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Abstract

Optimization-based bound tightening (OBBT) is a domain reduction
technique commonly used in nonconvex mixed-integer nonlinear pro-
gramming that solves a sequence of auxiliary linear programs. Each
variable is minimized and maximized to obtain the tightest bounds valid
for a global linear relaxation. This paper shows how the dual solutions
of the auxiliary linear programs can be used to learn what we call La-
grangian variable bound constraints. These are linear inequalities that
explain OBBT’s domain reductions in terms of the bounds on other vari-
ables and the objective value of the incumbent solution. Within a spatial
branch-and-bound algorithm, they can be learnt a priori (during OBBT
at the root node) and propagated within the search tree at very low
computational cost. Experiments with an implementation inside the
MINLP solver SCIP show that this reduces the number of branch-and-
bound nodes and speeds up solution times.

1 Introduction

Mixed-integer nonlinear programming studies the large class of mathematical
programs specified by a nonlinear objective function, nonlinear constraints,
and integrality requirements on some of the variables. It comprises the special
cases of mixed-integer linear programming and nonlinear programming and
provides a flexible modelling tool for a wide range of academic and industrial
applications. For a detailed discussion, see, e.g., [20].

*This article is to appear in the Proceedings of the 10th International Conference on
Integration of Artificial Intelligence and Operations Research Techniques in Constraint Pro-
gramming (CPAIOR 2013) held May 18-22, 2013, in Yorktown Heights, NY, USA.
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tOtto-von-Guericke-Universitiat Magdeburg, Universititsplatz 2, 39106 Magdeburg, Ger-
many, weltge@ovgu.de.



We consider mized-integer nonlinear programs (MINLPs) of the form
min{c'z:2x € X,z € [l,u],x; €Zfor j €T}, (1)

where X C R™, £ and u are the vectors of lower bounds ¢; € RU {—oco} and
upper bounds u; € RU {400}, and Z C {1,...,n} is the index set of integer
variables. Without loss of generality, we assume a linear objective, since for a
nonlinear objective function f(x), we can append the constraint f(x) < zp and
minimize xq. The feasible region X is specified by a list of linear and nonlinear
constraints g;(z) < 0, where the g; (and hence X') may be nonconvex.

Many complete algorithms for solving nonconvex MINLPs to (e-)global op-
timality rely on spatial branch-and-bound combined with a convex relaxation.
Domain reduction procedures have become a crucial element of state-of-the-art
MINLP solvers because they not only reduce the size of the search space (as
in mixed-integer or constraint programming), but specifically because smaller
domains allow for tighter convex relaxations of the nonconvex constraints.

This paper is concerned with a specific domain reduction technique often
referred to as optimization-based bound tightening (OBBT). Given a linear
relaxation R 2 X, OBBT computes the tightest bounds valid for all relaxation
solutions by in turn minimizing and maximizing each variable over R,

min /max{x; :x € R,z € [¢,u] }. (2)

Its first appearance in the literature we are aware of is an application to heat
exchanger networks by Quesada and Grossmann [17] from 1993. Subsequently,
it became a component of generic global optimization algorithms, see, e.g.,
[18, 14, 19].

An optimization algorithm may exclude suboptimal parts of the feasible
region as long as at least one optimal solution remains. In OBBT, this can be
exploited by adding an objective cutoff constraint ¢’z < z to R, where z = ¢'2
is the objective value of the current incumbent solution Z. Zamora and Gross-
mann [24] have used this idea in a “branch-and-contract” algorithm, which
employs OBBT aggressively at every node of the search tree.

Examples of MINLP solvers implementing OBBT are oBB (2, 3], Couenne [4,
10], GloMIQO [15, 12], LaGO [16, 11], and SCIP [1, 22, 25]. Since applying a full
round of OBBT amounts to solving 2n linear programs—an expensive algorithm
compared to the average amount of work performed at a branch-and-bound
node—it is typically applied at the root node and within the search tree only
with limited frequency or based on its success rate. For a recent theoretical
study of an iterated version of OBBT see the paper by Caprara and Locatelli [7].

