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On the semidefinite representations of real
functions applied to symmetric matrices

Guillaume Sagnol

December 21, 2012

Abstract

We present a new semidefinite representation for the trace of a real
function f applied to symmetric matrices, when a semidefinite represen-
tation of the convex function f is known. Our construction is intuitive,
and yields a representation that is more compact than the previously
known one. We also show with the help of matrix geometric means and
a Riemannian metric over the set of positive definite matrices that for a
rational exponent p in the interval (0, 1], the matrix X raised to p is the
largest element of a set represented by linear matrix inequalities. We give
numerical results for a problem inspired from the theory of experimental
designs, which show that the new semidefinite programming formulation
can yield a speed-up factor in the order of 10.

Keywords semidefinite representability, optimal experimental designs, SDP,
matrix geometric mean

1 Introduction
In this article we discuss semidefinite representations of scalar functions ap-
plied to symmetric matrices. We recall that it is possible to extend the def-
inition of a function f : I 7→ R, x → f(x), where I is a real interval, to the
set SIm of m × m−symmetric matrices whose spectrum lies in I as follows: if
X = U Diag(λ1, . . . , λm)UT is an eigenvalue decomposition of X, then we define
f(X) := U Diag

(
f(λ1), . . . , f(λm)

)
UT . Throughout this article we denote by

Sm (resp. S+m,S++
m ) the set of m × m symmetric (resp. positive semidefinite,

positive definite) matrices.
If the scalar function f is semidefinite representable, then a result of Ben-Tal

and Nemirovski can be used to construct a semidefinite representation of
X → trace f(X). Indeed, trace f(X) can be rewritten as

∑
i f(λi), which is

a symmetric and semidefinite representable function of the eigenvalues of X, so
that Proposition 4.2.1. in [BTN87] applies.

In this article, we show that the semidefinite representation of x → f(x)
can be lifted to the matrix case X → trace f(X) by an intuitive transformation
which involves Kronecker products (Theorem 3.1). The resulting semidefinite
representation of the epigraph

E = {(t,X) ∈ R× Sm : trace f(X) ≤ t}
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is more compact than the one obtained from the general construction of Ben-
Tal and Nemirovski, in which the Ky-Fan k-norms of M must be bounded
for k = 1, . . . ,m. Our numerical results of Section 5 moreover show that the
semidefinite programs (SDP) based on the present representation are solved in
a shorter time than the former SDP formulations, and that they are numerically
more stable.

For the case where f(x) = xp : R+ 7→ R+, where p is a rational number in
(0, 1], we shall see that our construction yields a stronger result. Namely, we
show in Theorem 4.2 that Xp has an extremal representation of the form

Xp = max�{T ∈ Sm : T ∈ S},

where the set S is semidefinite representable and max� denotes the largest
element with respect to the Löwner ordering, which is defined over Sm as follows:

A � B ⇐⇒ (B −A) ∈ S+m.

The proof of this result uses the notion of matrix geometric mean, and the
Banach fixed point theorem in the space S++

m equipped with a Riemannian
metric.

Our study is motivated by the theory of optimal experimental designs, where
the general problem to solve takes the form

max
w∈Rs

Φp

(
s∑
i=1

wiMi

)
, (1)

s. t.

s∑
i=1

wi = 1, w ≥ 0,

where M1, . . . ,Ms are given positive semidefinite matrices, and for p ∈ [−∞, 1]
the Φp−criterion is defined over the set of positive definite matrices M ∈ S++

m

as

Φp(M) =


λmin(M) for p = −∞ ;
( 1
m trace Mp)

1
p for p ∈ (−∞, 1], p 6= 0 ;

(det(M))
1
m for p = 0.

(2)

The definition of Φp is extended by continuity to singular matrices M ∈ S+m,
so that Φp(M) = 0 if M is singular and p ≤ 0. We refer the reader to
Pukelsheim [Puk93] for more background on optimal experimental designs.

