A

>

£
]
N

TakustralBe 7
D-14195 Berlin-Dahlem
Germany

Konrad-Zuse-Zentrum
fur Informationstechnik Berlin

WILLIAM Coor@

THORSTENKOCH

DANIEL E. SI'EFF\E
KATI WOLTER

A Hybrid Branch-and-Bound Approach
for Exact Rational Mixed-Integer Programming

Research supported by NSF Grant CMMI-0726370, ONR Grant N00014-12-1-0030, and the DFG Priority Program 1307 “Algorithm Engineering”.

[school of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
B Department of Mathematics and Statistics, Oakland University, Rochester, MI, USA.

Z1B-Report 12-49 (December 2012)

Herausgegeben vom

Konrad-Zuse-Zentrumif Informationstechnik Berlin
Takustralle 7

D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mailibibliothek6zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

A Hybrid Branch-and-Bound Approach for Exact Rational
Mixed-Integer Programming

William Cook - Thorsten Koch- Daniel E. Steffy -
Kati Wolter

Abstract We present an exact rational solver for mixed-integer lipggagramming
that avoids the numerical inaccuracies inherent in theifiggtoint computations
used by existing software. This allows the solver to be usedk$tablishing theo-
retical results and in applications where correct solgtiare critical due to legal
and financial consequences. Our solver is a hybrid symbalgéric implementa-
tion of LP-based branch-and-bound, using numericallg-saéthods for all binding
computations in the search tree. Computing provably atew@lutions by dynam-
ically choosing the fastest of several safe dual boundinthous depending on the
structure of the instance, our exact solver is only modratewer than an inexact
floating-point branch-and-bound solver. The software é@iporated into the SCIP
optimization framework, using the exact LP solver @3 _ex and the GMP arith-
metic library. Computational results are presented forige of test instances taken
from the MipLIB and Mittelmann libraries and for a new collection of numallic
difficult instances.

Keywords Mixed integer programmingbranch-and-boundexact computation

Mathematics Subject Classification (2000)90C10- 90C11- 90C57

Research supported by NSF Grant CMMI-0726370, ONR Grandil®d 2-1-0030, and the DFG Priority
Program 1307 “Algorithm Engineering”.

W. Cook
School of Industrial and Systems Engineering, Georgiatliistdf Technology, Atlanta, GA, USA
E-mail: bico@isye.gatech.edu

T. Koch- K. Wolter
Zuse Institute Berlin, Takustr. 7, Berlin, 14195 Berlin,r@any
E-mail: koch@zib.de

D. E. Steffy
Department of Mathematics and Statistics, Oakland UniyeiRibichester, MI, USA
E-mail: stefly@oakland.edu

K. Wolter
E-mail: wolter@zib.de

2 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

1 Introduction

Mixed-integer programming (MIP) is a powerful and flexibéek for modeling and
solving decision problems. Software based on these ideditized in many applica-
tion areas. Despite their widespread use, few availabtevaoé packages provide any
guarantee of correct answers or certification of resultssiBte inaccuracy is caused
by the use of floating-point (FP) numbers|25]. FP-calcalainecessitate the use of
built-in tolerances for testing feasibility and optimgliand can lead to calculation
errors in the solution of linear-programming (LP) relagas, in the methods used
for creating cutting planes to improve these relaxatiorgiampre-solving routines
applied to strengthen models.

Due to a number of reasons, for many industrial MIP applceginear optimal
solutions are sufficient. BLEX [26], for example, terminates if the relative gap be-
tween upper and lower bound is less then 0.001 (relative Nititnality tolerance).
Moreover, when data describing a problem arises from imgeesources, exact fea-
sibility is usually not necessary. Nonetheless, accuraayportant in many settings.
Direct examples arise in the use of MIP models to establisddmental theoretical
results and in subroutines for the construction of provatdgurate cutting planes.
Furthermore, industrial customers of MIP software requastlules for exact solu-
tions in critical applications. Such settings include tbkofving.

— Chip design verification in the VLSI design process [2].

— Compiler optimization, including instruction schedulif#].

— Combinatorial auctions [19], where serious legal and firdrmonsequences can
result from incorrect solutions.

Chip design verification and compiler optimization are amlons where demon-
strating that a particular MIP instance has no feasibletgwis is equivalent to veri-
fying the correctness of a proposed point. For pure feasilpitoblems such as these,
accurate answers are extremely important.

The article describing the latest version of the mixedgeteprogramming li-
brary, MipLIB 2010, discusses the limitations of finite-precision arigfimin the
context of mixed-integer programming_[29]. Problem inseswere collected from
a wide range of applications and a number of the instances uvlassified as nu-
merically unstable. We now report some computational biehabserved on these
instances after they were passed to different solvers @asimgiety of parameter set-
tings. When called to solve the instaneeansportmoment, under default parameter
settings, SCIP 2.1.]2]13,46] (using theBLex 1.6 [47] LP solver) reports to have
found an optimal solution, while ©@.ex 12.3 claims that the instance is infeasible or
unbounded. However, if presolving and cutting planes asalded, SCIP claims the
problem to be unbounded, (but warns of an error in the proahbbundedness), and
CpPLEX reports finite primal and dual bounds. Another example fromrive 2010
is the instancers2122603 which at the printing of the papelr [29] was incorrectly
thought to be infeasible, the answer returned WLEX 12.2 (and 12.3); after dis-
abling presolving in @LEX, a feasible solution can quickly be identified.

Other examples of numerically difficult MIPs occur in thegHesign verification
instances collected by Tobias Achterberg [2]. There ar¢e ¢ 98 instances, which

A Hybrid Branch-and-Bound Approach for Exact Rational Mix@&teger Programming 3

are publicly available for download|[1]. These instanceslei@roperty checking on
simple arithmetic logical units (ALU). Proving infeasiityl of an alu instance certi-
fies the correctness of the unit, whereas a feasible solgii@s a counter example to
the correctness of the design. Although the instances aeelpa defined by integral
data, incorrect conclusions are reached on some of themexaonple, the instance
alu10_7, when calling SCIP 2.1 or LEX 12.3 with default settings or with cutting
planes and presolving disabled, we get the three diffe@ntien values 83, 84, 91.
However, none of these values are correct as, by constnjttie instance is known
to be infeasible. The solutions returned by the solvers violate the constraints by a
small amount and satisfy the relative tolerance threshadds to measure feasibility,
so they are accepted as valid solutions and returned to gdrefusther numerically
difficult instances are presented in SEtt. 6.

Software libraries such as the GNU Multiple Precision Amttic Library
(GMP) [24] offer routines for infinite-precision rationaftitametic; in contrast to
the commonly used finite-precision arithmetic systems, GdyiRamically allocates
as much memory as is necessary to exactly represent nunmukis lamited only by
the available system memory. We use the tesgrabolicor exactwhen referring to
this type of exact computation over the rational numbersusethe termaumeric
or approximatewhen referring to the use of inexact finite-precision andtiifmga
point computation. One straightforward strategy to soM@#&/exactly would be to
implement the standard solution procedures entirely ircteasthmetic. Unfortu-
nately, it has been observed that optimization softwangnglexclusively on exact
arithmetic can be prohibitively slow. This motivates theelepment of more sophis-
ticated algorithms to compute exact solutions. Signifiqgaogress has been made
recently toward computationally solving LP models exacter the rational hum-
bers using hybrid symbolic/numeric methods [8, 20, 22, A ,iBcluding the release
of the software QB8PT_EX [7]. Exact MIP has seen less computational progress, but
significant first steps have been taken. An article by Neunaaid Shcherbina [35]
describes methods for safe MIP computation, includingetiias for generating safe
LP bounds, infeasibility certificates, and cutting planBEseir methods include di-
rected rounding and interval arithmetic with FP-numberavtoid incorrect results.

This article introduces a hybrid branch-and-bound apgrdaicsolving MIPs ex-
actly over the rational numbers. It can be extended to a brand-cut algorithm with
primal heuristics and presolving; but the focus of thiscetis on the development
of the basic branch-and-bound approach. Selion 2 desdrive exact rational and
safe-FP computation can be coupled together, providingtadiad general frame-
work for exact computation. Sectibh 3 discusses severdigdstfor computing valid
LP bounds, a critical component of the hybrid approach.dtdbes an exact branch-
and-bound implementation within SCIP and includes dedailamputational results
on a range of test libraries comparing different dual bongditrategies. In Sedil 4,
the implementation is further improved by incorporatinglsisticated branching
rules. The resulting exact solver is compared against arfpgioint solver restricted
to pure branch-and-bound and observed to be only modewsdtsiier. In Secf15, it is
used to test the accuracy of current floating-point MIP sshead in Sect.]6 it is ap-
plied to a test set of numerically difficult instances. As fmaus has been exclusively
on the branch-and-bound procedure, the exact solverligstillirectly competitive

4 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

with the full version of SCIP. However, it is realistic to tikithat the future inclusion
of additional MIP machinery such as cutting planes, présghand primal heuristics
into this exact framework could lead to a full featured exXet®P solver that is not
prohibitively slower than its inexact counterparts.

2 Hybrid Rational/Safe Floating-Point Approach

Two ideas for exact MIP proposed in the literature, and tetesome extent, are the
pure rational approach8] and thesafe-FP approaciil7]/35]. Both utilize LP-based
branch-and-bound. The difference lies in how they ensurectimputed results are
correct.

In thepure rational approachcorrectness is achieved by storing the input data as
rational numbers, by performing all arithmetic operatiowmsr the rational numbers,
and by applying an exact LP solvér [22] in the dual boundirggp sThis approach
is especially interesting because it can handle a broad dfproblems: MIP in-
stances described by rational data. However, replacin§Rdbperations by ratio-
nal computation increases running times significantly. &@mple, while the exact
LP solver Q®PT_EX avoids many unnecessary rational computations and isegffici
on average, Applegate et él! [8] observed a greater slowddwem testing an exact
MIP solver that relied on rational arithmetic and called @$_ex for each node
LP computation (see also Sdct.]3.1).

In order to limit the degradation in running time, the ideatloé safe-FP ap-
proachis to continue to use FP-numbers as much as possible, pgarbjcwithin
the LP solver. However, extra work is necessary to ensuneciodecisions in the
branch-and-bound algorithm. Correctness of certain coatipms can be ensured by
controlling the rounding mode for FP-operations. Validldu@unds can often be ob-
tained by post-processing approximate LP solutions; ttue bf safe dual bounding
technique has been successfully implemented @NCoRDE [6] for the traveling
salesman problem. A generalization of the method for MIRe&ribed in[35]. Fur-
thermore, the idea of manipulating the rounding mode camppkeal to cutting-plane
separation. In[17], this idea was used to generate nunligrgzfe Gomory mixed-
integer cuts. Nevertheless, whether the safe-FP appreads to acceptable running
times for general MIPs has not been investigated. Althobhghsafe-FP version of
branch-and-bound has great advantages in speed over thegbional approach, it
has several disadvantages. Everything, including inpt& dad primal solutions, is
stored as FP-numbers. Therefore, correct results can @nnbured for MIP in-
stances that are given by FP-representable data and treaHe®-representable op-
timal solution if they are feasible. Some rationally defirdblems can be scaled
to have FP-representable data. However, this is not alwagsile due to the lim-
ited representation of floating-point numbers, and theltieguarge coefficients can
lead to numerical difficulties. The applicability is evemther limited as the safe dual
bounding method discussed in [35] requires, in generaletamd upper bounds on
all variables. Weakness in the safely generated bound vahay also increase the
number of nodes processed by the branch-and-bound soleitidnally, due to nu-

A Hybrid Branch-and-Bound Approach for Exact Rational Mix@&teger Programming 5

merical difficulties, some branch-and-bound nodes may belyprocessable by an
exact LP solver.

To summarize, the pure rational approach is always appéidaltt introduces a
large overhead in running time while the safe-FP approachaee efficient but of
limited applicability.

Since we want to solve MIPs that are given by rational dataiefftly and ex-
actly we have developed a version of branch-and-bound tteahpts to combine the
advantages of the pure rational and safe-FP approaches) anthpensate for their
individual weaknesses. The idea is to work with two braneti-Bound procedures.
Themain procedurémplements the rational approach. Its result is surelyemirand
will be issued to the user. The other one servessawe procedurewhere the faster
safe-FP approach is applied. To achieve reasonable rutimegwhenever possible
the expensive rational computation of the main procedulld@iskipped and certain
decisions from the faster safe-FP procedure will be sultstit In particular, safe dual
bound computations in the slave procedure can often repbeaet LP solves in the
main procedure. The rational procedure provides the exabigm data, allows for
the storage of exact primal solutions, and makes exact Wes@ossible whenever
needed.

The complete procedure is given in Alg. 1. The set of FP-isgr@ble numbers
is denoted byM; lower and upper approximations rf Q are denotec € M and
X € M, respectively. We now explain the details of the algorithm.

The slave procedure, which utilizes the safe-FP approaokksion a MIP in-
stance with FP-representable data. It is set up in[Step leddltorithm. If the input
data are already FP-representable, both procedures belgarte MIP instance, i.e.,
P:= P and¢:= cin Step[l. Otherwise, an approximation of the MIP with= P,

c ~ € or a relaxation witt® C P, ¢ = € is constructed; calleBP-approximatiorand
FP-relaxation respectively. The choice depends on the dual boundingadedp-
plied in the slave procedure (see SEtt. 3).

