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Abstract

In this paper we develop a method for the simulation of wave propagation on
artificially bounded domains. The acoustic wave equation is solved at all points
away from the boundaries by a pseudospectral Chebychev method. Absorption at
the boundaries is obtained by applying one-way wave equations at the boundaries,
without the use of damping layers. The theoretical reflection coefficient for the
method is compared to theoretical estimates of reflection coefficients for a Fourier
model of the problem. These estimates are confirmed by numerical results. Modifi-
cation of the method by a transformation of the grid to allow for better resolution
at the center of the grid reduces the maximum eigenvalues of the differential ope-
rator. Consequently, for stability the maximum timestep is O(1/N ) as compared
to O(1/N 2) for the standard Chebychev method. Therefore, the Chebychev me-
thod can be implemented with efficiency comparable to that of the Fourier method.
Moreover, numerical results presented demonstrate the superior performance of the
new method.
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1 Introduction

This paper describes and evaluates a technique for the application of artificial absorbing
boundary conditions, in conjunction with pseudospectral methods, for the simulation of
acoustic wave propagation. Typical numerical simulations of wave propagation pheno-
mena require a technique to eliminate spurious reflections from the numerical boundaries
of the domain. Finite difference solutions achieve this by the imposition of artificial boun-
dary conditions which have been designed to absorb incident waves at the boundary, see
for example, [5, 7, 8, 10, 11, 19]. Alternative approaches require the inclusion of a dam-
ping region around the physical region, in which the solution is gradually damped to zero
[4]. Kosloff and Kosloff [15] have adapted this technique for the pseudospectral Fourier
method applied to forward modelling so that the acoustic wave equation is modified by a
damping term, non-zero only in a damping region at the boundary. These methods have
been used for a wide variety of applications, see for example the recent papers by Kosloff
et al [17] and Tessmer and Kosloff [22]. The solution, however, maintains the periodicity
induced by the Fourier method, and therefore the damping layer has to be large enough
to prevent reentrant waves at the physical boundary. Hence the approach is not only
costly in terms of memory requirements but also it is not very flexible. In particular,
the appropriate damping layer must be determined for each problem solved, dependent
on location of the initial signal and the time interval over which a solution is required.
The method proposed here, in which a one-way wave equation is applied at the boundary,
avoids these problems by removing both periodicity and damping layers. Moreover, the
high–accuracy advantage of the pseudospectral spatial approximation is maintained by
the use of a Chebychev pseudospectral formulation. We note that the new technique is
similar to a method proposed by Kopriva [13], for the linearized gas dynamics equations,
and by Carcione [3] for the solution of the 2D wave equation recast as a first-order linear
hyperbolic system.

In Section 2 of the paper the absorbing boundary formulation for the solution of the
acoustic wave problem is presented. The wave equation is solved at all points away from
the boundary by a Chebychev pseudospectral method, in which the spatial derivatives
are approximated via a Chebychev expansion of the solution. The absorbing boundaries
are modelled by first-order one-way wave equations (OWWEs). The spatial derivatives of
these boundary equations are also approximated using the same Chebychev expansions.
Integration in time is obtained by an implicit Crank-Nicholson method at the boundaries
and a standard second order discretization in time at the interior points.

The modified Chebychev method, (see [16]) which allows better resolution at the cen-
ter of the grid, is extended to second order differential operators in space. Therefore, in
Section 3, we also present graphs of the eigenvalue distributions of the modified differentia-
tion operators. The spectral radii of these operators suggest that integration can proceed
with timesteps O(1/N) instead of O(1/N 2). This is confirmed by numerical experiment.

In Section 4 the theoretical reflection coefficient for the acoustic wave equation modi-
fied by OWWEs applied in damping layers near the boundaries is compared with estimates
of the reflection coefficient for the modified equation with damping layer, presented in [15].
Note, that for normally incident waves, the reflection coefficient of the first order OWWE
is identically zero. Thus our comparison suggests a problem inherent in the pseudospec-
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tral Fourier method but lacking in the Chebychev formulation: the damping layer has
to be very carefully designed with respect to its thickness and the shape of it’s damping
function in order to prevent both reflected and reentrant waves over the time period of
the simulation.

We conclude with a performance evaluation of the Chebychev pseudospectral method
for acoustic wave simulation in which the acoustic wave equation is solved at all points,
except those at the boundary, for which OWWEs are used. The results are compared
with the pseudospectral Fourier formulation, [14], applied, as in [15], to their modified
equation. Our results verify the superior performance of the new method and confirm that
the modified Chebychev method can be implemented with a timestep restriction O(1/N),
equivalent to that used in the Fourier method.

The Chebychev formulation combined with the first–order OWWE offers a flexibility
not found in the Fourier method. In particular, the absorbing boundary condition need
only be applied at one boundary, thus opening up the possibility of the incorporation
of absorbing boundaries into problems with complicated geometries for which the need
to do a domain decomposition eliminates the ability to use periodic solution techniques.
Furthermore, the O(1/N) timestep restriction means that the overall cost is less than that
for the Fourier method because the Fast Fourier Transform (FFT) can still be applied for
the calculation of the derivatives and at the same time the numerical domains are reduced
as compared to those employed in the Fourier method.