Note that any semidefinite representation of the function M → traceMp

yields a semidefinite programming (SDP) formulation of Problem (1). The cases
p = −∞, p = −1, and p = 0, known as E−, A− andD−optimal design problems
have been extensively studied in the literature, and SDP formulations are known
for these problems [BV04]. We also point out that lighter Second Order Cone
Programming (SOCP) formulations exist for p = −1 and p = 0 [Sag11]. The
general case (p ∈ [−∞, 1]) deserved less attention. However, it was recently
noticed by Papp [Pap12] that the a SDP formulation can be obtained by using
Proposition 4.2.1. in [BTN87]. Our numerical results (cf. Section 5) show that
the new SDP formulation from this paper can improve the computation time
by a factor in the order of 10.
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2 Preliminaries
In this section, we briefly recall some basic notion about semidefinite repre-
sentability and matrix geometric means. We first recall the definition of a
Semidefinite Program (SDP). The latter is an optimization problem in which a
linear function cTx must be maximized, among the vectors x belonging to a set
S defined by linear matrix inequalities (LMI):

S = {x ∈ Rn : F0 +
∑
i

xiFi � 0}.

We now recall the definition of a semidefinite representable set, which was
introduced by Ben-Tal and Nemirovski [BTN87]:

Definition 2.1 (Semidefinite representability). A convex set S ⊂ Rn is said to
be semidefinite representable, abbreviated SDr, if S is the projection of a set
in a higher dimensional space which can be described by LMIs. In other words,
S is SDr if and only if there exists symmetric matrices F0, . . . , Fn, F

′
1, . . . , F

′
n′

such that

x ∈ S ⇐⇒ ∃y ∈ Rn
′

: F0 +

n∑
i=1

xiFi +

n′∑
i=1

yiF
′
i � 0.

Such an LMI is called a semidefinite representation (SDR) of the set S.

Definition 2.2 (SDR of a function). A convex (resp. concave) function f is said
SDr if and only if the epigraph of f , {(t, x) : f(x) ≤ t} (resp. the hypograph
{(t, x) : t ≤ f(x)}), is SDr.

It follows immediately from these two definitions that the problem of max-
imizing a concave SDr function (or minimizing a convex one) over a SDr set
can be cast as an SDP.

We now give a short insight on the theory of matrix geometric means and
the Riemannian metric of the set of positive definite matrices S++

m . We refer
the reader to the book of Bhatia [Bha08] and the references therein for more
details on this subject. The Geometric mean of two positive definite matrices
A,B ∈ S++

m was introduced by Ando [And79]:

A]B := A1/2
(
A−1/2BA−1/2

)1/2
A1/2.

In the latter paper, Ando shows that A]B satisfies the following extremal prop-
erty:

A]B = max�

{
X ∈ Sm :

(
A X
X B

)
� 0

}
(3)

The space of positive definite matrices is equipped with the Riemannian metric

δ2(A,B) = ‖ logA−1/2BA−1/2‖F ,

where ‖M‖F = trace(MTM) denotes the Frobenius norm of M . In this space,
there exists a unique geodesic [A,B] between two matrices A and B, which can
be parametrized as follows:

γ(t) = A1/2
(
A−1/2BA−1/2

)t
A1/2, 0 ≤ t ≤ 1.
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Note that A]B is the midpoint of this geodesic. The geometric mean of two
matrices is commutative, i.e. A]B = B ]A, and the map X → A]X is operator
monotone, i.e. Y � X =⇒ A]Y � A]X.

We also point out that the metric δ2 enjoys an important convexity property,
which will be useful in the proof of Theorem 4.2:

∀A,B,C,D ∈ S++
m , δ2(A]B,C ]D) ≤ 1

2
δ2(A,C) +

1

2
δ2(B,D). (4)

3 Lifting the SDR of a scalar function
In this section, we show that the SDR of a function f : I 7→ R can be trans-
formed in a simple way to a SDR of trace f : SIm → R:

Theorem 3.1. Let f : I 7→ R be a scalar function, where I is a real interval.
Assume that f admits the following SDR: for all x ∈ I,

f(x) ≤ t⇐⇒ ∃y ∈ Rn : F0 + xFX + tFT +

n∑
i=1

yiFi � 0,

where the symmetric matrices F0, . . . , Fn, FX , FT are given. Then, a SDR of
the function g : SIm 7→ R, X → trace f(X) is given by: for all X ∈ SIm,

trace f(X) ≤ t⇐⇒ ∃T, Y1, . . . , Yn ∈ Sm :

