
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

AMBROS M. GLEIXNER

Factorization and update of a reduced basis matrix for
the revised simplex method

ZIB-Report 12-36 (October 2012)

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

Factorization and update of a reduced basis matrix

for the revised simplex method

Ambros M. Gleixner∗

October 2012

Abstract

In this paper, we describe a method to enhance the FTRAN and BTRAN oper-
ations in the revised simplex algorithm by using a reduced basis matrix defined
by basic columns and nonbasic rows. This submatrix of the standard basis ma-
trix is potentially much smaller, but may change its dimension dynamically from
iteration to iteration.

For the classical product form update (“eta update”), the idea has been
noted already by Zoutendijk, but only preliminarily tested by Powell in the
early 1970s. We extend these ideas to Forrest-Tomlin type update formulas for
an LU factorization of the reduced basis matrix, which are suited for efficient
implementation within a state-of-the-art simplex solver. The computational
advantages of the proposed method apply to pure LP solving as well as to LP-
based branch-cut-and-price algorithms. It can easily be integrated into existing
simplex codes.

1 Introduction

Since Dantzig’s initial formulation of the simplex method for solving linear programs
(LPs), the algorithm has seen numerous computational improvements. One example
is the so-called revised simplex method given by Dantzig [2] himself. For an LP with
m inequality constraints and n nonnegative variables, the original tableau simplex
has to maintain a matrix of dimension m× (n+m). In the revised simplex, a matrix
of dimension m×m, a representation of the so-called basis inverse, suffices.

This paper discusses a method to employ an even smaller basis matrix defined
by the basic columns and nonbasic rows of the constraint matrix. The dimen-
sion of this reduced basis matrix varies throughout the algorithm and never ex-
ceeds min{m,n} × min{m,n}. This approach unifies the simplex variants applied
to the different computational representations of an LP—column and row form—
as considered by Nazareth [8] and Wunderling [11]. Both for pure LP solving, in
particular for problems with more rows than columns, as well as for LP-based branch-
cut-and-price algorithms, it shows various computational advantages.

For the classical product form update, this idea has been noted already in the
early 1970s by Zoutendijk [13]. Soon after, Powell [9] has reported on a simplex
implementation featuring the reduced basis matrix and has given computational ev-
idence based on a small set of three instances showing that it helps to reduce the
number of nonzeros in the factorization significantly. For the next decades, however,
these results have seemingly been disregarded and the idea has not been adopted by
commercial simplex codes.

∗Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, gleixner@zib.de.

1

In this paper, we extend the approach to Forrest-Tomlin type update formulas
for an LU factorization of the reduced basis matrix, which are suited for efficient
implementation within a state-of-the-art simplex solver. This research is conducted
independently from recent developments of Wunderling [12], who has presented a
new implementation of the simplex algorithm based on the idea of the reduced basis
matrix. While he proposes to redesign the algorithmic structure of the simplex algo-
rithm, we emphasize that the factorization of the reduced basis matrix and its update
can be integrated seamlessly into existing simplex codes.

The paper is organized as follows: In Sec. 2, we introduce notation and revisit the
linear systems of equations solved during the revised simplex method. Sec. 3 presents
the basic idea of how to avoid the artificial unit structure in the column and row basis
matrices by using the reduced basis matrix. In Sec. 4, we provide update formulas for
an LU factorization of the reduced basis matrix, in particular for the cases when its
dimension changes after a pivot step. To conclude, Sec. 5 discusses the computational
benefits of the new method.