2 The Method

2.1 OWWE and Spatial Discretization

The pseudospectral Chebychev method, see [2], is employed for the solution of the acoustic
wave equation

(2.1) utt = c2(uxx + uyy),

on the artificially bounded domain D = {(x, y) : 0 < x < 1, 0 < y < 1}. The solutions
u = u(x, y, t) of (2.1) are superpositions of plane waves which propagate in every direction
in two dimensions. Contributions which travel towards the boundary of the domain D,
have to leave this domain freely, without reflection at the boundaries. For the solution
of (2.1) by finite-difference methods this requirement is achieved by the imposition of the
appropriate one-way wave equations at the boundaries, see [5, 7, 8, 10, 11, 19]. The lowest
order one-way wave equation which is effective is given by

(2.2)
(
∂

∂t
− c

∂

∂x

)
u(x, y, t) = 0,

at the x = 0 boundary. This equation allows for the complete absorption of all waves
incident normally to the boundary at x = 0. For waves incident other than normally
the reflection coefficient is small for near–normal waves but increases to 1 for waves of
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glancing incidence at the boundary. The reflection can be reduced by applying either
higher-order one-way wave equations, [19], or operators of the kind (2.2) superposed to
give absorption for some chosen set of incident waves, [11]. In this paper we consider
(2.1) in conjunction with (2.2). The results presented demonstrate that (2.2) is effective
in absorbing most outgoing waves.

Equations of type (2.2) can be solved together with (2.1) in such a way that the
appropriate OWWEs dominate near the boundary without modifying the solution on
the inner region. This formulation resembles the one considered in [15] and replaces the
acoustic wave equation by the modified equation

(2.3)
(1 −(ε1 + ε2))(1− (ε3 + ε4))(utt − c2(uxx + uyy))

= ε1(ut + cux) + ε2(ut − cux)
+ε3(ut + cuy) + ε4(ut − cuy).

Here the functions εi are functions of x and y, chosen so that the appropriate one-way
wave equation dominates at each boundary. The width of the damping layer at a given
boundary then depends on the appropriate function εi. In the limit as the width of the
damping layer goes to zero the OWWEs are imposed only at the boundary. Precisely, the
modified equation (2.3) is then replaced by the system of equations:

(2.4)

utt = c2(uxx + uyy), t > 0, 0 < x < 1, 0 < y < 1
ut − cux = 0, x = 0
ut + cux = 0, x = 1
ut − cuy = 0, y = 0
ut + cuy = 0, y = 1,
u(x, y, 0) given,
ut(x, y, 0) = 0.

In this formulation the OWWEs are solved at the boundary and the acoustic wave is used
to update the solution everywhere on the interior of the domain.

In either formulation, (2.3) or (2.4), the approach of the pseudospectral method is to
interpolate the function u(x, y, t) along grid lines in both x and y directions. Derivatives
of u(x, y, t), with respect to x and y, are then approximated by the derivatives of the inter-
polants. In our work we have used both Chebychev and Legendre pseudospectral methods
for these spatial derivatives. Because no great advantage was seen for the Legendre me-
thod our results emphasize the Chebychev method which allows for implementation via
a Fast Fourier transform, see Canuto et al [2]. In either case, after spatial discretization,
(2.4) is replaced by

a) utt(xi, yj, t) = c2(Dxxu+Dyyu)(xi, yj, t), 1 ≤ i ≤ N − 1, 1 ≤ j ≤ M − 1,

(2.5)

b)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut(0, yj, t) = c(Dxu)(0, yj, t) 0 ≤ j ≤ M
ut(1, yj, t) = −c(Dxu)(1, yj, t) 0 ≤ j ≤ M
ut(xi, 0, t) = c(Dyu)(xi, 0, t) 0 ≤ i ≤ N
ut(xi, 1, t) = −c(Dyu)(xi, 1, t) 0 ≤ i ≤ N.
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Here Dx, Dy , Dxx, Dyy are first- and second-order differential operators in x and y,
respectively, [2], and (Du)(xi, yj, t) denotes that the operator D is applied to u and
evaluated at the grid point (xi, yj, t). The degrees of the interpolation in x and y are
given by N and M , respectively.

2.2 Time Discretization

The choice of an appropriate time scheme for equations (2.5) a) and b) is not trivial. A
first approach is to reformulate the whole system (2.5) as a system of first order differential
equations (ODEs) in time,

(2.6) ut = Au, where u =
(
ux

ut

)
.

