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Cloud Branching

Timo Berthold∗ and Domenico Salvagnin†

Abstract

Branch-and-bound methods for mixed-integer programming (MIP) are traditionally based
on solving a linear programming (LP) relaxation and branching on a variable which takes a
fractional value in the (single) computed relaxation optimum. In this paper we study branch-
ing strategies for mixed-integer programs that exploit the knowledge of multiple alternative
optimal solutions (a cloud) of the current LP relaxation. These strategies naturally extend
state-of-the-art methods like strong branching, pseudocost branching, and their hybrids.

We show that by exploiting dual degeneracy, and thus multiple alternative optimal solu-
tions, it is possible to enhance traditional methods. We present preliminary computational
results, applying the newly proposed strategy to full strong branching, which is known to
be the MIP branching rule leading to the fewest number of search nodes. It turns out that
cloud branching can reduce the mean running time by up to 30% on standard test sets.

Keywords: mixed integer programming, branching rule, search strategy, dual degeneracy

Mathematics Subject Classification: 90C11

1 Introduction

In this paper we address branching strategies for the exact solution of a generic mixed-integer
program (MIP) of the form (w.l.o.g.):

min{cx : Ax ≤ b xj ∈ Z ∀j ∈ J}

where x ∈ Rn and J ⊆ N = {1, . . . , n}.
Good branching strategies are crucial for any branch-and-bound based MIP solver. Unsur-

prisingly, the topic has been subject of constant and active research since the very beginning of
computational mixed-integer programming, see, e.g., [1]. We refer to [2, 3, 4] for some compre-
hensive studies on branching strategies.

In mixed-integer programming, the most common methodology for branching is to split the
domain of a single variable into two disjoint intervals. In this paper we will address the key
problem of how to select such a variable. Let x? be an optimal solution of the linear programming
(LP) relaxation at the current node of the branch-and-bound tree and let F = {j ∈ J : x?

j 6∈ Z}
denote the set of fractional variables. A general scheme for branching strategies consists in
computing a score sj for each fractional variable j ∈ F , and then picking the variable with
maximum score. Different branching rules then correspond to different ways of computing this
score.

Several branching criteria have been studied in the literature. The simplest one (most-
fractional branching) is to branch on the variable whose fractional part is as close as possible to
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0.5; however, this is well known to perform poorly in practice [5]. A more sophisticated branching
strategy is pseudocost branching [1], which consists in keeping a history of how much the dual
bound (the LP relaxation) improved when branching on a given variable in previous nodes, and
then using these statistics to estimate how the dual bound will improve when branching on that
variable at the current node. Pseudocost branching is computationally cheap since no additional
LPs need to be solved and performs reasonably well in practice. Yet at the very beginning, when
the most crucial branching decisions are taken, there is no reliable historic information to build
upon.

Another effective branching rule is strong branching [6, 7]. The basic idea consists in simu-
lating branching on the variables in F and then choosing the actual branching variable as the
one that gives the best progress in the dual bound. Interestingly, this greedy local method is
currently the best w.r.t. the number of nodes of the resulting branch-and-bound tree, but intro-
duces quite a large overhead in terms of computation time, since 2 · |F | auxiliary LPs need to be
solved at every node. Many techniques have been studied to speedup the computational burden
of strong branching, in particular by heuristically restricting the list of branching candidates and
imposing simplex iteration limits on the strong branching LPs [2] or by ruling out inferior can-
didates during the strong branching process [8]. However, according to computational studies,
a pure strong branching rule is still too slow for practical purposes. Branching rules such as
reliability branching [3] or hybrid branching [9], that combine ideas from pseudocost branching
and strong branching, are considered today’s state of the art.

Other approaches to branching include the active constraint method [10], which is based on
the impact of variables on the set of active constraints, branching on general disjunctions [11],
inference branching and VSIDS [12, 13, 4] based on SAT-like domain reductions and conflict
learning techniques. Finally, information collected through restarts is at the heart of the methods
in [14, 15].

All branching strategies described so far are naturally designed to deal with only one optimal
fractional solution. History-based rules use the statistics collected in the process to compute the
score of a variable starting from the current fractional solution. Even with strong branching, the
list of branching candidates is defined according to the current fractional solution x?.

However, LP relaxations of MIP instances are well-known for often being massively degener-
ate; multiple equivalent optimal solutions are the rule rather than the exception. Thus branching
rules that consider only one optimal solution risk taking arbitrary branching decisions (thus con-
tributing to performance variability, see [16]), or being unnecessarily inefficient. In the present
paper we study the extension of some branching strategies to exploit the knowledge of multiple
optimal solutions of the current LP relaxations.

The contribution of the present paper is twofold. First, we introduce for the first time, to
the best of our knowledge, a branching strategy that makes use of multiple relaxation solutions
and show how it can be naturally integrated into existing branching rules. Second, we evaluate
one particular implementation of it in the context of full strong branching, the branching rule
commonly known to be most efficient w.r.t. the number of branch-and-bound nodes [4, 17]. We
show that it leads to significant savings in computation time while not increasing the number of
nodes.

