

1.3 The class of instances

Suppose that a set of four natural numbers

N = (np ∈ IN : p ∈ {u, v, ū, v̄}) (4)

and a collection of positive volumes

D = (dp,n ∈ IR0
+ : p ∈ {u, v}, 1≤ n ≤ np) (5)

are given.

For any set of datas (N,D) defined by (4), (5), we define an instance G = (V, A, r,M) as
follows.

Pose
Mp = {(p, n) : 1 ≤ n ≤ np}(p ∈ {u, v})
Ap = {(p, n) : 1 ≤ n ≤ np̄}(p ∈ {u, v}).

Let the set of nodes of G be

V = {r, u, v}∪ {sm : m ∈ Mu ∪Mv}.

Let the set of commodities of G be

M = Mu ∪Mv ∪ {(u, 0), (v, 0)}
let sm and dm be the demand nodes and the volume associated with the commodity m for
every commodity m in Mu ∪Mv and let

sp,0 = p(p ∈ {u, v})
dp,0 = 0(p ∈ {u, v})

define the demand nodes and the volumes of commodities (u, 0) and (v, 0).

Let the set of arcs of G be

A = Au ∪ {(v, u)} ∪ {(v, sm) : m ∈ Mu ∪Mv}
= Av ∪ {(u, v)} ∪ {(u, sm) : m ∈ Mu ∪Mv}.
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where Au, Av are sets of parallel arcs with as tail node node r and as head node nodes u, v
respectively:

∀a ∈ Au : a = (r, u)

∀a ∈ Av : a = (r, v).

This defines the instance G = (V, A, r,M). See figure 1.

Figure 1: The instance

s s s ssu,1 s s su,2 u,3 u,4

u

r

v,4 v,3 v,2 v,1

v

A non-negative variable cost coefficient ca is given for every arc a in the set

C = Au ∪ Av

and a fixed charge fa is given for every arc a in the set

F = Au ∪ {(v, u)} ∪ {(v, sm) : m ∈ Mu}
= Av ∪ {(u, v)} ∪ {(u, sm) : m ∈ Mv}.

In the following, the variables y(v,u), y(v,sm)(m ∈ Mu), y(u,v), y(u,sm)(m ∈ Mv) are denoted
by yu,0, ym(m ∈ Mu), yv,0, ym(m ∈ Mv) respectively. Similarly, the fixed costs associated
with these arcs are denoted by fu,0, fm(m ∈ Mu), fv,0, fm(m ∈ Mv) respectively.

For any set of commodities N ⊆ M , let dN denote the total volume of the commodities
in N :

dN =
∑

m∈N
dm.
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In particular we have
dM = dM

u
+ dM

v
.

The purpose of this paper is to prove for any set of values (N,D) defining an (SSNFD)
instance G as specified above, the lower bound ZG given by the linear relaxation is tight, that
is, is equal to the optimal values WG of the (SSNFD) problem defined on G. So we prove the
following theorem.

Theorem 1 (Polyhedral Characterization) For any set of datas (N,D), if G is the
(SSNFD) instance defined by (N,D) as mentioned above, then we have

∀c ∈ IR
|C|
+ , ∀f ∈ IR

|F |
+ : WG = ZG.

Let P I be the dominant of the convex hull of the characteristic vectors of the solutions in
XG, that is the polyhedron defined by

P I =< (xX , yX) : X ∈ XG >+ .

As made explicit previously, theorem 1 is equivalent to the following theorem.

Theorem 2 (Polyhedral Characterization) For any set of datas (N,D), if G is the
(SSNFD) instance defined by (N,D) as mentioned above, then we have

Pxy = P I .

1.4 The set of combinatorial solutions

Consider an (SSNFD) instance G as defined in section 1.3 for some set of datas (N,D). We
describe in this section four set of combinatorial solutions XAu

, XAv
, XBu

, XBv
, such that

it is sufficient to consider the solutions in these sets to compute the optimal value of the
(SSNFD) problem. We have

XG ⊇ XAu ∪ XAv ∪ XBu ∪ XBv
.

1.4.1 The solutions of type Au

For any arc au in Au, av in Av, for any set of commodities Iu in Mu, consider the solution
such that the commodities in Iu and M \ Iu are served by a directed path containing arc au,
av respectively. The solution is constructed as follows. Let

Y = {au} ∪ {(u, sm) : m ∈ Iu}
∪ {av} ∪ {(v, sm) : m ∈ M \ Iu}
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define the network, let

Zm = {au, (u, sm)} (m ∈ Iu)
= {au} (m = (u, 0))
= {av, (v, sm)} (m ∈ M \ Iu)
= {av} (m = (v, 0))

define the collection of directed paths Zm(m ∈ M) and let Xau,av,Iu denote the corresponding
solution in XG, that is

Xau,av,Iu = (Y, Zm : m ∈ M).

We consider the set of solutions

XAu
= {Xau,av,Iu : au ∈ Au, av ∈ Av , Iu ⊆ Mu}.

The characteristic vector of a solution X = Xau,av,Iu in XAu
, denoted by

(xX , yX) = (xa : a ∈ C, ya : a ∈ F )

is defined by
xau = dIu

yau = 1
xav = dM − dIu

yav = 1
ym = 1 (m ∈ Mu \ Iu)
xa, ya = 0 otherwise.

1.4.2 The solutions of type Av

This class of solutions is defined symmetrically, by permuting the roles played by u and v in
the definition of XAu

. So we have

XAv
= {Xau,av,Iv : au ∈ Au, av ∈ Av , Iv ⊆ Mv}.

Further let the set of solutions of type A be

XA = XAu ∪ XAv
.

1.4.3 The solutions of type Bu

For any arc au in Au, consider the solution such that every commodity is served by a directed
path containing arc au. The solution is constructed as follows. Let

Y = {au} ∪ {(u, sm) : m ∈ Mu}
∪ {(u, v)} ∪ {(v, sm) : m ∈ Mv}
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define the network, let

Zm = {au, (u, sm)} (m ∈ Mu)
= {au} (m = (u, 0))
= {au, (u, v), (v, sm)} (m ∈ Mv)
= {au, (u, v)} (m = (v, 0))

define the collection of directed paths Zm(m ∈ M) and let Xau denote the corresponding
solution in XG, that is

Xau = (Y, Zm : m ∈ M).

We consider the set of solutions

XBu
= {Xau : au ∈ Au}.

The characteristic vector of any solution X = Xau in XBu
, denoted by

(xX , yX) = (xa : a ∈ C, ya : a ∈ F )

is defined by
xau = dM

yau = 1
yu,0 = 1
xa, ya = 0 otherwise.

1.4.4 The solutions of type Bv

This class of solutions is defined symmetrically, by permuting the roles played by u and v in
the definition of XBu

. So we have

XBv
= {Xav : av ∈ Av}.

1.4.5 Interpretation

We claim that there is always an optimal solution of the (SSNFD) problem in XA∪XBu∪XBv
.

Therefore the optimal value W can be computed by considering the solutions in this latter
set only. This can be achieved as follows.

Consider a cost function (ca : a ∈ C, fa : a ∈ F ) in IR
|C|
+ × IR

|F |
+ .

For any solution in XA using arcs au, av in Au, Av respectively, let du, dv be the total
volume of the commodities flowing from node r to nodes u, v respectively. The total cost in
the arcs au, av is then

caud
u + fau + cavd

v + fav .

As du+dv is the total volume of the commodities in G, i.e. dM , the latter cost can be written
as

(cau − cav)d
u + fau + fav + cavd

M .
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The cost function in the set of arcs Au ∪ Av can therefore be characterised by the concave
piecewise linear cost function f of du defined by

f : du → min
au ∈ Au

av ∈ Av

(cau − cav)d
u + fau + fav + cavd

M .

For any solution Xau,av,Iu in XAu
, let K be the cost of the solution in G \ Au \ Av. We

have

K =
∑

i∈Mu\Iu
f i

du = dI
u

dv = dM − dI
u
.

Analogously, a vector (du, dv, K) can be defined for any solution in XAv
.

Plot on a (du, K)-graph the vectors defined above for every solution in XA. It is not
difficult to see that only the vectors which are lying on the lower frontier of the convex hull of
the vectors plotted on the graph are to be considered for computing the optimal value of the
solutions in XA (see [Sch90]). Let g(du) be the convex piecewise linear function describing
this lower frontier. So the optimal value for the solutions of type A is actually the minimum
of a concave function plus a convex function. See figure 2.

Then the optimal value of the solution in XA, defined by

WA = min
X∈XA

c(X)

is given by
WA = min

du∈[0,dM ]
f(du) + g(du).

Let WBu
, WBv

be the optimal values of the solution in XBu
, XBv

respectively. We have

WBu
= min

au∈Au
caud

M + fau + fu,0

WBv
= min

av∈Av
cavd

M + fav + fv,0.

Then the optimal value of the (SSNFD) problem is computed by

W = min{WA,WBu
,WBv}.

2 The set of constraints

In section 1.3, an (SSNFD) instance G is defined for every set of datas (N,D).

In section 1.2, the multicommodity formulation is described, defining a polyhedron Pxyz
in an extended space and its projection Pxy onto the space of the natural variables, that is
the space of the variables (xa : a ∈ C, ya : a ∈ F ).
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Figure 2: The optimal value for type A
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The purpose of this paper is to prove that the polyhedron Pxy has for extreme points
characteristic vectors of solutions in XG, that is to prove that Pxy is the polyhedron PI

associated with the (SSNFD) problem.

In this section, we describe a set of inequalities C and prove the validity of the inequalities
in C for the polyhedron Pxy. Let P ′ be the polyhedron defined by the inequalities in C. We
prove thus Pxy ⊆ P ′.

2.1 Characterization of the valid constraints

In this subsection, we characterize the valid inequalities of Pxy, as it is done in [RW90]. This
characterization holds for any (SSNFD) instance.