2 The revised simplex algorithm

2.1 Notation

For clarity of presentation, let us consider a linear program in form

min{c′x : Ax > b, x > 0} (P)

with c ∈ Rn, A ∈ Rm×n and b ∈ Rm. Its dual reads

max{b′y : A′y 6 c, y > 0}. (D)

The feasible regions of (P) and (D) each form a polyhedron defined by m + n in-
equalities. For given index sets I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n} of constraints and
variables of problem (P), respectively, we denote the corresponding submatrix of A
by AI,J :=(aij)i∈I,j∈J ∈ R|I|×|J |. The index set of all columns or rows is abbrevi-
ated by ‘·’. Hence, the i-th row vector and j-th column vector are denoted by Ai·
and A·j , respectively. For a vector d ∈ Rn, we write dI :=(di)i∈I ∈ R|I|. The identity
matrix is denoted by I, the i-th unit column vector by ei, the vector of all zeros by 0.
Dimensions are usually clear from the context. The transpose of a vector or matrix
is denoted by ‘ ′ ’.

Definition 1 (basis, basic solution). Let C ⊆ {1, . . . , n} and R ⊆ {1, . . . ,m} be
index sets of variables and constraints of (P), respectively.

1. We call (C,R) a basis of (P) if |C| + |R| = m. Variables and constraints
with index in C̄:={1, . . . , n} \ C and R̄:={1, . . . ,m} \ R, respectively, are called
nonbasic.

2. We call a basis (C,R) regular if the vectors A·j, j ∈ C, and ei, i ∈ R, are
linearly independent.

3. We call a primal-dual pair (x, y) ∈ Rn × Rm a basic solution of (P) if there
exists a regular basis (C,R) such that

xj = 0, j 6∈ C, (1)

Ai·x = bi, i 6∈ R, (2)

y′A·j = c′j , j ∈ C, (3)

yi = 0, i ∈ R. (4)

2

4. A basic solution (x, y) is called primal feasible if Ax > b, x > 0 and dual
feasible if A′y 6 c, y > 0.

While the primal simplex algorithm moves between primal feasible basic solutions
trying to decrease their objective function value c′x in each step, the dual simplex
proceeds along basic solutions which are dual feasible and tries to increase the objec-
tive of the dual b′y. As soon as a solution is reached that is both primal and dual
feasible, the algorithm concludes optimality. Infeasibility and unboundedness can be
detected and certified.

A characteristic feature of the simplex algorithm is the interplay between its dis-
crete and continuous nature. While the basic solutions live in continuous space, they
have a discrete representation in the form of a basis. The following lemma shows that
any regular basis uniquely determines a basic solution.

Lemma 1. Let (C,R) be a basis of (P), then the vectors A·j , j ∈ C, and ei, i ∈ R,
are linearly independent if and only if the vectors Ai·, i 6∈ R, and e′j , j 6∈ C, are
linearly independent.

Proof. det(A·C |I·R) = det(AR̄,C) det(I) = det

(
AR̄·
IC̄·

)
.

Hence, for a regular basis the system of equations 1–4 has full rank and a unique
solution (x, y).

2.2 Computational forms

Implementations of the simplex algorithm typically cast (P) in a computationally
suited form. They differ in how the values of a basic solution (x, y) are computed or
updated, given a regular basis (C,R).

Dantzig [3] designed the simplex method for what we call the column form of (P),
which continues to be the basis for most state-of-the-art implementations. Here, we
introduce slack variables s ∈ Rm in order to obtain equality constraints:

min{c′x : Ax− s = b, x, s > 0}.

Given a regular basis (C,R), the variables xj , j 6∈ C, and si, i 6∈ R, are set to zero as
prescribed by eqs. 1 and 2. The m remaining columns A·j , j ∈ C, and −ei, i ∈ R,
form the (full rank) basis matrix M = (A·C |−I ·R) ∈ Rm×m. The values of the basic
solution can then be computed by solving the two systems of linear equations

M

(
xC
sR

)
= b

and

M′y =

(
cC
0

)
,

called FTRAN and BTRAN, respectively.
Treating variable bounds as inequality constraints, we obtain the so-called row

form, which was first investigated and implemented by Wunderling [11]:

min
{
c′x :

(
I
A

)
x >

(
0
b

)}
.