On the implementation side, we maintain only a single braamoif-bound tree. At
the root node of this common tree, we store the LP relaxatbmoth procedures:
max{c'x : x € LP} and max¢'x: x € LP}. In addition, for each node, we know the
branching constraint that was added to create the subpnoinldoth procedures.
Branching on variables, performed in Sfdp 8, introducesstiree bounds for both
procedures.

The use of primal and dual bounds to discard subproblemsStegg B 16, and 7)
is a central component of the branch-and-bound algoritinpakticular, in the ex-
act MIP setting, the efficiency highly depends on the stienfthe dual bounds and
the time spent generating them (Sép 5). The starting poihi®step is an approxi-
mate solution of the LP relaxation of the MIP. It is obtainedhe slave procedure by
an LP solver that works on FP-numbers and allows roundiragsrreferred to am-
exact LP solverDepending on the result, we check whether the exact LPaBtaxis
also infeasible or we compute a safe dual bound by post-psatgthe approximate
LP solution. Different techniques are discussed in $échdBae computationally
evaluated in Sedi. 3.6.

Dual and primal bounds are stored as FP-numbers and the inguindStep[6
is performed without tolerances; a computed bound that is-Rerepresentable is

6 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

Algorithm 1 Hybrid branch-and-bound for exact rational MIP

Input: (MIP) max{c'x: x e P} with P:={xe R": Ax<b,x € Zforalli € I},
AcQ™" beQMceQ" andl C{1,...,n}.
Output: Exactoptimal solutiorx* of MIP with objective value* or conclusion that
MIP is infeasible ¢* = —).
1. FP-problem Store (FP-MIP) maf€'x : x € P} with P := {x € R": Ax < b,
X € Zforalliel}, Ae M™" beM™ andce M".
2. Init SetZ :={(P,P)}, L:= —oo, X" to be empty, angd""” := —co.
3. Abort If Z =0, stop and returg"® andc"®.
4. Node selection Choosg(P;,P)) € .2 and set? := .2\ {(P},P,)}.
5. Dual bound Solve LP relaxation mac'x : x € Eﬁj} approximately
(@ If fl5,- is claimedto be emptysafelycheck ifLP; is empty.
i. If LPj is empty, set” := —oo,
ii. If LPj is not empty, solve LP relaxation mgXx : x € LPj} exactly
Let x* be anexactoptimal LP solution and* its objective value.

(b) If fl5j is claimednot to be empty, lex* be approximateoptimal LP solution
and compute aafedual bound* with max{c'x: x € LP;} < c*.

6. Bounding If c* <L, goto StefhB.
7. Primal bound
(a) If x* isapproximate_P solution and claimed to be feasible for FP-MIP, solve

LP relaxation mafc'x: x € LP;} exactly If LPj is in factempty, goto Stef]3.
Otherwise, le* be anexactoptimal LP solution and* its objective value.

(b) If x* is exactLP solution andruly feasible for MIP:
i. If ¢*>c"P, setx"? :=x*, c"? :=¢*, andL :=c*.
ii. Goto Stef B.
8. Branching Choose index € | with xX* ¢ Z.
(@) SplitP; in Qu:=Pn{x:x < [x]}, Q:=Pn{x:x>[x]}.
(b) SplitP; in Qr:=PN{x:x < [x]}, Q:=Pjn{x:x > [x7}.
Set.Z := 2 U{(Q1,Q1),(Q2,Q2)} and goto Stepl3.

relaxed in order to be safe. For the primal (lower) bounthis meand. < c"* if the
objective value™® of the incumbent solutior"” is not in M.

Algorithm [identifies primal solutions by checking LP saduis for integrality.
This check, performed in Stég 7, depends on whether the LPaweady solved
exactly at the current node. If so, we test, without toleesncthe integrality of the
rational LP solution. Otherwise, we decide if it is worth\gnly the LP exactly. We
deem it worthy if the approximate LP solution is nearly imtdgin this case, we solve
the LP exactly, using the corresponding basis to warm start.P solver (hopefully

A Hybrid Branch-and-Bound Approach for Exact Rational Mix@&teger Programming 7

with few pivots and no need to increase the precision) anperthe exact integral-
ity test on the rational LP solution. In order to correctlpoet the optimal solution
found at the end of Stdp 3, the incumbent solution (that & btbst feasible MIP so-
lution found thus far) and its objective value are storedatismal numbers.

3 Safe Dual Bound Generation

This section describes several methods for computing @didual bounds in Stdgd 5
of Alg. [The overall speed of the MIP solver will be influeddsy several aspects
of the dual bounding strategy; how generally applicablentie¢hod is, how quickly
the bounds can be computed and how strong the bounds are.

3.1 Exact LP Solutions

The most straightforward way to compute valid LP bounds isdlve each node
LP relaxation exactly. This strategy is always applicalle @roduces the tight-
est possible bound. The fastest exact rational LP solvereotly available is
QSopPT.EX [[7]. The strategy used by this solver can be summarized sl the
basis returned by a double-precision LP solver is testedgtimality/feasibility by
symbolically computing the corresponding basic solutibibjs suboptimal or infea-
sible then additional simplex pivots are performed withrasréased level of precision
and this process is repeated until the optimal basis isifiEshtWhen possible, the
extended precision pivots are warm started with the preloidentified LP basis.
This method is considerably faster than using rationaharétic exclusively; it was
observed to be only two to five times slower than inexact LResslon average over
a large test set [8].

In most cases, the double-precision LP run already prodaoeoptimal basis,
so the overhead mainly came from computing and verifyingetkact rational basic
solution. For some instances, this dominates the overhitisn time. The costs as-
sociated with solving each basis systems exactly may bedlyenoticeable in the
MIP setting. Within a branch-and-bound framework the diralpéex algorithm can
be warm started with the final basis computed at the parerd, naially resulting in
a small number of dual simplex pivots.

If the basis determined by the double-precision subrogtofeQ SOPT_EX is not
optimal, the additional increased precision simplex [gantd additional exact basic
solution computations significantly increase the solutiore. It is important to note
that the solution time of the exact LP solver is influencedardy by the dimension,
density, structure, etc., of the LP, but also by the numbdsitsfrequired to encode
the data and solution.

3.2 Basis Verification

This strategy avoids the extended precision simplex pigothat can occur when
solving each node LP exactly, but sometimes results in modesbeing processed.

8 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

Any exactly feasible dual solution provides a valid dual ldueven if it is not
optimal. Therefore, instead of solving each node LP exaedlifd dual bounds can
be determined by symbolically computing only the dual Solufrom a numerically
obtained LP basis. If the obtained dual solution is feasitdeobjective value gives
a valid bound. If it is infeasible, then instead of performihe extra steps required
to identify the exact optimal solution, an infinite dual bdus returned. However,
if a finite bound was computed at the node’s parent, this baamdbe inherited,
strengthening an infinite dual bound from basis verificat\fithin the branch-and-
bound algorithm, infinite or weak dual bounds can lead to rboaeching, but due to
the fixing of variables, branching often remediates nuna¢pcoblems in the LP re-
laxations down in the tree.

3.3 Primal-Bound-Shift

Valid bounds can also be produced by correcting approxirdagé solutions to be
exactly feasible. A special case occurs when all primalaideis have finite upper
and lower bounds. The following technique was employed bylégate et al. in
the CoNCcORDE software package [6] and is described more generally forsviy
Neumaier and Shcherbina[35]. Consider a primal problemhefform maxc'x :
Ax < b,0 < x < u} with dual minlb'y+u'z: A'y+z> ¢, y, z> 0}. The dual vari-
ablesz, which correspond to the primal variable bounds, appearoaisnegative
slack variables in the dual constraints; they can be usedtiea any errors ex-
isting in an approximate dual solution. Given an approxamatal solutiony, Z), an
exactly feasible dual solutioy, 2) is constructed by setting ‘= max{0, Vi } and
2 :=max{0, (c— A"Y);}. This gives the valid dual bourtdly+ u'z. This bound can
be computed using floating-point arithmetic with safe dizdcrounding to avoid
the symbolic computation of the dual feasible solution, hoite that this requires
the slave procedure to work on an FP-relaxation of the amigimoblem (Stepll of
Alg.).

The simplicity of computing this bound means that it is anetbent choice when
applicable. However, if some primal variable bounds argdasr missing it may
produce weak or infinite bounds, depending on the feasilafi{(y, Z).

3.4 Project-and-Shift

Correcting an approximate dual solution to be exactly fdasin the absence of
primal variable bounds is still possible. Consider a prippedblem of the form
max{c'x : Ax < b} with dual min{b'y: A'y = c, y > 0}. An approximate dual so-
lution ¥ can be corrected to be feasible by projecting it into the affinll of the dual
feasible region and then shifting it to satisfy all of the nmygativity constraints,
while maintaining feasibility of the equality constrainhese operations could in-
volve significant computation if performed on a single LPwdwer, under some
assumptions, the most time consuming computations negcdbenperformed once,
at the root node of the branch-and-bound tree, and reusedétrnode bound com-
putation.

A Hybrid Branch-and-Bound Approach for Exact Rational Mix@&teger Programming 9

To efficiently reuse information through the tree we assuma¢A’™ has full row
rank, and that none of the dual variables are implied to be. 2erthis case, an LU
factorization of a full rank subset of columBof A" is computed, this can be reused
at every subsequent node of the branch-and-bound tree outermprojections. Also,

a relative interior poiny* satisfyingA'y = ¢,y > 0 andy; > 0 Vi € Sis computed

at the root node, and will remain dual feasible at all nodeénbranch-and-bound
tree. If the root node dual problem is as above, the dual pmldt any node can
be represented as niol’y +b""z: A'y+A""z=c, y, z> 0} whereb™ < b" and the
additional dual variablescorrespond to newly introduced primal variable bounds or
cutting planes.

An approximately feasible node dual soluti¢fi Z) > 0 can be corrected to
be exactly feasible by performing the following two stepsst: the violation of
the constraints is calculated exactly ms= c— A"y — A”"Z and a correction vec-
tor w satisfying A'w = r is computed in exact arithmetic using the pre-computed
LU factorization; addingw to the approximate solution projects it to satisfy the
equality constraints of the problem exactly. This solutignt+ w, Z) might violate
the non-negativity constraints, but can only have negatmmponents in the set
S. Second, a convex combination of this projected point ghdis computed as
(¥,2):=(1—=A)(Y+wW,2)+A(y*, 0), such thaty, 2) > 0. The resulting pointy, 2)
is then exactly feasible since it is a convex combinationaaf points satisfying all
of the equality constraints and gives a valid dual bobg+-b"" 2.

Thus, the root node computations involve solving an auyilizP exactly to ob-
tain the relative interior poiny* and symbolically LU factoring a matrix; the cost
of each node bound computation is dominated by performingci-solve of a pre-
computed symbolic LU factorization, which is often fastear solving a node LP ex-
actly. This method is more generally applicable than thenpHbound-shift method,
but relies on some conditions that are met by most, but nppathe problems in
our test set. A detailed description and computationalystiidhis algorithm can be
found in [43]. A related method is also described by Althawnd Bumitriu [5].

3.5 Combinations and Beyond

The ideal dual bounding method is generally applicablegipees tight bounds, and
computes them quickly. Each of the four methods describddrsepresents some
trade-off between these conflicting characteristics.&taet LPmethod is always ap-
plicable and produces the tightest possible bound, butrigoatationally expensive.
The primal-bound-shiftmethod computes valid bounds very quickly, but relies on
problem structure that may not always be present.Jdsis verificatiorandproject-
and-shiftmethods provide compromises in between, with respect tedspad gen-
erality. The relative performance of these dual boundinthods highly depends on
the (sub)problem structure, which may change througheutée. Therefore, a strat-
egy that combines and switches between the bounding tagimig the best choice
for an exact MIP solver intended to efficiently solve a brokds of problems.

In Sect[3.6, we will evaluate the performance of each duahdimg method pre-
sented here and analyze in what situations which technigulesibest. In a final step,

10 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

we then study different strategies to automatically detiol® to compute safe dual
bounds for a given MIP instance. The central idea of the aatimnselection strategy
is to apply fast primal-bound-shift as often as possible iinécessary employ an-
other method depending on the problem structure. In thiseation, we will address
the question of whether this decision should be static oadyo.

In the first version (Auto”), Alg. [ldecides on the method dynamically in Stép 5.
At each node primal-bound-shift is applied, and in casedtipces an infinite bound
one of the other methods is applied. The drawbacks are talkdvts for unnecessary
computations and that it requires an FP-relaxation for ldneesprocedure in order to
support primal-bound-shift. Alternatively, we can guedsether primal-bound-shift
will work (“ Auto-Static”). Meaning the dual bounding method is selected depending
on the problem structure at the beginning of Aly. 1, in Stearid remains fixed
throughout the tree. This allows us to work with FP-apprations whenever we do
not select primal-bound-shift. As we will see in the follagi section, dynamically
choosing the dual bounding method at each node achieves@uperformance.

After establishing that the dynamic choice of the boundingthud is a good
strategy, we consider additional ideas, giving two vagarfithe “Auto” setting. First,
we analyze whether it is a good idea to compute safe dual lsoahevery node in
the tree (this is done inAuto”), or only at nodes where the unsafe bound would lead
to pruning (“Auto-Limited”). Second, we experiment with interleaving our selection
strategy Auto” with exact LP solves to eliminate special cases where weakts
cause the solver to keep branching in subtrees that woulel begn cut off by the
exact LP bound (Auto-lleaved”). Computational results and additional discussion
about these ideas are given in Seclion 3.6.3.

