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1 Introduction

It is well known that approximation in the topology of a Hilbert space is a powerful
tool, in particular if the family of trial functions constitutes a complete orthonormal
system. For a function given on the (unit) sphere Ω the classical Fourier series expansion
in terms of spherical harmonics is such a method. It gives satisfactory results in many
cases, but it also has some severe drawbacks that restrict its applicability. One is that
the orthonormalization process and the recovery of the function is in many instances of
very undesirable computational complexity. Second, local changes of the function affect
the whole table of Fourier coefficients. This shortcoming was already observed by Gabor
(1946) who introduced the Gaussian kernel to window the Fourier integral, a technique
which recently has been extended to spherical geometry by Freeden, Schreiner (1993,
1994). A different approach to localization is based on a generalized Fourier series in
terms of localizing kernels such as the Gauss-Weierstrass kernel, the Abel-Poisson ker-
nel, or compactly supported polynomial kernels. Starting from these, even orthonormal
bases with controled localization properties can be derived (cf. Freeden (1990)). Both
constructions map local changes of the function being represented to local changes of
the coefficients in the expansion and thereby also reduce the computational complexity.
However, there is still a defect in reconstructing a function using a sole, fixed ”window
parameter”. It poorly resolves phenomena shorter than the window which leads to non-
optimal computational cost in many circumstances. This can be remedied by kernels
with decreasing window diameters exhibiting the so-called ”zooming-in” property.

Apart from localization, orthogonality of the employed basis is an important feature.
For the spherical case it has been shown in recent years that dropping this requirement
can lead to substantial improvements (cf. Schaffeld (1988), Cui, Freeden, Witte, (1992),
Freeden, Schreiner (1993,1994)). In these references, the approximation theory of some
”overcomplete” systems of mutually non-orthogonal functions has been developed which
are piecewise polynomial, compactly supported and axisymmetric. Non-orthogonal bases
give a lot more freedom than orthogonal ones so that they can be generated in relatively
simple ways. On the sphere, the basis is constructed using rotation and dilation of the
window function. In fact, the latter can be carried over quite naturally to the sperical
case when using a parametized kernel representation of singular spherical integrals.

Wedding non-orthogonal systems and different window sizes results in a spherical To-
eplitz transform investigated in Freeden, Schreiner (1993,1994) and Brand (1994). In
this way information of a function is displayed on various levels of resolution (mulilevel
approximation). Of course, the number of levels needed in a particular numerical compu-
tation depends on the ”phenotype” of the function under consideration. In most cases,
in fact, a ”one-level computation” using an adapted window parameter is of sufficient
accuracy when the function is well-behaved. Multilevel computation, however, is indis-
pensable when ”high frequency phenomena” must be modeled. The automatic ”zoom-in
process” is stopped, if the resolution of the a priori given data is reached and no further
refinement of the window parameter is reasonable. Toeplitz summation is intended to
improve convergence compared to the original sequence of singular integral values which
has been verified by the numerical experiments in Brand (1994) for the present case.
Nevertheless, this summation procedure is still not satisfactory as it suffers from unde-



R. Brand, W. Freeden, J. Fröhlich A hierarchical approximation method 3

sirable redundancy. In the present paper we therefore devise a method which keeps the
conceptual advantages of the Toeplitz transform but which is much more flexible in mo-
delling local information of a function, eliminating redundancy as far as possible. This
can be guaranteed in form of an adaptive hierarchical approximation method.

The outline of the paper is a follows: Section 2 recapitulates the necessary material about
singular integrals on the sphere. The ”non-orthogonal Fourier type expansion” in terms
of axisymmetric locally supported basis functions is discussed in Section 3. The adaptive
hierarchical approximation method is proposed in Section 4 and subsequently applied to
some testcalculations (Section 5).

2 Theory of Singular Integrals on the Sphere

Singular integrals are an old technique in approximation theory. In this section we first
recall how singular integrals on the sphere can be defined by means of the convolution
on the sphere. Next we state related convergence theorems before discussing a particular
class of locally supported kernels that will be employed in the sequel. (For more details
on the employed definitions the reader is referred e.g. to Berens et al. (1968) and the
references therein.)

We start with some notations. For all ξ ∈ IR3, x = (x1, x2, x3)
T , different from the

origin, we have x = rξ, r = |x| = √x2
1 + x2

2 + x2
3, where ξ = (ξ1, ξ2, ξ3)

T is the uniquely
determined directional unit vector of x ∈ IR3. The unit sphere in IR3 is denoted by Ω. If
the vectors ε1, ε2, ε3 form the canonical orthonormal basis in IR3, we may represent the
points ξ ∈ Ω by

ξ = t ε3 +
√

1− t2(cosϕ ε1 + sinϕ ε2), (1)

t = cos ϑ, ϑ ∈ [0, π], ϕ ∈ [0, 2π). (2)

The class of continuous functions on the sphere are denoted by C(Ω). Equipped with the
norm ||F ||C(Ω) = supξ∈Ω |F (ξ)|, C(Ω) is a Banach space.
L1[−1, 1] is the space of absolutely integrable functions on the intervall [−1, 1] equipped

with the norm ||F ||L1[−1,1] = (2π
∫ 1

−1
|F (t)| dt). A close connection between integrals

over the sphere Ω and the Legendre polynomials of degree n, Pn, is given by the Funk–
Hecke formula∫

Ω

G(ξζ) Pn(ηζ) dω(ζ) = G∧(n) Pn(ξη), G ∈ L1[−1, 1] (3)

(dω is the surface element on Ω) in which the ”Legendre transform” G∧(n) for G ∈
L1[−1, 1] is defined by

G∧(n) := 2π

1∫
−1

G(t) Pn(t) dt (4)

and where ξη denotes the inner product of ξ, η ∈ Ω. Now the convolution on the sphere
can be defined (see also Calderon, Zygmund (1955)).