The remainder of the paper is organized as follows. In Section 2 we discuss how to generate
alternative optimal solutions (a cloud of solutions) and how to exploit this information to enhance
some standard branching rules such as pseudocost branching and strong branching. In Section 3
we give more details on the technique applied to full strong branching, while in Section 4 we
report a preliminary computational evaluation of the proposed method. Some conclusions are
finally drawn in Section 5.
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2 A cloud of solutions

In order to extend standard branching strategies to deal with multiple LP optima at the same
time, we need to solve two problems:

1. How to generate efficiently multiple optimal solutions of the current LP relaxation?

2. How to make use of the additional information provided by these solutions?

The first problem can be effectively solved by restricting the search to the optimal face of the
LP relaxation polyhedron. On this face, an auxiliary objective function can be used to move to
different bases. From the computational point of view, fixing to the optimal face can be easily and
safely implemented by fixing all variables (structural and artificial) whose reduced costs are non-
zero, using the reduced costs associated to the starting optimal basis. As far as the choice of the
second level objective function(s) is concerned, different strategies can be used. One option is to
try to minimize and maximize each variable which is not yet fixed: this is what optimality-based
bound tightening techniques do (see, e.g., [18, 19]), with the additional constraint of staying
on the optimal face. Another option is to use a feasibility pump [20] like objective function,
in which the current LP point is rounded and a Hamming distance function is generated to
move to a different point (more details will be given in the next section): this is related to the
pump-reduce procedure that Cplex performs to achieve more integral LP optima [21]. Finally, a
random objective function might be used.

Suppose now that we have constructed, in one way or another, a cloud C = {x1, . . . , xk} of
alternative optimal solutions to the current LP relaxation. We assume that the initial fractional
solution x? ∈ C. Given C, we can define our initial set of branching candidates F (C) as

F (C) = {j ∈ J | ∃xi ∈ C : xi
j 6∈ Z}

i.e., F (C) contains all the variables that are fractional in at least one solution of the cloud. For
each variable in F (C) it is then possible to calculate its cloud interval Ij = [lj , uj ], where:

lj = min{xi
j | xi ∈ C}

uj = max{xi
j | xi ∈ C}

Given the cloud interval for each branching candidate, we partition the set F (C) into three
subsets, depending on the relative intersection between each interval Ij and the branching interval
Bj = [bx?

jc, dx?
je]. In particular, we define:

F2 = {j ∈ F (C) | bx?
jc < lj ∧ uj < dx?

je}

F0 = {j ∈ F (C) | lj ≤ bx?
jc ∧ dx?

je ≤ uj}

F1 = F (C) \ (F2 ∪ F0)

In particular for binary variables, F2 contains exactly those variables which are fractional for
all xi ∈ C, or differently spoken: F (C) is the union (taken over C) of all branching candidates,
F2 is the intersection. If C contained all vertices of the optimal face, then F2 would be exactly
the set of variables that are guaranteed to improve the dual bound in both child nodes. The
hope is that also with a limited set of sample point in C, F2 is still a good approximation to that
set.

A variable being contained in the set F0 is a certificate that branching on it will not improve
the dual bound on either side since alternative optima exist which respect the bounds after
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(a) (b)

Figure 1: Graphical representation of pseudocosts update and usage.

branching. For the same reasoning, variables in F1 are those for which the objective function
will stay constant for one child, but hopefully not for the other.

The details about how branching rules can be extended to deal with this additional infor-
mation, namely this three-way partition of the branching candidates (F2, F1, F0) and the set of
cloud intervals Ij of course depends on the particular strategy. For example, a rule based on
strong branching can safely skip variables in F0, thus saving some LPs (more details on how
to extend a full strong branching policy to the cloud will be given in the next section). In the
remaining part of this section, we will describe how pseudocost branching can be modified to
exploit cloud information.

Pseudocost branching consists mainly in two operations: (i) updating the pseudocosts after
an actual branching has been performed and the LP relaxations of the child nodes have been
solved and (ii) computing the score of a variable using the current pseudocosts when deciding
for a branching candidate. When updating the pseudocosts, the objective gains ς+j and ς−j per
unit change in variable xj are computed, that is:

ς+j =
∆↑

dx?
je − x?

j

and ς−j =
∆↓

x?
j − bx?

jc
(1)

where ∆↑ and ∆↓ are the differences between the optimal LP objectives of the corresponding child
nodes and the current LP value. These gains are then used to update the current pseudocosts
Ψ+

j and Ψ−j which are the averages of the objective gains (per unit step length) that have been
observed for that particular variable so far. The thin line in Figure 1(a) illustrates the operation.
These estimation formulas are based on the assumption that the objective increases linearly in
both directions (hence the resulting triangle). This, however, may be a too crude approximation
of the real shape of the projection on the split domain of xj . In the case of dual degeneracy,
there might be many optimal LP solutions with different values for xj . Which of these values
x?
j takes is more or less arbitrary, but crucial for the current – and by that also for future –

branching decisions.
Using interval Ij on the other hand it is possible to replace this approximation with a more

precise model (thick line in Figure 1(a)). The corresponding way to compute gains is then:

ς̃+j =
∆↑

dx?
je − uj

and ς̃−j =
∆↓

lj − bx?
jc

(2)
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Where the values for ς+ and ς− may vary by chance, ς̃+ and ς̃− will be constant, when the set
of all corners of the optimal face is used as a cloud.