3.6 Computational Study

In this section, we investigate the performance of our eXdt® framework
employing the different safe dual bounding techniquesudised above: primal-
bound-shift (‘BoundShift”), project-and-shift (ProjectShift”), basis verification
(“VerifyBasis”), and exact LP solutions ExactLP”). We will first look at each
method at the root node, to study their behavior when apptieal single LP, then
examine them within the branch-and-bound algorithm. Atehd, we discuss and
test strategies to automatically switch between the mashjging bounding tech-
nigues.

As explained in Secf_3.3, we have to create an FP-relaxatiche original
problem in Stef]1 of Algl]1 when we want to apply primal-bowhift, whereas
we can use an FP-approximation for the other bounding methidte discussed al-
gorithms were implemented into the branch-and-bound #lgorprovided by the
MIP framework SCIP 1.2.0.8]2)/3,46], using best bound dearith plunging for
node selection and first fractional variable branchingaéiiflitional features of SCIP,
like cutting planes, presolving, and primal heuristicsreva@isabled. For comparison,
we also consider the corresponding inexact version of SC&R the pure branch-
and-bound algorithm with the same node selection strategybaanching rule as
in the exact setting (hexact”). To solve LPs approximately and exactly we call

A Hybrid Branch-and-Bound Approach for Exact Rational Mix@&teger Programming 11

2]
Table 1 Safe dual bounding at root node "é >y
on easy test setRelative difference to £
“ExactLP” dual bound and additional com- £ 50 & dShit N
putation time DB” in geometric mean 2 BOL.m '

9 45 ProjectShift A _
Setting Zero S M L o DBJg] § VerifyBasis ¢
Boundshit 13 26 2 0 16 1.0 40 BxactlP x
ProjectShift 19 31 5 0 2 28 o A“TO"ea"Ed" 3y
VerifyBasis 57 0 0 O O 1.3
ExactLP 57 — — — — 1.4 1 10 100 1000

Auto 20 35 2 0 0 13 No. of times slower than fastest

Auto-Static 21 34 2 0 O 1.3

Auto-lleaved 20 35 2 0 0 13 Figure 1 Comparison of safe dual bounding times

“DB” at root node oreasy test set

CpLEX 12.2 [26] and Q®PT.EX 2.5.5 [7], respectively. Rational computations are
based on the GMP library 4.3/1]24]. In the following, we wéfer to the above ver-
sion numbers of the software packages if not otherwisedstété benchmark runs
were conducted on 2.5 GHz Intel Xeon E5420 CPUs with 4 cordsl&nGB RAM
each. To maintain accurate results only one computationrwastt the same time.
We imposed a time limit of 24 hours and a memory limit of 13 GBeTimings
used to measure computation times are always rounded ugetsemond if they are
smaller. We used the same set-up for the experiments ini&&;tand®.

Our test set contains all instances of theeMB 3.0 [10] and MpLIB 2003 [4]
libraries and from the Mittelmann collectioris [33] that dasolved within 2 hours
by the inexact branch-and-bound version of SCllReXact”). This gives a test suite
of 57 MIP instances (see Tallé 2), which we adisy test setNote that we also
analyzed the performance on the other, harder, instandde dibraries by looking
at the final gap and the number of branch-and-bound nodesssed within a cer-
tain time limit. The conclusions drawn here, on the smallétes were confirmed
by these results. The easy test set will also be used in [Seandf% for studying
different branching rules and checking the accuracy oflegact version of SCIP,
respectively. In Sedt] 6, we will analyze our exact solvenomerically more difficult
instances.

3.6.1 Root Node Performance

We start by evaluating the root node behavior of the dual dmgmethods. Our per-
formance measures are: time overhead and bound qualitypdii@rmance profile,
see[[21], in Fig[ll visualizes the relative overhead timegHe safe dual bounding
methods. For each of them, it plots the number of instanaewliiich the safe dual
bounding step was performed within a given factor of the loinmtime of the fastest
method. Tabl€]1 presents the geometric mean of these adlisafe dual bounding
times in seconds PB”) and states the number of instances for which a certain dual
bound quality was achieved.

12 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

This quality is given by the relative difference between toenputed safe dual
boundc* and the exact LP value™ := max{c'x: x € LP;}. However, we actually
compare the FP-representable upper approximations otabths, as used in Algl 1,
and define the relative difference ds= (c* — ¢**)/max{1, |c*|,|c™*|}. The corre-
sponding columns in Tabld 1 areZéro” difference ford = 0, “S(mall)” difference
for d € (0,107, “M(edium)” difference ford € (10-°,107%], and ‘L (arge)” differ-
ence ford € (1073,). Column ‘o” counts the worst case behavior, i.e., infinite dual
bounds.

We observe that basis verification has a similar behaviokasté.P for the root
node. Still, as we will see in the next section, it gives anriorpment over the exact
LP solver when expensive basis repair steps are requirentkthié exact LP solution
at certain branch-and-bound nodes.

As expected, primal-bound-shift is the fastest method. ¢l@w it produces in-
finite dual bounds on 16 instances in contrast to only twaadr project-and-shift
and no fails for basis verification. This is, the bases olethiby G°LEX are often
dual feasible and even optimal and project-and-shift méetgquirements most of
the time. Still, the finite bounds provided by primal-bowstuft are of very good
quality; most of them fall into the Zero” and “S(mall)” categories. Thus, when
primal-bound-shift works we expect to obtain strong bouadd whenever it fails
we assume basis verification or project-and-shift to beiegiple.

Where basis verification is in most cases only up to 10 timegesithan primal-
bound-shift, project-and-shift is up to 100 times slowethat root node because of
the expensive initial set-up step. In the next section, wiesee that the overhead
incurred by the set-up step of project-and-shift often pdfahen it is applied within
the entire branch-and-bound tree.

3.6.2 Overall Performance

We will now analyze the effect of the dual bound methods orotrezall performance

of the exact MIP solver and compare it with the inexact brageti-bound version of
SCIP (‘Inexact”). Table[3 reports the number of instances that were solvidairw
the imposed limits (Columnstv”), for each setting. On 37 instances all settings suc-
ceeded. For this group, we present in Table 3, the numberathrand-bound nodes
“Nodes”, the solution time Time” in seconds, and the additional time spent in the
safe dual bounding ste@B” in seconds, all in geometric mean for each method.
In addition, Fig[2 gives a performance profile comparingsbkition times. For a
setting where an instance had a timeout, it is reported witinfinite ratio to the
fastest setting. Thus, the intersection points at the tghdler of the graphic reflect
the “slv” column. “Nodes” and “Time” for the individual instances are reported in
Table[2. When a dual bounding method leads to a solving timesheithin 5% of
the fastest run, theTime” entry is put in bold. Details for the inexact run can be
found in Tabldb (fnexact-Firstfrac”). Note that in the next section]riexact” will

be referred to aslfiexact-Firstfrac” in order to emphasis the applied branching rule.

1 The two fails of project-and-shift are on the instaneeath1 andswath2, where the assumptions
for reusing information through the tree are not satisfied.

A Hybrid Branch-and-Bound Approach for Exact Rational Mix@&teger Programming

13

Table 2 Overall performance with first fractional variable branchiand different safe dual bounding
methods oreasy test setDetailed results. Instances missing bounds on variabkesnarked by %”.
Solving times within 5% of the fastest setting are put in bold

BoundShift ProjectShift VerifyBasis ExactLP
Example Nodes Time[s] Nodes Time[s] Nodes Time[s] Nodes Time[s]
30:70:45:0.95:100 >948382 >86400.0 >250119 >86400.0 190 47.6 190 76.9
acc-0 52 25 52 3.3 52 35 52 4.1
acc-1 3224 2693 3224 337.1 3224 393.8 3224 433.0
acc-2 241 39.7 241 45.8 241 51.9 241 56.5
air03 21 11 21 30.1 21 3.7 21 34
air05 94281 3795.1 94269 15474.3 94283 14680.2 94283 19348.7
xbcl 237946 22829.1 >225758>86400.0 >75465>86400.0 >52189 >86400.0
xbell3a >218 056 821>86400.0 362609 564.4 362615 3208.2 362615 3674.9
xbell5 >378835894>86400.0 408929 480.0 408992 3129.9 408992 3671.0
xbienstl 96 695 836.2 42018 296.0 40898 844.8 40898 811.1
x bienst2 1137212 7470.6 447178 3768.6 447177 8908.3 447177 8613.2
xblend2 >87 322 668>86400.0 44988 207.0 44992 471.1 44992 583.5
xdano33 >11926 >86400.0 40 121.2 40 387.9 40 401.8
xdano34 >12 137 >86400.0 193 41538 193 1769.7 193 1864.3
xdano35 >13552 >86400.0 4722 8033.9 4720 43126.0 4718 62674.6
xdemulti >33470968 >86400.0 20133 1156 20133 159.7 20133 215.3
xegout 121777 244 60871 1215 60871 3315 60871 359.6
eilD76 236181 2056.5 236305 14369.9 236305 12219.5 236303 16786.7
enigma 128282 20.9 128058 162.7 128058 449.6 128058 353.1
xflugpl 4922 1.0 3519 1.0 3519 11 3519 1.6
xgen 43265 38.1 34100 397.0 34100 490.0 34100 613.4
xgesa3 >19 356 446 >86400.0 128210 2645.3 128210 3463.2 128210 4696.8
xgesa3o >28503 643 >86400.0 178437 3366.9 178437 4408.4 178437 5860.4
irp 111775 6057.0 116177 33107.1 116177 28149.7 116177 43510.8
xkhb05250 6606 3.0 6606 27.7 6606 39.5 6606 435
1152lav 11934 28.0 11933 332.3 11934 228.0 11934 279.1
Iseu 781943 88.2 795963 730.1 795963 717.0 795963 865.6
xmarksharell >207 456 702>86400.0 >126 148 808>86400.0 >11 372 254 >86400.0 >10 278 529 >86400.0
xmarkshared 7205565 575.2 3826128 1551.6 3826114 231915 3826096 22074.2
mas76 7414402 1804.6 7568599 82284.8 >6281758>86400.0 >3593826 >86400.0
mas284 1709343 1095.2 1894754 72074.8 1709652 34002.6 1709652 47618.4
xmisc03 1561 1.0 1561 4.0 1559 3.9 1559 4.7
xmisc07 368164 369.6 368179 2550.8 367676 3127.2 367676 3564.5
mod008 57762 8.9 59211 283.7 59211 443.4 59211 587.5
mod010 93730 200.2 93732 29113 93730 1972.8 93730 2682.4
xmod011 >1056 416 >86400.0 421651 67906.5 4216556640.5 421651 80443.6
neos5 49585878 13715.0 >28412949>86400.0 26371494 159144.2 26371494 63644.7
neos8 25091 2228.8 24928 8593.2 25091 68162.0 25091 72125.8
xneosll 46712 3331.2 32006 2714.3 30020 2941.3 30020 3059.2
xneos21 830078 5764.9 830716 15662.0 818609 21096.9 818611 23479.2
neos897005 86 339.3 86 706.1 86 373.0 86 392.8
nug08 143 14.6 143 19.0 143 39.0 143 423
nw04 10826 1402.4 10826 16235.5 10826 12127.2 10826 12097.7
p0033 2664 1.0 2670 1.0 2670 11 2670 13
p0201 5746 2.8 5788 19.5 5780 16.1 5780 30.5
xpkl >425303 108>86400.0 1793664 6509.8 1793663 197955 1793656 21516.5
gapl10 246 548.9 246 573.9 246 979.0 246 2120.3
xqnetlo 981487 1421.9 730464 12195.0 731031 16823.3 731031 19706.4
xran13x13 >383471711>86400.0 >26422361>86400.0>28 943888 >86400.0>27 372116 >86400.0
xrentacar 321915 20848.9 165 70.3 156 31.0 156 47.3
rgn 10206 9.5 10249 28.9 10249 94.2 10219 145.2
stein27 4031 1.0 4031 2.8 4031 4.4 4031 4.9
stein45 58333 31.2 58329 97.4 58333 167.0 58333 182.0
xswathl 1890605 48739.2 >1677 398 >86400.0 560996 44176.7 560996 69978.7
xswath2 2707605 65573.1 >1664965>86400.0 >1099065>86400.0 >716964 >86400.0
vpml 7773158 19629 7773158 25645.6 7773158 18726.1 7773158 20405.2

vpm2

27383880 8652.6

>21823235>86400.0>19 267 535>86400.0>17 032 855 >86400.0

14 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

55i w
Table 3 Summary of overall performance 50 '
with first fractional variable branching arasy 45
test set “slv” is number of instances solved, §
“DB” is safe dual bounding time g 40
2 35
Geometric mean % 30
for instances solved [} Inexact
by all settings (37) 'g 25 BoundShift e -
Setting slv. Nodes Time[s] DB[s] £ 20 ProjectShift A 7
Inexact 57 18030 59.4 I VerifyBasis ¢ 7
10 ExactLP * —
BoundShift 43 24994 110.4 13.9 i
ProjectShift 49 18206 369.3 2381 ° Auto-lleaved V. -
VerifyBasis 51 18078 461.8 320.8 S —
ExactLP 51 18076 550.7 419.0 1 10 100 1000
Auto 54 18276 926 175 No. of times slower than fastest
Auto-Static 53 18276 100.2 19.8
Auto-lleaved 55 18226 914 18.4 Figure 2 Comparison of overall solving times
Auto-Limited 48 22035 89.9 12.0 “Time” on easy test seBranching rule is first frac-

tional variable branching

The observations made for the root node carry forward to ppdication in the
branch-and-bound algorithm. Primal-bound-shift lead¢hto fastest node process-
ing. Basis verification has a slightly better performancantisolving LPs exactly.
However, basis verification is often outperformed by propaud-shift.