R. Brand, W. Freeden, J. Fröhlich A hierarchical approximation method 4

Assume that G ∈ L1[−1, 1] and F ∈ C(Ω). Then G ∗ F defined by

(G ∗ F )(ξ) :=

∫
Ω

G(ξη) F (η) dω(η) (5)

is called the convolution of G and F .

Analogously the q–th iterated convolution ofG and F is defined by (G(q) ∗ F ) = G(q−1) ∗ F
with G(1) = G and q ∈ IN. Obviously one has

G(q)(ξη) =

∫
Ω

G(q−1)(ξζ) G(ζη) dω(ζ) , q = 2, 3, . . . (6)

and (
G(q)

)∧
(n) = (G∧(n))q , n = 0, 1, . . . , q = 1, 2, . . . (7)

We continue with the definition of singular integrals on the sphere (Berens et al. (1968)).

Definition 2.1 Let {Kρ} , ρ ∈ (−1, 1), be a subfamily of L1[−1, 1] satisfying the condi-
tion K∧

ρ (0) = 1. Then {Iρ} , ρ ∈ (−1, 1), defined by the convolution Iρ(F ) := Kρ∗F , F ∈
C(Ω) is called (spherical) singular integral corresponding to the integral kernel {Kρ} . A
singular integral {Iρ} is called an approximate identity in C(Ω) if

lim
ρ→1
ρ<1

||F − Iρ(F )||C(Ω) = 0 (8)

for all F ∈ C(Ω).

In addition, if

||Kρ||L1[−1,1] = 2π

∫ 1

−1

|Kρ(t)| dt ≤ M (9)

is uniformly bounded for all ρ ∈ (−1, 1), it follows from the properties of the convolution
that

||Iρ(F )||C(Ω) ≤ M ||F ||C(Ω). (10)

Furthermore, since the singular integrals fulfil the condition K∧
ρ (0) = 1 they have the

integral–preserving property∫
Ω

Iρ(F )(ξ) dω(ξ) =

∫
Ω

F (ξ) dω(ξ) (11)

which characterizes the approximation. The first convergence theorem (Freeden, Schrei-
ner (1993)) for uniformly bounded kernels reads

Theorem 2.1 Assume that the kernel {Kρ} , ρ ∈ (−1, 1), is uniformly bounded. There-
fore the corresponding singular integrals {Iρ} , ρ ∈ (−1, 1), satisfy the above uniform
boundedness criterion. Then the following statements are equivalent :
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(i) For n = 0, 1, . . .
lim
ρ→1
ρ<1

K∧
ρ (n) = 1 (12)

(ii) For all spherical harmonics Yn ∈ Harmn(Ω) , n = 0, 1, . . .

lim
ρ→1
ρ<1

||Iρ(Yn)− Yn||C(Ω) = 0 (13)

(iii) For all F ∈ C(Ω)
lim
ρ→1
ρ<1

||Iρ(F )− F ||C(Ω) = 0. (14)

These results can be improved for non–negative kernels (cf. Freeden, Schreiner (1993)).

Theorem 2.2 Suppose that {Kρ} , ρ ∈ (−1, 1), is a non–negative kernel . Then the
following statements are equivalent :

(i) For n = 0, 1, . . .
lim
ρ→1
ρ<1

K∧
ρ (n) = 1 (15)

(ii)
lim
ρ→1
ρ<1

K∧
ρ (1) = 1 (16)

(iii)

lim
ρ→1
ρ<1

δ∫
−1

Kρ(t) dt = 0, δ ∈ (−1, 1), (”localization property”) (17)

(iv) Iρ is an approximate identity.

For the q–th iterated convolution K
(q)
ρ of a non–negative kernel Kρ holds the following

Theorem 2.3 Assume that {Kρ}, Kρ ∈ L1[−1, 1], ρ ∈ (−1, 1), is a non–negative kernel.

Then {I(q)ρ }, q ∈ IN, defined by

I(q)ρ (F ) := K(q)
ρ ∗ F , F ∈ C(Ω) (18)

is an approximate identity in C(Ω) if and only if {Iρ}, ρ ∈ (−1, 1), is an approximate
identity in C(Ω).

This leads to the convergence statements for the first and second iteration of Iρ, to which
our considerations will be restricted.
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Corollary 2.1 Assume that {Kρ}, Kρ ∈ L1[−1, 1], ρ ∈ (−1, 1), is a family of non–
negative kernels satisfying the localization property. Then for all F ∈ C(Ω) the limit
relations

lim
ρ→1
ρ<1

||I(1)ρ (F )− F ||C(Ω) = 0 (19)

and
lim
ρ→1
ρ<1

||I(2)ρ (F )− F ||C(Ω) = 0 (20)

hold.

In the present work we will exclusively consider singular integrals with locally supported
kernels (”finite–elements”) due to their practical relevance. Moreover, we consider axi-
symmetric kernels that are defined via a one-dimensional envelope function and set, as
in Freeden, Schreiner (1993), Kρ(ξη) = B̃ρ(ξη) with

B̃ρ(ξη) =
B

(k)
ρ (ξη)

(B
(k)
ρ )∧(0)

, ξ, η ∈ Ω (21)

The function B
(k)
ρ : [−1, 1]→ IR , k = 0, 1, 2, . . . is merely the k–th Bernstein–polynomial

of degree k over the interval (ρ, 1] and defined as

B(k)
ρ (t) :=

{
0 for − 1 ≤ t ≤ ρ
( t−ρ
1−ρ)

k for ρ < t ≤ 1 , (22)

see Figure 1. The regularity of B̃ρ is not decisive for most considerations, so that the
index (k) is deliberately suppressed in (21) for clarity.

