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Abstract

This paper provides a highly integrated solution approach for rolling
stock planning problems in the context of intercity passenger traffic.
The main contributions are a generic hypergraph based mixed integer
programming model and an integrated algorithm for the considered
rolling stock rotation planning problem. The new developed approach
is able to handle a very large set of industrial railway requirements,
such as vehicle composition, maintenance constraints, infrastructure
capacity, and regularity aspects. By the integration of this large bun-
dle of technical railway aspects, we show that our approach has the
power to produce implementable rolling stock rotations for our indus-
trial cooperation partner DB Fernverkehr. This is the first time that
the rolling stock rotations at DB Fernverkehr could be optimized by
an automated system utilizing advanced mathematical programming
techniques.

1 Introduction

Deutsche Bahn Fernverkehr AG provides the largest intercity railway service
in Europe. In order to implement their timetables rolling stock rotations are
built to operate passenger trips by rail vehicles, which are among the most
expensive and limited assets of a railway company. The main challenge
arising in planning the operations of the rolling stock is to integrate the
treatment of different technical aspects.

Sat Sun

Mon

Tue
Wen

Thu

Fri

Figure 1: Almost periodic timetable.

The major requirements can be summarized as vehicle composition rules,
maintenance constraints, infrastructure capacities, and regularity stipula-
tions. Each of these requirements is already complex in its own right. More-
over, it is almost impossible to treat them sequentially, i.e., a step by step
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approach leads to infeasibilities or inefficient results for most of all real-world
scenarios with consider. The most important requirements are the following:

• Figure 1 shows a cyclic timetable that is valid on seven operating days.
For each day there are plotted all given passenger trips as blue time
expanded paths. A profile at a specific time of this torus represents the
current location of all vehicles operating the timetable. As one can see
in this picture a common structure of railway timetables is that they
are almost periodic. Only a few of the given passenger trips differ from
day to day. That implies another requirement for the rolling stock
rotations: They should utilize the periodicity of the timetable; this
objective is called regularity.

• Another main characteristic of nearly all railway systems is that rail
vehicles can be combined to form vehicle compositions. Therefore our
model provides generic structures to formulate those detailed require-
ments in an integrated manner.

• The rolling stock has to be maintained frequently. This leads to sev-
eral maintenance constraints, with different technical backgrounds. We
consider cumulative time and distance resources which are constrained
by predefined bounds. To comply to those bounds rail vehicles must
be maintained in periodical intervals. We show a novel Mixed Integer
Programming formulation especially for this type of constraints and
new algorithmic method to solve the resulting model.

• Maintenance and also parking activities usually consume infrastruc-
ture and crew capacity. This capacity is limited and therefore those
considerations have to be integrated.

The paper contributes a new generic Mixed Integer Programming approach
to optimize rolling stock rotations. We present a hypergraph based formula-
tion modeling all technical requirements as well as new algorithmic methods
to solve very hard problem instances of large scale.
Comprehensive computational results prove that our model and algorithm
produces high quality and implementable results. Rotation planners of
Deutsche Bahn validated the resulting rolling stock rotations from a detailed
technical and operational point of view.
The paper is organized as follows. Section 2 gives an overview of the known
approaches for rolling stock optimization. Section 3 defines the considered
problem from an abstract mathematical point of view by introducing a for-
mal description of the RSRPP. We embed the rolling stock optimization
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problem of our industrial partner into our modeling framework in Section 4.
Section 5 presents our algorithmic Mixed Integer Programming formulation
for the RSRPP. In Section 6 we present or algorithmic procedure to solve the
RSRPP. Computational results for instances given by our industrial partner
DB Fernverkehr AG are presented in the final Section 7.

2 Related work

Vehicle scheduling is extensively discussed in the literature, see [9] for a sur-
vey. The paper [1] present a mixed integer programming formulation for a
locomotive scheduling problem. The model is solved by a very large-scale
neighborhood search technique but does not include any maintenance con-
straints. Savings of over 400 locomotives resulting in over one hundred mil-
lion dollars annually are reported. In [13] is developed a large-scale non-linear
integer programming formulation for the integrated optimization of locomo-
tive schedules including maintenance constraints. The proposed model is
solved by a Dantzig-Wolfe decomposition within a Branch-and-Bound frame-
work. The authors of [6] propose an integer programming model based on
a multi commodity flow formulation for the integrated assignment of loco-
motives and passenger cars to passenger trips. Maintenance constraints are
taken into account by using a time-expanded graph model. Various decom-
position techniques embedded in a Branch-and-Bound-and-Cut framework
are utilized to solve the problem. A three stage heuristic approach to incor-
porate maintenance tasks in precomputed rolling stock rosters is described
in [2]. Furthermore two integer programming formulations which can be
used to pre-optimize rolling stock rosters to incorporate maintenance tasks
can be found in [10] and [11]. In duty rostering problems there are several
constraints on the maximal working time per week and the maximal number
of successive working days of the drivers. These constraints are very similar
to the maintenance constraints in the RSRPP. Behrendt introduced sev-
eral mixed integer programming formulations for the duty rostering problem
in [3] including constraints on cumulative resources, e.g., working time. We
will present an adaption of one of those models for the treatment of main-
tenance constraints for the RSRPP. Our adaptation of the formulation for
the maintenance requirements proposed in [3] is mathematically equivalent
to the model developed independently in [8]. The authors of [8] reported
preliminary computational results for rather small and simplified scenarios
of the Italian railway company Trenitalia. They assume that the railway
timetables are repeat on every operation day, they do not consider a realistic
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objective function (only the number of vehicles is minimized), and moreover
they do not integrate vehicle composition, regularity, and infrastructure ca-
pacity aspects in their model.