Concerning the quality of the safe dual bounds, projectshifi, basis verifi-
cation, and exact LP solves perform equally well, which iBented in a similar
(e.g.,bell3a, misc07, andrentacar), or even identical (e.gacc-0, nug08, and
vpm1), number of branch-and-bound nodes, see Table 2. Minor nodet varia-
tions between these exact versions can be explained bytlglijfferent safe dual
bounds leading to different node selection decisions. Tais for example, change
the point in time when nodes can be cut off due to a new primiitiso. It also
explains why weaker dual bounds occasionally result in fogwerall node counts
(e.g., ‘VerifyBasis” can solveneos21 using fewer nodes tharExactLP”). On the
instances, where no bounds on the variables are missingwhere primal-bound-
shift will always work, the node count is often even similar &ll four dual bounding
methods. However, the variation is slightly more significkm primal-bound-shift,
because an FP-relaxation of the original problem is set &iep[1 of Alg[1 instead
of an FP-approximation; relative to the others, this maydpoe different approxi-
mate LP solutions. Sometimes this even leads to fewer nadgsifmal-bound-shift
(e.g.,rgn). Table2 also gives an examplehp05250) for an instance where primal-
bound-shift works even though bounds are missing on soniables; these bounds
were not required in the correction step.

Concerning the overall solution time, we observe that, wéygplicable, primal-
bound-shift computes valid dual bounds with very little dwead. For the instances it
solved we usually experience a slow-down of at most 2, keladi the inexact branch-
and-bound solver. The few large slow-down factors of up todidbe explained by a

A Hybrid Branch-and-Bound Approach for Exact Rational Mix@&teger Programming 15

node increase due to a small number of missing variable lsoamdi by expensive ex-
act LP calls for computing primal bounds. The one extremw-glown factor comes
from rentacar, which is solved by pure enumeration; primal-bound-shiftduces
infinite bounds at all nodes. However, due to its limited agafdility it solved only
43 instances within the imposed limits.

In contrast, project-and-shift solves 49 instances. Thed dound quality was
strong enough such that instances could be solved withauiirieg a significant
increase in the number of nodes processed, relative toBkectl P” strategy. In
the previous section we observed a large overhead requitbe soot node by this
method, making it impractical for computing valid boundsaosingle LP; however,
we observe that amortized over the entire branch-and-btraadthe resulting solu-
tion time is competitive. In mean, it is only 6 times sloweahthe inexact code. In
this fashion, most of the instances were solved within 2@sirtine time used by the
inexact code.

If we compare project-and-shift with basis verificationlfleid and Fig. R) we see
a similar and often better performance for project-andtsétill, on some instances
basis verification works better. For example, it solves twarerinstances of our test
set. We examined different problem characteristics anddahe number of non-
zeros in the constraint matrix to be a good criterion for cilog between project-and-
shift and basis verification. In the automatic dual bound&@n strategies, discussed
below, we prefer project-and-shift as long as the matrixatasost 10,000 non-zeros.

Only one instancesiarksharel_1, could not be solved within the imposed lim-
its by any of the four exact versions. In contrast to the oi&tances, the node count
for markshare1_1 significantly increases with the exact solvers, see Tabbsd.
The reason is that in the course of the branch-and-boun@gses some of the nearly
integral approximate LP solutions do not correspond tagiratieexact LP solutions,
which causes many additional branchings; in particulas,hblds for the final primal
solution found by the inexact solver.

3.6.3 Combinations

We already gave some remarks concerning a strategy thanatitally chooses a
dual bounding method. Another important observation fes furpose is that re-
placing FP-approximations by FP-relaxations does notaffe performance much:
on our test set, running project-and-shift on an FP-relaragave similar results
to running it on an FP-approximation. Therefore, we decittedlways set up an
FP-relaxation in Stefpl 1 of Al§l 1. This way, we are allowed pplg primal-bound-
shift at any node we want to.

The automatic decision process used in thetd” run works as follows. At ev-
ery node, we first test whether primal-bound-shift produedmite bound. If not,
we choose project-and-shift or basis verification dependimthe constraint matrix
as explained above. The root node results for the combinesions are presented
in Table[1 and Fig11; the overall performance results carobed in Tabld B and
Fig.[d. Note that we excludedAtito-Limited” from Table[1 as it never computed
safe finite bounds at the root node and that we only includedb#st auto setting
in the performance profiles as their graphs look very simidatailed results for the

16 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

inexact run and the best auto setting are given in Table Sc<iat in this table for
reasons of clarity, Ihexact” and “Auto-lleaved” are called Inexact-Firstfrac” and
“Exact-Firstfrac”, respectively.

The experiments show thatito” combines the advantages of all dual bounding
methods. We can solve all 43 instances that primal-bouiftissiived as well as 11
additional ones by automatically switching to other dualifing methods at the
nodes. In Seck._3.5, we discussed three possible improvsiferthe automatic dual
bound selection procedure. The first one, to only guess wheifimal-bound-shift
will work, is implemented in the test runAlto-Static”. The guess is static, i.e.,
does not change throughout the tree; we skip primal-botiftit more than 20%
of the problem variables have lower or upper bounds with labs®alue larger than
10°. Comparing both automatic settings shows that it is no jerokib actually test at
each node whether primal-bound-shift works, and it eveddea a slightly improved
performance.

The second idea was to interleave the strategy with exactdll® whenever a
node is very likely to be cut off, i.e., when bounding withex@nces based on the ap-
proximate LP solution, as in floating-point MIP solvers, Wbprune a node, but our
safe bound does notAuto-lleaved”). This strategy avoids situations when branch-
ing is applied repeatedly on nodes that could be safely €ifttokir LPs were solved
exactly, but not if a weaker bound was computed. Examples@des where the ex-
act LP dual bound is equal to the best known primal bound. Sitisition does not
occur on many instances in our test set, but when it doesntbideaving strategy is
helpful. We solve one more instanc&(70:4_5:0_95:100) to optimality without
introducing a significant time overhead on the other insganc

The third extension was to only compute bounds safely atqadere the (un-
safe) bound coming from the approximate dual solution wéedd to cutting off the
node. Looking at the overall behavior for the correspondi@sgrun, ‘Auto-Limited”,
it is not clear whether this is a good idea in general. It sbligver instances than
the other automatic settings and processed more nodes.r@er lirasstances the node
count at timeout was higher than the other methods, i.endbde processing is much
faster on average. However, we cannot draw strong condsisibout the quality of
this approach on harder instances, as in this setting ttet prienal-dual-gap does not
improve steadily. Moreover, one advantage of computing dafl bounds at more
nodes of the branch-and-bound tree is that these safe batmdtherited by a node’s
children. Therefore, if safe bounds were computed preWotiee discovery of an im-
proved primal bound may allow immediate pruning of many oepssed nodes. In
a similar situation, the settingAlito-Limited” may incur extra cost computing safe
bounds at each of these nodes individually.

4 Branching Rules

So far we have introduced a branch-and-bound algorithmdiwirgy MIPs exactly
and developed an advanced strategy for computing the dweddsosafely in this
framework ("Auto-lleaved”, which we refer to asExact-Firstfrac” in the following).

Here we will improve the branching step of the current impdetation. Choosing

A Hybrid Branch-and-Bound Approach for Exact Rational Mix@&teger Programming 17

which variable to branch on is crucial for MIP solvers. Theesxments in[[2] (using
SCIP version 0.90f) showed that replacing the default braumgcrule in SCIP by
other less sophisticated ones increases the running tingefagtor of up to 4. For
comparison, disabling cutting plane separation doublesdfution time.

The inexact version of SCIP supports various branchingsriée tested the fol-
lowing ones in the exact MIP setting, listing them in inciagsorder of their perfor-
mance in the inexact full version of SCIP as evaluated by éntfatrg in [2].

— “Exact-Leastinf”: Least infeasible branching
— “Exact-Firstfrac”: First fractional branching

— “Exact-Mostinf”: Most infeasible branching

— “Exact-Fullstrong”: Full strong branching

— “Exact-Pseudocost”: Pseudocost branching
— “Exact-Reliability”: Reliability branching

Least infeasibleand most infeasible branchingonsider the fractional parts of the
integer variables in the LP solution. By solving the LP reldon of the potential
subproblems for all branching candidatisgl strong branchingchooses the variable
which leads to the best dual bound improvem&steudocost branchinties to es-
timate this improvement by analyzing the dual bound gairigexed by previous
branchingsReliability branchinguses strong branching only on variables with unre-
liable pseudocosts, i.e., with a limited branching histéikst fractional branching
the rule used so far in our implementation, simply deciddsrémch on the first in-
teger variable (w.r.t. variable index) with fractional L&\&ion value. SCIP applies
this scheme when no special branching rule is implementeeas not tested iri [2],
but the performance is in the range of most infeasible arat lafeasible branching.

When selecting the branching variable in the exact MIP sgtéract branching
score calculation is not required to obtain a correct sofutin particular, the strong
branching LPs do not need to be solved exactly. The onlyicéstr is that all other
conclusions like domain reductions, prunable subprobleteddion, and global dual
bound improvement are not safe anymore if the LPs in stroagdiring are only
solved by an inexact LP solver.

For full strong branching, this significantly reduces itdgutial. Tabld’ ¥ sum-
marizes, alongside others, the results for running theaicieRranch-and-bound al-
gorithm of SCIP without additional conclusions from strdsrgnching LP solutions
(“Inexact-Fullstrong™) and with them (1nexact-Fullstrong+"). Supporting this step,
as done in standard floating-point MIP solvers, speeds uprtrech-and-bound pro-
cess by a factor of.8. The node count is reduced by a factor of.350 the positive
impact of full strong branching is not only due to good bréangtdecisions based on
additional LP solves; to a certain extent it is also achidwedrawing further conclu-
sions from these strong branching LPs, which includes bbgifixings, domain re-
ductions and node cutoffs. Regarding the node count impnew, one should keep
in mind that if full strong branching “creates” subproblearsd detects them to be
prunable, they are not counted as branch-and-bound nodésriRing the same ex-
periment with reliability branching, i.e., if strong brdrog is only used in case of
unreliable pseudocosts, we observe that the additionallasions have only a very
small impact (fnexact-Reliablity” versus ‘1nexact-Reliablity+" in Table[4).

18 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

Geometric mean
for instances solved
by all settings (47)

Setting slv. Nodes Time[s] DB[s] Table 4 Summary of performance for different
Exact-Leastinf 49 48211 3043 ga 7 branching rules oeasy test seExact solver uses
Exact-Firstfrac 55 27306 193.2 56.7 Auto-lleaved” for safe dual bounding.slv” is
Exact-Fullstrong 55 3146 168.2 12.9 Number of instances solvedPB” is safe dual
Exact-Mostinf 54 11935 984 345 boundingtime

Exact-Pseudocost 56 6745 53.4 20.0

Exact-Reliability 56 3394 43.8 13.0

Inexact-Firstfrac 57 26686 77.0 —

Inexact-Reliability 57 3458 19.8 —

Inexact-Reliability- 57 2611 215 —
Inexact-Fullstrong 57 2941 104.6 —
Inexact-Fullstrong- 57 789 58.6 —

@ (b)
T T TrrTT T T TrrTT m T T TrrTT
n B)
@ (0]
(8] [8)
c c
8 8
n (%]
£ £
© ©
@ 9]
o) Q
IS £
=} =}
Z zZ
10 Inexact-Reliablity _| 10 - Inexact-Reliablity |
5 L Exact-Reliablity ¢ | 5 | Exact-Reliablity ¢
1 10 100 1 10 100
No. of times slower than fastest No. of times more nodes than solver with fewest

Figure 3 Comparison of best exact solver and inexact counterpagtsy test set Performance profile
for solving time “Time”. b Performance profile for branch-and-bound nodesdes”

For the exact MIP setting, the impact of each tested bragchile is summa-
rized in Tablé¥. The ranking is similar to what was experéhior the floating-point
version of SCIP in[[2]; except for full strong branching whiperforms in our tests
worse than most infeasible branching for the reasons exgida@above. The best re-
sults were obtained with reliability branching.