Obviously, B̃ρ(·η) : Ω → IR has symmetry about the axis through the point η ∈ Ω since

B̃ρ(ξη) depends only on the spherical distance of the arguments ξ, η ∈ Ω. Furthermore

B̃ρ(·η) has compact support

Ωρ,η = supp B̃ρ(·η) = {ξ ∈ Ω| ρ ≤ ξη ≤ 1}. (23)

which is a spherical cap of radius ρ around η.

The singular integrals corresponding to the locally supported kernels are constructed
using (21). They are called ”integral mean” for k = 0 and ”weighted integral mean”
for k = 1, 2, . . . , respectively. In view of Corollary 2.1 their approximation behaviour is
characterized by the following two estimations. Using the modulus of continuity

μ(F, 1− δ) = max
1−ξη≤1−δ

|F (η)− F (ξ)| , (24)

we obtain

sup
ξ∈Ω

∣∣∣∣
∫
Ω

F (η) B̃ρ(ξη) dω − F (ξ)

∣∣∣∣ ≤ μ(F, 1− ρ) (25)
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Figure 1 : B
(k)
ρ (t) for k = 1, 2, 3 and ρ = 0.5.
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and

sup
ξ∈Ω

∣∣∣∣
∫
Ω

∫
Ω

F (η) B̃ρ(ηζ) B̃ρ(ξζ) dω(η) dω(ζ) − F (ξ)

∣∣∣∣ ≤ μ(F, 2(1− ρ2)). (26)

Estimating the distance of two points in a spherical cap we get the following results for
Lipschitz–continuous functions F with Lipschitz-constant CF

sup
ξ∈Ω

∣∣∣∣
∫
Ω

F (η) B̃ρ(ξη) dω − F (ξ)

∣∣∣∣ ≤ CF

√
2
√

1− ρ (27)

sup
ξ∈Ω

∣∣∣∣
∫
Ω

∫
Ω

F (η) B̃ρ(ηζ) B̃ρ(ξζ) dω(η) dω(ζ)− F (ξ)

∣∣∣∣ ≤ CF 2
√
2
√
1− ρ. (28)

3 Discretization

The purpose of this work is the approximation of functions on the sphere from (mea-
surements or observations at) certain points. From Section 2 we know that a function

F ∈ C(Ω) can be approximated very well by its singular integral I
(q)
ρ (F ) provided that

the parameter ρ is chosen near 1. Hence it can be used to develop a simply structured
and very economical quadrature formula for singular integrals on the sphere. In former
articles (Schaffeld (1988), Cui, Freeden, Witte (1992), Freeden, Schreiner (1993)) an in-
tegration rule employing equidistributed pointsets (Weyl (1916)) is used. The idea of
this method is the following : approximate the integral of a function F : Ω → IR by an
arithmetical mean of the function’s values at prescribed points. An introduction to this
”Low Discrepancy Method” as well as the derivation of error–estimations for Lipschitz–
continuous functions and for functions of class C(2s) are given in Freeden, Schreiner
(1993). One deficiency of such a method is that it can only be used with restrictions for
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local problems. Our aim in this section is the development of a method, which can also
be used for local problems and which is not connected to equidistributed point sets.

The following theory holds for non-negative localizing kernels with or without compact
support of this type, provided that technical details are thoroughly accounted for in
the latter case. Since the hierarchical approximation technique to be presented employs
compactly supported kernels for reasons of computational efficiency, we restict ourselves
to this case here and employ B̃ρ from (21) for ease of presentation.

Let us consider a quadrature formula of the following type :∫
Ω

F (η) B̃ρ(ηξ) dω(η) ≈ dΓ(ξ)
∑
ζ∈Γ

F (ζ) B̃ρ(ζξ), ξ ∈ Ω (29)

where Γ ⊂ Ω is an arbitrary pointset on Ω. The factor dΓ(ξ) in (29) can be chosen in
such a way as to get a quadrature formula which is exact for constant functions. Due to
the normalization in (21)

∫
Ω
B̃ρ(ηξ) dω(η) = B̃∧

ρ (0) = 1, ξ ∈ Ω, this is achieved with

dΓ(ξ) =
1∑

ζ∈Γ B̃ρ(ζξ)
, ξ ∈ Ω. (30)

so that the singular integrals are discretized in the following way

∫
Ω

F (η) B̃ρ(ηξ) dω(η) ≈
∑

ζ∈Γ F (ζ) B̃ρ(ζξ)∑
ζ∈Γ B̃ρ(ζξ)

, ξ ∈ Ω. (31)

Note that with k = 0 in (21) we get the arithmetical mean of F (ζ), ζ ∈ Ωρ,ξ , as
approximation of F at ξ ∈ Ω with Ωρ,ξ from (23).
For non–negative locally supported kernel functions we can calculate the following error–
estimation

Theorem 3.1 (Linear case) Let Γ ⊂ Ω be a given grid and ρ ∈ (−1, 1) chosen such that
for this grid