A directed cut Q = δ−(S) (S ⊆ V ) is feasible for the commoditym (m ∈ M) if it separates
the demand node sm from the root node r. Let Sm be the set of feasible directed cuts for
commodity m. We have

Sm = {δ−(S) : S ⊆ V, r �∈ S, sm ∈ S}.

Every r − sm directed path intersects every directed cut Q in Sm (m ∈ M). It follows
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that the constraints ∑

a∈Q
zma ≥ 1(m ∈ M,Q ∈ Sm) (6)

are satisfied by the characteristic vector of the directed paths Zm of every solution in XG.

Consider the polyhedron in the extended space

P ′
xyz = {(x, y, z) ∈ IR

|C|
+ × IR

|F |
+ × IR

|A||M |
+ sat. (6), (2) and (3)}

and its projection onto the space of the natural variables

P ′
xy = {(x, y) : ∃z s.t.(x, y, z) ∈ P ′

xyz}.

Clearly the flow vectors zm in IR
|A|
+ (m ∈ M) satisfying the flow conservation constraints

(1) satisfy the cut constraints (6) as well. Indeed for any commodity m in M and for any cut
Q = δ−(S) in Sm, aggregating the flow conservation constraints (1) over the set of nodes S
gives ∑

a∈δ−(S)

zma −
∑

a∈δ+(S)

zma = 1

with the validity of the cut constraint (6) as a consequence.

So we have
Pxyz ⊆ P ′

xyz

which implies
Pxy ⊆ P ′

xy. (7)

In order to prove the validity of a constraint for Pxy, by (7), it is sufficient to prove its
validity for P′

xy. Here follows a characterization of the constraints valid for P′
xy.

Lemma 1 (Characterization of valid constraints) For any (SSNFD) instance G, the

cost function (c, f) in IR
|C|
+ × IR

|F |
+ and the constant K define a valid constraint for the

polyhedron P ′
xy, i.e.

∀(x, y) ∈ P ′
xy : cx+ fy ≥ K

if and only if there exist
αm
Q ∈ IR+ (m ∈ M,Q ∈ Sm)

fm
a ∈ IR+ (m ∈ M, a ∈ F )

such that
∑

Q�a
αm
Q ≤ cad

m (a ∈ C \ F,m ∈ M)

∑

Q�a
αm
Q ≤ fma (a ∈ F \ C,m ∈ M)

∑

Q�a
αm
Q ≤ fma + cad

m (a ∈ C ∪ F,m ∈ M)

∑

m∈M
fa ≤ fa (a ∈ F )

K ≤
∑

m∈M
Q∈Sm

αm
Q .
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Proof of lemma 1

Let αm
Q , fm

a and βa be the dual variables associated with constraints (6), (3) and (2)
respectively. Using Farkas lemma and assuming without loss of generality that βa = ca
(a ∈ C), we obtain the result.

�

2.2 The set of constraints

Consider an instance G in G, as defined in subsection 1.3.

In this section, a set of contraints C is presented. The validity of the constraints in C for
the polyhedron P ′

xy, and therefore for the polyhedron Pxy as well is proved using lemma 1.

We prove in the next section that this set of constraints is actually sufficient for the
description of the polyhedron Pxy.

Let the constraints

∑

a∈Au

ya + yu,0 ≥ 1

∑

a∈Av

ya + yv,0 ≥ 1

∑

a∈Au

ya +
∑

a∈Av

ya ≥ 1

be denoted by Cu, Cv, Cu,v respectively.

We have the following lemma.

Lemma 2 The constraints Cu, Cv, Cu,v are valid for the polyhedron Pxy.

Proof of lemma 2

Fix the dual variables αmQ , fm
a as follows

αu,0
Q = 1 (Q = Au ∪ {(v, u)})

fu,0
a = 1 (a ∈ Au ∪ {(v, u)})
αm
Q , fm

a = 0 otherwise.

Then the validity of constraint Cu follows immediately by lemma 1 and the relation (7).

Constraint Cv is treated symmetrically.

Fix now the dual variables αmQ , fm
a as follows

α
u,0
Q = 1 (Q = Au ∪ Av)

fu,0
a = 1 (a ∈ Au ∪ Av)
αm
Q , fm

a = 0 otherwise.
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Then the validity of constraint Cuv follows immediately by lemma 1 and the relation (7).

�

For any set of arcs Du in Au, for any set of commodities Nu in Mu, let the constraint

∑

a∈Au\Du

xa +
∑

a∈Du

yad
Nu

+
∑

m∈Nu

(yu,0 + ym)dm ≥ dN
u

be denoted by CDu,Nu
. For any set of arcs Dv in Av , for any set of commodities Nv in Mv,

define the constraint CDv,Nv
symmetrically.

We have the following lemma.

Lemma 3 The constraints CDp,Np
(p ∈ {u, v}, Dp ⊆ Ap, N p ⊆ Mp) are valid for the polyhe-

dron Pxy.

Proof of lemma 3

Consider any subsets Du, Nu in Au, Mu respectively.

Pose

αm
Q = dm (m ∈ Nu, Q = Au ∪ {(v, u), (v, sm)})

fm
a = dm (m ∈ Nu, a ∈ Du ∪ {(v, u), (v, sm)})
αm
Q , fm

a = 0 otherwise.

Then the validity of constraint CDu,Nu
follows immediately by lemma 1 and the relation

(7).

The constraint CDv,Nv
is treated analogously.

�

For any subsets Du, N v, Dv, Nu in Au, Mv , Av, Mu respectively, pose

dD
u,Nv

=
∑

a∈Au\Du

xa +
∑

a∈Du

ya(d
M − dN

v
) +

∑

m∈Nv

(yv,0 + ym)dm (8)

dD
v,Nu

=
∑

a∈Av\Dv

xa +
∑

a∈Dv

ya(d
M − dN

u
) +

∑

m∈Nu

(yu,0 + ym)dm (9)

and consider the constraint defined by

dD
u,Nv

+ dD
v,Nu ≥ dM

and denoted by CDu,Nv,Dv,Nu
.

We have the following lemma.

Lemma 4 For any subsets Du, N v, Dv, Nu in Au, Mv, Av, Mu respectively, the constraints
CDu,Nv,Dv ,Nu

is valid for the polyhedron Pxy.
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Proof of lemma 4

Pose

αm
Q = dm (m ∈ Nu, Q = Au ∪ {(v, u), (v, sm)})

αm
Q = dm (m ∈ N v, Q = Av ∪ {(u, v), (u, sm)})

αm
Q = dm (m ∈ M \Nu \N v, Q = Au ∪Av)

fm
a = dm (m ∈ Nu, a ∈ Du ∪ {(v, u), (v, sm)})
fm
a = dm (m ∈ N v, a ∈ Dv ∪ {(u, v), (u, sm)})
fm
a = dm (m ∈ M \Nu \N v, a ∈ Du ∪Dv)
αm
Q , fm

a = 0 otherwise.

Then the validity of constraint CDu,Nv,Dv,Nu
follows immediately by lemma 1 and the

relation (7).

�

In the following, Dp, Dp
i and N p, N p

i (p ∈ {u, v}, i ∈ {1, 2}) always denote subsets of Ap

and Mp respectively, even if it is not specifically made explicit.

Finally, let Cxa and Ca be the positivity constraints of the variables xa (a ∈ C) and ya
(a ∈ F ).

So we consider the set of constraints

C = {Cu, Cv, Cu,v}
∪ {CDp,Np

: p ∈ {u, v}, Dp ⊆ Ap, N p ⊆ Mp}
∪ {CDu,Nv,Dv,Nu

: Du ⊆ Au, N v ⊆ Mv , Dv ⊆ Av, Nu ⊆ Mu}
∪ {Cxa : a ∈ C}
∪ {Ca : a ∈ F}

and the polyhedron

P ′ = {(x, y) ∈ IR|C| × IR|F | : ∀(c, f, K) ∈ C : cx+ fy ≥ K}.

The results of this subsection are summed up in the following theorem.

Theorem 3 (Valid Constraints) For any set of datas (N,D) defining an (SSNFD) in-
stance as mentioned above, we have

Pxy ⊆ P ′.

Proof of theorem 3

This is a direct consequences of lemma 2, lemma 3 and lemma 4.

�

In the next section, we prove that the extreme points of P ′ are characteristic vectors of
feasible solutions in XG, that is we prove P ′ ⊆ P I . The latter completes the proof of the
validity of the polyhedral characterization for the instances considered.
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2.3 Comments

The classes of inequalities CDu,Nu
, CNv,Dv

, CDu,Nv,Dv,Nu
is part of the class of dicut inequa-

lities presented in [RW90].

In [RW90], a dicut inequality is called simple if there is at most one non-zero dual variable
αm
Q (Q ∈ Sm) with value dm for every commodity m in M . The questions whether the

collection of Dicut inequalities and the collection of simple Dicut inequalities are sufficient for
the description of PI are asked in [RW90]. By the result proved in the present paper, both
questions are answered affirmatively for the instances in G.

3 Proof of Polyhedral Characterization

So we are given a set of constraints C defining a polyhedron P′ and we are given a set of
combinatorial solutions defining the polyhedron PI . In this section, we prove

P ′ ⊆ P I . (10)

3.1 Methodology

We first globally present the method we use for proving the polyhedral characterization.

As every solution (x, y) in P′ can be expressed by a convex combination of extreme points
plus a positive combination of extreme rays, in order to prove (10), it is sufficient to prove
that every extreme point of P ′ belongs to P I and that every extreme ray of P ′ belongs to the
characteristic cone of PI . The latter is trivial. Indeed, since the coefficients of the constraints
in C are non-negative and since for any variable there is a constraint with positive coefficient
for this variable, it follows that the characteristic cone of P′ is the positive orthant, that is
the characteristic cone of PI .

So we only need to prove that every extreme point of P ′ belongs to P I . For this, it is
sufficient to prove that for every extreme point (x, y) of P ′, there is a solution X in X such
that (x, y) = (xX , yX).