As such it is amenable to solution by any appropriate ODE solver, which also includes the
semi-implicit method of Tal Ezer and Kosloff [20]. But in [6], where the well-posedness
of (2.6) is considered, Driscoll and Trefethen show that the operator A is highly non-
normal and therefore that the eigenvalues of the operator A are not well–conditioned.
Consequently, we chose not to use this ODE system. Instead, in our experiments we
adopted the standard second-order differencing in time for equation 2.5 a):

(2.7) un+1
ij − 2un

ij + un−1
ij = c2Δt2(Dxx +Dyy)u

n
ij, 1 ≤ i ≤ N − 1, 1 ≤ j ≤ M − 1.

Here un
ij represents the discrete approximation to u(xi, yj, nΔt), for a stepsize in time, Δt.

The error in time is O(Δt2) which may be large compared to the high–order accuracy in
space of the pseudospectral spatial approximation. But our numerical experiments show
that the temporal error is not a significant problem because the stability requirement
limits Δt in relation to the grid sizes in the x− and y− directions by, Δt = O(Δx2

min),
and Δt = O(Δxmin), where Δxmin is the minimum grid spacing, for the Chebychev and
modified Chebychev methods, respectively.

When the spatial derivatives in equations (2.5) b) are approximated by finite difference
approximations the time derivatives are typically approximated by an explicit method in
time. Explicit methods can also be derived for the pseudospectral implementation, for
example, for the boundary condition at x = 0, illustrative of all boundary conditions,
Euler’s method would take the explicit form

(2.8) un+1
0j = un

0j + cΔt(Dxu)
n
0j,

which is only of first order accuracy in time. On the other hand, second-order accuracy
in time is achievable with the explicit midpoint, or Leapfrog, method

(2.9) un+1
0j = un−1

0j + 2cΔt(Dxu)
n
0j.

But, a stability analysis immediately rules out (2.9) because the stability region of the
midpoint method is just the interval [−1, 1] on the imaginary axis, which does not allow
for eigenvalues of the spatial operator to have any real part , see below. However, O(Δt2)
accuracy in time can also be obtained by the implicit θ-method

(2.10) un+1
0j = un

0j + cΔt[θ(Dxu)
n+1
0j + (1 − θ)(Dxu)

n
0j].
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With θ = 1
2
(2.10) is the Crank-Nicholson method. The implicitness does not present

an implementation problem if the interior values are updated via (2.7) before (2.10) is
applied. In this case, an implicit equation in terms of the boundary values is still obtained
but can be solved directly by taking advantage of the forms of (Dxu)

n+1
0j and (Dxu)

n+1
Nj

,
expressed as elements of a matrix vector product, see the Appendix.

A necessary, but not sufficient, requirement for the stability of a numerical implemen-
tation of an initial boundary value problem is that both interior and boundary schemes
are individually stable [21]. The determination of this requirement for pseudospectral
approximations is not as straightforward as for finite difference methods. In particular,
the usual von Neumann analysis cannot be applied because it relies on a Fourier trans-
formation to demonstrate the preservation of norms in the Fourier space, and hence in
the spatial domain. Therefore, for pseudospectral methods, it is standard to use an ei-
genvalue approach to stability. For this one considers the location of the eigenvalues of
the differential operator in relation to the stability region of the ODE solver. However,
this technique, called “eigenvalue stability,” does not always give sufficient conditions for
stability. Trefethen [23] discusses how well any requirements deduced from an analysis
of the eigenvalues will give reasonable estimates for Lax-stability. Moreover, Reddy and
Trefethen [18] show that for first order operators the pseudospectra give more realistic
stability restrictions, see also [24]. For near-normal matrices, however, the pseudospectra
do closely approximate the eigenvalues and therefore an eigenvalue analysis is appropriate.

In the next section we present plots of the eigenvalues for the second order differential
operators. Weideman and Trefethen [26] demonstrated that in this case these eigenvalues
are not sensitive to the precision of the calculation and hence pseudospectra do closely
approximate the eigenvalues. Further, the eigenvalues are real and negative with O(N 4)
outliers. Therefore stability restrictions on the timestep are of order O(1/N 2), for explicit
discretisations of second order time derivatives. For the boundary operator the spectrum
of the first order operator is important. This operator, however, is far from normal and
has eigenvalues in the left half plane, with O(N2) outliers. It is for this reason that we
would not expect the midpoint method to be a viable method. Neither is Euler’s method
a good choice because it has a stability region, just the circle in the left half plane with
radius one and center at (−1, 0), which imposes very severe restrictions on the timestep
in order for the O(N2) outliers of the first order differential operator to be moved within
this circle. On the other hand, the Crank-Nicholson method is A-stable, with stability
region incorporating the whole left half plane. Therefore the O(N2) outliers present no
restrictions on the timestep and our experiments use (2.10) with θ = 1

2
.