3 The Rolling Stock Rotation Planning Problem

The Rolling Stock Rotation Planning Problem comes from one of the most
complex railway applications and therefore it is necessary to describe the
main mathematical aspects of this problem as short as possible. Therefore,
one main contribution of our work is a generic description of all needed math-
ematical structures and relations to be able to handle all technical details
arising in industrial use cases. In this section we will provide an abstract
mathematical description of the RSRPP and we are showing some well known
problem reductions to illustrate the generic manner of our considerations.
The set of timetabled passenger trips is denoted by T . A trip t ∈ T has
a departure and arrival time in our standard week. In a solution of the
RSRPP one has to perform maintenance tasks on vehicles. Let M be the
set of all possible maintenance tasks. A service s ∈ S is a non-empty set of
maintenance tasks. We say that s ∈ S implements m ∈M if m ∈ s.
Let V be a set of nodes representing departures and arrivals of vehicles
operating passenger trips of T and let A ⊆ (V ∪ S)2 be a set of directed
standard arcs. We define a set H ⊆ 2A, called hyperarcs. The RSRPP
hypergraph is denoted by G = (V ∪ S,A,H). From a high level point of
view, one could say that A models what is possible to do for vehicles while
H models what is possible to decide for the RSRPP at once.
The standard arc a = (u, v) ∈ A operates a trip t ∈ T if u ∈ V represents
the departure of t and v ∈ V represents the arrival of t. We say that the
hyperarc h ∈ H covers t ∈ T , if each arc a ∈ h ⊆ A operates t. We define
the set of all hyperarcs covering t as H(t) := {h ∈ H |h covers t}. A main-
tenance constraint l is represented by a resource function rl : S∪A 7→ Q+, a
resource upper bound Ul ∈ Q+, and a set of maintenance tasks ml ⊆ M . A
maintenance task of ml must be performed to reset the resource rl to fulfill
the bound Ul. A feasible path P ⊆ A in G w.r.t. the maintenance constraint
l is a simple path starting and ending at nodes of S (which implement an
appropriate maintenance task of ml ⊆ L) resetting the resource of l such
that ∑

S(P )

rl(v) +
∑
a∈P

rl(a) ≤ Ul.
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The inequality (1) states that the sum of all consumed resources on a feasible
path P has to be smaller then or equal to the bound of a maintenance
constraint. Note that even a service s ∈ S(P ) ⊂ S can consume resources
if it does not implement maintenance tasks for each constraint. A feasible
rotation w.r.t. the maintenance constraint l is a cycle C ⊆ A such that each
node covered by C is contained in a feasible path w.r.t. l. Performing a
maintenance tasks consumes some commodities, i.e., crew, machines, and
infrastructure. Those commodities have usually a limited availability. A
base constraint b is represented by a resource function rb : H 7→ Q and a
capacity bound Ub ∈ Q. The set of all base constraints is denoted by B. We
say that the set of hyperarcs H0 ⊆ H fulfills the base constraint b ∈ B if∑

h∈H0
rb ≤ Ub. Now we have defined all needed terms to state the RSRPP

problem.

Definition 1 (Rolling Stock Rotation Planning Problem (RSRPP))
Let T be a set of timetabled passenger trips and let G = (V ∪ S,A,H) be a
RSRPP hypergraph with a cost function c : H 7→ Q+. Furthermore let L be
a set of maintenance constraints and let B be a set of base constraints.
The RSRPP is to find a cost minimal set of hyperarcs H0 ⊆ H such that

• Each timetabled trip t ∈ T is covered by exactly one hyperarc a ∈ H0.

• The set
⋃

a∈H0
a is a set of feasible rotations w.r.t. all maintenance

constraints of L.

• The set H0 fulfills all base constraints of B.

The RSRPP has some interesting relations to well known combinatorial op-
timization problems from the literature. If we assume that all arcs of the
set H have cardinality one, we call the resulting problem the non-hyper re-
striction of the RSRPP and if we assume that the RSRPP does not have
any maintenance constraints and also does not have any base constraints,
we call the relaxed problem the non-maintenance relaxation of the RSRPP.
If we consider the non-hyper restriction which is also a non-maintenance re-
laxation of the RSRPP, the problem reduces to an integer multi commodity
flow problem, which is known to be NP-hard, see [9]. In this reduction the
commodities are represented by the sets H(t). Therefore, the RSRPP is also
a NP-hard combinatorial optimization problem. In addition, if we assume
that each set H(t) has cardinality one, the problem reduces to the standard
assignment problem. The non-hyper restriction of the RSRPP with exactly
one maintenance constraint is closely related to a variant of the vehicle rout-
ing problem, i.e., a route can be seen as a fleet, see [7].
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4 The RSRPP for intercity railway planning

In this section we motivate our formalism introduced in Section 3 and how
it is related to real-world industrial instances for intercity railway planning.

4.1 Vehicle composition

The types of basic vehicle units are called fleets. Let F be the set of fleets
and C be the set of vehicle compositions. A vehicle composition config ∈ C
is a multiset of fleets of F . The set C(t) ⊆ C denotes the set of feasible
vehicle compositions to cover the timetabled trip t ∈ T .
The relation of fleets and vehicle compositions plays one of the most impor-
tant role in intercity planning. This is because rail vehicles can be coupled
together. In intercity problems even on the fly. This means that no technical
equipment or crew is needed for a coupling. There exist fleets at Deutsche
Bahn for which the coupling time does not exceed ten minutes. Coupling
activities create a huge number of degrees of freedom in intercity planning.
There are a lot of technical rules regarding to this coupling activities, e.g.,
rules for the position of vehicles in a composition. In this paper we do not ex-
plicitly consider rules for, e.g., positions of vehicles in vehicle compositions.
But we point out that since our model is directly based on decisions for cou-
pled vehicles (i.e., hyperarcs) it is able to handle all technical requirements
arising in this context in an integrated manner.
Figure 2 shows how fleets and vehicle compositions are related and how
they are modeled in the RSRPP. The picture shows three timetabled trips
t1, t2, t3 ∈ T . All red and blue circles are nodes of the node set V of the
RSRPP hypergraph G = (V,A,H), i.e., departures or arrivals of physical
vehicles of the three timetabled trips. The colors of the circles indicate two
fleets – a red and a blue one. As one can imagine, in intercity rotation
planning it is not allowed to connect nodes of different fleets in the RSRPP
hypergraph and therefore this picture illustrates also the reduction of the
RSRPP to an integer multi commodity flow problem which was described in
Section 3. Here the fleets are the commodities.
The hyperarcs h1, h2, h3, h4 ∈ H form the set H(t1), i.e., the set of alterna-
tive hyperarcs which can be used to cover the timetabled trip t1, i.e., H(t1)
represents the set C(t1) of feasible vehicle compositions to operate t1. From a
practical point of view this can be seen as follows: It is feasible to cover t1 by a
single vehicle of the red or blue fleet, see arcs h1 and h2. But it is also feasible
to haul up to two vehicles by operating t1, see arcs h3 and h4. As mentioned
above, e.g., the position and orientation of vehicles in vehicle compositions
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Figure 2: Hypergraph model.