(i) F0 ⊗ Im + FX ⊗X + FT ⊗ T +

n∑
i=1

Fi ⊗ Yi � 0;

(ii) traceT ≤ t,

where Im denotes the m×m identity matrix and ⊗ is the Kronecker product. In
other words, the SDR is lifted from scalar to matrices by replacing each scalar
by a corresponding matrix block of size m×m.

Proof. Let X be an arbitrary matrix in SIm, and X = U Diag(λ)UT be an
eigenvalue decomposition of X. For k = 1, . . . ,m, define tk = f(λk). By
assumption there exists a vector y(k) such that

Bk := F0 + λkFX + tkFT +

n∑
i=1

y
(k)
i Fi � 0.

Denote by B the block diagonal matrix with blocks B1, . . . , Bm on the diagonal,
and by yi the vector of Rm with components y(1)i , . . . , y

(m)
i . We may write

B = Im ⊗ F0 + Diag(λ)⊗ FX + Diag(t)⊗ FT +

n∑
i=1

Diag(yi)⊗ Fi � 0.

In the previous expression, we may commute the Kronecker products, which is
equivalent to pre- and post-multiplying by a permutation matrix:

F0 ⊗ Im + FX ⊗Diag(λ) + FT ⊗Diag(t) +

n∑
i=1

Fi ⊗Diag(yi) � 0.
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Now, we multiply this expression to the left by the block diagonal matrix
Diag(U, . . . , U) = I ⊗ U , and to the right by its transpose. This gives:

F0 ⊗ Im + FX ⊗X + FT ⊗ T +

n∑
i=1

Fi ⊗ Yi � 0,

where we have set T = U Diag(t)UT and Yi = U Diag(yi)U
T . By construction,

we have T = f(X), and thus we have proved the “⇒” part of the theorem.

For the converse part, consider some matrices T ′, Y ′1 , . . . Y ′n ∈ Sm such that
the LMI (i) of the theorem is satisfied. Define HT = T ′ − T and Hi = Y ′i − Yi,
where T = f(X) and Yi = U Diag(yi)U

T are defined as in the first part of this
proof. We will show that traceHT ≥ 0, which implies traceT ′ ≥ trace f(X),
and the proof will be complete.

So from (i) we have:

F0 ⊗ Im + FX ⊗X + FT ⊗ (T +HT ) +

n∑
i=1

Fi ⊗ (Yi +Hi) � 0.

Again, we multiply this expression to the left by I ⊗ UT and to the right by
I ⊗ U , and then we commute the Kronecker products. This gives:

Diag(B1, . . . , Bm) + UTHTU ⊗ FT +

n∑
i=1

UTHiU ⊗ Fi � 0.

For all k = 1, . . . ,m, this implies that the kth diagonal block is positive semidef-
inite:

Bk + (UTHTU)k,k FT +

n∑
i=1

(UTHiU)k,k Fi � 0.

According to the SDR of the scalar function f , it means that

f(λk) ≤ tk + (UTHTU)k,k,

and since f(λk) ≤ tk we obtain (UTHTU)k,k ≥ 0. From there, it is easy to
conclude:

traceHT = traceHTUU
T = traceUTHTU =

m∑
k=1

(UTHTU)k,k ≥ 0.