3 The Modified Chebychev Method

One disadvantage of the Chebychev pseudospectral method for the solution of equations
(2.1) and (2.2) is the clustering of the grid points near the boundaries. This has the
effect of diminishing resolution at the center of the grid and also, in light of the earlier
discussion, at the same time, because of this clustering at the boundaries, imposing stricter
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limitations on the allowable timesteps for stable solutions. Kosloff and Tal Ezer [16]
presented a modified Chebychev method for the solution of problems with first order
spatial derivatives. Their approach is very easily extended for application to second-order
spatial derivatives, without additional work for the calculation of the derivatives, provided
that the appropriate coefficient matrices are set up in an initialisation stage. Therefore,
employing the same notation as in Kosloff and Tal Ezer [16], suppose that the collocation
points are found from the “stretching” of the regular Chebychev collocation points:

(3.1) xi = g(zi, α) − 1 ≤ xi ≤ 1, 0 ≤ i ≤ N, 0 ≤ α ≤ 1

and

zi = − cos
(
iπ

N

)
, 0 ≤ i ≤ N.

Here α is a parameter of a “stretching” function g(z, α). Note that transformation to
the interval 0 ≤ x ≤ 1 is an additional trivial linear transformation. Differentiation of a
function f(x) is accomplished by making use of the chain rule,

(3.2)
df

dx
=

dz

dx

df

dz
=

1

g′(z, α)
df

dz
.

Therefore for first order differentiation the operator D is replaced by D̃ = AD, where
A is a diagonal matrix with entries Aii = 1/g′(zi, α). Second order differentiation is
accomplished by

(3.3)

d2f

dx2
=

d

dx

(
df

dx

)
=

dz

dx

d

dz

(
df

dx

)

=
1

g′(z, α)

(
1

g′(z, α)
d2f

dz2
− g′′(z, α)

g′(z, α)2
df

dz

)
,

and the second order derivative operator D2 is replaced by D̃2 = A2D2 + BD, where
A2 is the square of the diagonal matrix A, and B is the diagonal matrix with entries
Bii = − g′′(zi,α)

g′(zi,α)3
.

In Kosloff and Tal Ezer [16] plots are presented which verify that the eigenvalues
of the matrices D̃ are insensitive with respect to perturbations: in other words, the
transformation actually serves to condition the spectra of the matrices D. The spectra
of the matrices D2 are, however, much better conditioned than those of D, even without
stretching, see Trefethen and Trummer [25]. In particular the eigenvalues of D2 are real,
negative and for interpolation at the Chebychev extrema, as here, satisfy

lim
N→∞

sup
ρ(D2)

N4
≤

√
11

4725
≈ .0482,

where ρ(D2) denotes the spectral radius of D2. This O(N4) behaviour of D2 imposes a
severe O(1/N2) restriction on the time step used in (2.7). In Figure 1 we plot the eigenva-
lues of D̃2 for various N and α = cos jπ

N
, j = 1, 2, 3, compared with the exact eigenvalues

of the operator d2/dx2, and those of D2. It can be seen that these eigenvalues are again
real and negative and that, dependent on α, respectively j, the spectrum more closely
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N j = 1 j = 2 j = 3 Unmodified
16 5.0E+02 8.2E+02 1.3E+02 2.4E+03
32 2.4E+03 4.5E+03 7.8E+03 4.4E+04
50 6.2E+03 1.2E+04 2.2E+04 2.7E+05
64 1.0E+04 2.1E+04 6.1E+04 7.5E+05
128 4.4E+04 9.1E+04 1.7E+05 1.2E+07

Table 1: Spectral radius of the one-dimensional second order derivative operator D̃2

j = 1 j = 2 j = 3 Unmodified

N C(D̃2) K(Ṽ ) C(D̃2) K(Ṽ ) C(D̃2) K(Ṽ ) C(D2) K(V )
16 5.5E−02 1.20 1.1E−01 1.32 1.4E−01 1.41 1.6E−01 1.57
32 5.5E−02 1.21 1.1E−01 1.34 1.4E−01 1.46 1.6E−01 1.89
50 5.5E−02 1.21 1.1E−01 1.35 1.4E−01 1.49 1.6E−01 2.13
64 5.5E−02 1.21 1.1E−01 1.35 1.4E−01 1.50 1.6E−01 2.28
128 5.5E−02 1.21 1.1E−01 1.36 1.4E−01 1.52 1.6E−01 2.74

Table 2: Commutator C(D̃2) =
‖D̃T

2 D̃2−D̃2D̃T
2 ‖2

‖D̃T
2 D̃2‖2 and condition K(M) = ‖M‖2‖M−1‖2,of V

and Ṽ , the matrix of normalized eigenvectors of D2 and D̃2, respectively.

approximates that of d2/dx2. These results are summarized in Table 1. Furthermore,
evaluation of both the commutator of D̃2 and the condition of the matrix of normalised
eigenvectors of D̃2 shows that the matrices D̃2 are near normal. This is demonstrated in
Table 2.