Tables[# and]5 compare the performance of first fractionatdiiag and re-
liability branching in the inexact branch-and-bound vemsiof SCIP (‘Inexact-
Firstfrac” versus ‘Inexact-Reliablity”) and in the exact version Exact-Firstfrac”
versus Exact-Reliability”). In both settings, the impact of reliability branching is
of the same range. In mean, the running time with this ruleravgs by a factor
of 3.9 for the inexact and .4 for the exact code. In addition, Figl 3 visualizes the
changes in running time and in the number of branch-and-dboodes between the
inexact and the exact code when both apply reliability binarg: The performance
degradation is similar to what was experienced with firsttfoamal branching in the

A Hybrid Branch-and-Bound Approach for Exact Rational Mix@&teger Programming 19

Table 5 Overall performance of exact and inexact solver with firstticnal and reliability branching on
easy test seDetailed results. Exact solver usésuto-lleaved” for safe dual bounding. Instances missing
bounds on variables are marked by™ Solving times within 5% of the fastest setting are put indol

Inexact-Firstfrac Exact-Firstfrac Inexact-Reliability Exact-Reliability
Example Nodes Time[s] Nodes Time[s] Nodes Time[s] Nodes Time[s]
30:70:45:0.95:100 190 14.0 379 101.4 155 75.7 309 153.1
acc-0 52 25 52 25 56 14.1 56 14.2
acc-1 3224 268.7 3224 269.5 51 30.4 51 30.5
acc-2 241 39.6 241 39.6 79 41.7 79 41.8
air03 21 1.0 21 11 16 1.6 16 2.7
air05 94281 3537.6 94281 37924 977 60.3 653 45.7
x bcl 237946 5923.5 237946 18875.4 135378980.8 134702 13895.1
x bell3a 362615 84.5 354952 485.7 59610 13.0 56 305 80.6
x bell5 408992 41.2 417113 373.8 76897 9.2 413159 377.8
x bienstl 40904 91.9 41103 233.9 20426 45.6 12214 64.2
x bienst2 445383 1481.1 447178 3218.2 94 669220.6 96100 682.0
x blend2 44589 8.1 45305 160.5 8425 21 8719 29.0
x dano33 40 322 40 390.3 33 75.7 33 395.5
x dano34 193 126.0 193 1784.9 55 106.9 52 611.9
x dano35 4718 2663.2 4732 42552.8 223 215.7 231 2331.0
x demulti 20133 8.5 20133 89.7 2142 13 2224 115
x egout 60871 7.4 60871 57.6 8337 11 8832 7.4
eilD76 236305 1629.2 236181 2065.5 12884149.0 15087 216.3
enigma 128058 17.3 128282 21.6 465 1.0 465 1.0
x flugpl 3519 1.0 3519 1.0 4203 1.0 4302 1.0
% gen 34100 22.5 34649 73.6 549 1.0 770 5.9
x gesa3 128210 143.0 128210 2753.0 6000 7.4 6049 120.1
x gesa3o 178437 168.4 178437 3562.8 5705 7.1 5999 111.2
irp 116177 2035.1 111775 5886.8 136272888.1 11758 2174.3
x khb05250 6606 19 6606 2.8 2816 1.0 2816 1.3
1152lav 11934 23.4 11934 28.0 921 55 1140 6.6
Iseu 781943 65.3 781943 88.7 34937 3.2 34937 4.4
x marksharell 2404813 160.0 305281790 >86400.0 2282316 157.9 >276279 298 >86400.0
x markshared 3826122 236.9 3826122 662.2 1314927 84.5 1297895 239.0
mas76 7415279 1067.0 7414402 18459 1012655 155.3 59333440.5
mas284 1709652 466.5 1709343 1096.0 3037811.2 29892 22.3
x misc03 1559 1.0 1559 1.0 810 1.0 788 1.0
x misc07 367676 293.9 367676 375.9 27222 25.5 33885 40.1
mod008 57768 5.9 57762 8.8 14743 2.0 14743 3.0
mod010 93730 158.9 93730 200.2 628 4.2 627 4.7
x mod011 421651 7060.8 421653 62387.6 45586796.7 52061 9021.8
neos5 26371297 5899.1 26373009 16627.7 226139%19.9 5527463 3770.4
neos8 25095 2228.8 25091 2567.9 1374371.6 4866 977.0
x neosl1l 30020 1875.8 30034 2460.7 15035 1271.6 10785167.5
x neos21 818609 5528.5 818613 5774.6 10458133.1 9810 132.9
neos897005 86 334.9 86 333.1 11 3595 11 350.9
nug08 143 139 143 14.6 11 234 11 234
nw04 10826 1031.7 10826 14115 766 213.6 766 260.2
p0033 2664 1.0 2664 1.0 1388 1.0 1388 1.0
p0201 5746 2.3 5746 2.8 379 1.0 379 1.0
x pkl 1793663 329.8 1793663 5577.8 609529126.5 609529 1965.8
gapl10 246 538.8 246 548.1 13 143.2 13 143.8
x gnetlo 731031 812.2 981086 1419.5 1715 3.9 1467 5.0
x ran13x13 27604305 5188.0-26208179 >86400.0 795936 146.7 795961 2538.3
x rentacar 155 6.6 169 30.5 61 8.9 61 19.4
rgn 9877 1.3 10202 115 4019 1.0 5103 125
stein27 4031 1.0 4031 1.0 4345 1.0 4345 1.0
stein45 58333 28.6 58333 31.2 54972 27.2 54961 29.9
x swathl 560996 1874.1 560996 18367.0 17696 70.0 17694 572.0
x swath2 1156144 3955.1 1146891 32248.0 2078982.4 20324 497.7
vpml 7773158 1446.2 7773158 1983.7 324354 60.5 341834 86.4

vpm2 27384657 6736.8 27383880 87535 955054234.7 959465 307.8

20 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

previous section (see Figl 2 and Table 3). In geometric mi@nexact version is
only 2.2 times slower than the inexact one. However, with religblliranching the
branch-and-bound tree diverges more between the inexdcthanexact solver; in
Table[® we observe that the node count differs more withbiiiy branching than
with first fractional branching. In the extreme, both sofveeed the same number of
branch-and-bound nodes with first fractional branchinglenmaving different node
counts with reliability branching (e.gair05, egout, andvpm1). The reason is that
the sophisticated strategy of reliability branching is emsensitive to small changes,
for example, in the dual bounds and the number of LP iterat{seel[2] for details
on the reliability branching algorithm). To summarize, theact code benefits from
better branching rules in the same way as the inexact one.

In addition to standard branching strategies, one that atmsaking the fast safe
dual bounding method primal-bound-shift (see Jecl. 3.3kwuwore often would be
interesting. If a missing bound constraint is necessargpair the approximate dual
solution by primal-bound-shift, the method will fail and vapply one of the more
expensive dual bounding methods at this branch-and-booae. lBranching on such
variables would introduce a missing bound in one of the exkatibproblems and this
way could increase the chance of primal-bound-shift to htiegble in this subtree.
On the easy test set, 29 of the 57 instances contain varialitlesnfinite lower or
upper bounds. They are marked byxd'in Table[8. However, examining the problem
characteristics we noticed that all missing bounds wereoottiruous variables only.
Thatis, we are not able to introduce the required boundsitfirdranching decisions;
branching is only performed on integer variables. On nucadlyi difficult instances,
considered in the next section, we observed a similar gitain Table[11L, 28 out
of 50 instances had infinite bounds, but only in a few casesitiviolved integer
variables §fn6_load, dfn6fp_load, dfn6f_cost, anddfn6fp_cost).

5 How Accurate are Current MIP Solvers?

On the easy test set, with reliability branching, we are a&blsolve all but one in-
stances exactlymbrkshare1_1). Thus, having exact objective function values for
nearly all instances at hand, we now want to analyze how atetie floating-point
version of SCIP is. In the inexact setting, errors in the bhaand-bound process can
be introduced at several different places: while readirtpéninstance, in the bound-
ing step and in the feasibility test (because of the FP+aitic and the consequent
usage of tolerances), and because of inaccurate LP sduee([29,42] for further
discussion regarding possible sources and types of ehatrstight be encountered.
We considered our best exact branch-and-bound versisadt-Reliability”) and
its inexact counterpart [fiexact-Reliablity”) and present in Tablgl 6 theDifference”
between the objective function values returned by the eaadt the inexact run
(“Exact Oijal"éand “Approx Objval”).

2 Of course, even with a very carful implementation and extensisting, a certain risk of an imple-
mentation error remains (also in the underlying exact LP sawel the software package for rational
arithmetic). So, the exact objective values reported hemeeasith no warranty.

A Hybrid Branch-and-Bound Approach for Exact Rational Mix@&teger Programming 21

Table 6: Comparison of exact and approximate objective function valuea®ntest setf absolute
difference (computed exactly) betweeliact Objval” and “Approx Objval” is non-zero, closest FP

number is displayed inDifference”

Exact-Reliablity Inexact-Reliablity

Example Exact Objval Approx Objval Difference

30:70:45:0.95:100 3 3.00000000000000e+00

acc-0 0 0.00000000000000e+00

acc-1 0 0.00000000000000e+00

acc-2 0 0.00000000000000e+00

air03 340160 3.40160000000000e+05

air05 26374 2.63740000000000e+04

bcl 50977910556167604095053 3.33836254764631e+00 5.45491510972293e-12
7410251567595449186579772827333490018700226416988Q147642965436704233842514333106675453237057/
152703338324330694722974844929002695674318892338682738470597742625044704785542138790625268084
4296971834035564360269

bell3a 219607579/250 8.78430316000000e+05

bell5 28020020286/3125 8.96640649152000e+06

bienstl 187/4 4.67500000000000e+01

bienst2 273/5 5.46000000000000e+01

blend2 1519797/200000 7.59898500000000e+00

dano33 746062958774188756 5.76344633030206e+02 4.37618286123444e-10
3956300536027200414862630721796173074045568744680680101226321601863734721821047
4017234829888981007468518470539192725351970834286979873457472433164600157491/
129447368122628357853850055681478138577407775124887263454074579480506705971398
104275213741872821240440106741751055704244192508882471721899344848409549795094
271326128611000

dano34 67206255269530220 5.76435224707201e+02 2.69535256699552e-12
773970132189129662361303038951607535226959407558848904055135781966795786095437838835954130036
28695293315034375753012466846438351173000738585896941190247919718355871398487185789578939173/
11658943171570955876486228925173492000660419: 66450095118926 747701145341091016
03637641399852024834140764994428695930329 1299552797117998407603713373282618672734
72511761250000

dano35 1743173141933503 5.76924915956559e+02 2.75504852651767e-13
230944289922574375643749932000407736302001575500: 7573580822524418821770737899385131876111
51429598921349829858998392124701737441973395730885394144600130554163619739904828816505537623/
302149048120632848499175091083632291214981700379385132122206836805081257536132318028700350141
643614602711766985373021305922017474973795917638968660696668326008580144081308486528857679334
267391476000

demulti 188182 1.88182000000000e+05

egout 5681007/10000 5.68100700000000e+02

eilD76 885411847/1000000 8.85411846999999e+02 1.000000000e-12

enigma 0 0.00000000000000e+00

flugpl 1201500 1.20150000000000e+06

gen 56156681359/500000 1.12313362718000e+05

gesa3 125881983070952346961091799641922753/2.79910426483827e+07 1.39669000058314e-08
4497223795921220170000000000

gesa3o 125881983070952346961091799641922753/2.79910426483827e+07 1.39669000058314e-08
4497223795921220170000000000

irp 3039873209/250000 1.21594928360000e+04

khb05250 106940226 1.06940226000000e+08

1152lav 4722 4.72200000000000e+03

Iseu 1120 1.12000000000000e+03

marksharell — 0.00000000000000e+00 —

markshared 1 9.99999999999993e-01 7.00000000000000e-15

mas76 20002527071/500000 4.00050541420000e+04

mas284 457028618411/5000000 9.14057236822000e+04

misc03 3360 3.36000000000000e+03

misc07 2810 2.81000000000000e+03

mod008 307 3.07000000000000e+02

mod010 6548 6.54800000000001e+03 1.00000000000000e-11

mod011 2101835 -5.45585350142273e+07 3.29093662039378e-08
0608697656118067071570577001720788909712055974549288113515965418257/
3852440429937618535219949506471783320809449783346262203300000000000

neos5 15 1.50000000000000e+01

neos8 -3719 -3.71900000000000e+03

neosll 9 9.00000000000000e+00

22 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

Table 6: continued

Exact-Reliablity Inexact-Reliablity
Example Exact Objval Approx Objval Difference
neos21 7 7.00000000000000e+00
neos897005 14 1.40000000000000e+01
nug08 214 2.14000000000000e+02
nw04 16862 1.68620000000000e+04
p0033 3089 3.08900000000000e+03
p0201 7615 7.61500000000000e+03
pkl 11 1.10000000000000e+01
gap10 340 3.39999999999999e+02 1.00000000000000e-12
gnetlo 16029692681/1000000 1.60296926810000e+04
ran13x13 3252 3.25200000000000e+03
rentacar 61302410414087064221219/20193989222400003.03567609841487e+07 5.06500607490391e-08
rgn 2054999981/25000000 8.21999992400000e+01
stein27 18 1.80000000000000e+01
stein45 30 3.00000000000000e+01
swathl 1516285183/4000000 3.79071295750000e+02
swath2 7703993859/20000000 3.85199692950000e+02
vpml 20 2.00000000000000e+01
vpm2 55/4 1.37500000000000e+01

We mark cases where an instance was not solved to optimatityrvthe limits
(see Tablglb) by a*" and also use“" in the “Difference” column then. Otherwise,
the exact absolute difference is computed. If it is non-z#ére closest FP-number is
displayed.

For the majority of the instances, the objective values deatical. On 12 in-
stances, the inexact branch-and-bound solver reportigékat differ from the ex-
act objective values, but the differences are not significéhis indicates that no
dramatic mistakes were made by the FP branch-and-boundrs&ut this is not
surprising as the instances come from standard MIP litsafae which numerical
troubles are very seldom.