Clearly, for the latter, since an extreme point is a face of dimension zero of the polyhedron,
it is sufficient to prove that for every face O of P′, there is a solutionX in X such that (xX , yX)
is in the face O.

Finally, as the extreme points are faces of dimension zero, and therefore bounded faces as
well, we can consider only the faces of P′ bounded in some sense, that is the faces containing
no exreme rays or none of the rays in a given subset.

For any point (x, y) in P ′, let C(x,y) denote the set of constraints in C tight for (x, y), that
is the set

C(x,y) = {(c, f, K) ∈ C : cx+ fy ≤ K}.

Let O(x,y) denote the face of P ′ defined by the point (x, y), that is the face defined by the
set of tight constraints C(x,y). The face O(x,y) is the smallest face containing the point (x, y).
For every face O of P ′, there is a solution (x, y) in P′ such that a constraint is tight for the
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face if and only if it is tight for (x, y) , i.e. is in C(x,y). So for every face O of P ′, there is a
solution (x, y) in P′ such that the face O is O(x,y).

For any point (x, y) in P ′, a solution (x̃, ỹ) in P′ belongs to the face O(x,y) if and only if
every constraint in C tight for (x, y) is tight for (x̃, ỹ), that is if

C(x,y) ⊆ C(x̃,ỹ).

Let CX denote the set of constraints tight for the characteristic vector (xX , yX), that is

the set C(xX ,yX) for every solution X in X .

The sufficient condition for proving (10) presented above, i.e. the condition that every
face of P ′ contains a characteristic vector (xX , Y X), is then formulated as follows.

Criterion 1 (Sufficient condition) If for any point (x, y) in P′, there exists a solution X
in X such that

C(x,y) ⊆ CX

then we have
P ′ ⊆ P I .

We may consider only the faces of P ′ bounded in some sense, that is the faces excluding
rays in a given subset.

In the following, we consider only extreme rays associated with capacity variables ya
(a ∈ F ). For any arc a in F , let ra denote the ray associated with variable ya, that is the
vector (x, y) in IR|C| × IR|F | where the only non-zero component is ya = 1.

A constraint (c, f, K) of C is tight for the ray ra = (x, y) (a ∈ F ) if and only if we have

cx+ fy = fa ≤ 0.

Let Ca be the set of constraints tight for the ray ra. We have

Ca = {(c, f, K) ∈ C : fa ≤ 0}.

Finally, the ray ra belongs to the characteristic cone of the face defined by the point (x, y),
i.e. of the face O(x,y), if and only if every constraint of C tight for the point (x, y) is tight for
the ray ra, that is if

C(x,y) ⊆ Ca.

Let F0 be a set of arcs in F and let R0 be the corresponding set of rays, that is the set
{ra : a ∈ F 0}. If we consider only the faces of P ′ containing none of the rays in R0, then we
obtain the following sufficient condition for proving (10).

Criterion 2 (Sufficient condition (Bounded faces)) If for any point (x, y) in P′, either
there is an arc a in F 0 such that

C(x,y) ⊆ Ca
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or there exists a solution X in X such that

C(x,y) ⊆ CX

then we have
P ′ ⊆ P I .

Finally, we can prove the contraposition of criterion 2 as well. This gives us the following
criterion.

Criterion 3 (Sufficient condition (Contraposition)) If for any point (x, y) in P′, we
have that

∀a ∈ F 0 : ∃C ∈ C(x,y) s.t. C �∈ Ca

and
∀X ∈ X : ∃C ∈ C(x,y) s.t. C �∈ CX

is a contradiction then we have
P ′ ⊆ P I .

3.2 Scheme of the proof

By the last criterion 3, in order to prove (10), we need to prove the following steps.

3.2.1 Step 1

Consider any face O of the polyhedron P ′, and consider any point (x, y) in P′ such that
O(x,y) = O. We first prove that if the face O contains none of the rays in the set

R0 = {ra : a ∈ Au ∪ Av ∪ {(u, v), (v, u)}}
then the constraints Cu, Cv are tight for the face O. That is, we prove the following lemmas.

Lemma 5 For any point (x, y) in P ′, if we have

∀a ∈ Au ∪ {(v, u)} : ∃C ∈ C(x,y) s.t. C �∈ Ca

then we have
Cu ∈ C(x,y).

Lemma 6 For any point (x, y) in P ′, if we have

∀a ∈ Av ∪ {(u, v)} : ∃C ∈ C(x,y) s.t. C �∈ Ca

then we have
Cv ∈ C(x,y).
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3.2.2 Step 2

Consider now any face O of the polyhedron P ′ containing none of the rays in R0, that is by
lemmas 5, 6, a face O for which constraints Cu, Cv are tight, and consider a point (x, y) in
P ′ such that O(x,y) = O, that is a point (x, y) of P′ for which constraints Cu, Cv are tight.

We prove that if the face O contains none of the characteristic vectors of the solutions
in XA, XBu

, XBv
, then the constraints Cu,v, Cv,0, Cu,0 respectively are tight for the faces.

That is, we prove the following lemmas.

Lemma 7 For any point (x, y) in P ′, if we have

Cu, Cv ∈ C(x,y)

and
∀X ∈ XA : ∃C ∈ C(x,y) s.t. C �∈ CX

then we have
Cu,v ∈ C(x,y).

Lemma 8 For any point (x, y) in P ′, if we have

Cu, Cv ∈ C(x,y)

and
∀X ∈ XBu

: ∃C ∈ C(x,y) s.t. C �∈ CX

then we have
Cv,0 ∈ C(x,y).

Lemma 9 For any point (x, y) in P ′, if we have

Cu, Cv ∈ C(x,y)

and
∀X ∈ XBv

: ∃C ∈ C(x,y) s.t. C �∈ CX

then we have
Cu,0 ∈ C(x,y).

3.2.3 Step 3

Finally, we prove that no point (x, y) in P′ can satisfy at equality the constraints Cu,v, Cu,0,
Cv,0 simultaneously.

So we prove the following lemma.
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Lemma 10 For any point (x, y) in P ′,

Cu,v , Cv,0, Cu,0 ∈ C(x,y)

is a contradiction.

Proof of lemma 10

Suppose, that such a point (x, y) exists. Since it satisfies at equality contraints Cu,v, Cu,0, Cv,0,
we have

∑

a∈Au

ya +
∑

a∈Av

ya ≤ 1 (11)

yu,0 ≤ 0 (12)

yv,0 ≤ 0. (13)

On the other hand, since (x, y) is a point in P′, it satisfies the constraints Cu, Cv . This
implies

∑

a∈Au

ya + yu,0 ≥ 1 (14)

∑

a∈Av

ya + yv,0 ≥ 1 (15)

respectively.

Summing (11) to (15), we obtain
0 ≥ 1

a contradiction.

�

3.3 Structure of the faces

In this section, we consider a point (x, y) in P′ and derive some structural properties of the
set of constraints of C tight for (x, y), that is of the set C(x,y).

Lemma 11 Consider any point (x, y) in P′ and any subsets Dp
i in Ap, N p

i in Mp (p ∈
{u, v}, i ∈ {1, 2}). If we have

CDu
1 ,N

v
1 ,D

v
1 ,N

u
1 , CDu

2 ,N
v
2 ,D

v
2 ,N

u
2 ∈ C(x,y)

then we have
CDu

1 ,N
v
1 ,D

v
2 ,N

u
2 , CDu

2 ,N
v
2 ,D

v
1 ,N

u
1 ∈ C(x,y).

Proof of lemma 11

20



Let dD
u,Nv

and dD
v,Nu

be defined as in (8) and (9) of section 2 respectively. The fact that
constraints CDu

1 ,N
v
1 ,D

v
1 ,N

u
1 , CDu

2 ,N
v
2 ,D

v
2 ,N

u
2 are tight for (x, y) means that

dD
u
1 ,N

v
1 + dD

v
1 ,N

u
1 ≤ dM (16)

dD
u
2 ,N

v
2 + dD

v
2 ,N

u
2 ≤ dM (17)

respectively.

On the other hand, the constraints CDu
1 ,N

v
1 ,D

v
2 ,N

u
2 , CDu

2 ,N
v
2 ,D

v
1 ,N

u
1 are satisfied by (x, y),

which gives

dD
u
1 ,N

v
1 + dD

v
2 ,N

u
2 ≥ dM (18)

dD
u
2 ,N

v
2 + dD

v
1 ,N

u
1 ≥ dM (19)

respectively.

Summing (16) to (19), we obtain
0 ≥ 0.

So equality holds everywhere. In particular, the constraints (18) and (19) are tight for (x, y).

�

Lemma 12 Consider any point (x, y) in P′ and let Du
0 be the set {a ∈ Au : ya ≤ 0}. Consider

any subsets Du
i in Au with Du

0 ⊆ Du
i , N

u
i in Mu (i ∈ {1, 2}). If we have

CDu
1 ,N

u
1 , CDu

2 ,N
u
2 ∈ C(x,y)

then we have either
Du

1 ⊆ Du
2

or
Du

1 ⊇ Du
2

or
Nu

1 = Nu
2 = Nu, CDu

1∪Du
2 ,N

u ∈ C(x,y), CDu
1∩Du

2 ,N
u ∈ C(x,y).