Here, we form the basis matrix N ∈ Rn×n using rows e′j , j 6∈ C and Ai·, i 6∈ R. This
lets us compute the primal vector x by solving

Nx =

(
0
bR̄

)
,

3

which is identical to eqs. 1 and 2. If z ∈ Rn denotes the dual multipliers associated
with the bound constraints x > 0, then the dual vector y is computed solving

N′
(
zC̄
yR̄

)
= c,

complemented with yi = 0 for i ∈ R. Note that if the numbers of variables and
constraints differ widely, so do the dimensions of M and N and subsequently the
effort for computing and updating the basic solution values.

To refer to the basic and nonbasic columns of the auxiliary matrix (A |−I) directly,
we define the index set B:=C ∪ {i + n | i ∈ R} ⊆ {1, . . . ,m + n}. Then M can be
written as (A |−I)·B and N′ = (I |A′)·B̄, where B̄ = {1, . . . ,m + n} \ B. We denote
the position of the j-th column of (A |−I) in M by π(j), if basic. The position in N
of row (I |A′)·i, i ∈ B̄, is σ(i).

To summarize, the left columns of Figs. 1 and 2 outline the primal and dual
simplex algorithm when using column and row form.

3 The reduced basis matrix

A basis (C,R) of (P) partitions the columns and rows of the constraint matrix A, i.e.,
after reordering we can assume

A =

(
AR,C AR,C̄
AR̄,C AR̄,C̄

)
.

In column form, the basis matrix then reads

M =

(
AR,C −I
AR̄,C 0

)
.

Traditionally, simplex solvers apply a black-box LU factorization to M followed by
triangular solves to perform FTRAN and BTRAN. However, if we exploit that

Mu = p⇐⇒ AR̄,CuC = pR̄, uC̄ = AR,CuC − pR,

and
M′v = q ⇐⇒ vR = −qC̄ , A′R̄,CvR̄ = qC −A′R,CvR,

we only need to factorize the smaller matrix AR̄,C . In other words,

M−1 =

(
0 A−1

R̄,C
−I AR,CA

−1
R̄,C

)
.

Then we can perform FTRAN by solving for uC and subtracting pR from a matrix-
vector product. For BTRAN, we first compute a matrix-vector product, subtract it
from qC , and then solve for vR̄.

The idea applies similarly to the row form where the basis matrix would read

N =

(
0 I

AR̄,C AR̄,C̄

)
.

A factorization of AR̄,C and some matrix-vector computations suffice.
The right column of Figs. 1 and 2 presents the primal and dual simplex algo-

rithm using the reduced basis matrix. The hinge clearly lies in the update of the
LU factorization in line 19, which will be explained in detail in the following section.

4

Figure 1: Three versions of the primal simplex algorithm starting from a primal feasible basis using column form (left), row form (center), and the
reduced basis matrix (right).