Only marksharel_1, which we were not able to solve, is numerically less sta-
ble. As explained in Sedi.3.6.2, in contrast to the othetaimses, the node count
for marksharel_1 significantly increased with the exact solver. The reasahas
in the course of the branch-and-bound process some of thily metegral approxi-
mate LP solutions do not correspond to integral exact LRisolsi (best primal bound
found within the imposed limits is 23898953428.), which causes additional branch-
ings. On all other easy instances, this did not happen.

Notice that this experiment also shows that all studies eretisy test set were
fair. We did not compare solution times for instances wheeeihexact code ter-
minates quickly, but computes a result that is far from adrr&he picture is more
diverse on numerically more difficult instances as considén the next section.

6 Numerically Difficult MIP Instances

In the last section, we showed that the exact branch-andeboade was able to solve
the problems in our easy test set within a reasonable fattbedime required by the

inexact branch-and-bound solver. Here we will analyze éisavior on numerically

difficult instances.

A Hybrid Branch-and-Bound Approach for Exact Rational Mix@&teger Programming 23

6.1 Selecting the Test Set

Before going any further we must ask: what does it mean for B dlbenumeri-
cally difficult? It would be nice if there were some clear, well defined prigpethat
would predict which instances could be solved easily usiogtithg-point computa-
tion, and which instances would succumb to numerical issutg solution process.
Unfortunately, this question does not have a simple answer.

We first focus our attention to linear programming where a leinof authors
have studied the related idea of condition measures [1361.89.40]. LPs are con-
sideredill-conditioned if small modifications in the problem data can have a large
effect on the solution; in particular, if they lead to cham@e the optimal objective
value, changes in primal or dual feasibility, or changeshim structure of the final
LP basis. Connections have been made between LP conditiasumes and the com-
plexity of solving them[[14, 15,41, 44]; ill-conditioned ERmay require higher pre-
cision arithmetic or more interior point iterations. Congtional studies have also
investigated these idegs [12] 37]. However, LP conditiominers are not always a
good predictor that LP instances will or will not be solvablefloating-point soft-
ware packages. For example, inl[37], 71% of theThiB LP instanced [9,23] were
observed to have infinite condition measures, 19% afteppreessing. However,
in [27], double-precision LP solvers were used to identifg bptimal basis for all
NETLIB LP instances; this could be seen as an indication that, iresomactical
sense, these instances are not numerically difficult. Gselg one could easily con-
struct well conditioned LPs that are unsolvable by doubkeision based software
by, e.g., scaling the data to contain entries too large otldmbe represented by a
double-precision number.

Turning our attention back to MIPs, to the best of our knogkedo study has
defined or discussed the notion of a condition measure. Whéatsmg from con-
tinuous to discrete variables arbitrarily small changebédata defining an instance
is more likely to alter the feasibility or optimality. As tmature of our study is com-
putational we will prefer a test set that is numerically difft in the practical sense
— meaning it is composed of instances on which software pgskavailable today
compute incorrect or conflicting results or exhibit evidewn€incorrect computations
within the solution process.

Starting from a total of over 600 instances taken from theabis test set of
the MipLIB 2010 library [29], the ©rR@L MIP collection [32,31], instances that
were submitted to the NEOS server][18, 34] to be solved exantt instances from
projects at ZIB, we collected a test suite of 50 instanceschviwve will call the
numerically difficult test sefTable[T states the origin and a short description of the
chosen instances. Furthermore, Table 8 shows the statisticwere relevant for the
selection of these instances; met criteria are put in bold.

We now describe the empirically motivated criteria which ée used to clas-
sify instances as numerically difficult. They are baseddiyeon the behavior of
floating-point MIP solvers applied to the instances.

One attempt to identify numerical issues during the solyiragess was recently,
with version 12.2, introduced in ELEX. It considers the condition number of the
optimal LP bases at the branch-and-bound nodes and claghifie astable suspi-

24

William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

Table 7 Descriptions and references for numerically difficult test s

Example

Originator and description

alulQl, alulQ5, alu1Q7,
alu1Q8, alulQ9, alul6l,
alul62, alul6s, alu1Q7,
alul68, alul69

bernd2

cnr.dualmipl,
cnr.heurmipl,
ilp_sh5, ilpshé,
prodplanl, prodplan2,
opti-157.0, p4, x01

dfné_load, dfn6fpload,
dfn6f_cost, dfn6fpcost

neumshcherb

norm-aim

npmv07, ns2017839,
ran14x18.disj-8, sp98ir

T. Achterberg[[1.2]

Arithmetic logical unit (ALU) property checking instancdseasible so-
lutions correspond to counter-examples of given properiigsasibility

verifies correctness of property. The first number in eactaimts name
is the number of input bits in the ALU. The second number indisdhe
property being checked. Properties 1-8 are valid, and ptypés invalid.

T. Koch

Wideband Code Division Multiple Access (W-CDMA) base siatassign-
ment problem.

Zuse Institute Berlin (ZIB)

Instances from research projects at ZIB.

T. Koch [11]
Access planning for German National Research and Educagbmadyk.

A. Neumaier, O. Shcherbind [35]
Small numerically difficult instance given as examplelin/[35].
Pseudo-Boolean Competition 2010 [38]
Short fornormalized-aim-200-1_6-yes1-3.
Instance from pseudo-Boolean competition at the SAT 2016ecence.
MipLiB 2010 [29]
Instances from the MLiB 2010 library.

neos-1053591, neos-106264CorR@L [31]
neos-1367061, neos-16039686)stances from the GR@L test library.

neos-522351, neos-619167,
neos-799716, neos-839838

ns1629327, ns1770598,
ns1859355, ns1866531,
ns1900685, ns1925218,
ns2080781

tkat3K, tkat3T, tkat3TV,
tkatTV5

H. Mittelmann [18,34]
Instances submitted to @®T_EX [7] through the NEOS server.

T. Koch [28]
Facility location problems from Telekom Austria.

cious unstable andill-posed (see [29] for more details). Even though this measure
is highly dependent on the solution process and may not leeigeintify numeri-
cally unstable instances, we found it reasonable to taks dree criterion for the

selection of our test set. In Takilé 8, the first block of colspips,sp”,

and Pillpo »

Punstab

states the relative frequency of the sampled bad conditiomber cat-

egories. We useglet mip strategy kappastats 2, i.e., computed LP condition
numbers for every subproblem. FurthermoreLEx weights these three groups into
one estimate for the probability of numerical difficultiésis calledattention level
(column “AL"). Since the estimate depends on the solution process, mhewsolver
with five different parameter settings: default settingesplving disabled, cuts dis-
abled, primal heuristics disabled, and all three companédisabled. The statistics in

A Hybrid Branch-and-Bound Approach for Exact Rational Mix@&teger Programming

25

Table 8 Selection criteria for numerically difficult test set. Boldmbers indicate that criterion is met

Example Rusp Punstab Pilpo AL Icoef ths Tobj db pb
alulQl 0.373 0.006 0.003 0.008 1e+06 1le+06 1 Infeas 8.3999994e+01
alu1as 0.536 0.582 0.001 0.179 le+06 1le+06 1 Infeas Infeas
alu1Q7 0.444 0.216 0.021 0.069 le+06 1e+06 19.1000004e+01 8.3000006e+01
alulQ8 0.085 0.064 0.003 0.020 2.1e+06 2.1e+06 18.7000000e+01 8.2999996e+01
alu1Q9 0.032 0.032 0.023 0.033 2.1e+06 2.le+06 19.3000000e+01 8.2999996e+01
alul6l 0.483 0.206 0.022 0.065 4.3e+09 4.3e+09 1 Infeas 8.0000000e+01
alul6?2 0.614 0.971 0.017 0.294 4.3e+09 4.3e+09 1 Infeas Infeas
alulés 0.040 1.000 0.033 0.300 4.3e+09 4.3e+09 1 Infeas Infeas
alule7 0.932 0.176 0.048 0.071 4.3e+09 4.3e+09 19.9000000e+01 7.2000030e+01
alul6s8 0.074 0.007 0.019 0.019 8.6e+09 8.6e+09 18.6000000e+01 7.2000030e+01
alul69 0.095 0.024 0.031 0.032 8.6e+09 8.6e+09 11.2100000e+02 7.2000008e+01
bernd2 0.889 0.121 0.003 0.045 1.8e+10 5e+08 2e+04 1.1309147e+05 1.0858925e+05
cnrdualmipl 4.3e+06 2.1e+09 2e+11 5.9803578e+07 5.9803578e+07
cnr-heurmipl 4.3e+06 2.1e+092.4e+13 5.9803579e+07 5.9803579e+07
dfn6_load 0.016 0.000 5.8e+06 le+04 4 4.3728774e+00 3.7438423e+00
dfn6fp_load 0.113 0.001 0.001 8.6e+06 1le+04 1.7e+067.6974176e+00 6.9360751e+00
dfn6f_cost 0.062 0.012 0.004 8.6e+06 1e+04 41.0000000e+03 9.0000000e+02
dfn6fp_cost 0.070 0.002 0.001 8.6e+06 le+04 1.7e+08.0000131e+03 9.0001138e+02
ilp_sh5 0.021 0.050 0.015 1.8e+10 1.7e+06 4 1.4280000e+03 1.4280000e+03
ilp_sh6é 0.090 0.047 0.014 1.8e+10 1.7e+06 4 1.4120000e+03 1.4120000e+03
neumshcherb 0.500 0.005 17 4.6 1 Infeas -2.0000000e+00
norm-aim 0.282 0.624 0.064 0.246 2 1 1 Infeas 1.7700000e+02
npmv07 0.378 1.000 0.300 2.3e+08 7.7e+04 1 1.0480981e+11 1.0480981e+11
neos-1053591 0.650 0.007 le+10 1le+05 1 -3.6629144e+03 -3.6629144e+03
neos-1062641 0.542 0.005 3.6e+07 8.9e+05 1 2.4431301e-10 -7.8671292e-11
neos-1367061 0.940 0.009 8e+03 1 3.3e+02 3.1320456e+07 3.1320456e+07
neos-1603965 0.021 0.000 2e+11 1.5e+06 1.1e+04 6.1947841e+08 6.1924437e+08
neos-522351 0.917 0.009 5e+05 4e+03 1.6e+02 1.7891077e+04 1.7891077e+04
neos-619167 0.907 0.018 0.005 0.019 1.9e+07 1le+06 12.1415929e+00 1.6648936e+00
neos-799716 1.000 0.939 0.282 1.7e+11 1le+08 1 Infeas 4.9326707e+06
neos-839838 0.022 0.000 1le+08 1 3.1e+061.0667738e+08 1.0665717e+08
ns1629327 13 8.9 2.7e+11 -1.0980319e+01 -1.0980319e+01
ns1770598 0.105 0.005 0.001 0.0038.le+13 8.2e+15 1 2.5968209e+04 2.5968209e+04
ns1859355 0.048 0.000 1.5e+07 1.3e+04 18.0467056e+00 7.9945700e+00
ns1866531 0.500 0.005 8.2e+07 9e+04 1 9.0000001e+00 8.9335230e-07
ns1900685 0.912 0.009 3.2e+06 1.2e+12 1.4e+02 3.4530000e+03 1.1590000e+03
ns1925218 0.083 0.883 0.117 0.382 1le+09 1e+09 1 Infeas 4.6156758e+06
ns2080781 0.118 0.059 0.019 2.7e+11 1e+06 1 1.6029844e-13 0.0000000e+00
ns2017839 1.000 0.094 0.037 1.1e+08 1e+07 8.3e+06 Infeas 7.7030495e+13
opti_157.0 0.167 0.167 le+21 2e+21 1 Infeas 8.5931330e+03

p4 0.301 0.003 1.4e+06 3.5e+0@.9e+12 2.0226653e+14 2.0226653e+14
x01 1.000 0.010 2.1e+06 2.2e+06 1.2e+08 2.1178284e+10 2.1476524e+10
prodplanl 1.000 1.000 0.300 4.6e+06 5.6e+12 1.1e+05 -5.4578562e+07 -5.4578562e+07
prodplan2 1.000 0.010 4.2e+04 5.9e+10 1.7 -2.3939943e+05 -2.3939943e+05
ran14x18.disj-8 0.000 1.2e+10 45 2.6e+02 3.7610000e+03 3.7120000e+03
sp98ir 5.7e+02 3.6e+03 93 2.1996003e+08 2.1967679e+08
tkat3K 0.904 0.009 8e+04 1.5e+05 1.2e+05 4.7728181e+06 4.7728181e+06
tkat3T 0.949 0.001 0.010 8e+04 1.5e+05 2.3e+05 5.5648918e+06 5.5648918e+06
tkat3TV 0.920 0.001 0.009 8e+04 1.5e+05 2.3e+05 8.3883987e+06 8.3883987e+06
tkatTV5 0.975 0.010 1.6e+05 1.2e+05 7.8e+05 2.8117644e+07 2.8117644e+07

26 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

Table[8 refer to the worst (largest) values observed amomguhs (time limit of 2
hours), and we display only non-zero values.

Our second indicator of numerical issues is, whether thetidata contain values
of very different magnitude. The columng. ", “ry ", and “robj" state the ratio
between the largest and the smallest absolute non-zeroietiie coefficient matrix,
the right hand side vector, and the objective function vecéspectively. Largest and
smallest values are taken from the log files 6fLEX.