must be also taken into account. This can be easily done by extending this
example, i.e., declaring the nodes as states w.r.t. position of vehicles at de-
partures and arrivals of trips. While the arcs h1, h2, . . . , h11 model how the
trips can be covered, the arcs h12, h13, . . . , h17 model how the trips can be
connected to build a set of feasible rotations. Arc h12 ∈ H implements a
coupling activity after the arrival of t1. The hyperarcs h13, h14, h15, h16 ∈ H
model connections between trips without coupling activities. For intercity
planning is very important to separately consider the decisions whether to
connection All hyperarcs connecting trips can also be interpreted as hyper-
arcs modelling service paths (see Sub-section 4.2). To consider explicitly
hyperarcs that model a connection makes use able to model that allocating
a track for two coupled vehicles is much cheaper than allocating a track for
two vehicles individually and also to integrate costs for coupling and decou-
pling of rail vehicles.
Note that it is important for the RSRPP that hyperarcs are defined as sets
of standard directed arcs because the set of rotations must be well defined
for the exact treatment of the maintenance constraints, which we consider
in the next sub-section.
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4.2 Maintenance constraints

To model these requirements, we consider each possible path of length two
of the form {(v, s), (s, w)} ⊆ A with s ∈ S and v, w ∈ V , called service path,
as a single hyperarc h = {(v, s), (s, w)} ∈ H. We call h a replenishment
arc. Because we assume that our objective function is non-negative, we do
not have to consider any other structures where service nodes appear, e.g.,
cycles, paths, or loops of service nodes.

. . .

v ∈ V

s ∈ S

w ∈ V
. . .

(v, s) ∈ A (s, w) ∈ A

hvw = {(v, w)} ∈ H

hvsw = {(v, s), (s, w)} ∈ H

Figure 3: Representation of service paths.

Figure 3 illustrates the treatment of service paths in our RSRPP hypergraph.
The hyperarc hvw models a direct connection of the arrival node v ∈ V and
the departure node w ∈ V . These connections can include deadhead trips
(i.e., empty rides) if the involved locations are different. The service path
{(v, s), (s, w)} ⊆ A is represented by the hyperarc hvsw ∈ H. It models that
a vehicle composition arrives at v, traverses all maintenance tasks, which are
implemented in the service s ∈ S, and finally departs on w. Also hvsw can
include several deadhead trips.

4.3 Regularity

As mentioned in Section 1, we focus in this paper on a cyclic planning hori-
zon over one standard week. The structure of the given timetable is almost
periodic. Only few trips of the timetable differ over the single week days of
the standard week. In view of this structure, it is desirable to construct a
vehicle rotation plan which utilizes this periodicity. We call such a plan a
regular vehicle rotation plan.
Imagine that we are given a timetable for that each trip repeats every day
in the standard week as it was considered in [8]. We call such a timetable
a periodic timetable and we call a set of repeating trips in the standard
week a train. The set of trains is denoted by T. A periodic timetable can
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Saturday
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h1

h2

h3

h4

h5
h6

h7

hr

t1 ∈ T t2 ∈ T

Figure 4: Hyperarc model for regularity.

also be considered as input data for the RSRPP. But in this case the set
of trains T can be viewed as the set of trips T (this is not quite accurate
w.r.t. maintenance constraints). In case of a standard week with seven week
days, this reinterpretation leads to a RSRPP hypergraph where the number
of nodes is reduced by a divisor of seven. Since an instance of the RSRPP
hypergraph is very dense (almost complete), the number of arcs reduces by a
divisor of 49. A hyperarc in the RSRPP hypergraph for a periodic timetable
can be seen as a set of hyperarcs if the trips are individually considered. This
motivates our approach for integrating regularity aspects to the RSRPP.
We easily construct a set of hyperarcs which are sets of other (individual)
hyperarcs.
Figure 4 illustrates our regularity approach. The red circles for train t1 ∈ T
can be seen as equal arrivals of each trip t ∈ t1 ⊆ T . Equal means equal
arrival locations and equal points in time in the standard week. The set of
circles for train t2 ∈ T represents equal departures of all trips of t2. The
individual hyperarcs h1, h2, . . . , h7 may not be simultaneously chosen in a
solution of the RSRPP. To express that this is desired, we create the hyperarc
hr ∈ H as hr =

⋃7
i=1 hi ⊆ A. From an applied point of view, the purpose

of this regularity policy is to create rolling stock plans that are compactly
representable, easy to communicate, and easy to operate. A more detailed
description of the technical aspects of vehicle composition and regularity can
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Figure 5: Solution representation at Deutsche Bahn Fernverkehr

be found in [5].
Figure 5 illustrates the regularity stipulations from the industrial point of
view. For example, the vehicles operating trip 1055 is is assigned to the trip
276 at every day of operation. But some of the other connections are not
regular. Those connections are chosen because of other parts of the objective
function, e.g., maintenance cost, and also because of timetabled trips which
appear non-periodic. The pictured shows how a real rolling stock rotation
plan looks like at Deutsche Bahn Fernverkehr AG.