begin1

factorize M = (A |−I)·B
2

pB←M−1b
3

(void)
4

y′← (c′ |0′)BM−1
5

r′B̄← (c′ |0′)B̄ − y′(A |−I)B̄·6

while mink∈B̄ rk < 0 do7

choose k∈B̄ with rk < 08

p̂B←M−1(A |−I)·k9

(void)
10

if p̂B 6 0 then11

stop: LP unbounded12

else13

l← arg min
i∈B:p̂i>0

pi/p̂i
14

ŷ′← e′π(l)M
−1

15

r̂B̄← ŷ′(A |−I)·B̄16

B← (B ∪ {k}) \ {l}17

update p, r18

update factor. of M19

end20

begin1

factorize N =

(
I
A

)
B̄·2

x←N−1b̃B̄· with b̃:=

(
0
b

)
3

pB←
(
I
A

)
B·

x
4

r′B̄← (z′ |y′)B̄← c′N−1
5

(void)6

while mink∈B̄ rk < 0 do7

choose k∈B̄ with rk < 08

x̂←N−1eσ(k)9

p̂B← −
(
I
A

)
B·

x̂
10

if p̂B 6 0 then11

stop: LP unbounded12

else13

l← arg min
i∈B:p̂i>0

pi − b̃i
p̂i14

r̂′B̄←
(
I
A

)
l·
N−1

15

(void)16

B← (B ∪ {k}) \ {l}17

update p, r18

update factor. of N19

end20

begin1

factorize B = AR̄,C2

xC←B−1bR̄3

sR←AR,CxC4

y′R̄← c′CB
−1

5

r′C̄← c′C̄ − y′R̄AR̄,C̄6

while mini∈R̄ yi < 0 or minj∈C̄ rj < 0 do7

choose k from {i ∈ R̄ : yi < 0} or {j ∈ C̄ : rj < 0}8

x̂C← (if k is column index then B−1AR̄,k else B−1eσ(k))9

ŝR←AR,Cx̂C10

if x̂C 6 0 and ŝR 6 0 then11

stop: LP unbounded12

else13

l← arg min
{xj
x̂j

: j ∈ C, x̂j > 0
}
∪
{si − bi

ŝi
: i ∈ R, ŝi > 0

}
14

ŷ′R̄← (if l is column index then e′π(l)B
−1 else Al,CB

−1)15

r̂′C̄← ŷ′R̄AR̄,C̄ − (if l is row index then Al,C̄ else 0′)16

if k is column index then C←C ∪ {k} else R←R∪ {k}17

if l is column index then C←C \ {l} else R←R \ {l}
update xC , sR, yR̄, rC̄18

update factorization of B19

end20

5

Figure 2: Three versions of the dual simplex algorithm starting from a dual feasible basis using column form (left), row form (center), and the
reduced basis matrix (right).