Example 3.2. A SDR of the function x→ xp, where p ∈ Q is briefly sketched
in [BTN87] and given with more details in [AG03] (note that this function is
concave for p ∈ [0, 1] and convex for other values of p). For example, the
epigraph of the convex function x→ x−4/3 mapping (0,∞) onto itself, may be
represented as follows: for all t ≥ 0, x > 0:

x−4/3 ≤ t⇐⇒ 1 ≤ x4t3

⇐⇒ ∃u ≥ 0, v ≥ 0 : 1 ≤ xu, u2 ≤ tv, v2 ≤ t

⇐⇒ ∃u ∈ R, v ∈ R :

(
x 1
1 u

)
� 0,

(
t u
u v

)
� 0,

(
t v
v 1

)
� 0
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By using Theorem 3.1, we obtain a SDR of the function X → traceX−4/3 :

traceX−4/3 ≤ t⇐⇒ ∃U, V, T ∈ Sm :



(
X Im
Im U

)
� 0(

T U
U V

)
� 0,(

T V
V Im

)
� 0,

traceT ≤ t

Note however that LMI (i) of Theorem 3.1 does not imply the stronger
property f(X) � T . As a counter-example, consider the function f(x) = x4,
which admits the SDR

x4 ≤ t⇐⇒ ∃u ∈ R :

(
u x
x 1

)
� 0,

(
t u
u 1

)
� 0.

If we set T =

(
1 1
1 2

)
, U =

(
8 8
8 3

)
and X =

(
73 39
39 34

)
, the reader

can check that the LMI (i) of Theorem 3.1 holds:(
U X
X I2

)
� 0,

(
T U
U I2

)
� 0,

but X4 � T . In the next section, we show that this stronger property holds for
f : x→ xp when p ∈ Q ∩ (0, 1].

4 Semidefinite representation of concave matrix
powers

Throughout this section, p denotes a rational number in (0, 1], and we assume
that p = α

β , with 0 < α ≤ β. We are going to show that the lifted SDR of the
function fp mapping R+ onto itself and defined by f(x) = xp, also provides an
extremal representation of Xp. In other words, there is a SDr set S ∈ S+m for
which Xp is the largest element with respect to Löwner ordering.

To do this, we first present the construction of the SDR of fp. As explained
in [AG03], this SDR is based on binary trees whose nodes contain variables.
Note that in a perfect binary tree, every node of depth k can be index by an
element of Γk := {L,R}k, which indicates the sequence of left or right turns
needed to reach this node from the root of the tree. For example, a perfect
binary tree B of depth 2 is index as follows:

B∅

BL

BLL BLR

BR

BRL BRR
We denote by Tn(m) the set of perfect binary trees of depth n, whose nodes

are matrices of Sm. The concatenation of tree indices is denoted by t, so

6



that for example, LR t L = LRL ∈ Γ3. We define n as the integer such
that 2n−1 < β ≤ 2n. Let σ(X,T ) denote a sequence of length 2n that is a
permutation of the sequence

χα,β(X,T ) := (X, . . . ,X︸ ︷︷ ︸
α times

, T, . . . , T︸ ︷︷ ︸
(2n−β) times

, Im, . . . , Im︸ ︷︷ ︸
(β−α) times

). (5)

The elements of σ(X,T ) are indexed by γ ∈ Γn, in the order correspond-
ing to the leaves of a tree of depth n from left to right. For example, if
σ(X,T ) = (X, Im, T, Im), we have σ(X,T )LL = X, σ(X,T )RL = T , and
σ(X,T )LR = σ(X,T )RR = Im. We can now construct the SDR of fp (already
lifted to S+m by considering matrix blocks instead of scalar variables). It involves
a tree whose root is T , leaves are defined by σ(X,T ), and a LMI related to the
matrix geometric mean must be satisfied at each node:

S(σ) = {X,T ∈ S+m : ∃B ∈ Tn(m) :

(i) B∅ = T ;

(ii) ∀γ ∈ Γn, Bγ = σ(X,T )γ ;

(iii) ∀k = 0, . . . , n− 1, ∀γ ∈ Γk,

(
BγtL Bγ
Bγ BγtR

)
� 0}

Example 4.1. If p = 1/3, we have α = 1, β = 3, n = 2, and σ(X,T ) must
contain respectively α = 1, (2n − β) = 1 and (β − α) = 2 copies of X,T, and
Im. If σ(X,T ) = (X,T, Im, Im), the set S(σ) is defined through a tree of the
form

T

BL

X T

BR

Im Im

(6)

The property (iii) in the definition of S(σ) implies that BR satisfies(
Im BR
BR Im

)
� 0.