4.4 Infrastructure capacity

On the left of Figure 6 one can see an example of a set of tracks of a parking
area. We enumerate all feasible assignments of vehicle compositions for a sin-
gle track by comparing the length of the vehicle compositions and the length
of the tracks. This results in a capacity for each track which must not be
exceeded at every date in our standard week. It can be observed, that bot-
tlenecks of infrastructure capacity appear only at specific dates, e.g., parking
areas are almost empty during the day and almost completely exhausted at
night. Therefore we integrate the consideration of infrastructure capacity by
defining base constraints for specific dates. The right of Figure 6 illustrates
how we deal with different fleets of rail vehicles. We define one base con-
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track length feasible vehicle assignments

1 570 m , , ,

2 480 m , ,

3 430 m , ,

4 420 m , ,

5 420 m , ,

6 420 m , ,

7 410 m , ,

8 390 m ,

9 240 m

10 240 m

11 240 m

12 210 m

13 210 m

14 210 m

Figure 6: Capacity constraints for infrastructure capacity.

straint for each fleet independently and also one base constraint as a linear
combination for all fleets, what is illustrated by the three red lines on the
right.

4.5 Objective function

This sub-section is about the objective function c : H 7→ Q+ especially for
intercity railway planning. Let h ∈ H be a hyperarc, the cost ch the sum
of the following terms: ch := rh + lh + kh + vh + th. The first part of the
objective function states a cost term for the number of irregularities, i.e.,
rh is higher for a hyperarc h that models only one connection than for a
hyperarc that models several connections as explained in Sub-section 4.3.
The term lh denotes cost for possible deadhead distances modeled by the
arc. Deadheads can be necessary to connect trips with different arrival and
departure locations as well as trips though parking areas or service paths.
If a hyperarc implements a service path, we integrate the cost for executing
the service by kh. The most important, and thus largest term, is denoted
by vh that states the vehicle cost of a hyperarc. Monetary vehicle cost are
given per fleet and we transform those cost by computing the duration of
a hyperarc and calculating the amount of vehicles w.r.t. to the duration
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of the standard week. Therefore the vehicle cost are distributed over all
hyperarcs of a solution. For connections of timetabled trips we are given
a so called planned duration. If the total duration of a connection is lower
than it’s planned duration we have to penalize this in our objective function.
This very important for the German intercity systems. The data for those
durations is very detailed and realistic, because Deutsche Bahn knows some
bottlenecks in their operations which influence in particular the propagation
of delays. We penalize those planned turn time deviations per minute by th.

5 Mixed Integer Programming formulation

Let G = (V ∪ S,A,H) be a given RSRPP hypergraph with a cost function
c : H 7→ Q+, c(h) := ch as introduced in Section 3. Further, let L be a set
of maintenance constraints with a resource function rl : S ∪ A 7→ Q+ and a
resource upper bound Ul ∈ Q+ for each constraint l ∈ L. In addition, let B
be a set of capacity constraints with a resource functions rb : H 7→ Q+ and
capacity bounds Ub ∈ Q+. A RSRPP instance is defined by all the previous
defined data.
Let t ∈ T be a trip and a ∈ A be a set of standard arcs. We define the set
H(t) of arcs covering t and the set H(a) of hyperarcs of a as H(t) := {h ∈
H |h covers t} and H(a) := {h ∈ H | a ∈ h}.
W.l.o.g. we assume that H(a) 6= ∅ for each arc a ∈ A. If H(a) = ∅, the
standard arc a can never be contained in a feasible set of rotations. For a
node v ∈ V we define sets of incoming and outgoing (hyper-) arcs of v in the
RSRPP hypergraph G as:

H(v)in := {h ∈ H | ∃ a ∈ h : a = (u, v)}, A(v)in := {(u, v) ∈ A},
H(v)out := {h ∈ H | ∃ a ∈ h : a = (v, w)}, A(v)out := {(v, w) ∈ A}.

We introduce a binary decision variable xh for each hyperarc h ∈ H. In
addition we define a non-negative continuous variable wl

a for each standard
arc a ∈ A and each maintenance constraint l ∈ L fulfilling the upper bound
Ul.
Let h ∈ H be a hyperarc and a = (u, v) ∈ h a standard arc. To permit
simple notation we define the resource consumption rl(v) := 0 for a node
v ∈ V . Further, we introduce rvl (h) := rl( (u, v) ∈ h ) + rl(v) as the sum
of the resource consumption of the in v incoming standard arc (u, v) ∈ h
and the resource consumption of the node v. W.l.o.g. we assume that the
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standard arc (u, v) is unique in h, because we the set of standard arcs of a
hyperarc must forms a perfect matching between the tail and head nodes of
this arc set. If this is not the case, there must be a node with two or more
incoming/outgoing standard arcs and this can not be contained in a set of
rotations.
The RSRPP can now be stated as a mixed integer program as follows:

min
∑
h∈H

chxh, (MP)∑
h∈H(t)

xh = 1 ∀t ∈ T, (1)

∑
h∈H(v)in

xh =
∑

h∈H(v)out

xh ∀v ∈ V, (2)

wl
a ≤

∑
h∈H(a)

Ul xh ∀a ∈ A, l ∈ L, (3)

∑
a∈A(v)out

wl
a −

∑
a∈A(v)in

wl
a =

∑
h∈H(v)out

rvl (h)xh ∀v ∈ V, l ∈ L (4)

∑
a∈A(s)out

wl
a =

∑
h∈H(s)out

rsl (h)xh ∀s ∈ S, l ∈ L (5)

∑
h∈H

rb(h)xh ≤ Ub ∀b ∈ B, (6)

xh ∈ {0, 1} ∀h ∈ H, (7)

wl
a ∈ [0, Ul] ⊂ Q+ ∀a ∈ A, l ∈ L. (8)