begin1

factorize M = (A |−I)·B
2

y′← (c′ |0′)BM−1
3

r′B̄← (c′ |0′)B̄ − y′(A |−I)B̄·4

pB←M−1b
5

(void)
6

while minl∈B pl < 0 do7

choose l∈B with pl < 08

ŷ′← e′π(l)M
−1

9

r̂B̄← − ŷ′(A |−I)·B̄10

if r̂B̄ 6 0 then11

stop: LP infeasible12

else13

k← arg min
i∈B̄:r̂i>0

ri/r̂i
14

p̂B←M−1(A |−I)·k15

(void)
16

B← (B ∪ {k}) \ {l}17

update p, r18

update factor. of M19

end20

begin1

factorize N =

(
I
A

)
B̄·2

r′B̄← (z′ |y′)B̄← c′N−1
3

(void)4

x←N−1b̃B̄· with b̃:=

(
0
b

)
5

pB←
(
I
A

)
B·

x
6

while minl∈B pl < b̃l do7

choose l∈B with pl < b̃l8

r̂′B̄←
(
I
A

)
l·
N−1

9

(void)10

if r̂B̄ 6 0 then11

stop: LP infeasible12

else13

k← arg min
i∈B̄:r̂i>0

ri/r̂i
14

x̂←N−1eσ(k)15

p̂B←
(
I
A

)
B·

x̂
16

B← (B ∪ {k}) \ {l}17

update p, r18

update factor. of N19

end20

begin1

factorize B = AR̄,C2

y′R̄← c′CB
−1

3

r′C̄← c′C̄ − y′R̄AR̄,C̄4

xC←B−1bR̄5

sR←AR,CxC6

while minj∈C xj < 0 or mini∈R(si − bi) < 0 do7

choose l from {j ∈ C : xj < 0} or {i ∈ R : si < bi}8

ŷ′R̄← (if l is column index then e′π(l)B
−1 else Al,CB

−1)9

r̂′C̄← − ŷ′R̄AR̄,C̄ + (if l is row index then Al,C̄ else 0′)10

if ŷR̄ 6 0 and r̂C̄ 6 0 then11

stop: LP infeasible12

else13

k← arg min
{yi
ŷi

: i ∈ R̄, ŷi > 0
}
∪
{rj
r̂j

: j ∈ C̄, r̂j > 0
}

14

x̂C← (if k is column index then B−1AR̄,k else B−1eσ(k))15

ŝR←AR,Cx̂C16

if l is column index then C←C \ {l} else R←R \ {l}17

if k is column index then C←C ∪ {k} else R←R∪ {k}
update yR̄, rC̄ , xC , sR18

update factorization of B19

end20

6

4 Updating an LU factorization of AR̄,C

Solving FTRAN and BTRAN accounts for a major part of the computational effort
in each simplex iteration, see, e.g., Hall and McKinnon [6]. Competitive implemen-
tations employ a factorized representation of the basis matrix or its inverse. Since
the basis matrix is only slightly modified from iteration to iteration—traditionally
exchanging a column of M or a row of N—it is more efficient to update the factoriza-
tion instead of recomputing it. This section shows how a factorization of the reduced
basis matrix AR̄,C can be updated also in the case when its dimension changes.

4.1 Product form update

The first update procedure suggested by Dantzig and Orchard-Hays [4] was based on
the product form of the inverse. Suppose for a regular basis matrix B = AR̄,C ∈ Rp×p,
p = |C| = |R̄|, we have computed a factorized representation of its inverse B−1. Now
there are four types of basis changes that may occur:

Case 1. If both a column enters and leaves the basis, i.e., C← (C ∪ {k}) \ {l}, then
the dimension of B is invariant and the new basis matrix reads

B(1) = B + (AR̄,k −Beπ(l))e
′
π(l) = B (I + (η − eπ(l))e

′
π(l))︸ ︷︷ ︸

=:E

(5)

with η = B−1AR̄,k, which is available as product of the last BTRAN operation. Ma-
trices like E, i.e., identity matrices with one column or row replaced by a vector, are
called (column respectively row) eta matrices. Their inverse is

E−1 = I − (η − eπ(l))e
′
π(l)/ηπ(l),

which yields an updated representation of the basis inverse

B(1)−1
= E−1B−1,

as described by Dantzig and Orchard-Hays [4].

Case 2. Similarly, if one row is replaced by another, i.e., R← (R ∪ {k}) \ {l}, we
can write B(1) = FB with

F = I + eσ(k)(Al,CB
−1 − e′σ(k))

Then the basis inverse is updated by multiplication from the right, B(1)−1

= B−1F−1.

Case 3. If a column enters the basis and a row leaves the basis, i.e., C←C ∪ {k},
R←R \ {l}, the dimension of B increases by one. Suppose that column k and row l
are added to the right and bottom, respectively, then

B(1) =

(
B AR̄,k
Al,C Alk

)
=

(
I 0

Al,CB
−1 1

)
︸ ︷︷ ︸

=:F

(
B 0
0′ κ

)(
I B−1AR̄,k
0 1

)
︸ ︷︷ ︸

=:E

with κ:=Alk −Al,CB−1AR̄,k. Thus, the new basis inverse can be written as

B(1)−1

= E−1

(
B−1 0
0′ 1/κ

)
F−1.

7

Case 4. Finally, if a column leaves the basis and a row enters the basis, i.e., C←C \
{l}, R←R ∪ {k}, the dimension of B decreases by one. Let E = I + (B−1eσ(k) −
eπ(l))e

′
π(l), F = I + eσ(k)(e

′
π(l)B

−1 − e′σ(k)), and denote by Dj :=(e1 | . . . | ej−1 | ej+1 |
. . . |ep) ∈ Rp×(p−1) the identity matrix with its j-th column removed. Then the new
basis inverse is given by

Lemma 2. B(1)−1

= D′π(l)E
−1B−1F−1Dσ(k).