∑
ζ′∈Γ B̃ρ(ξζ

′) 	= 0, with B̃ρ from (21) for all ξ ∈ Ω. Then for F ∈ C(Ω)∣∣∣∣∣∣∣
∫

Ωρ,ξ

F (η) B̃ρ(ξη) dω(η) −
∑

ζ∈Γ F (ζ) B̃ρ(ζξ)∑
ζ′∈Γ B̃ρ(ζ′ξ)

∣∣∣∣∣∣∣ ≤ max
η∈Ωρ,ξ

ζ∈Γ∩Ωρ,ξ

|F (η)− F (ζ)| (32)

with Ωρ,ξ from (23). In particular, for Lipschitz–continuous F on Ω

sup
ξ∈Ω

∣∣∣∣∣F (ξ)−
∑

ζ∈Γ F (ζ) B̃ρ(ζξ)∑
ζ′∈Γ B̃ρ(ζ′ξ)

∣∣∣∣∣ ≤ CF 3
√
2
√
1− ρ. (33)

Proof ∣∣∣∣∣∣∣
∫
Ωρ,ξ

F (η) B̃ρ(ξη) dω(η) − 1∑
ζ′∈Γ

B̃ρ(ξζ′)

∑
ζ∈Γ

F (ζ) B̃ρ(ξζ)

∣∣∣∣∣∣∣ =
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∣∣∣∣∣∣∣
1∑

ζ′∈Γ

B̃ρ(ξζ′)

∫
Ωρ,ξ

{∑
ζ∈Γ

B̃ρ(ξζ)
(
F (η) − F (ζ)

)}
B̃ρ(ξη) dω(η)

∣∣∣∣∣∣∣ ≤

max
η∈Ωρ,ξ

ζ∈Γ∩Ωρ,ξ

|F (η)− F (ζ)| .

Combining the last result with (27) the second part of the Theorem is proved. �

This first result remains valid for iterated kernel functions.

The above approximation procedure can be described in an alternative way as a ”Fourier
expansion method” (non–orthogonal series expansion). It can be seen as an expansion
into a series of normalized basis functions Bρ(· ζ) : Ω → IR, ζ ∈ Γ

F (ξ) ≈ f(ξ) =
∑
ζ∈Γ

F (ζ) Bρ(ξζ), ξ ∈ Ω (34)

with

Bρ(ξζ) =
1∑

ζ′∈Γ B̃ρ(ξζ′)
B̃ρ(ξζ), ξ ∈ Ω. (35)

To assess the behaviour of the approximating function f(ξ) we investigate the normalized
basis functions Bρ(· ζ) : Ω → IR for an arbitrary grid Γ ⊂ Ω.

Lemma 3.1 Given a grid Γ ⊂ Ω and ρ ∈ (−1, 1) such that for this grid
∑
ζ′∈Γ

B̃ρ(ξζ
′) 	= 0,

ξ ∈ Ω, the normalized basis functions Bρ(· ζ), ζ ∈ Γ have the properties :

(P1) Bρ(· ζ) ∈ C(Ω) continuity

(P2) Bρ(ξζ) ≥ 0, ξ ∈ Ω positivity

(P3)
∑

ζ∈Γ Bρ(ξζ) = 1, ξ ∈ Ω normalization.

The following two properties of the approximation function f(ξ) defined in (34) can be
shown

1. non–negativity : if F (ζ) ≥ 0, for all ζ ∈ Γ then

0 ≤ f(ξ), ξ ∈ Ω (36)

2. minimum–maximum principle :

min
ζ∈Γ

F (ζ) ≤ f(ξ) ≤ max
ζ∈Γ

F (ζ), ξ ∈ Ω. (37)
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The first one is a consequence of the construction principle (34), (35), namely that f(ξ)
is a convex combination of the data F (ζ), ζ ∈ Γ. The minimum–maximum principle,
(37), is reminiscent of the same familiar property of harmonic functions.

The reader acquainted with scattered data methods will recognize that the above method
is similar to the Shepard method (Shepard (1968)) used in meteorology and geology, de-
scribed e.g. in Hoschek, Lasser (1992). In contrast to the Shepard method the above
method is developed on the sphere and does not aim at interpolating the data but at
approximation. The former is obtained for general data only if ρ is chosen in such a way
that the spherical cap around each point ζ ∈ Γ does not contain any further grid point
ζ′ ∈ Γ. This generally leads to a very wiggled approximation f(ξ).

Let us describe in detail the approximation using the second iterated convolution B̃
(2)
ρ

of a non–negative kernel for later use in Section 4. The iterated integral is defined by

I(2)ρ (F )(ξ) = (B̃(2)
ρ ∗ F )(ξ) (38)

=

∫
Ω

F (η)

∫
Ω

B̃ρ(ξζ) B̃ρ(ζη) dω(ζ) dω(η) (39)

=

∫
Ω

B̃ρ(ξζ)

∫
Ω

F (η) B̃ρ(ζη) dω(η) dω(ζ) (40)

= (B̃ρ ∗ Iρ(F ))(ξ) (41)

and can also be interpreted as a convolution between the kernel B̃ρ and the singular
integral Iρ(F ). Since generally the iterated convolution cannot be calculated explicitly
(especially for the locally supported kernels defined in Section 2), we need two discretiza-

tions for the determination of I
(2)
ρ (F ) (bilinear case). On one hand we have to discretize

B̃
(2)
ρ using an artificial grid Γ ⊂ Ω and on the other hand we calculate I

(2)
ρ (F ) using

the grid of measurements Ξ ⊂ Ω. According to the second interpretation of the iterated
singular integral we get a ”non–orthogonal Fourier series type expansion”