The linear objective function minimizes the total cost and is directly related
to the cost of operating a timetable. For each trip t ∈ T the covering
constraints (1) assign exactly one hyperarc of H(t) to t. The equalities (2)
are flow conservation constraints for each node v ∈ V that imply the set of
rotations in the arc set A. The subset of constraints (1), (2), and (7) state
the non-maintenance relaxation of the RSRPP. This problem was already
considered in [5]. The constraints (3), (4), and (5) ensure that the hyper-
assignment is feasible w.r.t. all maintenance constraints l ∈ L.
Let the x variables be fixed to a feasible solution such that they imply a
set of rotations. Inequalities (3) imply that a wl

a can only be non-zero if a
corresponding hyperarc of H consists of a standard arc which corresponds
to a. Therefore the w-flow traverses the same set of cycles that the x-flow
implies. Let v ∈ V be a node and let l ∈ L be a maintenance constraint.
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Suppose that aout ∈ A(v)out, ain ∈ A(v)in, and h ∈ H(v)out are the in v
outgoing and incoming (hyper-) arcs in the considered fixed x. Since xh = 1
equation (4) for v ∈ V and l ∈ L reduces to:

wl
aout = wl

ain + rvl (h). (9)

Equation (9) states that the resource flow value of an arc, namely wl
aout , is

always the sum of the flow value of the predecessor arc wl
ain and the actual

resource consumption rvl (h). In addition, equations (5) model the resource
flow for service nodes. Differently to (4) we do not cumulate the in-flow for
service nodes such that the cumulative flow for a maintenance constraint is
replenished at service nodes.

1

2

34

5

h2

r2l (h2), wl
2

h3
r3l (h3), wl

3

h4

r4l (h4), wl
4h5

r5l (h5), wl
5

h1

h6 s

r1l (h1), wl
1

rsl (h6), wl
6

r1l (h6), wl
0

Figure 7: Example for resource flow constraints.

Figure 7 illustrates this considerations. Suppose we are given a hypergraph
with five nodes and one service node as well as one hyperarc h6 that imple-
ments a maintenance task for a maintenance constraint l ∈ L at service node
s. The dashed arcs illustrate the set of standard arcs and the not dashed
arcs the set of considered hyperarcs. For this example the constraints (4)
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and (5) are instanciated as follows:

wl
2 = wl

1 + w0+ r2l (h2) · xh2 ((4) for node 1)
wl
3 = wl

2+ r3l (h3) · xh3 ((4) for node 2)
wl
4 = wl

3+ r4l (h4) · xh4 ((4) for node 3)
wl
5 = wl

4+ r5l (h5) · xh5 ((4) for node 4)
wl
1 + wl

6 = wl
5+ r1l (h1) · xh1 + rs(h6) · xh6 ((4) for node 5)

wl
0 = r1l (h6) · xh6 ((5) for node s)

Finally, the linear inequalities (6) are the canonical formulation of the base
constraints.

6 Solving the RSRPP

In this section we describe a new developed algorithm to solve the mixed in-
teger programming formulation of the RSRPP from Section 5. Our method
consists of three main algorithmic features: A column generation approach, a
problem specific local search heuristic, and an adaption of the rapid branch-
ing search scheme. In the following subsections we describe our algorithmic
procedure with the goal to provide the main algorithmic ideas.
To permit consistent notation we introduce the following notation. The
symbol (MP)MIP(H,H) for H,H ⊆ H and H ∩ H = ∅ denotes our mixed
integer programming formulation from Section 5 for a given RSRPP instance
with the additional bound constraints xh = 1 for all h ∈ H and xh = 0 for all
h ∈ H. Therefore H defines the set of fixed to one variables, while H defines
the set of fixed to zero variables. Similarly, (MP)LP(H,H) denotes the LP
relaxation of (MP)MIP(H,H), i.e., the problem that results if we relax all
integrality constraints. In the following, we assume that all variables defined
by H are not contained in the denoted models, what is exactly the same as
fixing the variables to zero. Using the introduced notation we aim to solve
(MP)MIP(∅, ∅).

6.1 Hyperarc generation

Since the number of variables and rows of (MP)MIP(∅, ∅) is very large, even the
solution of (MP)LP(∅, ∅) can not be computed for most of all large industrial
problem instances using standard static LP solvers in a reasonable amount of
time. Therefore we developed a column generation algorithm, called hyperarc
generation.
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The standard column generation approach to solve the LP relaxation of
problems with very many columns, is to devise the overall model into a
master problem and a sub-problem, called pricing problem. Then iteratively
solve a restricted version (i.e., not all variables are included) of the master
problem, and decide depending on the dual solution vector, which variables
to add to the master problem by solving the pricing problem. The method
stops if it can be proven that there is no variable left which can improve
the value of the objective function. We apply this scheme in the following
way. The master problem is (MP)LP(∅, ∅) itself. We denote the restricted
master problem by (MP)LP(∅, H). The pricing problem is to find at least
one hyperarc h ∈ H with negative reduced cost. This problem can be solved
by enumeration. But as known in the literature it heavily depends on the
set of variables found in each pricing round how many iterations the overall
procedure takes and how many columns are generated.
The main idea of our column generation approach is to combinatorial solve a
reduction of our model with an adjusted objective function to clever decide
which set of variables to add to the restricted master problem in each pricing
round. The huge impact of this method can be explained by the fact, that the
set of priced variables in each iteration contains also variables with positive
reduced costs. This results in very less iterations, almost no stalling effect,
and a small set of priced variables.
Consider the non-zero coefficients of the binary variable xh for the hyperarc
h = {a1, a2} ⊆ A in the flow conservation constraints (2):
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.

This indicates that a column vector of a hyperarc variable is the sum of
the column vectors of the standard arcs of which it consists. Let m ∈ Z+

be the number of rows of our original model. For the hyperarc h ∈ H let
Ah ∈ Qm be the column vector of the hyperarc variable xh. As described
above this column vector is the sum of the column vectors of the standard
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arcs, i.e., Ah =
∑

a∈hAa. Further let π ∈ Qm be an optimal dual solution
vector of the restricted master problem. The reduced cost of xh are given by
dh := ch−πTAh. We define the partial reduced cost dh(a) ∈ Q of a ∈ h ∈ H
as

dh(a) :=
ch
|h|
− πTAa (10)

The partial reduced cost dh(a) can be interpreted as the from the standard
a in xh induced reduced costs. We introduce binary decision variables xa
for each standard arc of A, compute the minimal partial reduced cost da for
each standard arc a, i.e., da := minh∈H(a) dh(a) for all standard arcs and
solve the following problem:

min
∑
a∈A

daxa, (APP)∑
a∈A(v)in

xa = 1 ∀v ∈ V,

∑
a∈A(v)out

xa = 1 ∀v ∈ V,

xa ≥ 0 ∀a ∈ A.