Contribution. Our paper presents a new idea for how to benefit from the
potentially expensive solution of (2) beyond simply obtaining tighter bounds
on variable z. To this end, we observe that the proof of optimality given by
a dual solution of (2) can be used to learn globally valid inequalities whose
propagation gives a local approximation of OBBT. These inequalities, which



we call Lagrangian variable bound constraints, are redundant since they are ob-
tained merely as an aggregation of the rows of the relaxation R. Nevertheless,
we demonstrate that propagating them during the tree search helps to speed
up the solution process significantly.

In the remainder of the paper, Sec. 2 explains the derivation and propaga-
tion of Lagrangian variable bounds in detail. Section 3 presents computational
results analyzing their effect on instances from MINLPLib and summarizes our
findings.

2 Lagrangian variable bounds

Besides valid bounds for variable xy, solving (2) yields dual multipliers for the
constraints of R that prove that for no x € R—and by that for no feasible
solution of (1)—variable zj can lie outside these bounds. The following lemma
uses basic LP duality to motivate our approach. For clarity, we restrict the
presentation to upper bounds.

Lemma 1. Let R = {z € R" : a]z < bj,i = 1,...,m} O X be given,
where a; € R™ and b € R™. Let x* be an optimal solution of

max{zy: 2z €R, c'x <z x€[lul}, (3)

with z € RU{oco} an upper bound on the optimal objective value of (1). Further,
let A1, .., A, it = 0 be feasible dual multipliers with reduced costs

rioi= L= Niaij —pey  if j =k, ()
. — > Niaij — pcj  otherwise.

Then
U(l,u,z):= Z ril; + Z rju; 4+ pz+ ATh (5)
7iri<0 giri>0
is a valid upper bound for xi. If Ai,..., A\, are optimal multipliers then

U(l,u,z) =z}, otherwise U(L,u, z) > xj.

Proof. Multiplying the rows of (3) with their dual values and aggregating them
gives the valid inequality (3, A\ja; +pc)"@ < ATb+pz. Using (4), this becomes

ay < 30Ty + pz + ATD, (6)

which for z € [¢, u] is at most U (¢, u, z). Optimal multipliers are complementary
slack with «*, yielding the relation of U(¢,u, z) and the OBBT bound zj.

We will refer to bounds of type (5) as well as their lower bound counter-
parts as Lagrangian variable bounds (LVBs). Figure 1 provides an illustrative
example, which shows that LVBs can be learnt even when OBBT fails to tighten
the bound.
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Figure 1: Example min{y —z : y = 0.12® — 1.1z, 2 € [-4,4],y € [-2,2]}. On the

left, the shaded region over which OBBT is performed is defined by the relaxation R

and the dashed objective cutoff resulting from the zero solution. Minimizing = gives
16 10 16

a lower bound of —-3* and the LVB x > —-72 — <. Maximizing = does not tighten its

upper bound, still the LVB = < %er % can be learnt. In this two variable example,

this is only the rightmost facet of R, but in higher dimensions it may be nontrivial.
On the right is the resulting, tighter relaxation.

Remark 1. If p is nonzero then U(¢,u,z) depends on the primal bound; if
some 1, j # k, is nonzero, it depends on z;. Hence, whenever an improving
solution is found or [¢;, u;] is reduced, the LVB may tighten the bounds of xj
further.

Additionally, in stark contrast to OBBT, LVBs can be propagated very ef-
ficiently. This motivates the application of LVBs within a spatial branch-and-
bound algorithm for nonconvex MINLP in the following scheme.

1. Learn LVB constraints while performing OBBT once during the root node.

2. Propagate them locally at the nodes of the search tree whenever bounds
appearing on the right-hand side are reduced by branching or propaga-
tion.

3. Propagate them globally whenever an improving solution is found.

Already in [21] it has been observed that any dual feasible solution encoun-
tered during the solution process may be used to construct a one-row relaxation
of the LP at hand and that this inequality can be used to tighten the bounds
of each variable involved. Applied unconditionally, however, this idea appears
too expensive. In this paper, we suggest to specifically select the dual solutions
from OBBT and propagate LVBs only towards the left-hand side variable.