As far as the computation of the score sj is concerned, the standard formulas to predict the
objective gains when branching on variable xj are

∆+
j = Ψ+

j (dx?
je − x?

j ) and ∆−j = Ψ−j (x?
j − bx?

jc) (3)

Again, the underlying linear model may give a too optimistic estimate on the dual bound im-
provements. A more accurate estimate exploiting interval Ij can be obtained as:

∆̃+
j = Ψ+

j (dx?
je − lj) and ∆̃−j = Ψ−j (uj − bx?

jc) (4)

A graphical representation is depicted in Figure 1(b). Furthermore, the following observation
holds:

Lemma 2.1. Let x? be an optimal solution of the LP relaxation at a given branch-and-bound
node and bx?

jc ≤ lj ≤ x?
j ≤ uj ≤ dx?

je. Then

1. for fixed ∆↑ and ∆↓, it holds that ς̃+j ≥ ς+j and ς̃−j ≥ ς−j , respectively;

2. for fixed Ψ+
j and Ψ−j , it holds that ∆̃+

j ≤ ∆+
j and ∆̃−j ≤ ∆−j , respectively.

Proof. Follows directly from Equations (1)–(4).

Thus, under the same preconditions, the standard pseudocosts will be an underestimation of
the pseudocosts based on the cloud intervals, whereas the objective gain, on which the branching
decision is made, will be an overestimation. Of course these quantities interact directly which
each other: as soon as one of it gets altered, this will have an impact on all upcoming branching
decisions and pseudocost computations. The effects of continuous over- and underestimation
will amplify each other. The hope is that cloud branching helps to make better, more reliable
predictions and thereby leads to better branching decisions.

3 Full strong branching with the cloud

In the present section we detail the extension of a full strong branching strategy to the cloud.
The first problem is again how to generate a cloud of optimal LP solutions C. Following some
preliminary computational results, we opted for a feasibility pump like objective function, mini-
mizing the distance to the nearest integral point. More precisely, given a fractional solution x?,
we define the objective function coefficient cj of variable xj as

cj =


1 if 0 < fj < 0.5

−1 if 0.5 ≤ fj < 1

0 otherwise

where fj = x?
j − bx?

jc is the fractional part of x?
j . Using the primal simplex, we re-solve the

LP (fixed to the optimal face) with this new objective function. We update the interval bound
vectors l and u, and iterate, using the new optimum as x?. If, at a given iteration, the update
did not yield a new integral interval bound, we stop.

As far as the three-way partition (F2, F1, F0) is concerned, we perform full strong branching
on all variables in the set F2. If we can find even one variable in this set with a strictly improved
dual bound in both child nodes, then we stop and pick the best variable within this set, completely
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ignoring sets F1 and F0. In state-of-the-art solvers such as Cplex or SCIP the score of a variable
is computed as the product of the objective gains in both directions (maybe using a minimum
value of some epsilon close to zero for each factor). By this, the score of all variables in F1 ∩ F0

will be (nearly) zero and therefore none of them will have maximum score.
Note that in this case cloud information is used essentially to filter out variables and solve a

smaller number of LPs. If no such variable is found, different strategies can be devised, depending
on how we deal with the remaining variables. One option is to proceed with performing strong
branching on the variables in set F1, but solving only one LP per variable (because by definition
we already know that in one direction the dual bound change is zero). Note that variables in
F1 are not necessarily a subset of the fractional variables in x?: as such, while we may still have
some speedup because we only solve one LP per variable, the number of variables may indeed
be higher than what standard full strong branching would have done. If we can find at least one
variable in F2 ∩ F1 with a strictly improved dual bound in one direction, then we can stop and
ignore set F0 for the same reason as before. If this is not the case, then we know that for all
variables in F (C) no improvement can be obtained in any child node as far as the dual bound is
concerned, and so the branching variable should be chosen with some other criterion.

Another, less computationally expensive, option is to always ignore variables in F1 and stick
to the variables in F2. Apart from the obvious computational savings, this choice can be justified
by the following argument: if there is a variable in F2 with a strictly improved dual bound in
both children, we will not consider F1 ∩ F0 anyway. If there is none, this proves that the global
dual bound will not improve independent of the branching decision: at least one of the two
children will have the same dual bound as the current node. Therefore, we take the current set
of points C as evidence that variables in F2 are less likely to become integral than variables in
F1, and so should be given precedence as branching candidates.

Note that using additional points to filter out strong branching candidates is similar in spirit
to the strategy called nonchimerical branching proposed in [8], where the optimal solutions of the
strong branching LPs (which might have a different objective function value) were used for this
purpose. The two strategies have complementary strengths: nonchimerical branching does not
need to solve any additional LP w.r.t. strong branching, but needs the strong branching LPs to
be solved to optimality, because of the usage of the dual simplex. Cloud branching on the other
hand needs additional LPs, but these are in principle simpler (we are fixed to the optimal face),
need not be solved to optimality (primal simplex is used), and do not impose any requirements
to the solution of the final strong branching LPs. As such, the two techniques can be easily
combined together and might synergize. Moreover, cloud branching can be used independent of
strong branching, as argued in Section 2.