So by Equation (3) we have BR � Im, and the definition of S(σ) simplifies to:

(X,T ) ∈ S(σ)⇐⇒ ∃BL ∈ Sm :

(
BL T
T Im

)
� 0,

(
X BL
BL T

)
� 0.

Generally speaking, we point out that the order of the elements in the per-
mutation σ can be chosen such that the definition of S(σ) involves no more than
2(n− 1) = O(log β) LMIs of size 2m× 2m.

Now, as a consequence of Equation (3), observe that property (iii) in the
definition of S(σ) implies Bγ � BγtL ]BγtR (if the geometric mean is well
defined, i.e. BγtL, BγtR ∈ S++

m ). By operator monotonicity of the matrix
geometric mean, we see that if the matrices X,T,BL and BR of Tree (6) are
positive definite, then:

T � BL ]BR � (X ]T ) ] (Im ] Im).

7



In the general case, a simple induction shows that for all positive definite ma-
trices X,T ,

(X,T ) ∈ S(σ) =⇒ T � #σ(X,T ), (7)

where #σ(X,T ) represents the expression with nested “]-operations” in the
binary tree whose leaves are defined through σ(X,T ). We can finally give the
main result of this section:

Theorem 4.2 (Extremal representation of Xp). Let p = α
β , 0 < α ≤ β, and

let σ(X,T ) be a permutation of χα,β(X,T ). Then, Xp satisfies the following
extremal property

∀X ∈ S+m, Xp = max�{T ∈ S+m : (X,T ) ∈ S(σ)}.

Proof. Let X ∈ S++
m be an arbitrary positive definite matrix. We are first going

to show that Xp = max�{T ∈ S++
m : (X,T ) ∈ S(σ)}. The general statement for

all X ∈ S+m will be obtained at the end of this proof by continuity.
We first handle the case where β = 2n. In this case, the matrix T does

not appear in the sequence σ(X,T ), so every leaf of the tree B involved in the
definition of S(σ) is either X or Im. Define successively

∀γ ∈ Γk, Bγ = BγtL ]BγtR

for k = (n − 1), (n − 2), . . . , 0. By construction, we have B∅ = #σ(X,T ),
and a simple induction shows that #σ(X,T ) = X

α
2n = Xp (the geometric

means are easy to compute because X and Im commute). This shows that
(X,Xp) belongs to S(σ). Conversely, if T ∈ S++

m , Equation (7) shows that
(X,T ) ∈ S(σ)⇒ T � Xp.

The case β < 2n is more complicated. Let T ∈ S++
m such that (X,T ) ∈ S(σ),

and let B ∈ Tn(m) be a tree satisfying properties (i)− (iii). Define a new tree
B′ as follows:

∀γ ∈ Γn−1, B
′
γ := BγtL ]BγtR � Bγ ,

and
∀γ ∈ Γk, B

′
γ := B′γtL ]B

′
γtR � Bγ

for k = (n−2), . . . , 0. In particular, the root of B′ is T ′ := B′∅ = #σ(X,T ) � T .
It remains to define the leaves of B′, which we do according to σ(X,T ′):

∀γ ∈ Γn, B
′
γ := σ(X,T ′)γ � Bγ .

By construction, it is clear that B′ satisfies the property (iii) for the depth
levels k = 0, . . . , n− 2. For a γ ∈ Γn−1, (iii) also holds, because(

B′γtL B′γ
B′γ B′γtR

)
�
(
BγtL B′γ
B′γ BγtR

)
� 0,

where the first inequality follows from B′γtL � BγtL, B′γtR � BγtR, and the
second inequality is a consequence of B′γ = BγtL ]BγtR. This shows that
(X,T ′) belongs to S(σ).

Define h : S++
m 7→ S++

m , T → #σ(X,T ). So far, we have shown that
h(T ) � T , and (X,T ) ∈ S(σ) =⇒ (X,h(T )) ∈ S(σ). By using the convex-
ity property of the Riemannian metric (Equation (4)), a simple induction shows
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that h is a contraction mapping with a contraction equal to the fraction of the
number of leaves of B that take the value T :

∀T, T ′ ∈ S++
m , δ2(h(T ), h(T ′)) ≤ 2n − β

2n
δ2(T, T ′) < δ2(T, T ′).