F (ξ) ≈ f(ξ) =
∑
η∈Γ

c(η) Bρ(ξη), ξ ∈ Ω (42)

c(η) = Iρ(F )(η) =
∑
ζ∈Ξ

F (ζ) Bρ(ηζ), η ∈ Γ. (43)

Now the two points of view for describing the approximation can be formulated clearly :
On one side it is an approximation by integral means with smoothing kernel functions,
on the other side the method can be seen as expansion in terms of basis functions in
which the basis coefficients are calculated as integral means.
Especially for the locally supported basis functions introduced in Section 2 an error
estimation can be derived. Using the abbreviations

I(2)ρ (F )(ξ) =

∫
Ω

∫
Ω

F (η) B̃ρ(ηζ) B̃ρ(ξζ) dω(η) dω(ζ) (44)
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and

f(ξ) =
∑
η∈Γ

⎛
⎝∑

ζ∈Ξ

F (ζ) B̃ρ(ηζ)∑
ζ′∈Ξ B̃ρ(ζ′η)

⎞
⎠ B̃ρ(ξη)∑

η′∈Γ B̃ρ(ξη′)
(45)

we get

Theorem 3.2 (Bilinear case) Let Γ ⊂ Ω and Ξ ⊂ Ω be two grids with �Γ = N and �Ξ =
M . Assume further that ρ ∈ (−1, 1) is chosen in such a way that

∑
ζ′∈Ξ B̃ρ(ζ

′η) 	= 0,

for all η ∈ Γ and
∑

η′∈Γ B̃ρ(ξη
′) 	= 0, for all ξ ∈ Ω. Then, for any Lipschitz–continuous

function F : Ω → IR with Lipschitz–constant CF

||F − f ||C(Ω) ≤ CF 6
√
2
√

1− ρ. (46)

Proof From eq. (26) the following estimation is valid for the iterated weighted integral
mean

||I(2)ρ (F )− F ||C(Ω) ≤ max
−1+2ρ2≤ξη≤1

|F (ξ)− F (η)|. (47)

This can be reformulated for Lipschitz–continuous functions F

||I(2)ρ (F )− F ||C(Ω) ≤ CF 2
√
2
√
1− ρ. (48)

Using Theorem 3.1 we get for all ξ ∈ Ω∣∣∣∣∣I(2)ρ (F )(ξ)−
∫
Ωρ,ξ

(
M∑
i=0

F (ζi) B̃ρ(ζiη)∑M
j=0 B̃ρ(ζjη)

)
B̃ρ(ξη) dω(η)

∣∣∣∣∣
≤ CF 2

√
2
√

1− ρ. (49)

Setting

G(η) :=

M∑
i=0

F (ζi) B̃ρ(ζiη)∑M
j=0 B̃ρ(ζjη)

, η ∈ Ωρ,ξ (50)

we obtain for a second discretization∣∣∣∣∣
∫
Ωρ,ξ

G(η)B̃ρ(ξη) dω(η) −
N∑
i=0

G(ηi)
B̃ρ(ηiξ)∑N
j=0 B̃ρ(ηjξ)

∣∣∣∣∣
≤ max

η∈Ωρ,ξ
ηi∈Ωρ,ξ∩Γ

|G(η) −G(ηi)| (51)

and sinceG(η) ≤ max
η∈Ωρ,ξ

F (η) andG(ηi) ≥ min
i=0,1,...,N

{F (ηi)} it follows for Lipschitz–continuous F

max
η∈Ωρ,ξ

ηi∈Ωρ,ξ∩Γ

|G(η)−G(ηi)| ≤ CF 2
√
2
√

1− ρ. (52)

Combining the last three results the theorem is proved. �
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This rough estimate helps us to get some insight from a practical point of view. It
demonstrates the approximability of F by a bilinear discretization of its singular in-
tegral provided that 1 − ρ is sufficiently small. It is also the basis of the multilevel
approach described in the next section. Formula (45) may be understood as discretized
non–orthogonal sum expansion of Fourier series type in terms of the normalized basis
functions Bρ and results in the following one–scale method.

Algorithm 3.1 Given a grid Ξ ⊂ Ω and the data set (ζ, F (ζ)) ∈ Ξ× IR.

(i) Choose a grid Γ.

(ii) Choose suitable parameters ρ and k defining B̃ρ in (21).

(iii) Compute the ”discrete Fourier coefficients” c(η), η ∈ Γ, from equation (43).

(iv) Then the ”discrete Fourier expansion” f from equation (42) is an approximation to
the function F .

4 The Hierarchical Method

Algorithm 3.1 is tested on several artificial and practical examples in Brand (1994) for
different grids Γ and Ξ. It works well but has the following inherent drawbacks :

• A suitable value for the scale parameter ρ is not known in advance. It can be
guessed according to the smallest spatial feature that has to be represented. This
may require several runs for optimization and may be inappropriate for a given
function.

• When the characteristic scale of the data to be represented varies in space, one has
to choose the value of ρ according to the smallest feature of the scale size in the
domain. If not doing so, essential informationmay be smoothed out. Consequently,
there is a requirement of narrow spaced data for the whole domain which leads to a
waste in computational effort due to the calculations of lots of fine scale amplitudes
even in parts where they are not required. A spatially variable value of ρ would
be appropriate in that case. However the practical specification would be highly
problem dependent and rather delicate.

• The error can only be calculated at the end. An improvement is based on a com-
pletely new application with modified ρ and/or modification of the grid Γ, i.e. the
number and location of basis functions and can only be controled with difficulties.