4 Computational experiments

For our computational experiments, we used SCIP 3.0.0.1 [22] compiled with SoPlex 1.7.0 [23] as
LP solver. The results were obtained on a cluster of 64bit Intel Xeon X5672 CPUs at 3.20GHz
with 12 MB cache and 48 GB main memory, running an openSuse 12.1 with a gcc 4.6.2 compiler.
Hyperthreading and Turboboost were disabled. We ran only one job per node to reduce random
noise in the measured running time that might be caused by cache-misses if multiple processes
share common resources.

We used two test sets of general, publically available MIP instances: the cor@l test set [24],
which mainly contains instances that users worldwide submitted to the NEOS server [25] and
the MMM test set which contains all instances from miplib3.0 [26], miplib2003 [17], and mi-
plib2010 [16]. We compare the performance of SCIP when using full strong branching versus a
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Table 1: comparison of Cloud branching and full strong branching on MMM and cor@l in-
stances, averages of success rate, cloud points, saved LPs per node, and rate of saved LPs;
shifted geometric means of branch-and-bound nodes and running time in seconds

cloud statistics SCIP cloud branch SCIP strong branch

Test set %Succ Pts LPs %Sav Nodes Time (s) Nodes Time (s)

MMM 12.2 2.19 74.34 21.7 661 68.2 691 72.0

cor@l 40.8 2.71 70.97 51.8 569 118.3 593 157.3

cloud branching version of full strong branching as described in the previous section. In partic-
ular, we compare to the cloud branching variant that only considers variables in F2 as possible
branching candidates. Since we want to explicitly measure the impact of using the cloud for
variable selection, we did not exploit the alternative LP optima by any other means, e.g. for
cutting plane generation, primal heuristics, reduced cost domain propagation, etc. Results by
Achterberg [21] indicate that this would be likely to give further improvements on the overall per-
formance. Further, we used the default implementation of full strong branching in SCIP, which
does not employ the methods suggested in [8] (yet). We expect that nonchimerical branching
and cloud branching will complement each other nicely, however, this is left for future implemen-
tation and experiments. We used a time limit of one hour per instance. All other parameters
were left at their default values.

For the MMM test set both, SCIP with cloud branching and with full strong branching, both
solved the same number of instance; for the cor@l test set, one more instances was solved within
the time limit when using cloud branching. Tables 2 and 3 in the Appendix show results for
all instances which both variants could solve within the time limit, excluding those which were
directly solved at the root node (hence no branching was performed). This leaves 68 instances for
MMM and 104 instances for cor@l. Column “%Succ” shows the ratio of nodes on which cloud
branching was run successfully, hence at least one additional cloud point was used. Considering
those nodes, columns “Pts” and “LPs” depict of how many points the cloud consisted on average
and how many strong branching LPs were saved on average per node, i.e., how many integral
interval bounds could be found. The Column “%Sav” shows how many percent of all strong
branching LPs could be saved for that instance. When the success rate is zero, these three
columns show a dash. For both branching variants, “Nodes” and “Time” give the number of
branch-and-bound nodes and the computation time needed to prove optimality.

Table 1 shows aggregated results. It gives averages over the corresponding numbers (the
success rates, the used points, the saved LPs per node and the percentage of overall saved
LPs) from Tables 2 and 3. Shifted geometric means are shown for the number of branch-and-
bound nodes and the computation times, which are absolute performance measures. The shifted
geometric mean of values t1, . . . , tn with shift s is defined as n

√∏
(ti + s)− s. We use a shift of

s = 10 for time and s = 100 for nodes in order to reduce the effect of very easy instances in the
mean values. Further, using a geometric mean prevents hard instances at or close to the time
limit from having a huge impact on the measures. Thus, the shifted geometric mean has the
advantage that it reduces the influence of outliers in both directions.

The results for the MMM test set show a slight improvement of 6% w.r.t. mean running time
and 5% w.r.t. the mean number of nodes when using cloud branching. For cor@l, the mean
number of nodes again is slightly larger, about 4%, when using full strong branching instead
of cloud branching. The result when comparing computation times is much more explicit: the
shifted geometric means differ by about 33%. As can be seen in Table 1, the success rate of cloud
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branching is much better on the cor@l test set than it is on MMM; and even further, on the
successful instances, the average ratio of saved LPs is much larger. Taking these observations
together explains why the improvement is much more significant for the cor@l test set.

MIP solvers are known to be prone for an effect called performance variability. Loosely speak-
ing, this term comprises unexpected changes in performance which are triggered by seemingly
performance-neutral changes in the environment or the input format. Besides others, peformance
variability is caused by imperfect tie breaking [16]. This results in small numerical differences
caused by the use of floating point arithmetics which may lead to different decisions being taken
during the solution process. A branch-and-bound search often amplifies these effects, which
can be similarly observed for all major MIP (and also other optimization) softwares. As a
consequence, small changes in performance might in fact be random noise rather than a real im-
provement or deterioration. This can, e.g., be seen for instance cap6000 from MMM: Although
cloud branching was never successful, the number of branch-and-bound nodes alters.1. Then
again, improvements brought by single components of a MIP solver typically lie in the range of
5–10%, see, e.g., [4]. In addition, even if MIP solvers did not exhibit performance variability, we
would have the issue of assessing whether the measured difference in performance is statistically
significant, a problem common to all empirical studies.