This is an assignment problem (we make the underlying graph complete by
introducing all missing arcs with an objective coefficient of zero) which can
be solved by the Hungarian method. Note that since we formulated t his
problem over the set of standard arcs, the problem (APP) usually decom-
poses into several smaller sub-problems. This can be seen by considering
Figure 2 in Subsection 4.1. For this example, one has to solve the pricing
problem (APP) for the red and blue fleets independently.
Algorithm 1 gives an overview of our column generation method. We are
starting with a set of starting variables that consists of all looping hyperarcs
of the hypergraph. We have to ensure that we are always solving a feasible
model. That can easily ensured by introducing slack variables with sufficient
high objective coefficients for the covering constraints (1).
Let A0 ⊆ A be the set of standard arcs which represent the optimal solution
of our pricing problem (APP) w.r.t. a specific iteration. The set of variables
we add, i.e., removing those variables from H, to the restricted master prob-
lem is

⋃
a∈A0

H(a) ⊆ H. Thus, we add all hyperarcs that contain at least
one in the solution of (APP) assigned standard arc. The column genera-
tion algorithm is exact, because we add also a small subset of all outgoing
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Algorithm 1: hyperarcGeneration()
Data: A RSRPP problem instance.
Result: A set H s.t. (MP)LP(∅, H) and (MP)LP(∅, ∅) have equal

optimal objective value.

1 set H := H \ {h ∈ H | ∀a ∈ h : a = (v, v), v ∈ V };
2 while {h ∈ H | dh < 0} 6= ∅ do
3 compute optimal dual solution vector π for (MP)LP(∅, H);
4 compute partial reduced cost da depending on π for each a ∈ A;
5 compute optimal solution A0 ⊆ A of (APP);
6 set H := H \

⋃
a∈A0

H(a);
7 foreach v ∈ V do
8 compute h1, h2, . . . , hn, . . . , h|H(v)out| such that dhi

≤ dhj
< 0

for i < j < n;
9 set H := H \ {h1, . . . , hd 3√ne};

hyperarcs for a specific node with negative reduced costs to the restricted
master problem in each iteration (see line 9). Therefore we can not miss any
hyperarc with negative reduced cost.
Let (MP)LP(∅, H) be our restricted master problem. We only have to price
x-variables, if we add the corresponding w-variables simultaneously. More
precisely, if we found a hyperarc h ∈ H with negative reduced cost to be
removed from H, we add also all wl

a for all a ∈ h and for all l ∈ L. This
is valid because constraints (3) state that the w-variables can only be non-
zero if the corresponding x-variables are non-zero. Moreover we add the
coupling constraints (3) dynamically, i.e., if the corresponding w-variable is
not included in (MP)LP(∅, H), we do not have to consider the corresponding
constraint. In this case the constraint is empty, i.e., has no non-zeros, and
therefore the value of the corresponding dual variable does not affect in the
computation of the reduced cost.

6.2 Cut date heuristic

It turned out that it can be very challenging to construct high quality fea-
sible solutions for the RSRPP by pure tree based search approaches like
branch and bound or even rapid branching. To overcome this, we developed
a problem specific local search heuristic. The general procedure of a local
search algorithm is to compute an initial (possibly infeasible) solution and
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to iteratively improve the solution by exploring a neighborhood structure.
In the case of a infeasible solution one tries to reduce the infeasibility and in
the case of a feasible solution one tries to decrease the value of the objective
function. The non-maintenance relaxation of the RSRPP for our industrial
problem instances is not that hard to solve. What makes the problem re-
ally hard are the maintenance constraints. The main idea of our cut date
heuristic is to iteratively remove the infeasibilities of an infeasible solution
by exploring the cut date neighborhood. After becoming feasible we try to
improve the value of the objective function also by iteratively exploring the
cut date neighborhood.
Let h ∈ H be a hyperarc and a = (u, v) ∈ h be a standard arc of h. We intro-
duce an artificial service node sart implementing all maintenance tasks that
exists and extend a to an artificial service path {(u, sart), (sart, v)}. With this
simple construction we are able to construct artificial hyperarcs that consist
only of artificial service paths. Let Hart be the set of all artificial hyperarcs
that result if we transform every hyperarc of H to an artificial hyperarc, i.e.,
|H| = |Hart|. It easily can be seen that an infeasible solution H0 ⊂ H of a
given RSRPP instance that only violates maintenance constraints, can made
“feasible“ if we extend the set of hyperarcs by the set of artificial hyperarcs.
We can insert artificial services, i.e., by replacing hyperarcs with artificial
hyperarcs, just before any appearance of maintenance constraint violations
along the rotations. By introducing artificial replenishment hyperarcs which
have a sufficient large objective coefficient, i.e., ch := M � maxh∈H ch for
h ∈ Hart, we are able to tackle maintenance constraint violations by mini-
mizing the objective function.
Each timetabled trip t ∈ T has a departure and arrival date in our standard
week. A node v ∈ V represents the departure or arrival of a vehicle oper-
ating a trip. We define the symbol date(v) stating the date of a node in
our standard week. Further, we define the function isBetween(u, v, w) for
the nodes u, v, w ∈ V that returns true if date(v) is between date(u) and
date(w) and false otherwise. More precisely, this means that date(v) is
between date(u) and date(w), if one starts to wait at date(u) and date(v)
is approached before date(w) is approached. We define tail(h) := {u ∈
V | ∃ v ∈ V ∪ S : a = (u, v) ∈ h} as the tail nodes of h and head(h) := {u ∈
V | ∃ v ∈ V ∪ S : a = (u, v) ∈ h} as the head nodes of h. Let H0 ⊂ H be
a solution of a given RSRPP instance and v ∈ V a node. We define the cut
date neighborhood N (H0, v) as:

N (H0, v) := H0 ∪ {h ∈ H | ∃u ∈ tail(h), w ∈ head(h) : isBetween(u, v, w) = true} .
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Figure 8: Idea of cut heuristic.