• A spatial variation of the tolerance of the measurements on the grid Ξ cannot be
accounted for a straightforward manner.

These drawbacks can be remedied by a hierarchical algorithm which is described now.
In fact, the one–scale algorithm of the previous section has mainly been set up in this
paper to allow for this generalization. In particular the requirement of an equidistributed
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grid Γ for former methods is not compatible with the local approach neccessarily to be
adopted in the hierarchical construction. Let us first describe the algorithm in words.

Algorithm 4.1

(i) Choose a relatively small scale parameter ρ0 (large spherical caps) and relatively
coarse basis grid Γ0.

(ii) Compute an approximation f0 from Algorithm 3.1.

(iii) Compute the error E1 at the points of Ξ.

(iv) Decide wether E1 is sufficiently small in all parts of the domain. If true stop.

(v) Increase the scale parameter to ρ1 (smaller spherical caps) and refine the basis grid
(grid of coefficients) to Γ1

(vi) Compute the approximation of the discrete error E1 in those parts of the domain
where E1 is above the threshold in (iv). Add this contribution to the approximation
obtained in (ii).

(vii) Iterate steps (iii) to (vi) up to the situation where

(a) The error Ej is sufficiently small in the whole domain or

(b) The refinement of the grid Γj approaches a cell size where the number of
points from Ξ that serve to determine a particular coefficient decreases below
a threshold which ensures sufficient averaging

Let us make some comments to detail the method. There are two different ways of in-
creasing the quality of the approximations from given ρ and Γ. The first is to refine Γ
keeping ρ constant. This leads to better results, if being done with the right parameter,
because the iterations are the first members of a Neumann–series for the inversion of
the corresponding integral operator (cf. Brand (1994)). On the other hand, increasing ρ
without modification of Γ leads in its extreme to non–overlapping supports (considering
locally supported kernel functions) and inadequate resolution of the corresponding scale.
Therefore, in step (v) it is reasonable to refine 1 − ρj and Γj at the same time. One
arrives in some sense at contracted versions (ρj ,Γj) of the first choice (ρ0 ,Γ0) (see also
remarks at the end of this section). The initial ratio between the grid spacing of Γ0 and
the scale parameter ρ0 has to be determined from experience but is rather uncritical
since deficiencies will be corrected in the subsequent steps.

Now consider step (vii)(b) in more detail. To be applicable, the sums (42), (43) have
to contain at least a certain number of points to ensure correct averaging. The support
of the basis functions Bρ(·η) decreases with 1 − ρ, so that (since Ξ is fixed) the number
of entries in the sum (43) diminishes. When a given minimal number is reached the
algorithm might react in different ways :

(α) a warning is issued and the refinement is simply not continued in this region
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(β) a warning is issued and only the grid Γj is refined to Γj+1 keeping the scale parame-
ter ρj constant. This is to be understood as an improvement for the approximation

of B̃
(2)
ρ (cf. (38)).

The source of the behaviour in (vii)(b) may originate from two similar events :

(α) a (perhaps single) measurement in Ξ has been erroneous. If this is be verified, the
corresponding point could simply be discarded from later processing.

(β) the measurements in Ξ have been too coarse to adequately describe a particular
fine scale behaviour with sufficient reliability. The warning in this case indicates
the need of additional points in Ξ if this is to be done.

Supplementary points forming a new set Ξ′ can be added easily when the grid Ξ has been
found insufficient in a particular region. The approximation has to be evaluated at these
new points to get Ej. The procedure may in most cases be continued without the need of
recalculating previous coefficients, since contributions to large scales will generally cancel
out. Moreover, the employed bases (ρj ,Γj) are not orthogonal. The union contains by
construction a certain amount of redundancy, so that supplementary data points can also
be represented by the fine scale basis functions.

We now define the hierarchical approximation in a formal way by means of the me-
thodology developed above. It reads

F (ξ) ≈ fJ (ξ) = (EI)J (F )(ξ), ξ ∈ Ω (53)

with the J–th discrete hierarchical error iteration (EI)J (F ) of F given by the following

Definition 4.1 The expression

(EI)J (F )(ξ) =

J∑
j=0

Nj∑
i=1

cji(ηji) Bρj (ξηji) (54)

with the basis coefficients

cji(ηji) =
∑
ζ∈Ξ

Ej(ζ) Bρj (ξηji) (55)

for ηji ∈ Γj , j = 0, 1, . . . , J, i = 1, 2, . . . , Nj, with

Ej(ζ) = F (ζ)− (EI)j−1(F )(ζ), j ≥ 1 (56)

E0(ζ) = F (ζ) (57)

for ζ ∈ Ξ is called J–th discrete hierarchical error iteration.

The above method generalizes Algorithm 3.1 in a substantial way. It is triggered by the
multilevel approaches that have been developed in the last years (multigrid, hierarchical
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basis, wavelets). However, only the idea of using different scales is applied here without
bothering about other properties, such as e.g. imbedding or orthogonality of subspaces
which are possible in the continuous setting. Such a construction has recently been ob-
tained in Freeden, Windheuser (1994), Freeden, Schreiner (1994), for the Abel–Poisson
kernel. It is not known if a similar decomposition can also be obtained for the present
kernel (21). Most of all, in spherical geometry it is impossible to introduce a regular grid
which would permit to define a discrete counterpart to the continuous decomposition
such as obtainable e.g. for periodic wavelet decomposition in IRn, i.e. a discrete ortho-
normal basis of shifted and scaled versions of one function. This immediately rules out
the possibility to develop a fast recursive algorithm as for the classical multiresolutions.