We performed two additional experiments to validate our computational results. First, we
ran identical tests on four more copies of the test sets, with perturbed models that were generated
by permuting columns and rows of the original problem formulation. This has been introduced
in [16] as a good variability generator that affects all types of problems and all components of
a typical MIP solver. Another benefit of this experiment is that it counters overtuning since the
evaluation testbed is no longer the same as the development test bed.

As can be expected, the results differ in detail from the default permutation run. For MMM,
the improvements w.r.t. computation time were 3%, 4%, 4% and 7%, and w.r.t. branch-and-
bound nodes -3%, 0%, 1% and 2%. On cor@l, the improvements w.r.t. time were 25%, 29%,
32%, and 42% and w.r.t. branch-and-bound nodes 3%, 5%, 8%, 14%. We conclude the cloud
branching was faster in all five times two experiments (including the original ones) and also
consistently reduced the number of branch-and-bound nodes on the cor@l test set. For MMM,
it can be argued that the changes are performance neutral w.r.t. the number of branch-and-bound
nodes.

As far as the statistical significance of these differences is concerned, we performed random-
ized tests [27] on the detailed results. Randomized tests are standard non-parametric statistics
that do not make any assumptions on the underlying population distributions (assumptions are
very likely to be violated in our computational settings) but are still as powerful as standard
parametric tests. According to these tests, the performance difference, both w.r.t. time and
nodes, measured on the MMM is not statistically significant. As far as cor@l is concerned,
the difference in branch-and-bound nodes is again not significant, while the difference in running
times is. Note that on heterogeneous test sets such as MMM and cor@l, it is rather difficult
to pass statistical significance tests when testing single MIP solver components, because the
improvements are almost always in the single digit range and standard test sets are relatively
small. In other words, one method might indeed be better than the other, but not by enough to
pass the statistical test. We also applied these randomized tests to the other four copies of the
test sets, with consistent results.

Having a closer look at Tables 2 and 3, it can be seen that the success rate of cloud branching
is negligible, i.e., close to zero, for a significantly higher ratio of the MMM test set than for

1This can be explained by the intermediate cloud LPs being solved – after this, the original LP basis gets
installed again and a resolve without simplex iterations is performed. However, solution values, reduced costs etc.
might be slightly different than before.
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the cor@l test set. This is also reflected by the much smaller average success rate shown in
Table 1. This partially explains why the differences on cor@l are much more significant than
on MMM: there are simply more instances on which degenerate LP solutions are detected in the
pump-reduce step of our algorithm. A reason for this might be that miplib instances contain
more industry-based models with real, perturbed data whereas cor@l has more combinatorial
models which often contain symmetries and are prone for degeneracy.

Our interpretation of the given results therefore is that cloud branching does not hurt a test
set where only few degeneracy is detected but is clearly superior on a test set which contains
many highly degenerated problems, at least time-wise.

5 Conclusion and outlook

In this paper, we introduced branching strategies for mixed-integer programs that exploit the
knowledge of a cloud of alternative optimal LP solutions. We discussed extensions of full strong
branching and pseudocost branching that incorporate this idea. Our computational experiments
showed that a version of full strong branching that uses cloud intervals is about 30% faster than
default full strong branching on a standard test set with high dual degeneracy. Even the mean
number of branch-and-bound nodes could be reduced, though not significantly.

The presented preliminary results are very encouraging for further research on cloud branch-
ing. A natural next step is to implement the described modifications on pseudocost branching
and a development of hybrid strategies such as reliability branching that make use of the cloud.
In this paper, we used multiple optima from a single relaxation as cloud set. In particular in the
context of MINLP, employing optima from multiple, alternative relaxations seems promising.
From the implementation point of view, it could be further exploited that the cloud LPs are
solved by the primal simplex algorithm, hence also intermediate, suboptimal solutions will be
feasible and could be used as cloud points. Finally, two other improvements of strong branch-
ing were suggested recently: nonchimerical branching [8] and a work of Gamrath [28] on using
domain propagation in strong branching. It will be interesting to see how these ideas combine
and whether it will even be possible to make full strong branching competitive to state-of-the-art
hybrid branching rules w.r.t. mean running time.

Acknowledgements

Many thanks to Gerald Gamrath and four anonymous reviewers for their constructive criticism.

References

[1] Benichou, M., Gauthier, J., Girodet, P., Hentges, G., Ribiere, G., Vincent, O.: Experiments
in mixed-integer programming. Mathematical Programming 1 (1971) 76–94

[2] Linderoth, J.T., Savelsbergh, M.W.P.: A computational study of strategies for mixed integer
programming. INFORMS Journal on Computing 11 (1999) 173–187

[3] Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Operations Research
Letters 33 (2005) 42–54

[4] Achterberg, T.: Constraint Integer Programming. PhD thesis, Technische Universität Berlin
(2007) http://vs24.kobv.de/opus4-zib/frontdoor/index/index/docId/1018.

http://vs24.kobv.de/opus4-zib/frontdoor/index/index/docId/1018


REFERENCES 10

[5] Bixby, R., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: MIP: Theory and practice
– closing the gap. In Powell, M., Scholtes, S., eds.: Systems Modelling and Optimization:
Methods, Theory, and Applications. Kluwer Academic Publisher (2000) 19–49
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Appendix

Tables 2 and 3 show the detailed results for the computational evaluation given in Section 4.
They report statistics on all instances from our two test sets MMM and cor@l which SCIP
could solve to optimality in less than one hour for either strong branching variant, but needed
more than one node in both cases.