Proof of lemma 12

The constraints (c1, f1, K1) = CDu
1 ,N

u
1 and (c2, f2, K2) = CDu

2 ,N
u
2 are satisfied at equality

by (x, y). On the other side, as (x, y) is in P′, the constraints (c3, f3, K3) = CDu
1∪Du

2 ,N
u
1 ∩Nu

2

and (c4, f4, K4) = CDu
1∩Du

2 ,N
u
1 ∪Nu

2 are satisfied by (x, y). So the constraint (c3 + c4 − c1 −
c2, f3 + f4 − f1 − f2, K3 + K4 − K1 −K2) is satisfied by (x, y) as well. This gives

∑

a∈Du
1 \Du

2

yad
Nu

1 \Nu
2 +

∑

a∈Du
2 \Du

1

yad
Nu

2 \Nu
1 ≤ 0

as it is easy to check. Since the left hand side is non-negative, equality holds throughout and
thus constraints (c3, f3, K3) and (c4, f4, K4) are tight for (x, y). On the other hand, we have
that

∑

a∈Du
1 \Du

2

yad
Nu

1 \Nu
2 = 0 (20)

∑

a∈Du
2 \Du

1

yad
Nu

2 \Nu
1 = 0. (21)
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Now suppose that conclusions Du
1 ⊆ Du

2 and Du
1 ⊇ Du

2 do not hold, that is suppose that
Du

1 \Du
2 , D

u
2 \Du

1 are non empty. By hypothesis, for every arc a in Du
1 \Du

2 , D
u
2 \Du

1 , the
variable ya is positive, and by construction, the volumes of the commodities inMu are positive.
Then (20) and (21) imply Nu

1 ⊆ Nu
2 and Nu

2 ⊆ Nu
1 respectively. So we have Nu

1 = Nu
2 = Nu

and that the constraints (c3, f3, K3) = CDu
1∪Du

2 ,N
u ∈ C(x,y), (c4, f4, K4) = CDu

1∩Du
2 ,N

u
are

tight. This completes the proof.

�

Lemma 13 Consider any point (x, y) in P′ and let Du
0 be the set {a ∈ Au : ya ≤ 0}. Consider

any subsets Du
i in Au with Du

0 ⊆ Du
i , N

v
i in Mv, Dv in Av, Nu in Mu (i ∈ {1, 2}). If we

have
CDu

1 ,N
v
1 ,D

v,Nu
, CDu

2 ,N
v
2 ,D

v ,Nu ∈ C(x,y)

then we have either
Du

1 ⊆ Du
2

or
Du

1 ⊇ Du
2

or
N v

1 = Nv
2 = Nv, CDu

1∪Du
2 ,N

v,Dv ,Nu ∈ C(x,y), CDu
1∩Du

2 ,N
u,Dv ,Nu ∈ C(x,y).

Proof of lemma 13

The proof of lemma 13 is entirely similar to the proof of lemma 12, using the valid
constraints CDu

1∪Du
2 ,N

v
1∪Nv

2 ,D
v,Nu

and CDu
1∩Du

2 ,N
v
1∩Nv

2 ,D
v,Nu

.

�

Lemma 14 Consider any point (x, y) in P′ and let Du
0 be the set {a ∈ Au : ya ≤ 0}. Consider

any subsets Du
i in Au with Du

0 ⊆ Du
i , N

u
i in Mu, Dv

2 in Av, N v
2 in Mv (i ∈ {1, 2}). If we

have
CDu

1 ,N
u
1 , CDu

2 ,N
v
2 ,D

v
2 ,N

u
2 ∈ C(x,y)

then we have either
Du

1 ⊇ Du
2

or
Nu

1 = Mu, N v
2 = Mv, CDu

1∪Du
2 ,M

u ∈ C(x,y), CDu
1∩Du

2 ,M
v,Dv,Nu ∈ C(x,y).

Proof of lemma 14

The proof of lemma 14 is entirely similar to the proof of lemma 12, using the valid
constraints CDu

1∪Du
2 ,N

u
1 and CDu

1∩Du
2 ,N

v
2 ,D

v
2 ,N

u
2 .

�
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3.4 Proof of step 1

In this section, we prove that for any face that contains none of the rays in {ra : a ∈
Au ∪ {(v, u)}}, the constraint Cu is tight for the face, that is we prove lemma 5.

For this, we successively characterize the faces of P′ not containing a given ray ra (a ∈ Au),
then the faces containing none of the rays ra (a ∈ Au) and finally the faces not containing
the ray r(v,u). Combining these results gives us the proof of lemma 5.

Lemma 6 being symmetrical can be proved analogously.

Consider a point (x, y) in P′ and the corresponding face O. For any arc a in Au, the
following lemma characterizes the face O if it does not contain the ray ra.

Lemma 15 For any point (x, y) in P ′, and for any arc a in Au, if we have

∃C ∈ C(x,y) s.t. C �∈ Ca

then at least one of the following properties holds:

Cu ∈ C(x,y) (22)

Cu,v ∈ C(x,y) and DM = 0 (23)

Ca ∈ C(x,y) (24)

∃Du, N v, Dv, Nu s.t. CDu,Nv,Dv ,Nu ∈ C(x,y), a ∈ Du, dM > dN
v

(25)

∃Du, Nu s.t. CDu,Nu ∈ C(x,y), a ∈ Du, dN
u
> 0. (26)

Proof of lemma 15

A constraint (cx+ fy ≥ K) is not tight for the ray ra if and only if fa is strictly positive
and the face O does not contain the ray ra if there is a constraint in C(x,y) not tight for the
ray. This gives us (22) or (23) with any value of dM or (24) or (25) or (26). Finally, observe
that if we have (23) with a positive value of dM , then we have (25) by posing Du = Au,
Dv = Av , Nu = ∅, Nv = ∅. This closes the proof.

�

Consider a point (x, y) in P′ and the corresponding face O. The following lemma charac-
terizes the face O containing none of the rays ra (a ∈ Au).

Lemma 16 For any point (x, y) in P ′, if we have

∀a ∈ Au : ∃C ∈ C(x,y) s.t. C �∈ Ca

then at least one of the following properties holds:

Cu ∈ C(x,y) (27)

Cu,v ∈ C(x,y) and DM = 0 (28)

∀a ∈ Au : Ca ∈ C(x,y) (29)

∃N v, Dv, Nu s.t. CAu,Nv,Dv ,Nu ∈ C(x,y), dM > dN
v

(30)

∃Nu s.t. CAu,Nu ∈ C(x,y), dN
u
> 0. (31)
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Proof of lemma 16

Suppose that (27) and (28) do not hold.

Pose
D0 = {a ∈ Au : Ca ∈ C(x,y)}

and consider the collections of subsets of Au

D0 = {D0}
D1 = {Du : ∃N v, Dv, Nu s.t. CDu,Nv,Dv,Nu ∈ C(x,y), dM > dN

v}
D2 = {Du : ∃Nu s.t. CDu,Nu ∈ C(x,y), dN

u
> 0}

D = D0 ∪D1 ∪ D2.

We claim that the collections D, D1, D2 have a maximum element for the inclusion order,
that is an element that contains every other element in the collection considered. Note that
the collections D1, D2 can be empty.

Consider the collection D2 and some element Du maximally choosed in D2. We have thus
CDu,Nu ∈ C(x,y) for some non emptyNu in Mu. First we claim thatD0 ⊆ Du. Indeed suppose
it is not the case. It is not difficult to check that the constraint CDu∪D0,Nu

belongs to C(x,y) as
well. This implies Du ∪D0 is in D2. A contradiction with the choice of Du. Second we claim
that Du is maximum in D2. Indeed suppose it is not the case. Then there are two maximally
choosed elements Du

1 , D
u
2 in D2 that are not comparable. So we have CDu

1 ,N
u
1 , CDu

2 ,N
u
2 ∈ C(x,y)

for some non empty subsets Nu
1 , N

u
2 ∈ Mu. Since we have D0 ⊆ Du

1 , D
0 ⊆ Du

2 , D
u
1 �⊆ Du

2 ,
Du

1 �⊇ Du
2 , lemma 12 implies Nu

1 = Nu
2 = Nu and CDu

1∪Du
2 ,N

u ∈ C(x,y). But then Du
1 ∪ Du

2

belongs to D2. A contradiction with the choices of Du
1 , D

u
2 .

Consider now the collection D1. The fact that D1, if non empty, contains a maximum
element incuding D0 is proved entirely in a similar way, using lemma 13.

If at least one of the collection D1,D2 is empty, clearly the claim is proved, i.e. D contains
a maximum element.

If it is not the case, letDu
1 , D

u
2 be the maximum elements in D1,D2 respectively. So we have

CDu
1 ,N

v
1 ,D

v
1 ,N

u
1 , CDu

2 ,N
u
2 ∈ C(x,y) for some subsets N v

1 , D
v
1, N

u
1 , N

u
2 with dM > dN

v
1 , dN

u
2 > 0.

Suppose that the elements are not comparable. Then we have D0 ⊆ Du
1 , D

0 ⊆ Du
2 , D

u
1 �⊆ Du

2 ,
Du

1 �⊇ Du
2 , and lemma 14 implies Nu

1 = Mu and CDu
1∪Du

2 ,M
u ∈ C(x,y). But then Du

1 ∪ Du
2

belongs to D2. A contradiction with the choices of Du
2 .

So the collection D contains a maximal element, that we denote by D∗.

For any arc a in Au, by the assumption made in the beginning of the proof, we have that
conclusion (24), (25) or (26) of lemma 15 holds, which implies that a belongs to some element
of D0, D1 or D2 respectively, and thus to the maximum element D∗ as well. So we have
D∗ = Au. But then the fact that the maximum element D∗ belongs to D0, D1 or D2 gives us
conclusion (29), (30) or (31) respectively. This completes the proof.

�

Consider a point (x, y) in P′ and the corresponding face O. The following lemma cha-
racterizes the face O if it does not contain the ray r(v,u), that is the ray associated with the
capacity variable yu,0.
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Lemma 17 For any point (x, y) in P ′, if we have

∃C ∈ C(x,y) s.t. C �∈ C(v,u)

then at least one of the following properties holds:

Cu ∈ C(x,y) (32)

C(v,u) ∈ C(x,y) (33)

∃Du, N v, Dv, Nu s.t. CDu,Nv,Dv,Nu ∈ C(x,y), dN
v
> 0 (34)

∃Du, Nu s.t. CDu,Nu ∈ C(x,y), dN
u
> 0. (35)

Proof of lemma 17

First a constraint is not tight for the ray r(v,u) if and only if the coefficient of the variable
yu,0 is strictly positive and second the ray does not belong to the face if some constraint
defining the face is not tight for the ray.