Proof. B(1) = AR̄\{k},C\{l} = D′σ(k)AR̄,CDπ(l) = D′σ(k)BDπ(l) yields

B(1)D′π(l)E
−1B−1F−1Dσ(k) = D′σ(k)BDπ(l)D

′
π(l)E

−1︸ ︷︷ ︸
I−B−1eσ(k)e

′
π(l)/(B

−1eσ(k))π(l)

B−1F−1Dσ(k)

= D′σ(k)BIB
−1F−1Dσ(k) −D′σ(k)BB−1eσ(k)︸ ︷︷ ︸

=0

(· · ·) = I ∈ R(p−1)×(p−1),

and analogously D′π(l)E
−1B−1F−1Dσ(k)B

(1) = I.

4.2 LU update

Current state-of-the-art implementations, see, e.g., [11, 7] are based on an LU factor-
ization of B,

B = L̃Ũ ,

where L̃ = P ′LP and Ũ = P ′UP , are permuted lower and upper triangular matrices,
respectively, P ∈ Rp×p a permutation matrix. (Because the columns in the basis
matrix can be reordered, we may assume a symmetric permutation.) Pioneered by
Bartels and Golub [1], the most successful update formulas used in practice are by
Forrest and Tomlin [5] with an improvement by Suhl and Suhl [10]. We now provide
Forrest-Tomlin like update formulas for AR̄,C .

Case 1. Using eq. 5, we obtain

V :=L−1PB(1)P ′ = L−1PB(I + (B−1AR̄,k − eπ(l))e
′
π(l))P

′

= U + (L−1PAR̄,k︸ ︷︷ ︸
=:α

−UPeπ(l))(Peπ(l))
′ =



u11 . . . α1 . . . u1p

. . .
...

...
αt · · · utp
...

. . .
...

αp upp

 ,

Suppose Peπ(l) = et, then V is the original factor U which has its t-th column replaced
by the so-called spike α. To restore triangularity, we shift the t-th column and row
to the last position by multiplying with the permutation matrix Π:=(e1 | . . . |et−1 |ep |
et+1 | . . . | ep−1). Subsequently, we eliminate the resulting nonzeros in the last row:
U (1):=ΛΠVΠ′ is upper triangular, where the nonzeros of Λ = I + epλ

′ are computed
by solving ut+1,t+1

...
. . .

ut+1,p · · · up,p


 λt

...
λp−1

 = −

ut,t+1

...
ut,p

 .

8

Using the definition of V and U (1) and P (1) = ΠP we obtain

B(1) = P ′LV P = P ′L(Π′Λ−1U (1)Π)P

= P ′LP︸ ︷︷ ︸
L̃

P (1)′Λ−1P (1)︸ ︷︷ ︸
R̃(1)

P (1)′U (1)P (1)︸ ︷︷ ︸
Ũ(1)

.

Case 2. For a row exchange, we can write

V :=PB(1)P ′U−1 = P (I + eσ(k)(Al,CB
−1 − e′σ(k)))BP

′U−1

= L+ Peσ(k)(Al,CP
′U−1︸ ︷︷ ︸

=:α

−(Peσ(k))
′L) =



l11

...
. . .

α1 · · · αt · · · αp
...

...
. . .

lp1 · · · lpt · · · lpp

 ,

where Peσ(k) = et. For suitable Λ as above, L(1):=ΠVΠ′Λ′ is lower triangular.

With P (1) = ΠP we get

B(1) = P ′V UP = P ′(Π′L(1)Λ−1′Π)UP

= P (1)′L(1)P (1)︸ ︷︷ ︸
L̃(1)

P (1)′Λ−1′P (1)︸ ︷︷ ︸
R̃(1)

P ′UP︸ ︷︷ ︸
Ũ

. (6)

Case 3. If a column enters and a row leaves the basis, i.e., the dimension of the
basis matrix increases by one, it is straightforward to maintain triangular factors by
extending L̃ to the bottom and Ũ to the right:

B(1) =

(
B AR̄,k
Al,C Alk

)
(7)

= P (1)′
(

L 0
Al,CP

′U−1 1

)
P (1)︸ ︷︷ ︸

=:L̃(1)