We therefore resorted to a different recursive approach by calculating the approximation
error for each level of iteration as being done in Fröhlich, Schneider (1994) for the adap-
tive wavelet–discretization of a PDE. Note that the order of the theoretical asymptotic
operation count is not bad. Assume e.g. that, as a worst case, the error Ej has a similar
size all over the sphere so that refinement and correction is required everywhere. If then
reduction of the cap size and refinement of Γj equilibrate, the number of operations to
compute the required amplitudes and the corresponding errors on Ξ is roughly the same
for each level j, O(�Ξ), giving an overall count of O(J �Ξ). For different settings, when
refinement is local, the estimation of the computational cost is difficult since it depends
on the actual data, the precise refinement strategy for (ρj ,Γj), and the required toleran-
ces. In any case calculations are only executed where this is demanded by a persisting
error. A further advantage of the above procedure is that it deliberately allows the use
of highly non–regular and non–equidistributed grids Ξ. They appear through a variable
distance of the data points Ξ right from the beginning when it is known in advance that
this will be necessary. Second, replacing a point of measurement by another one nearby
may be necessary for pratical purposes when at the former point a value cannot be ob-
tained (presence of an obstacle, etc.). Both occasions do frequently arise in geophysical
applications. Finally, redundancy and non–orthogonality of the basis can be beneficious
when additional data becomes available. Note that allthough an equidistributed grid Ξ is
no longer employed, the construction requires a rule to define parametrize equidistributed
grids Γj for each level j (see Section 5 for example). However, these are not used en-
tirely but just in some part of the domain ”switching on” only the required contributions.

An important point to be stressed is that the above is an approximation procedure
which is inadequate if interpolation is required. On the other hand it is extremely simple
in its principle and efficiently implementable. It is also very flexible and by its adaptivity
may significantly reduce the computational cost with respect to other approximation
methods.

5 Test calculations

The hierarchical approximation method is now applied in two cases. The first is an arti-
ficial example, the second is a digital terrain model of Australia. As basis grids, in (43),
we use hierarchical grid sequences (see Freedeen, Schreiner (1993), Brand (1994)), which
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have the basic properties that Γj ⊂ Γj+1 and that the knot width σ(Γj) tends to zero
if j tends to infinity. In the grid with nearly equidistributed grid points the points are
arranged along latitudes in such a way that the spherical distance t = ηη′ between two
neighbouring grid points η, η′ is equal. These grids are therefore parametrized by the
number of latitudes γ (for the whole sphere). In contrast to this grid the grid points in a
Corput–Halton grid are arranged irregularly. The idea is to use a sequence in a rectangle
which is uniformly distributed and then transform it via spherical coordinates onto the
unit sphere Ω (cf. van der Corput (1935), Kuipers, Niederreiter (1974)).

In every calculation we use the ”weighted integral means” with k = 3 in (21) (twice
continuously differentiable functions) as singular integral and consider the errors

maxerror := max
ζ∈Ξ

|F (ζ)− f(ζ)| (58)

mean − error :=
1

�Ξ

∑
ζ∈Ξ

|F (ζ)− f(ζ)|. (59)

The first example is set up by the test function F : Ω → IR

F (x1, x2, x3) =
1√

x2
1 + (x2 − 0.9)2 + x2

3

(60)

which is plotted for (ϕ, ϑ) ∈ [π/2, 3π/2]× [π/4, 3π/4] in Figure 2. We assume that the
function F is given on some non–equidistributed grid Ξ (see Figure 3) with 923 points
of the following properties :

π/2 < 1.5707 ≤ ϕ ≤ 4.6796 < 3π/2

π/4 < 0.8796 ≤ ϑ ≤ 2.2619 < 3π/4

0.5264 ≤ F (ζ) ≤ 9.1139, ζ ∈ Ξ

The mean of the values of F on Ξ is F = 1.1835.

In order to assess the quality of the hierarchical method, it has to be compared with
a one–scale approximation. Two computations have been carried out, one with ρ = 0.5,
one with ρ = 0.9965, both using the same nearly equidistributed grid Γ with 1601 points
in the test area.
The results are reported in Table 1 and Figure 4, showing cuts along the equator. Figure 4
depicts the data points as circles, while the continuous line corresponds to the compu-
ted approximation. It is generated by basis functions of which the centers lying on the
equators are marked by crosses on the abcissa. The 5th and 6th column in Table 1 give
an idea of the mutual influence of points in Γ and Ξ.

It is apparent that if the size of the basis functions is too large the one–scale approxi-
mation is poor due to excessive smoothing even with �Γ large . The approximation with
smaller caps is almost satisfactory. We will see, however, that the hierarchical method gi-
ves a better result with even less basis functions. We remark that the present integration
method leads to acceptable results near boundaries of local domains since it takes into
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Table 1 : Synthetic example, one–scale approximation.

One–scale method
γ ρ maxerror mean–error �(Ξ ∩ Ωρ,η) �(Γ ∩ Ωρ,ξ) coefficients

64 0.5 6.496911 0.248608 195 – 599 3 – 5 1601
64 0.9965 0.675085 0.007291 2 – 9 3 – 10 1601

Figure 2 : Function F (x1, x2, x3).
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Figure 3 : Data distribution, i.e. grid Ξ, for the first example.
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Figure 4 : Synthetic example, cuts through the one–scale approximation
along the equator for ρ = 0.5 (left) and ρ = 0.9965 (right).
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Table 2 : Performance of the hierarchical method for the synthetic example.

