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Abstract

The reference wave vector of the paraxial Helmholtz equation is determined using va

rious strategies which result all in similar expressions� The e�ort for its evaluation is
so small that the reference wave vector can be adapted for each propagation step of an

arbitrary BPM
algorithm�



� Introduction

The propagation of beams in an inhomogeneous half
space forms one of the canonical
problems of integrated optics� The corresponding computer simulation is called beam
propagation method �BPM
 irrespective of the underlying mathematical procedure ����

During the last years a couple of new algorithms were developed to extend the range of
application to high
contrast step
index waveguide structures ���� This includes extensi

ons of the split operator technique ���� various algorithms based on explicit and implicit

�nite di�erences ���� static and adaptive z
transient variational principles ���� ��� and
various algorithms based on the eigenmode analysis such as the method of lines ���� A
BPM benchmark test �	� carried out by many groups has clearly shown that not only
the underlying algorithm but also the choice of the reference wave vector substantially

a�ects the accuracy of the simulation results� This in�uence is well known and has been
discussed in previous publications� It was proposed to choose the wave vector of the
fundamental mode ��� or an average of the wave vectors of the contributing modes with
respect to the underlying waveguide ���� In the latter paper it was also remarked that

the reference wave vector should be chosen such that the variation of the amplitudes
becomes minimal in the direction of the wave propagation� It will turn out that exactly
this is obtained by one of the strategies proposed in this paper� But in contrast to both
of the papers mentioned� no direct spectral analysis of the propagation �eld is needed�

Within this paper various strategies to choose the reference wave vector are de

rived on the basis of Maxwell�s equations� Although these strategies aim at di�erent
properties of the approximated solutions� they all result in similar expressions for the

reference wave vector�

� Vector Helmholtz Equations

The following discussion will be focussed to nonmagnetic and isotropic materials� All
charges and currents inside the material are assumed to be described by the dielectric

pro�le �� Furthermore� the discussion is restricted to the time
harmonic behavior which
is obtained as a quasi
stationary solution after all relaxation oscillations are completed�
Using Gaussian units� the time
harmonic Maxwell�s equations governing the electric
�eld E and the magnetic �eld H are given by

curlE � �ik�H��


curlH � ik��E��


div �E � ���


divH � ���


where k� designates the free space propagation constant�
The elimination of either the electric or magnetic �eld from Maxwell�s equations

leads to the vector Helmholtz equations�

curl �curlE
 � k�
�
�E��


�



curl
�
�

�
�curlH


�
� k�

�
H���


Utilizing the vector identity curl �curlA
 � grad �divA
 � �A and the reformulated

Maxwell equation divE � �grad �ln �
�E we can rewrite the vector Helmholtz equations
in the alternative form�

�E � �grad �grad �ln �
 �E
� k�
�
�E � LEE��


�H � �grad �ln �
� curlH� k�
�
�H � LHH���


In addition to the physical solutions of interest for us the vector Helmholtz equation
supports nonphysical� spurious solutions such as magnetic monopoles �divH �� �
�

� Paraxial Helmholtz Equations

Paraxial approximation apply to �elds which can be regarded as weakly disturbed plane
waves� i� e� � the electric and magnetic �elds can be written as

E � Epe
�ikr�	


H � Hpe
�ikr����


where k represents the wave vector of the reference plane wave and Ep and Hp the

�slowly varying
 amplitudes� Obviously� the choice of the reference plane wave signi�

cantly a�ects the oscillatory behavior of the amplitudes�

The spread of the optical �eld in an inhomogeneous half
space� i� e� � the pro

pagation of beams� represents the most important area of application of the paraxial

Helmholtz equations� The numerical algorithms used for this task are designated as
beam propagation methods �BPM
� Most of them run stepwise� i� e� � they transport
within one propagation step the optical �eld along the optical axis ez from a transverse

plane at the longitudinal coordinate z to a transverse plane at z � �z� In order to
further simplify the following discussion� the dielectric pro�le is assumed to be only a
function of the transverse coordinates which are designated by the position vector rt
for one propagation step� The equations governing the evolution of the transversal and

the longitudinal �eld components can be then separated�
In the following� the paraxial Helmholtz equations are derived in two di�erent ways�

Both approaches result in di�erent strategies in order to �nd the best reference plane
wave�

��� Slowly Varying Amplitude Approximation

By using these representations the vector Helmholtz equations can be reformulated in
terms of the amplitudes

�Hp � �ik � rHp � k�Hp � LHHp � i grad �ln �
� k�Hp

�Ep � �ik � rEp � k�Ep � LEEp � ik grad �ln �
 �Ep�
�



which yield after an rearrangement

��ik � rHp � LHHp � �k� ��t
Hp � i grad �ln �
� k�Hp � ��

�z�
Hp

��ik � rEp � LEEp � �k� ��t
Ep � ik grad �ln �
 �Ep � ��

�z�
Ep�

A uni�ed notation for the two vectorial Helmholtz equations� for the transverse electric
and transverse magnetic �eld� as well as for the scalar Helmholtz equation yields