Table 2: comparison of cloud branching and full strong branching on MMM instances, smaller
(better) numbers are bold

cloud statistics SCIP cloud branch SCIP strong branch

instance %Succ Pts LPs %Sav Nodes Time (s) Nodes Time (s)

10teams 64.3 2.7 50.3 79.3 129 105.3 348 488.1

aflow30a 0.0 – – – 166 19.6 182 21.7

air04 91.3 2.0 9.1 32.3 55 2087.9 57 2074.6
air05 46.8 2.0 3.0 3.4 166 1597.0 153 1541.6
ash608gpia-3col 100.0 4.3 2240.1 86.7 5 1072.1 9 2406.8

bell3a 0.0 – – – 26 588 6.6 26 590 6.3
bell5 0.2 2.0 2.0 0.6 851 0.7 865 0.7

bienst2 25.5 2.4 6.6 34.1 21 729 1586.4 21 210 1707.6

binkar10 1 4.4 2.0 4.8 3.3 45 080 1715.7 48 835 1744.9

blend2 9.3 2.0 2.0 5.4 108 0.8 110 0.7
cap6000 0.0 – – – 1 601 3.3 1 545 3.1
dcmulti 0.0 – – – 120 2.3 120 2.5

dfn-gwin-UUM 0.0 – – – 5 897 435.1 5 918 431.6
eil33-2 0.0 – – – 484 739.8 480 734.2
enigma 5.2 2.0 9.2 14.6 27 0.5 249 0.6

http://dx.doi.org/10.1007/s10107-004-0570-3
http://www2.isye.gatech.edu/mip2010/program/program.pdf
http://www2.isye.gatech.edu/mip2010/program/program.pdf
http://dx.doi.org/10.1007/s12532-008-0001-1
http://coral.ie.lehigh.edu/data-sets/mixed-integer-instances/
http://coral.ie.lehigh.edu/data-sets/mixed-integer-instances/
http://www.neos-server.org/neos/
http://miplib.zib.de/miplib3/miplib.html
http://miplib.zib.de/miplib3/miplib.html
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Table 2 continued

cloud statistics SCIP cloud branch SCIP strong branch

instance %Succ Pts LPs %Sav Nodes Time (s) Nodes Time (s)

fiber 0.0 – – – 16 1.1 16 1.3

fixnet6 0.0 – – – 9 2.3 9 2.2
flugpl 0.0 – – – 134 0.5 134 0.5

gesa2-o 0.0 – – – 5 1.4 5 1.5

gesa2 0.0 – – – 3 1.0 3 1.0

gesa3 0.0 – – – 11 1.4 15 1.5

gesa3 o 0.0 – – – 9 1.5 9 1.7

khb05250 0.0 – – – 4 0.5 4 0.5

l152lav 3.9 2.0 6.7 3.5 53 4.7 65 7.1

lseu 15.4 2.1 3.4 12.7 364 0.7 382 0.5
map18 0.0 – – – 103 1454.7 101 1701.6

map20 0.0 – – – 87 1129.0 91 1384.7

mas74 0.0 – – – 574 769 1389.5 574 769 1321.8
mas76 0.0 – – – 81 106 123.7 84 280 123.0
mik-250-1-100-1 0.0 – – – 290 018 1681.4 290 038 1628.3
mine-166-5 0.0 – – – 2 001 142.6 1 994 155.6

misc03 11.7 2.3 10.4 25.4 68 1.4 65 1.5

misc06 5.9 2.0 4.0 6.7 13 0.8 13 0.6
misc07 13.2 2.1 7.1 23.5 2 300 62.9 2 365 57.9
mod008 0.0 – – – 104 0.8 111 0.8

mod010 0.0 – – – 10 1.0 10 1.1

mod011 0.0 – – – 321 989.9 321 1069.9

modglob 0.0 – – – 299 2.9 299 2.8
neos-1109824 51.9 2.3 26.0 68.4 1 246 473.0 1 023 390.9
neos-1396125 69.4 2.2 8.3 55.1 2 714 2355.7 2 976 2653.2

neos-476283 0.0 – – – 445 887.5 323 680.2
neos-686190 3.7 2.0 9.7 4.8 1 451 540.6 2 085 774.5

noswot 86.9 2.4 16.5 74.2 337 012 957.6 210 056 869.0
ns1766074 0.0 2.1 5.5 0.1 241 641 492.3 241 801 470.2
nw04 0.0 – – – 5 54.8 5 46.4
p0033 0.0 – – – 5 0.5 5 0.5

p0201 47.0 2.3 23.2 64.6 52 2.6 51 3.0

p0282 0.0 – – – 3 0.5 3 0.5

p0548 0.0 – – – 5 0.5 5 0.5

p2756 2.6 2.0 4.0 2.5 82 1.9 146 2.0

pk1 0.1 2.8 16.4 0.6 76 569 257.8 77 616 233.1
pp08a 0.0 – – – 300 3.7 251 3.0
pp08aCUTS 0.2 2.0 2.0 0.1 213 3.2 284 4.2