As a third point, we checked for inconsistent results retdrioy different
MIP solvers on various parameter settings. We run SCIP 202 G°LEX (with
mipkappa computation, and without) and in both solvers, applied the $iettings
mentioned above. Columndl” and “pb” report the maximum dual bound and the
minimum primal bound returned at termination among all ruvstice that all in-
stances have minimization form. In case of infeasibilitiedéon, we work with pri-
mal and dual bounds of #®and display tnfeas” in Table[8. We selected instances
that meet one of the following criteria

— Unstable LPs: AL” > 0.1, “psysp” > 0.5, “Pynstab” > 03, O “pijjno” > 0.1

illpo”

— Wide input data rangerg " > 10, “r » > 10, or “robj” = 10t0

— Inconsistent resultg"db” —“pb”)/ max{|“db”|,|“pb”|,1} > 107°.

6.2 Computational Study

We will discuss three topics on the numerically difficulttBrsces: the error-proneness
of the inexact solver, the performance of the exact solvetthe relevance of branch-
ing decisions based on exact LP solutions. The last poihbeiaddressed in the next
section on possible improvements.

For this purpose, we evaluated the results and performahoarobest exact
branch-and-bound version of SCIPEKact-Reliability” with reliability branching
and dual bounding strategy: automatic selection intedédy exact LP calls) and its
inexact counterpart (fexact-Reliablity”). The set-up of the experiment is the same
as for the easy test set, described in Ject. 3.6; in pantjoutause a time limit of
24 hours and a memory limit of 13 GB. Note that during the tessslection, very
hard instances for which both solvers failed to terminatibwithe imposed limits
were removed.

First, we check how often the inexact run produced wronglteslike Table 6
for the easy instances, Taljle 9 presents the absoliféefence” between the ob-
jective function values returned by the exact and the inexat (“Exact Objval”
and “Approx Objval”). Sincebernd2 andns1770598 have very long exact objective
function values, we only print the number of digits of theimmerators and denom-
inators. Again, we mark cases where a solver did not termiatbptimality within
the limits (see Table11 discussed later) by-a™ For non-zero values, we report in
column ‘Difference” the closest FP-number.

We can compare the results for 26 instances, on the othexfdhe solvers did
not terminate within the limits. For half of them, the retednobjective values were

A Hybrid Branch-and-Bound Approach for Exact Rational Mix@&teger Programming 27

different, where for five instancealu10_1, bernd2, dfn6fp_cost, ns1866531,
andopti_157_0) this difference was significant. Furthermore, it is knowattex-
cept foralu10_9 andalu16_9 all of thealu instances in our test set are infeasible,
meaning the inexact run fails on at least five more instances.

Table 9: Comparison of exact and approximate objective function valuesragrically difficult test set
If absolute difference (computed exactly) betwe&ndct Objval” and “Approx Objval” is non-zero,
closest FP number is displayed iDifference”

Exact-Reliablity Inexact-Reliablity
Example Exact Objval Approx Objval Difference
alu101 Infeas ~ 8.50000000000000e+01 0
alulQ5 Infeas Infeas
alulQ7 — 8.30000047702360e+01 —
alulQ8 — 8.40000019080471e+01 —
alu1Q9 — 8.40000019077561e+01 —
alul6l — 9.10000000000000e+01 —
alule2 Infeas Infeas
alulgs Infeas — —
alule7 — 7.90000000000000e+01 —
alulés — 7.90000000008731e+01 —
alul69 — 7.90000000000000e+01 —
bernd2 (int of 2147 digits)/(int of 2141 digits) ~ 1.120906031786605 1.00086584527058e+03
cnrdualmipl 119607156586463627/2000000000 — —
cnr-heurmipl — 5.98035789799395e+07 —
dfn6_load — 3.74384225843200e+00 —
dfn6fp_load — 6.93593657927233e+00 —
dfnéf_cost 1000 1.00000000000000e+03
dfnéfp_cost 5000065343183/5000000000 1.00001080799110e+03 2.26064550000000e-03
ilp_sh5 1428 1.42800000000000e+03
ilp_sh6 1412 1.41200000000277e+03 2.77000000000000e-09
neumshcherb -2 -2.00000000186265e+00 1.86265000000000e-09
norm-aim 200 2.00000000000000e+02
npmv07 — 1.04809812554514e+11 —
neos-1053591 -4578643/1250 -3.66291440000000e+03
neos-1062641 — 0.00000000000000e+00 —
neos-1367061 783011406612429/25000000 3.13204562644972e+07 4.00000000000000e-08
neos-1603965 — 6.19244367662955e+08 —
neos-522351 4472769279/250000 1.78910771160000e+04
neos-619167 — 1.67926829831853e+00 —
neos-799716 — 4.93267066169203e+06 —
neos-839838 2133143427299/20000 1.06657171364950e+08
ns1629327 -109803191329325384099/100000000000000000001.09803191329325e+01 3.84099000000000e-14
ns1770598 (int of 1190 digits)/(int of 1184 digits) =~ 2.59682882858e+04 3.20057499299592e-08
ns1859355 17656324 8.04670564893240e+00 9.28049536228506e-12
31377288175449653546407969687722479632830302222638674193433465271403875/
219423017121743547661843936752008732791214806786823802745213826986332082
011659
ns1866531 10 9.50234212056133e-07 9.99999904976579e+00
ns1900685 3453 3.45300000000000e+03
ns1925218 — 6.86828679741287e+06 —
ns2080781 — 0.00000000000000e+00 —
ns2017839 — 7.70304949632221e+13 —
opti_157.0 Infeas 8.59313300000015e+03 3
p4 Infeas — —
x01 Infeas — —
prodplanl — -5.45785617339179e+07 —
prodplan2 -185497557187228867655290921686042318951+2.39399435141407e+05 2.99563575827916e-10
774845425502612687685652190000000
ran14x18.disj-8 — 3.71199999853663e+03 —
sp98ir 1098383952/5 2.19676790400000e+08
tkat3K 47728181/10 4.77281810000000e+06
tkat3T 22259567/4 5.56489175000000e+06
tkat3TV 167767973/20 8.38839864999998e+06 2.000000000@008

tkatTV5 1124705769/40 2.81176442250000e+07

28 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

Geometric mean Table 10 Summary of performance for best exact
for instances solved solver and inexact counterpart aomerically dif-
by all settings (26) ficult test set“slv” is number of instances solved,
Setting slv Nodes Time[s] DBJs] DB” is safe dual bounding time
Inexact-Reliability 46 5650 93.7 —

Exact-Reliability 30 10499 368.4 58.8

(@ (b)
507 \\\HH‘ T T T TTTT \\7 507 \\\HH‘ \\\\\H‘ \\7
45 =
n (%]
3 40@j 1 8
c c
< 35 - -1 8
[92] 1)
£ a0 £
o o
gl 3
£ 2T E
z 15 z
10 4 Inexact-Reliablity — 10 Inexact-Reliablity —
5 Exact-Reliablity ¢ - 5 Exact-Reliablity ¢ -
1 10 100 1 10 100
No. of times slower than fastest No. of times more nodes than solver with fewest

Figure 4 Comparison of best exact solver and inexact counterpariusnerically difficult test seta
Performance profile for overall solving timd fme”. b Performance profile for branch-and-bound nodes
“Nodes”

Now we evaluate the performance. On the easy test set, tlat salwer was
only moderately slower than the inexact one and could sdlvbua one instance
within the limits. In geometric mean, the solution time diaah where most instances
were only up to 20 times slower and the largest slowdown fags 40. The node
count in geometric mean was similar in the exact and the ttdxanch-and-bound
runs. Here, the picture is more diverse. Tdble 11 preseatsdlution times and the
node count for the individual instances; they are split fiolar subsets depending on
the accuracies of the inexact solver (zero, small, sigmifi¢a 10-°), or unknown
“Difference” in Table[3). The results are summarized in Tdblé 10 and Vlimein
Fig.[4. They have the same layout as the tables and plots tfE&c

First of all, on 9 instances, we actually benefit from takiagecof the numerics.
There were 4 instancealu16_5, cnr_dual mip1, p4, andx01) that were solved
within the limits by the exact solver, but not by the inexaoepand 5 instances
(norm-aim, neos-839838, sp98ir, tkat3T, andtkat3TV) that were solved by both
versions, but where the exact solver was faster; the spetat$avary between 1.5
and 15.

We now analyze the other 41 instances, where the exact cattansr than the
inexact one. Notice that, by definition of the numericallffidult test set (it contains
only instances which one of the solvers can process withgrirttposed limits), the
inexact code terminates on all these instances. We firstredbdleat the exact code
can solve only 21 instances, a much smaller portion than eraisy test set. Here,

A Hybrid Branch-and-Bound Approach for Exact Rational Mix@&teger Programming 29

Table 11 Overall performance of best exact solver and inexact copateonnumerically difficult test
set Detailed results, grouped by accuracy of the inexact sqero, small, significant, or unknown
“Difference” in Table[3). “NotiInt” plus “NotInt-Inf” (* NotInfeas”) counts nodes where LP relaxation
was wrongly claimed integral (infeasible) by floating-polifit solver; italic font if all integrality claims
were wrong. Instances missing bounds on variables are magkéd'b Solving times within 5% of the
fastest setting are put in bold

Inexact-Reliability Exact-Reliability
Example Nodes Time[s] Nodes Time[s] Notint NotInt-Inf NotInfeas
alu1Q5 4077 3.9 74183 95.7
alul62 59 1.0 63 5.1 4
x dfn6f_cost 23771 6452.8 320840 56063.3 384 49
X ilp_sh5 124213 3433.8 126235 21547.7
norm-aim 169635 164.5 5863 15.9 2
% neos-1053591 88969 117.4 241386 8211.0 2572 1230
% neos-522351 20483 35.7 26369 420.6
X neos-839838 71119 7235.0 40867 4365.5
x ns1900685 29336 4.3 28438 8.2
sp9s8ir 78788 6615.5 12385 410.9
tkat3K 3469 16.1 6131 445
tkat3T 13490 108.4 9220 83.5
tkatTV5 10113175 29585.9 5947 286 298455
X ilp_sh6 16083 594.6 15513 1864.4
neumshcherb 5 1.0 5 1.0
X Neos-1367061 267 1065.7 745 5356.3
% Ns1629327 26138 26.5 57051 2772.2 273
ns1770598 11519 36.9 7956 53.9
x ns1859355 30396 65.3 32936 221.3 298 87
x prodplan2 4 1.0 31 26.0
tkat3TV 16796 147.9 7689 72.7
alu1Q1l 5859 5.9 1489343 1930.5 5189
x bernd2 13405 10049.0 23488 81808.3 178 75
x dfnéfp_cost 16921 2022.6 71039 9056.4 53 48
ns1866531 1 1.0 170 13.7 91 64
x 0opti-157.0 119 4.1 119 8.2 1
alu1Q7 2959 25 >87559918 >86400.0 >1227 >520
alu108 40372 21.1 >75755192 >86400.0 =941 >441
alu109 94144 453 >74933946 >86400.0 >444 >428
alul6l 2783 4.4 >41441026 >86400.0 >42 807 >496233 >246605
alules >171786359 >86400.0 101727 161.9 1059
alul67 3469 3.6 >4330018 >86400.0 =>294094 >258965 >2348
alul68 1415760 980.4 >98010563 >86400.0 >7310 >717 >2687
alul69 829156 432.6 >16800387 >86400.0 =>410640 >36361 >490
x cnr.dualmipl >1612128 >86400.0 82332 11523.5
x cnr.heurmipl 321303 38523.2 >935604 >86400.0
x dfn6_load 2846 37.1 >136256 >86400.0 >66286 >11624
x dfn6fp_load 44538 8211.8 >1671 >86400.0
X npmvO07 46 26.2 >53 >86400.0 >19
X neos-1062641 100 1.0 >598633 >86400.0 >299 253
X Neos-1603965 1 61.7 >1872 >86400.0 >1872
% Neos-619167 246133 7909.1 >784177 >86400.0 >38242
% Neos-799716 115 74.6 >6013 >86400.0 >25 >3
x ns1925218 886119 13804.4 >3699549 >86400.0 >70065
ns2080781 40 1.0 >2373236 >86400.0 >211271 >598 285
x Nns2017839 32 543.8 >1 >86400.0
x p4 >1529624 >86400.0 1 191.8
x x01 >729677 >86400.0 1 104.4
x prodplanl 100628 26804.9 >13 >86400.0

ran14x18.disj-8 22477620 52701.6 >31821206 >86400.0 >16801 =9

30 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

the degradation factors for the time are in most cases ontp @9 as well; but we
also observe larger factors of up to 3@0¢10_1, neos-1053591, andns1629327).
However, foralu10_1 the inexact solver returned a wrong answer. Examining the
remaining 20 instances, which were not solved by the exat# wothin the imposed
limits, we already see that they will include even largemslown factors. But some

of the results of the inexact solver will be wrong (for fivkeu instances this is already
known for sure, see above), since most of these instancesagected because of
inconsistent results between different solvers and ggsttin

Why is the performance not as good as on the easy test set?eHounrtherically
more difficult instances, the exact code has to often prawese branch-and-bound
nodes. As explained in Se€l. 4, this is to some extend duelighitiy branching
being sensitive to small changes in the solving processthieumain reason is that
the inexact solvewronglycuts off some nodes due to FP-errors. Table 11 presents, in
Columns ‘NotlInfeas”, “ NotInt”, and “NotInt-Inf", how often the exact code would
have made wrong decisions if the result of the inexact LPesolwould not have
been safely verified; which indicates wrong decisions initlezact MIP solver. All
larger slowdown factors come along with mistakes in the aoexsolver; except for
dfn6fp_load, ns2017839 andprodplani, where the degradation is caused by ex-
pensive LP calls.