Figure 8 illustrates the main idea of the cut date neighborhood N (H0, v). It
includes all hyperarcs of a given solution as well as all hyperarcs covering a
date defined by a specific node. Algorithm 2 gives an overview of our local
search procedure. We start with a possibly infeasible solution, such that
this solution only violates maintenance constraints. We assume that M is
sufficient large such that any infeasible solution, i.e., a solution that contains
artificial replenishment hyperarcs, is much more expensive than any feasible
solution. Therefore algorithm 2 runs in two phases: First it tries to remove all
infeasibilities, i.e., all artificial replenishment hyperarcs, and second it tries
to improve the value of the objective function of the incumbent solution.
The algorithm terminates with a local optimal solution H0, i.e., a solution
which can not be improved by exploring any cut date neighborhood, if a
feasible solution has been found.

6.3 Rapid Branching

The authors of [4], see also the thesis [12], proposed in the context of inte-
grated vehicle and duty scheduling a search scheme that tries to overcome
this problem by a combination of cost perturbation to “make the LP more
integer”, a selective branching scheme to fix large sets of variables, and an
associated backtracking mechanism to correct wrong decisions. This method
is called rapid branching. The main idea is, is that fixing a single variable to
zero or one has most of the time almost no effect on the value of the LP re-
laxation. Rapid branching belongs to the class of objective diving heuristics
guided by solutions of the LP relaxation for the construction of high-quality
integer solutions for very large scale mixed integer programs.
Algorithm 3 gives a simplified overview of our adaption of the rapid branch-
ing algorithm. After applying the fixations defined by H and H we solve the
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Algorithm 2: cutDateHeuristic(H̃)

Data: A (possibly infeasible) solution H̃ of a RSRPP problem
instance.

Result: A local optimal solution H0 ⊆ H ∪Hart.

1 set H := H ∪Hart;
2 FIND_IMPROVEMENTS:

3 foreach v ∈ V do
4 compute solution Ĥ of (MP)MIP(∅,N (H̃, v) ∪Hart);
5 if

∑
h∈H̃ ch >

∑
h∈Ĥ ch then

6 set H̃ := Ĥ;
7 goto line 2;

8 set H := H \Hart;

current linear relaxation (see line 1). After that we call our local search algo-
rithm. In our implementation, we use the objective coefficients ch := −xh for
the computation of the solution of the non-maintenance relaxation in line 3.
This can be seen as heuristic method to round the fractional solution of the
current LP relaxation to an integer feasible solution which is usually infea-
sible w.r.t. maintenance constraints. Nevertheless, this provides a starting
solution for our local search method in line 4. If our local search method
finds a feasible solution we update H0.
A main feature of the rapid branching search scheme is the perturbation
of the objective function in line 6. We do this iteratively by decreasing
the current objective coefficient of each hyperarc by a linear perturbation
function α : Q 7→ Q. We do not describe the detailed implementation of α
since it is much technical. The most important fact is, that it is quadratically
related to the value of the corresponding hyperarc variable in the current LP
solution. The idea behind this quadratic perturbation is that variables with
values close to 1 are driven towards 1. In each perturbation round i we
determine the set H i of hyperarc variables which are close to 1 and not
fixed yet, called candidates, see line 8. We compute a score for each of the
candidate sets. This score states how many of the variables have become
integer and how much the original objective function was increased by the
perturbation. If we have not found any candidate set, we solve the remaining
sub-problem by traditional branch and bound with the original objective
function (line 11). Those sub-problems are in most of all cases very small.
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Algorithm 3: rapidBranching(H,H)

Data: A set of hyperarcs H to fix to one and a set of hyperarcs H to
fix to zero.

Result: A feasible solution H0 of the given RSRPP instance.

1 compute optimal solution vector x ∈ [0, 1]H of (MP)LP(H,H);
2 if H0 = ∅ then
3 compute solution H̃ of non-maintenance relaxation of

(MP)MIP(H,H);
4 compute cutDateHeuristic(H̃);

5 for i := 1 to 10 do
6 set ch := ch − α(x2h) ∀ h ∈ H \ (H ∪H);
7 compute optimal solution vector x ∈ [0, 1]H of (MP)LP(H,H);
8 set H i := {h ∈ H \H |xh ≥ 0.9};
9 compute score(H i);

10 if H i = ∅ ∀ i = 1, . . . , 10 then
11 compute (MP)MIP(H,H);

12 else
13 reorder H1, . . . ,H10 by score();
14 for i := 1 to 10 do
15 set H i := ∅;
16 if i > 1 and H i−1 \H i 6= ∅ then
17 choose hi ∈ H i−1 \H i;

18 set H := H ∪H i; and H := H ∪ {H i};
19 rapidBranching(H,H);
20 set H := H \H i; and H := H \H i;

If we found candidate sets we reorder this sets (only the non-empty ones)
by the computed score to explore the most promising candidate sets first in
line 13. To avoid cycling of the algorithm (at least from the practial point
of view) we choose for two succeeding candidate sets one variable which was
fixed in the previous set H i−1 and should not be fixed in the current set H i

to fix to zero (see lines 15 to 17).
We induce the search tree by a recursion, i.e., by calling the rapid branching
function again. Since the recursion is called inside the loop over the can-
didate sets, we execute a depth first search over those candidate sets. One
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Algorithm 4: RSRPP algorithm
Data: A RSRPP problem instance.
Result: A feasible solution H0 ⊆ H of the RSRPP instance.