�

We are now ready to prove lemma 5, which states that if a face O of P′ defined by a point
(x, y) contains none the rays in {ra : a ∈ Au or a = (v, u)}, then the constraint Cu, that is
the constraint ∑

a∈Au

ya + yu,0 ≥ 1

is tight.

Proof of lemma 5

Suppose that constraint Cu is not tight for (x, y), that is suppose

∑

a∈Au

ya + yu,0 > 1. (36)

By lemma 16, we have (28), (29), (30) or (31). By lemma 17, we have (33), (34) or (35).

If (31) holds, then we have CAu,Nu ∈ C(x,y) for some non empty subset Nu, which implies

(
∑

a∈Au

ya + yu,0)dN
u ≤

∑

a∈Au

yad
Nu

+
∑

m∈Nu

(yu,0 + ym)dm ≤ dN
u
.

As Nu is non empty and as the volumes of the commodities in Mu are positive, the latter
expression is a contradiction with the absurd hypothesis (36).

If (28) holds, then we have that dM = 0, which excludes (34) and (35). It follows that
(33) holds. So we have ∑

a∈Au

ya +
∑

a∈Av

ya ≤ 1 (37)

by (28) and
yu,0 ≤ 0 (38)
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by (33). Summing (37) and (38), we obtain a contradiction with (36).

At this stage we have thus on one side that (29) or (30) holds and on the other side that
(33), (34) or (35) holds.

We distinguish the following cases.

Case 1: property (33) holds

So we have
yu,0 ≤ 0. (39)

Observe that because of (39) and the fact that the constraint Cu is satisfied by (x, y), the
property (29) does not hold. This implies that (30) holds, and thus that we have (c1, f1, K1) =
CAu,Nv,Dv,Nu ∈ C(x,y) for someN v, Dv, Nu with dM > dNv. On the other hand the constraint
(c2, f2, K2) = CDv,Nv

is satisfied by (x, y). So the constraint (c2 − c1, f2 − f1, K2 − K1) is
satisfied by (x, y) as well. This gives

∑

a∈Au

ya(d
M − dN

u
) +

∑

a∈Dv

ya(d
M − dN

u − dN
v
) +

∑

m∈Nu

(yu,0 + ym)dm ≤ dM − dN
v

As dM > dN
v
and as the variables ya(a ∈ Av), yu,0, ym(m ∈ Mu) are non-negative we have

∑

a∈Au

ya ≤ 1

which, combined with (39), is a contradiction with (36).

Case 2: property (35) holds

So there is a constraint (c1, f1, K1) = CDu
1 ,N

u
1 ∈ C(x,y) for some subsets Du

1 , N
u
1 with

dN
u
1 > 0.

If (29) holds, it is easy to check that the constraint CAu,Nu
1 belongs to C(x,y) as well, a

contradiction with the absurd hypothesis (36), as shown in the beginning of the proof.

So we have (30), and thus that there is a constraint (c2, f2, K2) = CAu,Nv
2 ,D

v
2 ,N

u
2 in C(x,y) for

some subsets N v
2 , D

v
2, N

u
2 with dM > dN

v
2 . On the other hand, the constraints (c3, f3, K3) =

CDu
1 ,N

v
2 ,D

v
2 ,N

u
2 and (c4, f4, K4) = CAu,Nu

1 are satisfied by (x, y). It follows that the constraint
(c3 + c4 − c1 − c2, f3 + f4 − f1 − f2, K3 + K4 − K1 − K2) is satisfied by (x, y) as well. This
gives ∑

a∈Au

ya(d
M − dN

u
1 − dN

v
2 ) ≤

∑

a∈Du
1

ya(d
M − dN

u
1 − dN

v
2 )

As Du
1 ⊆ Au, we have that equality holds throughout. In particular the constraint CAu,Nu

1 is
tight for (x, y), again a contradiction with (36).

Case 3: property (34) holds

So there is a constraint CDu
1 ,N

v
1 ,D

v
1 ,N

u
1 ∈ C(x,y) for some subsets Du

1 , N
v
1 , D

v
1, N

u
1 with

dN
u
1 > 0.

First we can assume Du
1 = Au. Indeed. If (29) holds this is trivial. If (30) holds, there

is a constraint CAu,Nv
2 ,D

v
2 ,N

u
2 ∈ C(x,y) for some subsets N v

2 , D
v
2, N

u
2 . But then by lemma (11),

the constraint CAu,Nv
2 ,D

v
1 ,N

u
1 belongs to C(x,y) as well.
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There is thus a constraint (c1, f1, K1) = CAu,Nv,Dv,Nu ∈ C(x,y) for some subsetsN v, Dv, Nu

with dN
u
> 0.

On the other hand, the constraint (c2, f2, K2) = CAu,Nv,Dv,∅ is satisfied by (x, y) which
implies that the constraint (c2− c1, f2− f1, K2−K1) is satisfied by (x, y) as well. This gives,
using dN

u
> 0 ∑

a∈Dv

ya ≥ yu,0. (40)

The constraint (c3, f3, K3) = CAu,Nu
and (c4, f4, K4) = CNv

1 ,D
v
1 are satisfied by (x, y),

which implies that the constraint (c3+ c4− c1, f3+f4−f1, K3+K4−K1) is satisfied by (x, y)
as well. This gives

∑

a∈Au

ya(d
M − dN

u − dN
v
) +

∑

a∈Dv

ya(d
M − dN

u − dN
v
) ≤ dM − dN

u − dN
v
.

If dM = dN
u − dN

v
, then we have that inequality holds throughout. In particular, the

constraint CAu,Nu
is tight with dN

u
> 0, a contradiction with (36).

If dM > dN
u − dN

v
, we have

∑

a∈Au

ya +
∑

a∈Dv

ya ≤ 1. (41)

But the combining (40) and (41), we obtain a contradiction with (36).

This close the proof.

�

3.5 Proof of step 2

In this section, we prove that for any face that contains none of the rays in R0 and none of
the characteristic vectors of the solutions in XBu

, XBv
, XA, the constraints Cv,0, Cu,0, Cu,v

respectively are tight for the face, that is we prove lemmas 8, 9, 7.

3.5.1 The solutions of XBu

We first exclude the solutions in XBu
. For this, we successively characterize the faces of P′

not containing a given solution Xa ∈ XBu
(a ∈ Au), then the faces containing none of the

solutions in XBu
= {Xa : a ∈ Au}. Using this last result, we prove lemma 8.

Lemma 9 being symmetrical can be proved analogously.

Consider a point (x, y) in P′ and the corresponding face O. For any arc a in Au, the
following lemma characterizes the face O if it does not contain the solution Xa ∈ XBu

.

Lemma 18 For any point (x, y) in P ′, and for any arc a in Au, if we have

∃C ∈ C(x,y) s.t. C �∈ CXa
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then at least one of the following properties holds:

Cv,0 ∈ C(x,y) (42)

Ca ∈ C(x,y) (43)

Cxa ∈ C(x,y) and DM > 0 (44)

∃Du, Nu s.t. CDu,Nu ∈ C(x,y), a �∈ Du, dM > dN
u

(45)

∃Du, N v, Dv, Nu s.t. CDu,Nv,Dv,Nu ∈ C(x,y), a �∈ Du, dN
v
> 0 (46)

Proof of lemma 18

A solution (x̃, ỹ) in P′ does not belong to the face O if there is some constraint in C(x,y)
not tight for (x̃, ỹ). Let (x̃, ỹ) be the characteristic vector of the solution Xa, i.e. (x̃, ỹ) =
(xX

a
, yX

a
).

It is trivial to check that constraints Cv,0, Ca are not tight for (x̃, ỹ), that constraint
Cxa is not tight for (x̃, ỹ) if dM > 0, that a constraint CDu,Nu

is not tight for (x̃, ỹ) if a �∈
Du, dM > dN

u
and that a constraint CDu,Nv,Dv,Nu

is not tight for (x̃, ỹ) if a �∈ Du, dN
v
> 0.

Finally the constraint mentioned above are the only constraints in C not tight for (x̃, ỹ).

�

Lemma 19 For any point (x, y) in P ′, if we have

∀a ∈ Au : ∃C ∈ C(x,y) s.t. C �∈ CXa

and
Cv,0 �∈ C(x,y)

then there are subsets Du
1 , D

u
2 of Au with Du

1 ⊆ Du
2 such that at least one of the following

properties holds
Du

1 = Au (47)

∀a ∈ Du
1 : Cxa �∈ C(x,y) or Ca ∈ C(x,y), dM > 0 (48)

∃Nu
1 s.t. CDu

1 ,N
u
1 ∈ C(x,y), dM > dN

u
1 (49)

∃N v
1 , D

v
1, N

u
1 s.t. CDu

1 ,N
v
1 ,D

v
1 ,N

u
1 ∈ C(x,y), dN

v
1 > 0 (50)

and such that
∀a ∈ Du

2 : Ca ∈ C(x,y) (51)

Proof of lemma 19

Pose
D0 = {a ∈ Au : Ca ∈ C(x,y)}
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and consider the collections of subsets of Au

D0 = {{a ∈ Au : Cxa �∈ C(x,y) or Ca ∈ C(x,y)}} if dM > 0, ∅ otherwise

D1 = {Du : D0 ⊆ Du, ∃Nu s.t. CDu,Nu ∈ C(x,y), dM > dN
u}

D2 = {Du : D0 ⊆ Du, ∃N v, Dv, Nu s.t. CDu,Nv,Dv ,Nu ∈ C(x,y), dN
v
> 0}

D = D0 ∪D1 ∪ D2.

Observe that the collections D0, D1, D2, and thus possibly their union as well, can be
empty.