In our experiments we chose to use the function g(z, α) = sin−1(αz)

sin−1(α)
suggested by Kosloff

and Tal Ezer [16], with α = cos( jπ
N
), j = 1. Here j represents the number of waves, up

to the maximum resolvable, which are not resolved by the grid. For j = 1 maximal
resolution, rmax =

N
2
− 1, is achieved, where rmax is the maximum wave number resolved

by the grid. We note that this choice of α is not necessarily the best choice in terms of
accuracy because of the trade-off between accuracy and resolution in space. But, because
of stability, it does allow integration in time with a timestep which is significantly larger
than that allowed by the Chebychev method, in fact for N = 128 a timestep some 16
times larger can be employed, see Table 3. In cases where physically the time evolution
on the small scale is not required this can lead to an enormous reduction in computational
effort. Moreover, we see from the analysis in [16], that as we improve spectral accuracy
by increasing j, and consequently decreasing α, the timestep must decrease to maintain
stability, and hence the temporal accuracy also improves. An issue in simulations of wave
propagation phenomena is the lack of resolution at the center of the grid and hence this
symmetric transformation, with α near to 1, is the appropriate choice. For models with
different boundary conditions at opposite boundaries it may be appropriate to adopt the
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Figure 1: a)-d) Eigenvalues of D̃2 and D2, for N=16, 32, 64 and 128, respectively.

9



unsymmetric transformation of Kosloff and Tal Ezer [16]. The transformations suggested
by Bayliss and Turkel [1] could also provide reasonable alternatives. In these cases the
stability analysis has to be repeated, but the techniques are the same.

4 Reflection Coefficients

In Kosloff and Kosloff [15] a derivation of the reflection coefficient for the modified acoustic
wave equation

(4.1)
∂2p

dt2
= c2

∂2p

dx2
− 2γ

dp

∂t
− γ2p

is presented. γ is a damping function which is non-zero only at a set of grid points within
a predetermined distance of the boundary and is defined by, as used in [15],

(4.2) γ =
U0

cosh(ν · n)2 ,

where n is the number of grid points of the grid point xi from the closest boundary. The
parameters U0 and ν determine the width of the boundary layer and how sharply γ tends
to zero at the physical boundary. In our two-dimensional experiments we mapped the
physical domain onto the domain [0, 1] × [0, 1], so that the computation was performed
on a domain [−Δ, 1 + Δ] × [−Δ, 1 + Δ], with the same damping function used at all
boundaries. For the one-dimensional analysis of the reflection coefficient we make the
equivalent assumptions for the solution of (4.1).

The reflection coefficient for a plane sinusoidal wave e−ikxeiωt incident from the left on
the physical boundary at x = 1 can be calculated using the propagator matrix method
of Haskell [9]. The application of this method to the determination of the reflection
coefficient is well-described in [15] and only necessary ideas are given here.

The idea of the propagator method is to divide the region in which γ is nonzero,
1 ≤ x ≤ 1+Δ, into small intervals on each of which γ is taken to be constant. Within each
interval there is both a left- and a right-travelling wave, each of different amplitude, which
are propagated according to the underlying partial differential equation. Suppose that a
wave of unit amplitude is incident at x = 1. Ideally the reflected left-travellingwave has an
amplitude R ≈ 0. In practice, R is determined via the solution of successive transmission-
reflection problems on each subinterval, which, in turn, by periodicity, depend on the
amplitudes of the left- and right-travelling waves at x = 0, at which it is assumed the
left travelling wave has amplitude zero. But the right travelling wave is transmitted back
into the interior domain with an amplitude, T , hopefully near zero. Hence, ideally, not
only should we have R ≈ 0 but also T ≈ 0, so that no reentrant waves are noticeable at
the opposite boundary. Furthermore, the effects of the boundary layer should not extend
into the interior, so that the function γ should be negligible on the interior.

In Figure 2 we present calculations of the reflection and transmission coefficients, R
and T , respectively, for different choices of γ. Our numerical experiments in Section 5
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Figure 2 Comparison of damping layer functions.

have been designed to permit a comparison with the work of Kosloff and Kosloff [15], and
therefore the theoretical results are provided to support these experiments. In particular,
in [15] a grid with N = 64 and a damping layer over 15 grid parts were used. There, the
damping layer was obtained by choosing ν = .18 with U0 = 40 in (4.2). But, in order to
have a damping layer over 15 grid points with this choice of γ, there is a discontinuity
in γ at the damping layer boundary, γ(0) = γ(1) ∼= 12.8, |γ(x)| = 0, x ∈ (0, 1). This is
a compromise chosen in [15] to fulfill the following contradictory requirements: For fixed
width of the layer transition is small if the integral of γ is large and if the gradient of γ
is small the reflection is small. However, if γ has to increase from zero at the edge of the
layer to a significant value and go back to zero at the other edge there has to be some
gradient, and hence reflection. The difficult task is now to find a shape that meets both
requirements. The problem of the damping layer approach resides in the fact that this can
not, by construction, be completely achieved, even in the 1D case. In order to illustrate
what happens when γ is chosen in a wrong way we report numerical computations when
ν = 3.6 and ν = .18, for U0 = 40 but in the latter case the damping layer is not restricted
to 15 grid points. The corresponding reflection and transmission coefficients are depicted
in Figure 2 and compared with the choice in [15]. Observe that with the latter choice
transmission can be successfully suppressed but at the price of admitting some reflection,
in particular for small wavenumbers. For the extreme choice ν = 3.6 the transmission is
unacceptably high. The numerical calculations confirm these theoretical predictions.