Remark 2. The main purpose of the LVB constraints (6) is to identify bounds
already implied by the relaxation and, by making them explicit, allow for im-
proving the relaxations of nonconvex nonlinear constraints. Note that, unlike
MIP cutting planes, they are not designed to cut off the LP optimum. Since
they are redundant inequalities, it is not beneficial to add them to the LP
relaxation.
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Figure 2: Rate of generated LVBs per OBBT LP as distributed over 211 instances
from MINLPLib for which OBBT was applied at the root node.

3 Computational results

Experimental setup. The aim of our experiments was two-fold: first, to
quantify how many nontrivial LVBs can be generated during OBBT, i.e., LVBs
with ¢ # 0 or r; # 0 for some j # k; second, to evaluate the effect of propagat-
ing them during the solution process. Within the MINLP solver SCIP 3.0 [1, 5,
22, 25] we have implemented an OBBT scheme that minimizes and maximizes
each variable once subject to the LP relaxation after the first separation loop.
We consider only nonbinary variables that appear in nonlinear constraints. By
slightly relaxing the bounds on the variable that is currently minimized or max-
imized, we increase the chance to generate nontrivial LVBs when the bound is
not tightened by OBBT. The generated LVB constraints are stored and propa-
gated efficiently in a suitable topological order whenever their right-hand side
improves.

As a test set, we used MINLPLib [6]. We excluded 18 instances which
cannot be parsed or handled by SCIP 3.0.! Further 41 instances were linear
after presolving or solved at the root node before OBBT was applied.? After
removing gear4 and nvs22, for which SCIP 3.0 returned a wrong solution value,
we were left with 211 instances. The experiments were conducted on a cluster
of 64bit Intel Xeon X5672 CPUs with 3.2 GHz, 12MB cache, and 48 GB main
memory. SCIP used CPLEX 12.4 [13] as LP solver, CppAD 20120101.3 [8], and
Ipopt 3.10.2 [23, 9].

Results. First, we measured the percentage of OBBT LPs solved that lead to
a nontrivial LVB. The histogram in Fig. 2 shows the distribution of this success
rate over the test set. For all instances, LVBs were generated from at least 15%
of the OBBT LPs. For 132 out of 211 instances, the rate was above 50%.
Second, we compared SCIP with OBBT only and SCIP with OBBT and
LVB propagation in a performance run with a time limit of one hour. To
reduce distorting side effects from heuristic components of the tree search we

Iblendgap, deb{6,7,8,9,10}, dosemin{2,3}d, probl0, var_con{5,10}, water{3,
fulZ,s,sbp,syml,sym2}7 and windfac.

2ex{1221,1222,1223a,1225}, feedtray2, gbd, hmittelman, lop97ic, lop97icx, mbtd,
nvs{03,07,10}, pb*, prob{02,03}, qap, qapw, st.e{13,15,27}, stmiqp{1,2,3,4,5},
st_test{1,2,3,4,5,6,8}, and t1ln2.



deactivated primal heuristics in the tree, turned off conflict analysis, and used
a simple first index branching rule with depth first node selection.

In this setting, two more instances could be solved with LVB propagation,
while one instance solved before then hit the time limit of one hour. On 94 in-
stances both solvers timed out; 109 instances were solved by both. Disregard-
ing ten easy instances that were solved at the root by both variants, on the
remaining 99 instances LVB propagation reduced the shifted geometric mean®
of the number of branch-and-bound nodes by 14% and the solving time by 7%.
Detailed results are shown in Tab. 1.

For validation, we performed a control experiment using SCIP’s default
parameters as base setting. Here, for the instances solved by both solvers the
number of nodes was reduced by 12% and the total solving time by 6%. Note
that for a single propagation algorithm the achieved savings are substantial, in
particular when considering its low computational overhead. Except for two
easy instances, LVB propagation never took more than 2% of the total running
time.