P (1)′
(
U L−1PAR̄,k
0 κ

)
P (1)︸ ︷︷ ︸

=:Ũ(1)

. (8)

Case 4. If column l leaves and row k enters the basis, then the new basis matrix
is obtained by deleting column π(l) and row σ(k) of B. First, however, imagine

that we replace these columns by unit vectors, forming B(0):=(I + eσ(k)(e
′
π(l)B

−1 −
e′σ(k)))B(I + (B−1eσ(k) − eπ(l))e

′
π(l)). As described for cases 1 and 2 above, we can

update the factorization to obtain

B(0) = PL
′
L(0)PL︸ ︷︷ ︸
L̃(0)

PL
′
ΛL
−1 ′
PL︸ ︷︷ ︸

R̃L

PU
′
ΛU
−1

PU︸ ︷︷ ︸
R̃U

PU
′
U (0)PU︸ ︷︷ ︸
Ũ(0)

, (9)

where the π(l)-th column and σ(k)-th row of B(0) are permuted to the last position p
in U (0) and L(0), respectively. Hence, deleting the last row and column in L(0) and
U (0), deleting the last (unit) columns of ΛL

−1

and ΛU
−1

and adjusting the permutation

matrices gives a factorized representation of B(1) = D′σ(k)BDπ(l).

The improvements of Suhl and Suhl [10] can be incorporated easily and have been
left out merely for clarity of presentation.

9

5 Concluding remarks

We conclude by discussing the computational advantages of using the reduced basis
matrix. Note that for clarity, Figs. 1 and 2 present the FTRAN and BTRAN operations
using the reduced basis matrix partitioned by C and R. However, this can easily be
hidden behind a black-box implementation of the linear algebra routines and thus
seamlessly integrated into existing state-of-the-art simplex codes based on row or
column form, yielding all benefits outlined in the following.

Faster factorization and updates. Since AR̄,C is potentially much smaller than
M and N, both the initial factorization and subsequent updates may be expected to
involve less nonzeros and perform faster.

Faster solves. Using an LU factorization of M, we need to perform two triangular
solves of dimension m for FTRAN or BTRAN. The new technique only requires two
triangular solves of dimension |C| 6 m. The remaining m− |C| solution values can be
computed in one sweep. The same effect holds when using the row form.

Smaller memory consumption. First, since AR,C is no longer part of the basis
matrix, it can be read directly from the constraint matrix and is not stored a second
time in U . Second, since we factorize and update a smaller matrix, we may expect
the fill-in to grow at a smaller rate, an effect that has been observed by Powell [9]
and confirmed by Wunderling [12].

Solving from scratch. The impact of the advantages listed above will be more
prominent the smaller AR̄,C is on average when compared to M or N, i.e., when
many of the vertex solutions traversed by the simplex algorithm are predominantly
determined by tight column bounds. Note that, even if the optimal basis might
have many basic columns, the simplex algorithm is often started from the slack ba-
sis (∅, {1, . . . ,m}). In this case, AR̄,C necessarily has small dimension during the first
iterations.

Furthermore, it is a common situation that, for example, problems from com-
binatorial optimization or relaxations solved within an LP-based branch-and-cut al-
gorithm exhibit more rows than columns. In this case, the number of basic (not
tight) rows |R| is at least m − n, i.e., the dimension of AR̄,C is guaranteed to be at
most n = dim(N) < dim(M).

Reoptimizing within branch-cut-and-price. Last, but not least, when used
in an LP-based branch-cut-and-price algorithm, the reduced basis matrix gives an
advantage independent of the proportions of the constraint matrix. When using
column form the factorization must be computed from scratch after adding a row; in
row form after adding a column. Since reoptimization often only takes few iterations,
having to recompute the factorization of the basis matrix each time can make up a
significant amount of the computational effort performed.

In contrast, adding new columns or rows to the problem does not affect AR̄,C since
a new column is initialized as nonbasic, i.e., added to C̄, and a new row is initialized as
basic, i.e., added to R. Hence, the factorization is not invalidated and can be reused.