We conclude from this analysis that damping layers, as a means for absorbing waves
at artificial boundaries, must be used with caution in the Fourier method. With a careful
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choice of the damping function the resulting reflection and transmission may be negligible.
But our numerical results have shown cases in which reflection or transmission to the
opposite boundary may be significant, particularly if the initial signal is close enough to the
damping layer boundary. This has severe consequences in terms of memory requirements
in particular for three-dimensional problems.

On the contrary, however, the Chebyshev-pseudospectral method can be successfully
applied without the computational and memory overhead of a damping layer if a first
order absorbing boundary condition is used at the artificial boundary. Because the Che-
bychev method can also be implemented with the use of Fast Fourier Transforms its
implementation does not require a significant increase in cost as compared to the Fourier-
pseudospectral method. Consequently, the non-periodic discretisation without the dam-
ping layer presents a much more efficient and robust method for the solution of wave
propagation problems. In the next section our numerical results verify these conclusions.

5 Numerical Results

First we give an overview of the numerical tests which have been carried out. Acoustic
wave propagation can be modelled by the periodic Fourier pseudospectral solution of the
modified acoustic wave equation (4.1), where γ is given by (4.2). This is the method of
[15] and has been implemented as a reference. But the model given by (4.1) is not limited
to a periodic formulation and we have also solved it using a Chebychev pseudospectral
implementation. This implementation, however, does not succeed in removing the entire
energy of the incident wave at the boundary, because even in the one–dimensional case
there is still a certain amount of reflection at the physical boundary. Furthermore, it re-
quires additional cost due to the presence of the damping layer. For these two reasons this
Chebychev implementation is outperformed by the Chebychev implementations described
below.

Before continuing with non-periodic formulations we also observe that a Fourier pseu-
dospectral implementation of the modified equation (2.3) would also be possible. Re-
gardless of the appearance of discontinuities in the coefficients, this does not make sense,
however. The construction of (2.3) aims at achieving zero reflection and, at the same
time, full transmission at these boundaries. Due to the wraparound effect of the periodic
formulation the solution would be subject to the same deleterious transmission of waves
through opposite boundaries, as argued in the previous section.

The solution of (2.3) with a non-zero thickness OWWE damping layer by a pseu-
dospectral Chebychev discretisation does, however, lead to satisfactory results. Our com-
putations show that this still remains true in the limit where this layer goes to zero and
the OWWEs are imposed only at the boundary points, leading to (2.5). Furthermore,
the latter computations are more efficient, requiring not only a less dense grid but also
allowing a direct implementation of the implicit Crank Nicholson discretisation of the
boundary operators. Therefore, this is the approach which has been retained and for
which results are given here.
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Figure 3ab: Comparisons of “energy” for a pulse initiated
a) at the center and b) at the corner, respectively

Legendre pseudospectral discretisations can also be used, but they give very similar
results to the Chebychev series. In particular, the stability results are much the same,
exhibiting again critical timesteps of O(1/(N 2)). The modified Chebychev discretisation
described in Section 3 overcomes this restriction and leads to the third set of results
described in the following paragraphs.

In order to allow comparison between the Fourier and Chebychev pseudospectral me-
thods the physical region was always taken as [0, 1]× [0, 1] and in all cases it is only this
physical region which is plotted. To also allow comparison with the results presented by
Kosloff and Kosloff [15], calculations with the Fourier method were done for a 64 × 64
grid, and a damping layer of 15 grid points. Note that for the Fourier method applied
to a physical interval [xL, xR] periodicity means that numerically grid points are on the
interval [xL, xR − Δx]. In contrast, for a Chebychev grid the whole physical interval is
used. Therefore, the Fourier 64×64 grid actually corresponds, by periodicity, to a 65×65
grid, and, with a damping layer of effective width 15 grid points, is equivalent to a Che-
bychev grid 50 × 50. The effective grid on the physical region is then 50 × 50 in both
cases. The acoustic velocity was taken as 2, in dimensionless units, equivalent to the 2000
ms−1 used in [15]. Simulations with an internal layer of reduced sound velocity, equivalent
to the embedded velocity layer simulations in [15], were also carried out, using a local
dimensionless acoustic velocity of 1.2. The damping layer was also set up using equation
(4.2) as indicated in Section 4. To give an effective damping layer over 15 grid points the
parameters U0 = 40 and ν = .18 were chosen, but, as indicated in Section 4, with the
discontinuity in γ at the internal damping layer boundary.

For both the Fourier and scaled Chebychev methods a dimensionless timestep Δt =
.0045, near the stability limit for both methods, was used. To maintain stability of the
unscaled Chebychev method the timestep was reduced to .0006. Measurements were made
at equivalent dimensionless times in all cases.