1 set H := ∅;
2 set H := hyperarcGeneration();
3 set H0 := rapidBranching(H,H);

can see the reordered candiate sets as backtracking alternatives. In [4] this
backtracking sets were constructed by another strategic, that is not based
on the perturbation rounds. This is the most important difference we made
in our rapid branching adaption.
Finally, algorithm 4 describes our overall algorithmic procedure. Our two
step approach generates a set of columns with or hyperarc gerneration algo-
rithm and a lower bound for optimal objective function value as well. In the
second phase we try to compute an integer feasible solution for the RSRPP
by using our adaption of the rapid branching search scheme. We do not gen-
erate additional hyperarcs and we frequently call our local search heuristic
within the second phase.

6.4 Summary of the algorithm

We use rapid branching because the LP relaxation of our model is too hard
to tackle within a standard branching search tree. Our column generation
method is needed to compute the inital LP relaxation and moreover to shrink
the size of the model. Note that this is a heuristic procedure, since we do not
generate additional columns within the search tree. Our local search heuristic
is based on cut dates. Thus, the number of vehicles is almost fixed by the
intital solution during this heuristic. To diversify the number of vehicles
we call the heuristic within the rapid branching search tree. Therefore all
algorithmic aspects work together as a good team.
Note that we did not explain the concept of bounding and also not the
relations of rapid branching to branch and bound. For further reading see [4]
and [12].

7 Computational results

We implemented our model and algorithm in a computer program, called
VR-OPT. This implementation takes use of the commercial mixed integer
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Figure 9: Cost analysis of deviations from planned durations for bottleneck
connections.

programming solver Cplex 12.2. We use Cplex barrier without crossover
to compute all arising linear programs and we also use the branch and cut
algorithm of Cplex to compute all mixed integer subproblems arising during
the algorithm runs. VR-OPT is integrated in the IT system of Deutsche Bahn
and is evaluated and used by planners of Deutsche Bahn. All our computa-
tions were performed on computers with an Intel(R) Xeon(R) CPU X5672
with 3.20GHz, 12MB cache, and 48GB of RAM in single thread mode. The
considered instances include scenarios for the currently operated high speed
intercity vehicles (ICE) as well as studies for future rolling stock fleets.
To give examples of use cases of our model and algorithm at Deutsche Bahn,
we formulate a set of questions for that our model provides to ability to
tackle them: Which vehicles of which fleets in which vehicle compositon are
the best ones to operate a given timetable? How to operate a given timetable
in detail? What are the influences of parts of the objective function? What
are the cost of regularity? What could be the profit of an investment in
infrastructure capacity?
Figure 9 illustrates a real-world study of the devation from planned durations
of bottlenck connections as intoduced in Subsection 4.5. This was done by
a multi criteria optimization with two objective functions: (1) Minimize the
total operational cost (all terms without th of the objective function). and (2)
Minimize the total deviation from planned durations for connections between
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timetabled trips.
Each blue circle represents a solution for the RSRPP for a given timetable
which was computed by our implementation of our approach. On the x-axis
we denote the total deviation in minutes that appears in each solution, thus
it states the second objective function. On the left y-axis we denote the total
operational cost of the solutions, i.e., the first objective function. Therefore
the blue line states the pareto front of the bicriteria optimization. In addition
we denoted at the right y-axis the number of vehicles (which affects the
largest amount in the operational cost). A decision maker could now very
detailed analyze the 17 very different computed rolling stock rotation plans
and make a decision by a compromise of the two objective functions. This
results prove that our approach is highly robust in computing high-quality
solutions for real-world RSRPP scenarios.
Table 1 provides results for some very different instances w.r.t. the size
and hardness. The first five columns of describe 14 chosen instances that a
representable for different use cases arising at Deutsche Bahn. The second
and third column report about the number of nodes V and the number of
hyperarcs H of our hypergraph. The next two columns denote the number
of maintenance constraints |L| as well as the number of base constraints
|B|. The last three columns report about the computed results, such as the
number of vehicles, the worst case optimality gap, and the computation time.
We observed that the running time and worst case integrality gap is mainly
related to the hardness of the problem and has less relations to the size of the
problem. Problems of very large scale that have no maintenance constraints
can be solved to proven optimality. Problems that are much constrained
by maintenance and base constraints are much harder to solve, but we still
produce very high-quality solutions. This proves that our algorithm is highly
efficient and much tuned in computing rolling stock rotations.
Our best result so far, is that we could compute a high-quality solution for
the last RSRPP instance. This is a complete timetable of the year 2010
that is operated with all fleets of the German ICE high speed fleet. It has
less degrees of freedom (in comparison to some of the other instances) but is
much constrained since the result should be directly implementable. Almost
4 days of computation time for such a large and complex instance is an
outstanding result.
Our computational study demonstrate that our solution approach can be
used to produce high quality solutions for large-scale rolling stock rotation
planning problems.

25



instance x |V | x |H| x |B| xxL xxxxv x gap [%] dd:hh:mm:ss

RSRPP_01 310 149573 0 2 17 2.65 00:00:11:43
RSRPP_02 915 748609 0 2 56 5.28 00:05:51:57
RSRPP_03 884 1139453 0 2 55 5.62 00:09:40:18
RSRPP_04 490 68338 0 2 13 0.74 00:00:12:20
RSRPP_05 490 125647 0 2 13 0.12 00:00:06:32
RSRPP_06 490 73681 196 2 13 4.97 00:00:18:12
RSRPP_07 1879 3203619 49 2 63 5.78 01:22:33:30
RSRPP_08 1864 1782565 147 2 64 3.56 00:16:36:23
RSRPP_09 1379 1333665 0 2 65 2.53 00:19:33:14
RSRPP_10 336 198454 0 2 22 4.33 00:00:04:07
RSRPP_11 26396 34446093 0 0 116 0.00 00:01:54:50
RSRPP_12 9896 17003142 0 1 116 0.55 01:01:40:34
RSRPP_13 30446 61678335 0 0 188 0.00 00:04:00:29
RSRPP_14 6198 7008168 322 2 283 5.01 03:22:49:10

Table 1: Computational results.
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