10

Acknowledgements

Many thanks to Daniel Steffy, Timo Berthold, Thorsten Koch, and Matthias Mil-
tenberger for their valuable comments on this paper.

References

[1] Richard H. Bartels and Gene H. Golub. The simplex method of linear pogram-
ming using LU decomposition. Communications of the ACM, 12:266–268, May
1969. doi:10.1145/362946.362974.

[2] George B. Dantzig. Notes on linear programming – Part III: Computational algo-
rithm of the revised simplex method. Research Memorandum RM-1266, RAND,
October 1953. http://www.rand.org/pubs/research_memoranda/RM1266.

[3] George B. Dantzig. Linear programming and extensions. Princeton Univ. Press,
Princeton, NJ, 1963.

[4] George B. Dantzig and William Orchard-Hays. Notes on linear programming
– Part V: Alternate algorithm for the revised simplex method using a product
form for the inverse. Research Memorandum RM-1268, RAND, November 1953.
http://www.rand.org/pubs/research_memoranda/RM1268.

[5] John J.H. Forrest and John A. Tomlin. Updated triangular factors of the basis
to maintain sparsity in the product form simplex method. Mathematical Pro-
gramming, 2:263–278, 1972. doi:10.1007/BF01584548.

[6] Julian A. Hall and Ken I.M. McKinnon. Hyper-sparsity in the revised simplex
method and how to exploit it. Computational Optimization and Applications,
32:259–283, 2005. doi:10.1007/s10589-005-4802-0.

[7] Achim Koberstein. The Dual Simplex Method. Techniques for a fast and stable
implementation. PhD thesis, Universität Paderborn, 2005. urn:nbn:de:hbz:

466-20050101272.

[8] John L. Nazareth. Computer solutions of linear programs. Monographs on Nu-
merical Analysis. Oxford Univ. Press, New York, Oxford, 1987.

[9] Susan Powell. A development of the product form algorithm for the simplex
method using reduced transformation vectors. In Michel L. Balinski and Eli
Hellerman, editors, Computational Practice in Mathematical Programming, vol-
ume 4 of Mathematical Programming Studies, pages 93–107. North-Holland, Am-
sterdam, 1975. doi:10.1007/BFb0120713.

[10] Leena M. Suhl and Uwe H. Suhl. A fast LU update for linear programming.
Annals of Operations Research, 43:33–47, 1993. doi:10.1007/BF02025534.

[11] Roland Wunderling. Paralleler und objektorientierter Simplex-Algorithmus.
PhD thesis, Technische Universität Berlin, 1996. http://www.zib.de/

Publications/abstracts/TR-96-09.

[12] Roland Wunderling. The kernel simplex method. Talk at the 21st International
Symposium on Mathematical Programming, Berlin, Germany, August 2012.

[13] Guus Zoutendijk. A product-form algorithm using contracted transformation
vectors. In Jean Abadie, editor, Integer and Nonlinear Programming, 511-523
(1970). North-Holland, Amsterdam, 1970.

11

http://dx.doi.org/10.1145/362946.362974
http://www.rand.org/pubs/research_memoranda/RM1266
http://www.rand.org/pubs/research_memoranda/RM1268
http://dx.doi.org/10.1007/BF01584548
http://dx.doi.org/10.1007/s10589-005-4802-0
http://nbn-resolving.de/urn:nbn:de:hbz:466-20050101272
http://nbn-resolving.de/urn:nbn:de:hbz:466-20050101272
http://dx.doi.org/10.1007/BFb0120713
http://dx.doi.org/10.1007/BF02025534
http://www.zib.de/Publications/abstracts/TR-96-09
http://www.zib.de/Publications/abstracts/TR-96-09

	Introduction
	The revised simplex algorithm
	Notation
	Computational forms

	The reduced basis matrix
	Updating an LU factorization of A,C
	Product form update
	LU update

	Concluding remarks