The simulations were initiated with pulses of the form

u(x, y, 0) = e−r2a,

where r2 = (x−x0)
2+(y− y0)

2 for an initial pulse centered at (x0, y0). For Figures 4 and
7 the pulse was initiated at the center of the domain, (x0, y0) = (0.5, 0.5), and for Figure
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Figure 4a: Fourier for modified Kosloff equation (4.1)
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Figure 4b: Chebychev for acoustic wave with absorbing boundary (2.4)
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Figure 4c: Modified Chebychev for acoustic wave with absorbing boundary (2.4)

5 the pulse was moved nearer the corner, (x0, y0) = (0.1, 0.1). In all cases, the weighting
in the pulse was taken to be a = 500. Other choices give qualitatively similar results, but
require longer time simulations on larger domains to elucidate the results.

The results are illustrated in Figures 3–7. In Figures 3a and 3b we present a comparison
of the performance of the Fourier method with the different γ functions, by plotting the
evolution of the pulse on the domain as measured by the L2 norm over the physical part
of the grid. Here the three choices of γ discussed in Section 4 are used. Namely, i)
ν = .18, U0 = 40 with the discontinuity in γ at the damping layer boundary, ii) ν =
.18, U0 = 40 but with the function γ going continuously to zero away from the damping
layer, and iii) ν = 3.6, U0 = 40. For Figure 3a a pulse is initiated at the center of
the domain and in Figure 3b it is initiated at the corner. The effect of γ �= 0 on the
interior is, as expected, that the pulse is overdamped on the interior domain. On the
other hand, the high transmission of the ν = 3.6 case is also verified. Although the
discontinuous choice for γ does give the better results, and is used in the comparisons
with the Chebychev methods, we also see that the discontinuity does give rise to greater
reflection than desirable.
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Figure 5a: Fourier for modified Kosloff equation (4.1)
Time 0.0675

-0.5

0

0.5

1

Time 0.2025

-0.5

0

0.5

1

Time 0.5400

-0.5

0

0.5

1

Figure 5b: Chebychev for acoustic wave with absorbing boundary (2.4)
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Figure 5c: Modified Chebychev for acoustic wave with absorbing boundary (2.4)
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Figure 6ab: Comparisons of “energy” for a pulse initiated
a) at the center and b) at the corner, respectively

Figure 4 shows the evolution of a pulse placed in the center of the grid until it has
propagated out of the physical region, with a constant velocity of 2.0. The performance
of all three methods is apparent, with in all cases some residual reflection evident. This
is most easily observed by examining the contour plots associated with each result. In
particular it can be seen in all cases that there are significant corner effects where reflection
at two boundaries meeting in a corner causes superposition of the two reflections and
hence the increased reflection observed in the contours emanating from the corners. In
finite-difference methods these effects are alleviated by the use of special corner conditions
applied at the corner and for a few points near the corner. The same adjustments could
also be considered in this case. Figures 4b, 5b and Figures 4c, 5c show a comparison
between the two extremes of the Chebychev implementations, i.e. high accuracy but
resolution restricted in the center of the grid for Chebychev, as compared to the modified
Chebychev, j = 1, with high resolution but reduced accuracy.

To allow comparison of these simulations we also plot in Figure 6, as in Figure 3,
the L2 measure of how the pulse evolves on the domain. From Figure 6a we see that
the Fourier and Chebychev methods perform nearly identically until the pulse leaves the
physical region and the greater reflection of the Fourier method is evident. For simulations
over longer time periods the Chebychev methods continue to show negligible energy but
the Fourier energy oscillates over time until the wave is eventually completely attenuated
over the damping layer. Figure 6b very clearly shows that the discontinuity in γ(x) at
the physical boundary leads to a reflection of the pulse when it is initiated very close
to the physical boundary. We have seen that this can be reduced by taking a much
wider damping layer, so that the discontinuity in γ(x) is eliminated and the resulting L2

curve follows that of the Chebychev simulations. We conclude with a test problem more
oriented towards applications, the embedded velocity layer discussed in [15]. The layer of
lower sound velocity is oriented parallel to the y-axis, (directed away from the spectator
in perspective views) and situated just right of center, having a width of 4 grid points
in the Fourier discretisation. Note that the discontinuity in sound velocity can easily
be accounted for in the OWWE by modifying the value of c in (2.4). Figure 7 shows
a comparison of the solutions obtained with the three methods discussed. We observe
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Figure 7a: Fourier for modified Kosloff equation (4.1)
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Figure 7b: Chebychev for acoustic wave with absorbing boundary (2.4)
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Figure 7c: Modified Chebychev for acoustic wave with absorbing boundary (2.4)

that despite the jump in the coefficient the pseudospectral methods behave quite well for
this problem. The results also demonstrate that the present OWWE-formulation for the
absorbing boundary is still successful.