In the same way as in the proof of lemma 16, using lemmas 12, 13, 14, it is not difficult to
prove that the collections D1, D2, D, if non empty, contain a mininum element for the inclusion
order, that is an element contained by every other element in the collection considered. Let
Du

1 denote the minimum element of D if D is non empty and let Du
1 be Au otherwise.

Let Du
2 be D0.

For any arc a in Au, lemma 18 implies that if the characteristic vector of the solution Xa

does not belong to the face, then either a belongs to Du
2 by (43), or, if not, it does not belong

to some element of D0, D1, D2, by (44), (45), (46) respectively. Indeed. It is trivial if (44)
holds. So Suppose that a is not in Du

2 and that (45) holds. Then there are subsets Du, Nu

such that the constraint CDu,Nu
is tight with a �∈ Du, dM > dN

u
. Pose Du

1 = Du ∪ D0.
Observe that the constraint CDu

1 ,N
u
is tight with D0 ⊆ Du

1 , a �∈ Du
1 , d

M > dN
u
. That is Du

1

is an element of D1 not containing a. The argument is the same if (46) instead of (45) holds
for a .

We have thus shown that for arc a not in Du
2 is not contained in some element of D, and

is therefore not contained in the maximal element Du
1 either.

So we have
∀ ∈ Au : a ∈ Du

2 or a �∈ Du
1

which is equivalent to
Du

1 ⊆ Du
2 .

Finally, accordingly to whether D is empty or whether the maximum element Du
1 belongs to

D0, D1, D2, we have (47), (48), (49), (50) respectively.

�

We are now ready to prove the main result of this section, i.e. to prove that if the face
contains none of the characteristic vector of the solution in XBu

and if the constraints Cu,
Cv are tight, then the constraint Cv,0 is tight as well, that is to prove lemma 8.

Proof of lemma 8

Suppose that the constraint Cv,0 is not tight, that is suppose

yv,0 > 0. (52)

By lemma 19, there are subsets Du
1 , D

u
2 of Au with Du

1 ⊆ Du
2 such that Du

1 satisfies (47),
(48), (49) or (50) and such that Du

2 satisfies (51).
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Case 1: Du
1 satisfies (47)

By (47) and (51), we have ∑

a∈Au

ya ≤ 0

which combined with the valid constraints Cu, gives a contradiction with (52).

Case 2: Du
1 satisfies (48)

Pose Nu
1 = ∅. Observe that the constraint CDu

1 ,N
u
1 belongs to C(x,y) and that dM > 0 =

dN
u
1 . So we have that Du

1 satisfies (49), which is the object of next case.

Case 3: Du
1 satisfies (49)

So there exists Nu
1 ⊆ Mu such that the constraint (c1, f1, K1) = CDu

1 ,N
u
1 belongs to C(x,y)

with dM > dN
u
1 . On the other hand, the constraint (c2, f2, K2) = CDu

1 ,∅,Av,Nu
1 is satisfied by

the solution (x, y). So the constraint (c2 − c1, f2 − f1, K2 − K1) is satisfied by (x, y) as well.
This gives, using DM > dN

u
1 ∑

a∈Du
1

ya +
∑

a∈Av

ya ≥ 1. (53)

Since Du
1 ⊆ Du

2 , (51) implies ∑

a∈Du
1

ya ≤ 0. (54)

On the other hand, by hypothesis, we have that the constraint Cv is tight, that is we have

∑

a∈Av

ya + yy,0 ≤ 1. (55)

Summing (53), (54), (55) we obtain a contradiction with (52).

Case 4: Du
1 satisfies (50)

So there are subsets N v
1 , D

v
1, N

u
1 such that the constraint (c1, f1, K1) = CDu

1 ,N
v
1 ,D

v
1 ,N

u
1

belongs to C(x,y) with dN
v
1 > 0. On the other hand, the constraint (c2, f2, K2) = CDu

1 ,∅,Dv
1 ,N

u
1

is satisfied by (x, y). The constraint (c2− c1, f2− f1, K2−K1) is therefore satisfied by (x, y),
which implies, using dN

v
1 > 0, ∑

a∈Du
1

ya ≥ yv,0. (56)

On the other hand, as in case 3, we have (54). Summing (54) and (56), we directly obtain a
contradiction with (52). This closes case 4 and thus the proof of the lemma.

�

3.5.2 The solutions of XA

We then exclude the solutions in XA. So we prove that if the face defined by a point (x, y)
contains none of the characteristic vectors of the solutions in XA and if the constraints Cu,
Cv are tight for the face, then the constraint Cu,v is tight as well, that is we prove lemma 7.
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Consider a point (x, y) in P′, and let

Nu∗ = {m ∈ Mu : ym ≤ 0}
N v∗ = {m ∈ Mv : ym ≤ 0}.

In the following, we characterize the faces containing none of the solutionsXau,av,Nu∗
, Xau,av,Nv∗

(au ∈ Au, av ∈ Av) respectively. Then we show that it is sufficient to exclude these solutions
to obtain the result.

Consider a point (x, y) in P′ and the corresponding face O. For any arcs au, av , in Au, Av

respectively, the following lemma characterizes the face O if it does not contain the solution
Xau,av,Nu∗

in XAu
.

Let Pu
1 (a) be the property satisfied by arc a in Au if and only if at least one of the following

conditions holds:
Cxa ∈ C(x,y) and dN

u∗
> 0 (57)

∃Du
1 , N

u
1 s.t. CDu

1 ,N
u
1 ∈ C(x,y), a �∈ Du

1 , N
u∗ �⊆ Nu

1 . (58)

Let Pu
2 (a) be the property satisfied by arc a in Au if and only if at least one of the following

conditions holds:
Ca ∈ C(x,y) (59)

∃Du
2 , N

v
2 , D

v
2, N

u
2 s.t. CDu

2 ,N
v
2 ,D

v
2 ,N

u
2 ∈ C(x,y), a ∈ Du

2 , d
M > dN

u∗
+ dN

v
2 (60)

∃Du
2 , N

u
2 s.t. CDu

2 ,N
u
2 ∈ C(x,y), a ∈ Du

2 , N
u∗ �⊇ Nu

2 . (61)

Let Qu
1(a) be the property satisfied by arc a in Av if and only if at least one of the following

conditions holds:
Cxa ∈ C(x,y) and dM > dN

u∗
(62)

∃Dv
1 , N

v
1 s.t. CDv

1 ,N
v
1 ∈ C(x,y), a �∈ Dv

1 , d
M > dN

v
1 + dN

u∗
. (63)

∃Du
1 , N

v
1 , D

v
1, N

u
1 s.t. CDu

1 ,N
v
1 ,D

v
1 ,N

u
1 ∈ C(x,y), a �∈ Dv

1 , N
u∗ �⊇ Nu

1 . (64)

Let Qu
2(a) be the property satisfied by arc a in Av if and only if at least one of the following

conditions holds:
Ca ∈ C(x,y) (65)

∃Du
2 , N

v
2 , D

v
2, N

u
2 s.t. CDu

2 ,N
v
2 ,D

v
2 ,N

u
2 ∈ C(x,y), a ∈ Du

2 , N
u∗ �⊆ Nu

2 . (66)

Lemma 20 For any point (x, y) in P ′, and for any arcs au, av, in Au, Av respectively, if we
have

∃C ∈ C(x,y) s.t. C �∈ CXau,av,Nu∗

then, either the constraint Cu,v is tight for (x, y), or at least one of the properties Pu
1 (a

u),
Pu
2 (a

u), Qu
1(a

v), Qu
2(a

v) holds.

Proof of lemma 20

31



Let (x̃, ỹ) be the characteristic vector of the solution Xau,av,Nu∗
, as defined in section 1.4.

If the vector (x̃, ỹ) does not belong to the face defined by (x, y), then some constraint in C(x,y)
is not tight for (x̃, ỹ).

The constraint Cu,v is never tight for (x̃, ỹ).

A constraint Cxa (a ∈ Au) is not tight for (x̃, ỹ) only if we have a = au and dN
u∗

> 0.

A constraint CDu,Nu
(Du ⊆ Au, Nu ⊆ Mu) is violated by (x̃, ỹ) if and only if, either we

have au �∈ Du and Nu∗ �⊆ Nu, or if we have au ∈ Du and Nu∗ �⊇ Nu. Indeed, writing the
validity of the constraint CDu,Nu

for the point (x̃, ỹ), we obtain

dN
u∗

+ dN
u\Nu∗ ≥ dN

u

dN
u
+ dN

u\Nu∗ ≥ dN
u

if au �∈ Du,au ∈ Du respectively. The latter inequalities are not tight if and only if we have
Nu∗ �⊆ Nu, Nu∗ �⊇ Nu respectively.

Simlarly a constraint CDu,Nv,Dv,Nu
is not tight for the point (x̃, ỹ) if and only if we have,

either av �∈ Dv and Nu∗ �⊇ Nu, or av ∈ Dv and Nu∗ �⊆ Nu, or au ∈ Du, dM > dN
u∗

+ dN
v
.

The characterization of the inequalities not tight for (x̃, ỹ) in the other classes of cons-
traints of C is left to the reader.

�

Lemma 21 For any point (x, y) in P ′, if we have

∀au ∈ Au, ∀av ∈ Av : ∃C ∈ C(x,y) s.t. C �∈ CXau,av,Nu∗

then, either the constraint Cu,v is tight for (x, y), or at least one of the following conditions
holds

∀au ∈ Au : Pu
1 (a

u) or Pu
2 (a

u)

∀av ∈ Av : Qu
1(a

v) or Qu
2 (a

v).

Proof of lemma 21

By lemma 20, we have

∀au ∈ Au, ∀av ∈ Av : Pu
1 (a

u) or Pu
2 (a

u) or Qu
1 (a

v) or Qu
2 (a

v)

which is equivalent to

(∀au ∈ Au : Pu
1 (a

u) or Pu
2 (a

u)) or (∀av ∈ Av : Qu
1 (a

v) or Qu
2 (a

v).