Hierarchical method
γ ρj maxerror mean–error �(Ξ ∩Ωρj ,η) �(Γj ∩ Ωρj ,ξ) coefficients |cji| > 10−3

4 0.5 6.048130 0.232746 195 – 599 3 – 5 11 of 11

8 0.85 4.605950 0.121893 31 – 266 3 – 7 33 of 33
16 0.96 2.713190 0.046071 3 – 81 3 – 8 106 of 113

32 0.99 1.106561 0.012208 2 – 23 3 – 8 336 of 417
64 0.9965 0.333455 0.002862 2 – 9 3 – 10 685 of 1601

account a variable number of points for the quadrature (55). Methods based on an equi-
distributed grid fail near boundaries as they assume a constant number of entries in the
sum, so that this part is generally masked. Let us now apply the hierarchical algorithm
using the following rules. The refinement of (ρj ,Γj) is controled by two characteristic
values : �(Γj ∩ Ωρj ,ξ), ξ ∈ Ω monitors the number of overlapping basis functions, while
�(Ξ ∩ Ωρj ,η), η ∈ Γ indicates the number of points used to determine cji in (55). We
experienced that a value of two or more for both quantities is appropriate and set up the
refinement roughly fulfil this rule. Finally an amplitude of |cji| > 10−3 was required, if
not, the contribution has been left unconsidered.

Cuts along the equator of the resulting succesive approximations are reported in Figure 5.
Figure 6 and 7 display the final approximation and its error in a perspective plot. The
plot shows that in most of the computational domain the error is less than 1 % of the
maximal value of F . Only at the boundary of the considered domain, where less mea-
surements are available, the errors grow up to 5 % . Furthermore, the peak of the test
function is approximated better than with a one–scale approximation method. This is a
general observation backed also by other tests. Table 2 gives detailed quantitative infor-
mation of the single steps. Note that with respect to the one–scale case a better result
could be obtained with less than half of the number of basis functions. The adaptive
choice of the basis points of Γj, used for the calculation, is plotted in Figure 8. Since
we use hierarchical grids (Γj ⊂ Γj+1) the number j of the step, in which the basis point
η ∈ Γj is used for the calculation the last time, is assigned a gray scale (square grid for
implementational reasons). In the second example we compute a digital terrain model of
Australia observing the sperical figure of the earth. The elevation data used are derived
from 0.5◦ × 0.5◦ measurements of mean elevation. It represents a spacing of at least 1
point per 55 km2. The data is given on latitude–longitude lattice with 5381 points has
the following properties :

1.9285 (110.5◦) ≤ ϕ ≤ 2.7139 (155.5◦)
1.7366 (−9.5◦) ≤ ϑ ≤ 2.4521 (−50.5◦)

−6000 m ≤ F ≤ 1344 m.

The mean value of the values is F = −755.8305 m.
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Figure 5 : Synthetic example, hierarchical method, cuts along the equator
for different levels of approximation fj , j = 0, . . . , 4.
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Figure 6 : Synthetic example, approximation after step 5
using the hierarchical method.
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Figure 7 : Synthetic example, error plot of the approximation after step 5
using the hierarchical method.
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Figure 8 : Adaption of basis grid Γj (see text).
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The hierarchical error iteration is calculated with a hierarchical sequence of Corput–
Halton basis grids Γj (doubling of the number of basis points in each step), starting
with 512 = 29 basis functions, using the sequence of scale parameters ρ1 = 1 − 2−9,
ρ2 = 1− 2−10, . . . , ρ6 = 1− 2−14, that roughly correspond to the mesh width (normali-
zation of the earth’s radius to 1). The results are shown in Figure 9. It is the first time
that this kind of approximation method is tested for large data sets for which interpo-
lation methods can only be used after domain decomposition or data reduction. The
difficulty of this example resides in the fact that at the East coast of Australia the values
vary extremly (mountains and sea depths). Since the approximation method (approxi-
mation by singular integrals) is a smoothing method (building of integral means) the
mountains and the coast line cannot be approximated efficiently using a one–scale me-
thod. In Figure 9 only positive values of the approximation are plotted and it is apparent
that the mountains and coast line are approximated well. The deficiencies in the region
between Australia and Tasmania are caused by too few measurements and our method
recognizes this problem.

6 Conclusion

In this paper we have presented a simple and efficient hierarchical method for approxima-
tion of data given at a set of arbitrary points on the sphere. It is based on the principle
of non–orthogonal series expansions and employs locally supported axisymmetric poly-
nomial basis functions. The crucial point is the explicit computation of the error on each
level which allows arbitrary size and distribution of these functions and easy adaption.

First applications of the new method to an artificial case and a large data set, a digital
terrain model of Australia, have demonstrated the power and flexibility of the approach.
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Figure 9 : Digital terrain model of Australia
obtained by the hierarchical method.
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Immediate extensions concern the basis functions which need not be polynomials. Other
locally supported functions may be used as well. Furthermore, a spatially varying tole-
rance of geodetic measurements can easily be accounted for by a variable threshold for
the computed error at the data points. It is immediate to assign each point a tolerance
and to require the approximation to lie within this range. It is also possible to introduce
different weights for each measurement and use the following discretization

F (ξ) ≈
∑M

i=0 βi F (ζi) B̃ρ(ξζi)∑M
i=0 βi B̃ρ(ξζi)

ζi ∈ Γ, �Γ = M, ξ ∈ Ω. (61)

In connection with regular grids on the sphere (cf. Freeden, Schreiner (1993)) this method
can also used for modelling purposes.
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