��i�k � r
up � Hup � k�up � ��up

�z�
����


For the further discussion� it will be assumed that the optical �eld u is normalized�

i� e� �

hu j ui � hup j upi � �����


For the vectorH
�eld and vector E
�eld formulations of the vector Helmholtz equation
the amplitude vector up stands for the transverse components of the magnetic and

electric �elds� The corresponding operators HH and HE are�

HH � LH ��t � i grad �ln �
� kt ����


HE � LE ��t � iktgrad �ln �
 ����


For the scalar Helmholtz equation we obtain

Hs � ��t � k�
�
�����


Within the framework of the paraxial approximation the amplitudes are assumed to
be slowly varying� In consequence� the second derivative of the amplitude ��up��z

� is
neglected� By using the uni�ed formulation ���
� the paraxial Helmholtz equation for
the amplitudes can be formulated as

��i�k � r
up � Hup � k�up����


It should be noted� that the left hand side of this equation contains all �rst order
derivatives of the amplitudes and that the operator H acts only on the transverse
coordinates�

��� Expansion of Operators

Now the paraxial Helmholtz equation will be derived by expanding the square root
operator into a Taylor series� The vector Helmholtz equation for the transverse �eld

components can be written as

��u

�z�
� Hu
� �k��� � P
u����


�



where the operator P is given by

P � �k� �H
k�

����


Equation ���
 implies that the reference wave is running in z
direction� The formal
square root of Equation ���
 yields a �rst order partial di�erential equation with respect
to the longitudinal coordinate z� The �nonlocal
 square root operator can then be
approximated by a formal Taylor series of the local di�erential operator P

�u

�z
� �ik

p
� � Pu��	


� �ik�� �
�

�
P � �

�
P� � � � �
u����


Since the operator P describes a small perturbation only the leading terms of the Taylor
expansion must be taken into account� The restriction to forward propagating waves
leads to the paraxial Helmholtz equation

�u

�z
� �ik�� �

�

�
P
u����


By replacing the rapidly varying �eld u by its slowly varying amplitudes up we obtain
the paraxial Helmholtz equation for the amplitude derived in the previous section�

� Adaption of Gradients

The full propagator for the Helmholtz equation is based on both the optical �eld u and
its derivative �u��z� The paraxial Helmholtz equation� however� represents a �rst order
di�erential equation with respect to the coordinate z� i� e� � the solution depends only
on the initial �eld u� Thus� the paraxial approximation can be optimized by adapting

the gradient �u��z obtained from the paraxial Helmholtz equation to its true value as
close as possible�

��� Adaption of the Gradient �u��z

For the derivation started now� it is assumed that the scalar optical �eld u and its
paraxial approximation coincide at the initial plane z � z�� It is furthermore assumed
that the partial derivative �u��z is also known at the initial plane� The transformation

between the optical �eld and its amplitude is given by

u � upe
�ikr�

The gradient can then be formulated as

�u

�z
�

�up

�z
e�ikr � ikzu�

�



Thus� the condition

������u�z �
�
�up

�z
e�ikr � ikzu

������� min

represents a well suited analytical formulations of this optimization problem� By using
another formulation of the varying amplitude approximation

������up

�z

������ kkzupk

this criterion can be essentially simpli�ed to

������u�z � ikzu

������ min ����


��� Adaption of the Reference Plane Wave

Consider a transverse vector r� describing an arbitrary position in the plane z � z� and
a transverse vector r� � s describing a position in the plane z � z� � �z� The scalar

�eld u�r�
 � s can be approximated in the region close to r� by

u�r� � s
 	 u�r�
 � s � grad u�r�
���


The corresponding approximation for the reference plane wave yields

�u�r� � s
 	 u�r�
 exp��iks


	 u�r�
 � s � ��ik
u�r�
�

In order to �nd the best overall approximation the reference wave vector is be chosen
such that

grad u� iku� small for all r��

A natural mathematical implementation of this condition results in

kgrad u� ikuk � min ����


If the coordinate system is oriented such that the reference wave vector is parallel
to the z
axis �k � kzez
 we recover the condition derived in the previous section �see

Equation ���
 
�
The calculated minimum can be also be used to estimate the error for the �eld

evolution along the z
axis� The corresponding error indicator e is given by

e �

������up

�z

����� �

�
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�
�
�
�
�
�
�
�
�
�
�
�
��

�
�

ru

�iku

Fig� �� Orthogonal projection from ru to ku

Usually� the paraxial approximation results mainly in deviations of the phase fronts�
The corresponding phase error can then be written as

�� �
X
l

el�zl�

In contrast to the minimization of the z
component of the group velocity presented in the
previous section this approach aims at the reduction of the vectorial group velocity of the

amplitudes� Although both strategies are equivalent with respect to their approximation
quality� the numerical e�ort for the second strategy may be much smaller� especially
in the context of adaptive algorithms� For a given discretization error� namely� small
overall group velocities� i� e� � small variations of the amplitudes� result in a small

number of transverse discretization points and in larger possible step sizes at the same
time�

��� Vectorial Approach

The vectorial approach represents a straightforward generalization of the scalar ap

proach� As in the previous section expansions of the optical �eld and the reference
plane wave around r� are compared�

u�r� s
 	 u�r�
 � s � �ru�r�

���


The Taylor expansion for the reference plane wave is given by


u�r� � s
 	 u�r�
 exp��iks


	 u�r�
 � s � ��iku�r�

�

Obviously� the matching condition for the vector �elds

kru� ikuk � min���


represents a natural generalization of the scalar case�

��� Optimization

Equation ���
 covers all the optimization strategies derived before� The calculation of

the minimum by deriving Equation ���
 with respect to the real and imaginary parts
of reference wave vector is straightforward but somewhat lengthy�

	



The same result may be derived by applying the projection theorem �see ����
� i� e� �

we consider the orthogonal projection of a vector of a given space into a subspace� Here�
the larger space is the Hilbert space de�ned by all tensors ru of functions u�r
 which
coincide at z � z�� This space is approximated by the tensors �iku �with arbitrary
wave vectors
� The wave vector k has to be chosen such to make the distance between

ru and �iku a minimum in the Hilbert space �see Fig� �
� The projection theorem
states that the expression ���
 has a minimum if the orthogonality condition

hku j ru� ikui � ����


is satis�ed� The evaluation of the tensor components

hkjul j rjul � ikjuli � k�j �hul j rjuli� ikj


leads to the �nal expression

k � hu j irui ����


In physical terms� the reference wave vector should be adapted to the mean value of
the momentum operator�

It should be noted that Equation ���
 can also be applied to lossy media� The
optimization will then result in complex reference wave vectors� The condition can also

be reformulated in terms of the amplitudes by using

rujz�z�
� �rup � ikup
z�z�

exp��ikt � st

hu jruiz�z�

�
D
up exp��ikt � st


����rup � ikup
z�z�
exp��ikt � st


E
� hup jrup i � ik�

The �nal form of the condition is given by

	 � hup jirup i ���	


In physical terms� the mean value of the momentum operator formed with amplitudes
should vanish�

By using Equation ���
� the best reference wave vector obtained by the adaption of

gradients can also be expressed in terms of the Hamiltonian of the underlying Helmholtz
equation� The resulting expression is

k� � �hup j Hupi ����


i� e� � the square of the reference wave vector should be given by the mean value of the
Hamiltonian�

For a waveguide� which is excited with an eigenmode with an e�ective index nl�
Equation ���
 leads to k � nlk��






� Adaption of Mean Values

��� Annihilation of the Mean Perturbation

The Taylor expansion of a square root �see Equation ���

 converges increasingly faster
for decreasing perturbations P� Therefore� it is natural to choose the reference wave
vector k such that the mean perturbation vanishes� i� e� �

hu j Pui � �

which in turn yields

k� � �hup j Hupi �

For vanishing transverse components� this condition yields again Equation ���
�

��� Adaption of the Mean Dielectric Constant

The adaption of the mean dielectric constant obtained from the paraxial approximation
to its true value� i� e� � the adaption of the centers of the excited modes to each other�
represents another strategy for choosing the reference wave vector� A comparison of
the right hand side of the full Helmholtz equation ���
 with the square of the paraxial

approximation ���
 yields the following condition

���Du ���k�P�u
E���� min ����


The mean value of the expression k�P� will not vanish in general as long as the refe

rence wave vector k is real and the operator H is self
adjoint� Therefore� the following

condition results in the best adaption of the mean dielectric constant

�

�k

D
u
���k�P�u

E
� ��

The evaluation of this expression yields

� �
�

�k

D
u
���k�P�u

E

�
�

�k

�
u

�����k�
�H
k�
� �

��
u

�
�

and �nally

k� �
D
u
���H�u

E
����


For a waveguide� which is excited with an eigenmode with an e�ective index nl�
Equation ���
 again leads to a reference wave vector k � nlk��

�



� Conclusions

Various strategies to choose the reference wave vector have been presented within the
framework of this paper� Any of the choices looks heuristic since it is implicitly assumed
that the adaption of a single property would result in an overall optimization of the

paraxial solution� However� for realistic problems all strategies presented here result
in similar criteria as can be seen by applying them to a waveguide structure which is
excited by an eigenmode� Therefore� it is allowed to assume that each criterion will

result in a good overall optimization of the paraxial solution�
For the application in simulation programs practical criteria such as the numerical

e�ort will determine the �nal choice�
Although the expressions for the reference wave vector presented here apply to the

paraxial Helmholtz equation� they can also be used for more sophisticated approaches
such as the wide angle approximations �����
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Appendix

For the calculation of the approximation error a norm needs to be de�ned� In Hilbert
spaces a norm is induced by a scalar product� For scalar functions u�rt
� v�rt
 it is� as
usual� de�ned by

hu j vi �
Z

u��rt
 � v�rt
 d�rt�

For vector functions u�rt
� v�rt
 it is de�ned by

hu j vi �
Z
u��rt
 � v�rt
 d�rt �

X
j

huj j vji �

For tensor functions u�rt
� v�rt
 it is de�ned by

hu j vi �
Z X

i�j

u�ij�rt
 � vij�rt
 d�rt �
X
i�j

huij j viji �
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