�

We now show how the conclusions of lemmas 20 and 21 can be rewritten.

Lemma 22 If we have
∀au ∈ Au : Pu

1 (a
u) or Pu

2 (a
u)
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then there is a set of arcs Du
2 in Au such that

∑

a∈Du
2

ya + yu,0 ≥ 1 (67)

and such that at least one of the following conditions holds

∀a ∈ Du
2 : Ca ∈ C(x,y) (68)

∃N v
2 , D

v
2, N

u
2 s.t. CDu

2 ,N
v
2 ,D

v
2 ,N

u
2 ∈ C(x,y), dM > dN

u∗
+ dN

v
2 (69)

Proof of lemma 22

Pose
D0 = {a ∈ Au : Ca ∈ C(x,y)}

and consider the collections of subsets of Au

D0
1 = {{a ∈ Au : Cxa �∈ C(x,y) or Ca ∈ C(x,y)}} if dN

u∗
> 0, ∅ otherwise

D1
1 = {Du

1 : D0 ⊆ Du
1 , ∃Nu

1 s.t. CDu
1 ,N

u
1 ∈ C(x,y), Nu∗ �⊆ Nu

1 }
D1 = D0

1 ∪D1
1.

It is not difficult to see, by the same arguments as the ones used in the proof of lemma 16,
using lemmas 12, that the collections D1, D0

1 ,D1
1, if not empty, contain a minimum element.

Let Du
1 be the minimum element of D1 if D1 is non empty, and let Du

1 be Au otherwise.

Pose

D0
2 = {D0}

D1
2 = {Du

2 : ∃N v
2 , D

v
2, N

u
2 s.t. CDu

2 ,N
v
2 ,D

v
2 ,N

u
2 ∈ C(x,y), dM > dN

u∗
+ dN

v
2 }

D2
2 = {Du

2 : ∃Nu
2 s.t. CDu

2 ,N
u
2 ∈ C(x,y), Nu∗ �⊇ Nu

2 }
D2 = D0

2 ∪ D1
2 ∪D2

2.

As above, we can obtain that the collections D2, D0
2, D1

2, D2
2 contain a maximum element.

Let Du
2 be the maximum element of D2.

For any arc au in Au, the fact that Pu
2 (a

u) holds means that au belongs to some element
of D2, and thus to the maximum element Du

2 . Accordingly to wether the maximum element
belongs to D0

2, D1
2, D2

2, we have thus that there is a subset Du
2 of Au satisfying one of the

following conditions
∀a ∈ Du

2 : Ca ∈ C(x,y) (70)

∃N v
2 , D

v
2, N

u
2 s.t. CDu

2 ,N
v
2 ,D

v
2 ,N

u
2 ∈ C(x,y), dM > dN

u∗
+ dN

v
2 (71)

∃Nu
2 s.t. CDu

2 ,N
u
2 ∈ C(x,y), Nu∗ �⊇ Nu

2 (72)

respectively, and such that Du
2 contains every arc a in Au such that Pu

2 (a) holds.

For every arc a in Au not in Du
2 , we have that Pu

2 (a) does not hold, and in particular, we
have a �∈ D0. Further by the hypothesis, we have that Pu

1 (a) holds, which implies that a does
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not belong to some element of D1, and thus that is does not belong to the minimum element
Du

1 either. So according to whether the minimum element belongs to the collection D0
1, D1

1 or
whether D is empty, we have that there is a subset Du

1 of Au satisfying one of the following
conditions

∀a �∈ Du
1 : Cxa ∈ C(x,y) and dN

u∗
> 0 (73)

∃Nu
1 s.t. CDu

1 ,N
u
1 ∈ C(x,y), Nu∗ �⊆ Nu

1 (74)

Du
1 = Au (75)

respectively such that Du
1 contains none of the arcs a of Au for which Pu

2 (a) does not hold.

So we have proved the existence of a subset Du
1 satisfying (73), (74) or (75), the existence

of a subset Du
2 satisfying (70), (71) or (72) such that for every arc a in Au, we have either

a ∈ Du
2 or a �∈ Du

1 , that is such that Du
1 ⊆ Du

2 .

This result can be simplified as follows.

First assume that (73) holds. Pose Nu
1 = ∅ and observe that CDu

1 ,N
u
1 is a tight constraint

with Nu∗ �⊆ Nu
1 . So Du

1 satisfies (74) as well. We thus do not need to consider (73).

Suppose now that (74) holds. So there exists a subset Nu
1 sucht that (c1, f1, K1) = CDu

1 ,N
u
1

is a tight constraint with Nu∗ �⊆ Nu
1 . On the other hand, the constraint (c2, f2, K2) =

CDu
1 ,N

u
1 ∪Nu∗

is satisfied by (x, y). It follows that the constraint (c2 − c1, f2 − f1, K2 −K1) is
satisfied by (x, y), which implies

∑

a∈Du
1

yad
Nu∗\Nu

1 +
∑

m∈Nu∗\Nu
1

(ym + yu,0)dm ≥ dN
u∗\Nu

1 .

By dN
u∗\Nu

1 > 0 and as the variables ym(m ∈ Nu∗ \Nu
1 ) are zero, this gives

∑

a∈Du
1

ya + yu,0 ≥ 1. (76)

Finally, observe that in the case that Du
1 satisfies (75), the equation (76) is trivially

satisfied, since it is nothing else that the valid constraint Cu.

So (76) is satisfied in any case. Since we have Du
1 ⊆ Du

2 , we deduce
∑

a∈Du
2

ya + yu,0 ≥ 1. (77)

Suppose now that Du
2 satisfies (72). So there is a subset Nu

2 such that (c3, f3, K3) =
CDu

2 ,N
u
2 is a tight constraint with Nu∗ �⊇ Nu

2 . On the other hand, the valid constraint
(c4, f4, K4) = CDu

2 ,N
u
2 ∩Nu∗

is satisfied by (x, y). But the the fact that the constraint (c4 −
c3, f4 − f3, K4 − K3) is satisfied by (x, y) implies

∑

a∈Du
2

yad
Nu

2 \Nu∗
+

∑

m∈Nu
2 \Nu∗

(ym + yu,0)dm ≤ dN
u
2 \Nu∗

.

Since Nu
2 \Nu∗ is non empty and since the variables ym (m ∈ Nu

2 \Nu∗) are strictly positive,
the latter inequality implies ∑

a∈Du
2

ya + yu,0 < 1
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a contradiction with (77).

So we have that Du
2 cannot satisfy (72). It follows that Du

2 satisfies either (70) or (71).
But that is the thesis of the lemma.

�

Lemma 23 If we have
∀av ∈ Av : Qu

1 (a
v) or Qu

2(a
v)

then there is a set of arcs Dv
1 in Av such that

∑

a∈Dv
1

ya ≤ yu,0 (78)

and such that at least one of the following conditions holds

∃N v
1 s.t. CDv

1 ,N
u
1 ∈ C(x,y), dM > dN

u∗
+ dN

v
1 (79)

Av = Dv
1 (80)

Proof of lemma 23

The proof of lemma 23, although slightly different from the proof of lemma 22, can ne-
vertheless be obtained by entirely similar arguments and is therefore left to the reader.

�

The following lemma, summing up the results of the previous lemmas, characterize the
faces of P ′ containing none of the rays in R0 and none of the characteristic vectors of the
solutions Xau,av,Nu∗

(au ∈ Au, av ∈ Av).

Let Pu be the condition satisfied if and only if there exist subsets Du
2 , N

v
2 , D

v
2, N

u
2 such

that the three following conditions are fulfilled:

CDu
2 ,N

v
2 ,D

v
2 ,N

u
2 ∈ C(x,y) (81)

dM > dN
u∗

+ dN
v
2 (82)

∑

a∈Du
2

ya + yu,0 ≥ 1. (83)

Let Qu be the condition satisfied if and only if there exists subsets Dv
1, N

v
1 such that the

three following conditions are fulfilled:

CDv
1 ,N

v
1 ∈ C(x,y) (84)

dM > dN
u∗

+ dN
v
1 (85)

∑

a∈Dv
1

ya ≤ yu,0. (86)
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Lemma 24 For any point (x, y) in P ′, if we have

Cu, Cv ∈ C(x,y)

and
∀au ∈ Au, ∀av ∈ Av : ∃C ∈ C(x,y) s.t. C �∈ CXau,av,Nu∗

then we have that, either the constraint Cu,v is tight, or at least one of the conditions Pu, Qu

holds.

Proof of lemma 24

By hypothesis, constraints Cu and Cv are tight for (x, y), while constraint Cu,v is not. So
we have

∑

a∈Au

ya + yu,0 ≤ 1 (87)

∑

a∈Av

ya + yv,0 ≤ 1 (88)

∑

a∈Au

ya +
∑

a∈Av

ya > 1. (89)

By lemmas 20, 21, 22, 23, we have either that the conclusion of lemma 22 holds, or that
the conclusion of lemma 23 holds.

Suppose first that the conclusion of lemma 22 holds. So there is a set Du
2 ⊆ Au satisfying

(67) and, either (68) or (69). If Du
2 satisfies (68), using (67), we obtain

yu,0 ≥ 1. (90)

Summing (87), (88), (90), we obtain a contradiction with (89).

So we have that Du
2 satisfies (67) and (69). But that is exactly the alternative Pu of the

thesis.

Suppose now that the conclusion of lemma 23 holds. So there is a set Dv
1 ⊆ Av satisfying

(78) and, either (79) or (80). If Dv
1 satisfies (80), then using (78), we obtain

∑

a∈Av

ya ≤ yu,0. (91)

Summing (87), (91), we obtain a contradiction with (89).

So we have that Dv
1 satisfies (78) and (79). But that is exactly the alternative Qu of the

thesis.

This closes the proof.