Hence, the mapping T → h(T ) is contractive in the space S++
m equipped with the

Riemannian metric δ2. It is known that this space is complete (see e.g. [MZ11]),
and hence we can apply the Banach fixed point theorem: the fixed point equation
T = h(T ) has a unique solution T ∗ ∈ S++

m . Moreover for all T ∈ S++
m the

sequence defined by T0 = T, Ti+1 = h(Ti) converges to T ∗. In particular, if
(X,T ) ∈ S(σ), our previous discussion shows that T � T ∗ and (X,T ∗) ∈ S(σ).
This shows that T ∗ is the right candidate to be the largest element T such
that (X,T ) ∈ S(σ), and since X,Xp and Im commute it is easy to verify that
Xp = h(Xp), i.e. T ∗ = Xp.

It remains to show that the statement of the theorem remains valid when
the matrix X ∈ S+m is singular. To do this, chose a sequence Xi ∈ S++

m such
that Xi → X as i→∞, as well as a sequence εi > 0 such that εi → 0. We know
that (Xi, X

p
i ) ∈ S(σ) for all i. Let T ∈ S+m such that (X,T ) ∈ S(σ) and define

X ′i := (1− εi)X + εiXi, T ′i := (1− εi)T + εiX
p
i . By convexity of S(σ), we have

(X ′i, T
′
i ) ∈ S(σ). Moreover, since the matrices T ′i andX ′i are positive definite, we

know that T ′i � X
′p
i . By taking the limit, we obtain T � Xp. Finally, we must

show that (X,Xp) ∈ S(σ). Consider the tree B with leaves σ(X,Xp), and whose
non-leaf nodes are defined by the relation: if BγtL = Xk1 and BγtL = Xk2 ,
then Bγ := X(k1+k2)/2. A simple induction shows that the root of this tree is
B∅ = X

nX (σ)+nT (σ)

2n , where nX(σ) nT (σ) represent the number of times that X
and T appear in σ(X,T ). Replacing nX(σ) by α and nT (σ) by 2n − β, we find
B∅ = Xp. Hence, (X,Xp) ∈ S(σ), and the proof is complete.

Corollary 4.3. Let p ∈ Q∩(0, 1] and σ satisfy the assumptions of Theorem 4.2.
If K is a m× r−matrix, then the concave function X → traceKTXpK, which
maps S+m to R+, has the following SDR representation: for all X ∈ S+m,

t ≤ traceKTXpK ⇐⇒ ∃T ∈ S+m : (X,T ) ∈ S(σ), t ≤ traceKTTK.

Proof. If t ≤ traceKTXpK, we set T = Xp, so that t ≤ traceKTTK and by
Theorem 4.2 (X,T ) ∈ S(σ). Conversely, assume that (X,T ) ∈ S(σ). We know
from previous theorem that T � Xp. Hence, we have 〈M,T 〉 ≤ 〈M,Xp〉 for all
positive semidefinite matrix M . In particular,

traceKTTK = 〈KKT , T 〉 ≤ 〈KKT , Xp〉 = traceKTXpK,

from which the conclusion follows.

5 Numerical Results
In this section, we compare the CPU time required to solve problems of the
form

min
w≥0∑
i wi=1

trace f(

s∑
k=1

wkMk), (Pf )
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by using the semidefinite representation of Theorem 3.1, and the one of Ben-
Tal and Nemirovski [BTN87]. This problem is inspired from the application to
optimal experimental design that is presented in the introduction. For the sake
of variety, we do not limit ourselves to power functions x → xp with p < 1.
More precisely, assume that f : I → R is a convex real valued function defined
on the interval I, an SDR of f is known:

∀x ∈ I, f(x) ≤ t⇐⇒ ∃y ∈ Rn : F0 + xFX + tFT +

n∑
i=1

yiFi � 0,

and the matrices M1, . . . ,Ms ∈ SIm are given. We compare the efficiency of the
following two SDP formulations of Problem (Pf ): the one with block matrices
resulting from Theorem 3.1,

min
X,T,{Yi},w

traceT (SDPf − 1)

s. t. F0 ⊗ Im + FX ⊗X + FT ⊗ T +

n∑
i=1

Fi ⊗ Yi � 0;

X =

s∑
k=1

wkMk, w ≥ 0,

s∑
k=1

wk = 1,

and the SDP from [BTN87] that bounds each Ky-Fan Norm of X:

min
X,t,x,y,σ,{Zj}

m∑
j=1

tj (SDPf − 2)

s. t. F0 + xjFX + tjFT +

n∑
i=1

y
(j)
i Fi � 0, (j = 1, . . . ,m);

x1 ≥ x2 ≥ . . . ≥ xm;

j∑
k=1

xk − jσj − trace(Zj) ≥ 0, (j = 1, . . . ,m− 1);

Zj � 0, (j = 1, . . . ,m− 1);

Zj −X + σjIm � 0, (j = 1, . . . ,m− 1);

traceX =

m∑
j=1

xj ;

X =

s∑
k=1

wkMk, w ≥ 0,

s∑
k=1

wk = 1.

Our computational results are summarized in Table 1. Besides rational
power functions, we have also consider the function f : (0, 1) 7→ R, x→ 1

x(x−1) ,
which has the SDR

∀x ∈ (0, 1), f(x) ≤ t⇐⇒ ∃u ∈ R : 1 ≤ u(1− x), 1 ≤ (t− u)x

⇐⇒ ∃u ∈ R :

(
u 1
1 1− x

)
� 0,

(
t− u 1

1 x

)
� 0,
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f(x) I m CPU time (s)
(SDPf − 1) (SDPf − 2)

−x
1
3 [0,∞)

10 0.40 0.80
25 5.16 40.85
40 59.19 706.43 †

−x
2
5 [0,∞)

10 0.58 1.28
25 20.38 39.57
40 298.90 799.77 †

x
−8
7 (0,∞)

10 0.49 0.90
25 22.38 40.07 †

40 357.22 691.75 †

x
7
4 [0,∞)

10 0.41 1.23
25 8.71 39.95
40 120.16 741.15 †

1
x(1−x) (0, 1)

10 0.30 0.76
25 4.31 37.21
40 51.79 607.57 †

convex-env(x
6

6
− 3x4

2
+ 4x2 + x) R

10 0.75 1.50
25 63.62 43.08 †

40 1019.70 903.55 †

Table 1: CPU time of two SDP formulations for Problem (Pf ). The second
column indicates the interval I where the function f is defined, and the third
column specifies the size of the matrices Mi ∈ SIm. †The numbers displayed
in italics indicate that the SDP solver stopped before reaching the optimality
tolerance, because of numerical problems.

as well as the convex envelope of a polynomial of degree 6. The
fact that convex envelopes of univariate rational functions are SDr was
proved by Laraki and Lasserre [LL08]. For the function f : R 7→ R,
x→ convex-env(x

6

6 − 3x
4

2 + 4x2 + x), the SDR of [LL08] is:

f(x) ≤ t⇐⇒ ∃y2, . . . , y6 ∈ R :


1 x y2 y3
x y2 y3 y4
y2 y3 y4 y5
y3 y4 y5 y6

 � 0,

t ≥ y6
6
− 3

y4
2

+ 4y2 + x.

For all our instances, we have generated s = 25 random matrices Mi ∈ SIm.
We solved the SDPs by using SeDuMi [Stu99] on a PC with 8 processors at
2.2GHz. Our experiments show that the block matrix formulation (SDPf − 1)
improves the CPU time by a factor between 2 and 12, except for the case where
f is the convex envelope of a polynomial of degree 6; but in this case, SeDuMi
encountered numerical problems with (SDPf − 2) and stopped the computation
before reaching the optimality tolerance. Also note that the SDP solver was
always able to compute an optimal solution with (SDPf − 1), which suggests
that the formulation from this paper is numerically more stable.
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