Stability limits on cΔt for all these two–dimensional simulations are given in Table 3
and verify that the modified method can proceed with timesteps of the same size as those
used for standard Fourier pseudospectral simulations.

j = 1 j = 2 j = 3 Unmodified
N cΔt α cΔt α cΔt α
16 3.1E−02 .9781 2.4E−02 .9135 1.9E−02 .9425 1.4E−02
32 1.4E−02 .9949 1.0E−02 .9795 8.0E−03 .9541 3.3E−03
50 9.0E−03 .9979 6.4E−03 .9918 4.7E−03 .9816 1.3E−03
64 6.9E−03 .9988 4.8E−04 .9950 3.6E−03 .9888 8.1E−04
128 3.3E−03 .9997 2.3E−04 .9988 1.7E−03 .9972 2.0E−04

Table 3: Observed stability limits on cΔt for two dimensional problem
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6 Conclusions

A method for the simulation of wave propagation on an artificially bounded domain has
been described. The approach is novel in that commonly-used OWWEs are incorporated
in a non-periodic pseudospectral solution of the acoustic wave equation formulated as
a second order PDE. As such the formulation allows the high spatial accuracy of pseu-
dospectral methods which leads to negligible numerical dissipation and makes this type
of method particularly interesting for the computation of wave propagation phenomena.
Compared to periodic Fourier discretisations the non-periodic approach first of all allows
zero normal reflection at the boundary, a topic we have discussed in detail. Second, it can
be used with similarly sized time steps when employing a “stretching” transformation of
the Chebychev points. Finally, these kinds of methods exhibit flexibility with respect to
the particular conditions which can be imposed on the boundary, and domain decompo-
sition. The discretization in space and time of the Chebychev implementation has been
fully addressed. Of particular note is that we have also demonstrated the high spectral
accuracy of the spatial transformation for second derivative operators.

Future directions of this research are immediately suggested by the following observa-
tions. Because the boundary conditions are implemented directly by the solution of given
boundary equations, not only is the technique obviously extendable to three-dimensions,
but also it is not necessary that all boundaries use the same boundary conditions. A
particularly interesting option would be the simulation of surface waves at the surface
boundary. Furthermore, improved absorption at an absorbing boundary can be achieved
by the implementation of higher–order OWWEs. Moreover, because the boundary ope-
rator is one–dimensional, the OWWEs can also be used for media with heterogeneities
parallel to the boundary, but constant perpendicular to the boundary. This has been
aptly demonstrated for finite difference models by Higdon, [12].

Acknowledgement Part of this work was done at the University of Kaiserslautern
where the authors benefitted from funding through the Sophia Kowalevskaja chair and a
DFG grant, respectively.

A Implementation of the Crank-Nicholson Method

at the Boundary

Suppose that absorbing boundary conditions are applied at both the x = 0 and x = 1
boundaries:

(A1)

∂u

∂t
− c1

∂u

∂x
= 0 at x = 0

∂u

∂t
+ c2

∂u

∂x
= 0 at x = 1.

Here c1 and c2 represent the wave propagation speeds at left and right boundaries, re-
spectively. For simplicity, in the derivation of the scheme, we assume θ = 1

2
. Extension

to arbitrary θ is immediate. At the left boundary, x = 0, the Crank-Nicholson scheme
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corresponds to

(A2) un+1
0 = un

0 + c1
Δt

2
[(Du)n+1

0 + (Du)n0 ],

where (Du)n0 =
∑N

j=0 d0ju
n
j , and D is the matrix of the first order differential operator d

dx
,

with entries dij . Because we assume that the values of un
ij are updated at the interior grid

points prior to update of the boundaries, equation (A2) is implicit in un+1
N and un+1

0 only:

(Du)n+1
0 = d00u

n+1
0 + d0Nu

n+1
N +

N−1∑
j=1

d0ju
n+1
j .

Therefore, with k1 =
c1Δt
2

,

(A3) (1 − k1d00)u
n+1
0 − k1d0Nu

n+1
N = bn0 ,

where bn0 = un
0 + k1

[∑N−1
j=1 d0ju

n+1
j + (Du)n0

]
is known. Equivalently, the equation at the

right hand boundary is

(A4)
k2dN0u

n+1
0 + (1 + k2dNN)u

n+1
N = bnN

= un
N − k2

[∑N−1
j=1 dNju

n+1
j + (Du)nN

]
,

where k2 =
c2Δt
2

. Equations (A3) and (A4) represent a set of two linear equations in two
unknowns, un+1

0 , un+1
N ,

A
(
un+1
0

un+1
N

)
=

(
bn0
bnN

)
= bn,

where

A =
(
1− k1d00 −k1d0N
k2dN0 1− k2dNN

)
.

For both the Chebychev and the modified Chebychev pseudospectral methods the entries
of the differential operator D are such that d00 = dNN and d0N = −dN0, see [2], p. 69.
Therefore

A =
(
1 + k1dNN k1dN0

k2dN0 1 + k2dNN

)

and it immediately follows that

un+1
0 = 1

|A|((1 + k2dNN )b
n
0 − k1dN0b

n
N ),

un+1
N = 1

|A|(−k2dN0b
n
0 + (1 + k1dNN)b

n
N ),

where |A| represents the determinant of A.
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