Column “NotInfeas” states the number of nodes where the inexact LP solver
wrongly claims LP infeasibility at a node, which leads to more bramgé in the
exact solver and thus increases the node count. This happéhsf the 50 instances,
but never occurred on the easy MIPs.

Column “NotInt” counts the nodes where the floating-point LP solution was in
tegral within tolerances (i.e., would have been acceptethbyinexact solver) but
verifying the primal bound (Stefd 7 of Algl 1) did not allow ws ¢ut off the node.
This happens on 20 of the 50 instances, in contrast to onlyrmtance for the easy
test setfiarksharei_1, where ‘Notint” is 256). Note that NotInt” only considers
nodes where branching on the exact LP solution takes plaeswairds. That is, ap-
proximate integral LP solutions for which the correspogdiact LP turns out to be
infeasible (so pruning is legal but the argumentation ofitiexact solver is wrong)
are not counted here but in ColumNdétInt-Inf”. A rejected approximate primal so-
lution does not only mean that we can not cut off the currebtrse in the exact code,
but it may also affect other parts of the tree because thegbbiound in the exact code
is weaker than the, possibly incorrect, bound in an inexabtes. In the extreme
case, this leads to rejecting all approximate solutionsidoand we are not able to
cut off any node early by bounding; an italic font in Columidtint” and “Notint-

Inf” indicates such cases. The unsolwda instancesnpmv07, neos-1062641, and
ns2080781, all with extreme degradation factors, are examples fereaffect.

6.3 How to Tackle Numerically Difficult Instances?

All in all, the exact code is slower on the numerically diffictest set, sometimes
requiring much more time to solve an instance, or even failmfinish within the
imposed limits. However, a direct comparison of the sohutiiones is not always

A Hybrid Branch-and-Bound Approach for Exact Rational Mix@&teger Programming 31

fair here because the inexact solver frequently, in pdeicon instances with huge
differences in the performance, takes advantage of incoloainding decisions.

Introducing presolving, cutting planes, and primal heiggswill certainly help
to improve the performance as it normally shrinks the siztheforanch-and-bound
tree and thus reduces the space of the search tree whichekectrsolver would
incorrectly ignore, but the exact code has to process.

In addition to the generally increased node count, the tivezteead also comes
from the exact LP solves in the safe primal bounding steplamdmnes for disproving
LP infeasibility of nodes. On the numerically difficult imstces, such exact LP solves
are more often experienced or they occur so often that théyipdo a large portion
of the running time. Thus, more sophisticated methods festfe primal feasibility
check are required.

The current solver uses the first fractional variable bramgchrule when it
branches on the exact LP solution. This type of branchingpéagp in two situa-
tions. First, if the approximate LP solution is nearly irmag but the safe primal
bounding step (where the exact LP is warm started with this lodshe approximate
LP solution) does not allow to prune the node (the computedtexP solution is not
integral). Second, if the LP relaxation is claimed to be ésible, but there exists an
exact LP solution. Our fast safe dual bounding methods aetess here, we have
to solve this LP exactly to prove LP feasibility. In contrésthe easy test set, both
situations occur frequently on the numerically difficulsttset; numbers were given
in Table[11 in ColumnsNotInt” and “NotlInfeas”. Furthermore, both situations can
easily occur again in the subtrees created after branchinigeoexact LP solution. A
branching rule that reduces the risk of such expensivetgitsfor the new subtrees
could be helpful for numerically difficult instances.

7 Conclusion

From the computational results we can make several key wdtfmns. Each safe
dual bounding method studied has strengths and weaknesgsesding on the prob-
lem structure. Automatically switching between these méshin a smart way solves
more problems than any single dual bounding method on its @fthe 57 problems
from the easy test set solved within two hours by the floagiogm branch-and-bound
solver, 55 could also be solved exactly within 24 hours aedtiution time was usu-
ally no more than 20 times slower. This demonstrates thahyheid methodology
can lead to an efficient exact branch-and-bound solverjmded to specific classes
of problems.

When turning to numerically more difficult instances, whereafing-point
solvers face numerical troubles and even compute incaesatts, we observe some
stronger slowdowns with our current exact solver. Howeteés, mainly happens on
instances where the inexact MIP solver strongly benefitsi fimcorrect bounding
decisions. As a consequence, the bottleneck of the exaarssla large number of
nodes for which the hybrid rational/safe floating-point my@eh cannot skip the ex-
pensive rational computations of the main procedure byaoipd them with certain
decisions from the faster slave procedure with FP-aritiimgékamples are wrong in-

32 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

feasibility detections of the floating-point LP solver amdadrrect integrality claims
based on the approximate LP result. In the future, we wikkstigate techniques to
process such nodes without calling exact LP solvers and bgwevent situations
like this from repeating in subsequent subtrees.

Acknowledgements The authors would like to thank Tobias Achterberg for hdlpliscussions on how

to best incorporate the exact MIP features into SCIP. We evaldo like to thank Daniel Espinoza for
his assistance with Q& T_eX, which included adding new functionalities and writing aterface for use

within SCIP.

References

P

T. Achterberg. ALU instanceattp://miplib.zib.de/miplib2003/contrib/ALU.

T. AchterbergConstraint Integer ProgrammindPh.D. thesis, Technische Unive&iBerlin, 2007.

3. T.Achterberg. SCIP: Solving constraint integer prograveth. Programming Computatiod(1):1—
41, 2009.

4. T. Achterberg, T. Koch, and A. Martin. The mixed integer gramming library: MIPLIB 2003.
http://miplib.zib.de.

5. E. Althaus and D. Dumitriu. Fast and accurate bounds oatdipeograms. In J. Vahrenhold, editor,
SEA 2009volume 5526 oLNCS pages 40-50. Springer, 2009.

6. D. L. Applegate, R. E. Bixby, V. Chatal, and W. J. Cook.The Traveling Salesman Problem: A
Computational StudyPrinceton University Press, 2006.

7. D. L. Applegate, W. J. Cook, S. Dash, and D. G. Espinoza. e
http://www.dii.uchile.cl/~daespino/ESolver_doc/main.htmll

8. D. L. Applegate, W. J. Cook, S. Dash, and D. G. Espinoza.cEsalutions to linear programming
problems.Oper. Res. Lett35(6):693-699, 2007.

9. AT&T Bell Laboratories, The University of Tennessee Knitiey and Oak Ridge National Labora-
tory. Netlib Repositoryhttp://wuw.netlib.org/netlib/1pl

10. R.E.Bixby, S. Ceria, C. M. McZeal, and M. W. Savelsberygh updated mixed integer programming
library: MIPLIB 3.0. Optima 58:12-15, 1998.

11. A. Bley and T. Koch. Optimierung des G-WilRFN-Mitteilungen 54:13-15, 2000.

12. J. Chaiand K. Toh. Computation of condition numbers fa&dimprogramming problems usingrizés
method.Optimization Methods and Softwatl(3):419-443, 2006.

13. D. Cheung and F. Cucker. A new condition number for lineagmmming. Math. Programming
91:163-174, 2001.

14. D. Cheung and F. Cucker. Solving linear programs withdfipitecision: 1. Condition numbers and
random programsMath. Programming99:175-196, 2004.

15. D. Cheung and F. Cucker. Solving linear programs withdipiecision: Il. AlgorithmsJ. Complexity
22(3):305-335, 2006.

16. D. Cheung, F. Cucker, and J.fRae Unifying condition numbers for linear programmimdath. Oper.
Res, 28(4):609-624, 2003.

17. W.J. Cook, S. Dash, R. Fukasawa, and M. Goycoolea. Nuallgrizafe Gomory mixed-integer cuts.
INFORMS J. Comput21(4):641-649, 2009.

18. J. Czyzyk, M. P. Mesnier, and J. J. MoiThe Network-Enabled Optimization System (NEOS) server.
IEEE Journal on Computational Science and Engineer5(g):68—75, 1998.

19. S.de Vries and R. Vohra. Combinatorial Auctions: A SurtBf*ORMS J. Comput15(3):284-309,
2003.

20. M. Dhiflaoui, S. Funke, C. Kwappik, K. Mehlhorn, M. Seel,&ctomer, R. Schulte, and D. Weber.
Certifying and repairing solutions to large LPs, how good BP-solvers? IrSODA 2003 pages
255-256. ACM/SIAM, 2003.

21. E.D. Dolan and J. J. Mér Benchmarking optimization software with performance pesfiMath.
Programming 91(2):201-213, 2001.

22. D. G. EspinozaOn Linear Programming, Integer Programming and Cuttingfila Ph.D. thesis,

Georgia Institute of Technology, 2006.

n

http://miplib.zib.de/miplib2003/contrib/ALU
http://miplib.zib.de
http://www.dii.uchile.cl/~daespino/ESolver_doc/main.html
http://www.netlib.org/netlib/lp

A Hybrid Branch-and-Bound Approach for Exact Rational Mix@&teger Programming 33

23.

32.
33.

34.
. A. Neumaier and O. Shcherbina. Safe bounds in linear aneldsiinteger linear programminglath.

36.
37.
38.
. J. Renegar. Some perturbation theory for linear progragrviath. Programming65:73-91, 1994.
40.
41.
42.

43.

44,
45.

46.
47.

D. M. Gay. Electronic mail distribution of linear progranmgitest problems.Mathematical Pro-
gramming Society COAL NewslettéB:10-12, 1985.

. GMP. GNU multiple precision arithmetic libraiyttp: //gmplib.org,
. D. Goldberg. What every computer scientist should knowutHoating-point arithmetic. ACM

Computing Surveys (CSUR23(1):5-48, 1991.

. IBMILOG. CPLEX.http://www.ilog.com/products/cplex.

. T. Koch. The final NETLIB-LP resultper. Res. Lett32,(2):138-142, 2004.

. T. Koch.Rapid Mathematical ProgrammindPh.D. thesis, Technische Unive&iBerlin, 2004.

. T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. BddhR. E. Bixby, E. Danna, G. Gam-

rath, A. M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T. R&lg, D. Salvagnin, D. E. Steffy, and
K. Wolter. MIPLIB 2010. Math. Programming Computatioi(2):103-163, 2011.

. C. Kwappik.Exact Linear ProgrammingMaster thesis, Universit des Saarlandes, 1998.
. Lehigh University. COR@L mixed integer programming cdlat.

http://coral.ie.lehigh.edu/data-sets/mixed-integer-instances,

J. T. Linderoth and T. K. Ralphs. Noncommercial softwareritxed-integer linear programming. In
J. Karlof, editor,Integer Programming: Theory and Practigeages 253-303. CRC Press, 2005.

H. D. Mittelmann. Benchmarks for Optimization Softwadtetp: //plato.asu.edu/bench.html,
2010.

NEOS Servelhttp://neos-server.org/neos.

Programming 99(2):283-296, 2004.

M. Nunez and R. M. Freund. Condition measures and pregesfithe central trajectory of a linear
program.Math. Programming83:1-28, 1998.

F. Ordfiez and R. M. Freund. Computational experience and the expignvalue of condition
measures for linear optimizatio®&IAM J. Optim,.14(2):307-333, 2003.

Pseudo-Boolean Competition 20M8tp://www.cril.univ-artois.fr/PB10/|

J. Renegar. Incorporating condition measures into theptexity theory of linear programming.
SIAM J. Optim.5:506-524, 1995.

J. Renegar. Linear programming, complexity theory and el@anefunctional analysisMath. Pro-
gramming 70:279-351, 1995.

D. E. Steffy. Topics in Exact Precision Mathematical Programmirigh.D. thesis, Georgia Institute
of Technology, 2011.

D. E. Steffy and K. Wolter. Valid linear programming bourfiolsexact mixed-integer programming.
Technical Report ZR 11-08, Zuse Institute Berlin, 2011. ppear in INFORMS Journal on Comput-
ing.

J. R. Vera. On the complexity of linear programming undetdiprecision arithmeticMath. Pro-
gramming 80:91-123, 1998.

K. Wilken, J. Liu, and M. Heffernan. Optimal instructioch&duling using integer programming. In
ACM SIGPLAN 2000volume 35, pages 121-133. ACM Press, 2000.

Zuse Institute Berlin. SClhttp://scip.zib.del

Zuse Institute Berlin. SoPlexttp://soplex.zib.del

http://gmplib.org
http://www.ilog.com/products/cplex
http://coral.ie.lehigh.edu/data-sets/mixed-integer-instances
http://plato.asu.edu/bench.html
http://neos-server.org/neos
http://www.cril.univ-artois.fr/PB10/
http://scip.zib.de
http://soplex.zib.de

	Introduction
	Hybrid Rational/Safe Floating-Point Approach
	Safe Dual Bound Generation
	Branching Rules
	How Accurate are Current MIP Solvers?
	Numerically Difficult MIP Instances
	Conclusion