qiu 10.3 2.1 10.3 17.9 14 858 1515.7 16 290 1895.5

qnet1 17.6 2.0 6.0 4.4 5 3.8 5 3.4
qnet1 o 20.0 2.0 3.8 2.8 22 9.2 22 10.3

ran16x16 4.4 2.0 2.3 2.6 28 684 1184.3 27 051 964.4
reblock67 0.0 – – – 28 052 1528.8 33 290 1773.3

rentacar 27.3 2.0 3.3 22.2 13 3.4 14 3.5

rmatr100-p10 0.1 2.0 2.0 0.0 163 952.8 164 950.2
rmatr100-p5 0.0 – – – 33 1327.1 33 1321.6
rout 32.6 2.2 11.8 46.0 1 561 79.3 1 712 85.8

set1ch 0.0 – – – 16 0.9 17 1.0

sp98ir 2.1 2.0 3.5 1.3 609 404.1 876 507.4

stein27 29.1 2.3 6.2 22.9 787 2.2 775 2.0
stein45 20.7 2.1 5.8 11.2 7 909 73.8 8 446 77.3

tanglegram2 0.0 – – – 2 27.3 2 34.3

vpm2 9.4 2.0 2.2 3.4 46 1.3 48 1.3
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Table 3: comparison of cloud branching and full strong branching on Cor@l instances, smaller
(better) numbers are bold

cloud statistics cloud branching full strong branching

instance %Succ Pts LPs %Sav Nodes Time (s) Nodes Time (s)