�

Symmetrically, we can obtain the following lemma, which characterize the faces of P′

containing none of the rays in R0 and none of the characteristic vectors of the solutions
Xau,av,Nv∗

(au ∈ Au, av ∈ Av).
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Let Pv be the condition satisfied if and only if there exists subsets Du
2 , N

v
2 , D

v
2, N

u
2 such

that the three following conditions are fulfilled:

CDu
2 ,N

v
2 ,D

v
2 ,N

u
2 ∈ C(x,y) (92)

dM > dN
v∗
+ dN

u
2 (93)

∑

a∈Dv
2

ya + yv,0 ≥ 1. (94)

Let Qv be the condition satisfied if and only if there exists subsets Du
1 , N

u
1 such that the

three following conditions are fulfilled:

CDu
1 ,N

u
1 ∈ C(x,y) (95)

dM > dN
v∗
+ dN

u
1 (96)

∑

a∈Du
1

ya ≤ yv,0. (97)

Lemma 25 For any point (x, y) in P ′, if we have

Cu, Cv ∈ C(x,y)

and
∀au ∈ Au, ∀av ∈ Av : ∃C ∈ C(x,y) s.t. C �∈ CXau,av,Nv∗

then we have that, either the constraint Cu,v is tight, or at least one of the conditions P v, Qv

holds.

We are now ready for the main result of this part, that is lemma 7, that states that if a face
O of P ′ defined by a point (x, y) contains none of the rays ra (a ∈ Au ∪Av ∪ {(u, v), (v, u)})
and none of the solutions of Xa, then the constraint Cu,v is tight for (x, y).

Proof of lemma 7

Suppose that the lemma is false, that is suppose Cu,v �∈ C(x,y). We have

∑

a∈Au

ya +
∑

a∈Av

ya > 1. (98)

By hypothesis, the constraints Cu and Cv are tight for (x, y). So we have

∑

a∈Au

ya + yu,0 ≤ 1. (99)

∑

a∈Av

ya + yv,0 ≤ 1. (100)

By lemma 24, we have that Pu or Qu holds. By lemma 25, we have that Pv or Qv holds.
We therefore distinguish the following cases: case 1) Pu and P v holds, case 2) Qu and Qv

holds, case 3) Pu and Qv holds, case 4) Qu and P v holds.
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Case 1: Pu and P v hold

By Pu, there are subsets Du
2 , N

v
2 , D

v
2 , N

u
2 satisfying (81), (82), (83). By Pv there are

subsets D̃u
2 , Ñ

v
2 , D̃

v
2, Ñ

u
2 satisfying (92), (93), (94) By lemma 11, we can assume Du

2 = D̃u
2 ,

N v
2 = Ñ v

2 , D
v
2 = D̃v

2, N
u
2 = Ñu

2 .

So there are subsets Du
2 , N

v
2 , D

v
2, N

u
2 satisfying (83) and (94) such that the constraint

(c1, f1, K1) = CDu
2 ,N

v
2 ,D

v
2 ,N

u
2 is tight for (x, y). On the other hand the constraints (c2, f2, K2) =

CDu
2 ,N

u
2 and (c3, f3, K3) = CDv

2 ,N
v
2 are satisfied for (x, y). It follows that the constraint

(c3 + c2 − c1, f3 + f2 − f1, K3 + K2 − K1) is satisfied by (x, y) as well, which gives
∑

a∈Du
2

ya(d
M − dN

u
2 − dN

v
2 ) +

∑

a∈Dv
2

ya(d
M − dN

u
2 − dN

v
2 ) ≤ (dM − dN

u
2 − dN

v
2 ).

Suppose first that dM > dN
u
2 + dN

v
2 . We have then

∑

a∈Du
2

ya +
∑

a∈Dv
2

ya ≤ 1. (101)

Then summing (83), (94), (99), (100), (101) we obtain a contradiction with (98).

Suppose now that we have dM = dN
u
2 + dN

v
2 , which can only occur in the case Nu

2 =
Mu, N v

2 = Mv. Then equality holds for every inequality afore mentioned. In particular,
the constraint (c2, f2, K2) = CDu

2 ,M
u
is tight. On the other hand, the valid constraint

(c4, f4, K4) = CDu
2 ,N

u∗
is satisfied by (x, y). It follows that the constraint (c4 − c2, f4 −

f2, K4 − K2) is satisfied by (x, y) as well, which gives
∑

a∈Du
2

yad
Mu\Nu∗

+
∑

m∈Mu\Nu∗
(ym + yu,0)dm ≤ dM

u\Nu∗
.

Finally, by (82), using Nv
2 = Mv , we have that Mu \ Nu∗ is non empty and by construction

of Nu∗, we have that the variables ym(m ∈ Mu \Nu∗) are positive. This implies
∑

a∈Du
2

ya + yu,0 < 1

a contradiction with (83).

Case 2: Qu and Qv hold

By Qu, there are subsets Dv
1, N

v
1 satisfying (84), (85), (86). By Qv there are subsets Du

1 ,
Nu

1 satisfying (95), (96), (97). So the constraints (c1, f1, K1) = CDu
1 ,N

u
1 and (c2, f2, K2) =

CDv
1 ,N

v
1 are tight for (x, y). On the other hand, the valid constraint (c3, f3, K3) = CDu

1 ,N
v
1 ,D

v
1 ,N

u
1

is satisfied by (x, y). Then the constraint (c3− c2 − c1, f3− f2 − f1, K3−K2−K1) is satisfied
by (x, y) as well, which gives

∑

a∈Du
1

ya(d
M − dN

u
1 − dN

v
1 ) +

∑

a∈Dv
1

ya(d
M − dN

u
1 − dN

v
1 ) ≥ (dM − dN

u
1 − dN

v
1 ).

Suppose first that dM > dN
u
1 + dN

v
1 . We have

∑

a∈Du
1

ya +
∑

a∈Dv
1

ya ≥ 1. (102)
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Then summing (86), (97), (99), (100), (102) we obtain a contradiction with (98).

Suppose now that we have dM = dN
u
1 + dN

v
1 , which can only occur in the case Nu

1 =
Mu, N v

1 = Mv. Then equality holds for every inequality afore mentioned. In particular,
the constraint (c3, f3, K3) = CDu

1 ,N
v
1 ,D

v
1 ,N

u
1 is tight. On the other hand, the valid constraint

(c4, f4, K4) = CDu
1 ,N

v∗,Dv
1 ,N

u
1 is satisfied by (x, y). It follows that the constraint (c4 − c3, f4 −

f3, K4 − K3) is satisfied by (x, y) as well, which gives, using Mv \N v∗ �= ∅ implied by (96)
∑

a∈Du

ya > yv,0

a contradiction with (97).

Case 3: Pu and Qv hold

By Pu, there are subsets Du
2 , N

v
2 , D

v
2 , N

u
2 satisfying (81), (82), (83). By Qv there are

subsets Du
1 , N

u
1 satisfying (95), (96), (97).

So the constraints (c1, f1, K1) = CDu
2 ,N

v
2 ,D

v
2 ,N

u
2 and (c2, f2, K2) = CDu

1 ,N
u
1 are tight for

(x, y). On the other hand, the valid constraints (c3, f3, K3) = CDu
2 ,N

u
1 and (c4, f4, K4) =

CDu
1 ,N

v
2 ,D

v
2 ,N

u
2 are satisfied by (x, y). It follows that the constraint (c4+ c3− c2− c1, f4+ f3 −

f2 − f1, K4 +K3 −K2 − K1) is satisfied by (x, y) as well, which gives
∑

a∈Du
2

ya(d
M − dN

u
1 − dN

v
2 ) ≤

∑

a∈Du
1

ya(d
M − dN

u
1 − dN

v
2 ).

Suppose first that dM > dN
u
1 + dN

v
2 . We have
∑

a∈Du
2

ya ≤
∑

a∈Du
1

ya. (103)

Then summing (83), (97), (99), (100), (103) we obtain a contradiction with (98).

Suppose now that we have dM = dN
u
1 + dN

v
2 , which can only occur in the case Nu

1 =
Mu, N v

2 = Mv. But then, as in case 1, we have a tight constraint CDu
2 ,M

u
, a contradiction

with (83).

Case 4: Qu and P v hold

The proof of case 4 is obtained similarly as the proof of case 3, by permuting the roles
played by u and v.

�

3.6 Proof of Polyhedral Characterization

Finally, the proof that the multicommodity linear formulation is a polyhedral characterization
for every instance in the class G considered is obtained as a consequence of the results proved
previously.

Proof of theorem 1

As made explicit in section 1.2, the characteristic vector of every network belongs to Pxy.
So we have

P I ⊆ Pxy.
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By the characterization of the valid constraints of Pxy of theorem 3, we have

Pxy ⊆ P ′.

By the characterization of the faces of P ′ containing none of the rays of R0 of lemmas 5
and 6 in step 1, by the characterization of the faces of P′ containing none of the solutions in
XA, XBu

, XBv
of lemmas 7, 8, 9 in step 2, by the contradiction proved in lemma 10 in step

3, using criterion 3, we have
P ′ ⊆ P I .

This close the proof.

�

4 Conclusions

In [Sch94], we prove that the multicommodity linear formulation is a polyhedral characteri-
zation for the SSNFD problem on Series-Parallel graphs if it is valid for a class of elementary
instances Gele. The class of instances considered here G is a part of this class. This is the
main motivation of this work.

Observe that as the instances in G are Series-Parallel, the validity of polyhedral characte-
rization on G is necessary for our end objective. As there already seems to be no easy proof
for this class of instances, there is probably no easy proof for the complete result as well.

We have no answer to the question whether it is easier to work in the space extended by
the artificial variables rather than in the space of the natural variables. Observe nevertheless
that, as the characterization of the valid constraints in the natural space is easy, to work in
one space rather than in the other must be somehow equivalent.

In this paper, we completely describe the polyhedron associated with the SSNFD problem
for the instances in G. The question what is the set of inequalities describing the polyhedron
for any Series-Parallel instances is open.
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