22433 0.0 – – – 4 1.1 4 1.2

23588 0.2 2.0 14.0 0.3 148 6.0 174 6.3

aligninq 1.8 2.0 9.0 1.1 24 20.6 32 23.1

bc1 0.0 – – – 604 132.6 616 124.0

bc 0.0 – – – 1 985 2437.7 1 985 2323.3

bienst1 31.7 2.2 6.0 39.0 2 712 151.1 2 737 172.1

bienst2 25.5 2.4 6.6 34.1 21 729 1587.7 21 210 1703.3

binkar10 1 4.4 2.0 4.8 3.3 45 080 1714.4 48 835 1744.8

dano3 3 0.0 – – – 9 235.5 9 153.3

dano3 4 0.0 – – – 4 176.7 4 177.4

haprp 0.0 – – – 20 289 1696.4 19 844 1629.9

neos-1053591 94.5 2.3 8.7 70.0 1 794 19.2 46 259 367.4

neos-1109824 51.9 2.3 26.0 68.4 1 246 482.7 1 023 390.7

neos-1120495 38.7 2.2 19.4 49.7 102 18.7 75 17.6

neos-1122047 100.0 3.5 42.0 96.6 3 80.6 2 34.1

neos-1200887 86.2 2.5 13.8 63.5 981 234.4 1 465 381.7

neos-1211578 74.9 2.4 10.9 74.6 49 619 315.6 32 225 323.5

neos-1224597 98.6 6.7 631.1 95.0 70 406.8 80 864.5

neos-1228986 74.8 2.4 11.7 70.2 42 072 358.7 39 690 400.6

neos-1281048 91.8 5.8 133.8 88.1 59 49.8 80 170.7

neos-1337489 74.9 2.4 10.9 74.6 49 619 312.0 32 225 320.5

neos-1367061 0.0 – – – 16 1601.4 16 1683.2

neos-1396125 69.4 2.2 8.3 55.1 2 714 2359.8 2 976 2659.6

neos-1413153 81.8 2.9 292.5 88.6 192 219.9 462 2546.4

neos-1415183 90.9 2.6 252.4 85.7 19 6.6 56 43.6

neos-1420205 82.5 2.1 8.0 33.5 10 674 46.8 7 840 45.5

neos-1437164 74.7 2.2 11.0 47.1 80 1.8 47 1.9

neos-1440225 92.3 4.7 381.7 96.6 6 11.0 134 1387.4

neos-1440447 88.7 2.8 18.4 80.6 7 676 207.5 22 496 747.9

neos-1441553 78.0 2.3 26.0 58.1 133 16.2 215 86.7

neos-1445743 0.0 – – – 2 101.1 2 64.4

neos-1445755 5.0 2.0 4.0 16.7 3 75.0 3 57.6

neos-1445765 1.6 2.0 2.0 0.3 5 374.9 5 236.2

neos-1460265 99.8 4.0 216.2 80.2 6 997 1354.8 1 125 540.5

neos-1480121 23.0 2.0 3.5 25.0 1 288 3.3 1 961 4.0

neos-1489999 0.0 – – – 21 28.6 21 32.0

neos-476283 0.0 – – – 445 885.7 323 687.4

neos-480878 24.2 2.0 3.2 7.3 2 803 230.9 3 517 279.0

neos-494568 94.2 3.0 181.7 76.8 291 398.2 285 1082.3

neos-501474 48.2 2.0 4.0 46.9 158 1.3 104 0.7

neos-504674 50.5 2.0 5.9 16.6 1 256 399.7 1 230 426.9

neos-504815 35.6 2.1 6.1 16.5 510 75.4 502 83.3

neos-506422 16.2 2.1 3.7 20.9 1 451 540.7 959 337.3

neos-512201 48.7 2.0 6.0 15.5 665 175.7 436 149.2

neos-522351 0.0 – – – 3 1.1 3 1.0

neos-525149 55.3 3.0 88.7 45.8 46 17.9 187 193.4

neos-530627 0.0 – – – 2 0.5 2 0.5

neos-538867 72.8 3.0 21.4 76.2 6 697 318.1 4 358 208.9

neos-538916 77.5 3.2 23.9 77.4 4 642 371.5 3 496 294.6

neos-544324 99.9 2.0 15.2 92.3 7 301.4 7 149.9

neos-547911 90.0 2.1 10.8 85.1 30 244.3 30 184.5

neos-555694 71.3 2.6 98.6 69.9 65 36.5 177 301.7

neos-555771 92.7 2.4 107.7 80.2 32 17.8 70 72.4

neos-570431 71.0 2.0 8.1 59.4 60 290.2 76 314.7

neos-584851 47.0 2.1 20.0 60.3 56 778.1 38 840.5

neos-585192 0.0 – – – 333 40.1 345 40.6

neos-585467 1.2 2.0 12.0 1.4 125 10.6 133 10.7

neos-593853 0.0 – – – 10 157 52.4 12 204 56.0
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Table 3 continued

cloud statistics cloud branching full strong branching

instance %Succ Pts LPs %Sav Nodes Time (s) Nodes Time (s)

neos-595905 0.0 – – – 418 25.2 473 29.5

neos-595925 0.0 – – – 1 166 51.6 1 189 51.8

neos-598183 0.0 – – – 488 6.8 486 7.1

neos-611838 0.0 – – – 193 89.5 193 94.0

neos-612125 0.0 – – – 92 47.1 92 50.3

neos-612143 0.0 – – – 130 55.1 128 59.7

neos-612162 0.0 – – – 122 74.6 126 80.3

neos-631694 93.9 2.9 56.8 49.5 94 57.3 101 93.6

neos-686190 3.7 2.0 9.7 4.8 1 451 537.9 2 085 776.4

neos-709469 12.5 2.3 22.4 58.6 1 608 3.5 28 1.6

neos-717614 0.0 – – – 1 059 65.9 1 061 65.3

neos-775946 95.4 2.8 93.4 81.3 234 140.6 413 343.6

neos-785899 93.0 2.8 94.2 77.7 179 130.7 266 247.6

neos-785914 83.8 3.4 135.0 92.0 109 123.4 20 296.6

neos-801834 0.0 – – – 11 841.5 11 817.6

neos-803219 0.1 2.0 2.0 0.0 4 131 72.8 4 231 70.9

neos-803220 0.0 – – – 18 713 179.3 17 175 166.5

neos-806323 28.1 2.0 2.7 11.0 3 258 137.6 3 645 142.6

neos-807639 4.1 2.0 2.6 3.1 1 130 18.6 1 120 17.2

neos-807705 20.3 2.0 2.2 6.3 2 373 88.3 2 241 80.0

neos-808072 72.1 2.3 32.3 51.7 43 379.0 90 1905.3

neos-810326 34.9 2.0 4.0 6.2 267 2394.3 266 2431.7

neos-820879 45.1 2.0 3.8 9.6 127 281.1 114 210.3

neos-825075 84.6 3.9 60.0 80.5 18 3.0 49 7.8

neos-839859 0.1 2.0 12.0 0.1 1 084 773.1 1 628 938.6

neos-862348 35.8 2.1 19.8 21.9 99 33.9 70 38.4

neos-863472 32.8 2.2 15.6 63.2 88 330 2330.9 68 169 2264.0

neos-880324 62.8 2.4 22.2 78.7 62 1.8 15 1.0

neos-892255 100.0 2.5 278.6 97.3 8 720.1 5 1590.8

neos-906865 0.0 – – – 7 079 462.4 7 065 453.8

neos-912015 93.2 5.1 130.8 94.2 791 473.3 209 322.1

neos-916173 0.0 – – – 1 497 390.2 1 478 392.0

neos-933550 83.3 8.4 638.8 96.6 5 10.1 25 58.2

neos-933815 47.7 2.0 5.7 32.3 61 797 801.5 55 797 661.4

neos-934531 99.3 3.4 89.8 96.1 27 293.0 51 1432.9

neos-941698 97.7 6.1 357.2 95.8 19 14.2 44 70.5

neos-942323 99.7 4.0 187.8 97.7 189 64.0 2 205 1240.4

neos-955215 68.4 2.1 9.1 53.0 7 574 61.3 6 593 52.9

neos-957270 83.1 2.8 159.9 89.0 14 471.3 17 228.4

nsa 0.0 – – – 258 2.8 258 3.0

nug08 0.0 – – – 3 24.9 3 23.2

prod1 0.0 2.0 8.0 0.0 4 053 33.8 3 820 31.4

prod2 0.0 – – – 25 200 361.6 25 227 354.0

qap10 33.3 2.0 2.0 40.0 2 177.3 2 157.3

sp98ir 2.1 2.0 3.5 1.3 609 403.5 876 503.2

Test3 0.0 – – – 10 8.0 10 8.0
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