The fact that the solving time was reduced by less than the tree size is
mostly explained by the longer processing time of the root. This general phe-
nomenon is intensified by our experimental setup, since we applied a full round
of OBBT without controlling the effort spent, e.g., by limiting LP iterations.

Conclusion. In this paper, we have introduced the notion of Lagrangian vari-
able bound constraints, which are linear inequalities that can be learnt during
OBBT and exploited during a spatial branch-and-bound algorithm. They can
be propagated efficiently and give an approximation of reapplying OBBT where
it may be overly expensive. Our experiments showed that on affected instances
from MINLPLib this reduces the average number of branch-and-bound nodes
by more than 10% and speeds up the solution process.

Future research should investigate whether LVB success correlates, for in-
stance, with the tightness of the generating OBBT LP and how LVB propagation
behaves in combination with a more sophisticated OBBT implementation.

Acknowledgments. The authors want to thank Timo Berthold, Pietro Be-
lotti, and Domenico Salvagnin for the fruitful discussions and valuable com-
ments on this paper.

3The shifted geometric mean of values xi,...,xy, > 0 with shift s > 0 is defined as

(T (=i + 5)) /™ _ 5. We use a shift of five seconds and 100 nodes, respectively. This reduces
the bias from outliers with large values as well as from very easy instances.



Table 1: SCIP with OBBT only vs. SCIP with OBBT and LVB propagation. Columns
“diff” state the relative difference in percent. The time for LVB propagation in column

“LVB time” is included in the solving time.

nodes solving time
instance LVB off LVB on diff [%)] LVB off LVB on LVB time diff [%)]
alan 3 3 0.0 0.10 0.10 0.00 0.0
csched1 98380 19565 —80.1 24.40 4.84 0.05 —80.2
du-opt 1349 1349 0.0 1.86 1.69 0.00 —-9.1
du-opth 141 141 0.0 0.49 0.49 0.01 0.0
elf 843 843 0.0 0.62 0.63 0.01 +1.6
eniplac 839 761 —9.3 1.25 1.18 0.01 —5.6
enpro48 133 133 0.0 0.79 0.99 0.00 +25.3
enpro48pb 127 115 —9.4 0.86 0.79 0.00 —8.1
enpro56 383 4831 +1161.4 1.29 2.45 0.00 +89.9
enpro56pb 360 360 0.0 1.21 1.22 0.00 +0.8
ex1223 5 5 0.0 0.10 0.10 0.00 0.0
ex1223b 5 5 0.0 0.10 0.10 0.00 0.0
ex1224 15 15 0.0 0.10 0.10 0.00 0.0
ex1226 3 3 0.0 0.10 0.10 0.00 0.0
ex1243 252 238 —5.6 0.83 0.93 0.01 +12.0
ex1244 50141 442 —99.1 37.31 1.20 0.00 —96.8
ex1252a 286870 1742660 +507.5 532.45 2027.65 4.65 +280.8
ex1263 5464 3677 —32.7 1.53 1.22 0.01 —20.3
ex1263a 223 149 —33.2 0.10 0.10 0.00 0.0
ex1264 24736 24550 —0.8 4.63 4.63 0.07 0.0
ex1264a 596 252 —57.7 0.18 0.10 0.00 —44.4
ex1265 1121 3357 +199.5 0.56 1.07 0.01 +91.1
ex1265a 238 69 —71.0 0.10 0.10 0.00 0.0
ex1266 149 66 —55.7 0.26 0.25 0.00 —-3.8
ex1266a 11 11 0.0 0.10 0.10 0.00 0.0
ex3 3 3 0.0 0.16 0.15 0.00 —6.2
ex3pb 3 3 0.0 0.14 0.15 0.00 +7.1
ex4 31 31 0.0 0.54 0.59 0.00 +9.3
facl 5 5 0.0 0.10 0.10 0.00 0.0
fac3 19 19 0.0 0.32 0.32 0.00 0.0
fo7 2339728 2334886 —0.2 1102.54 1098.52 9.51 —-0.4
fo7_2 717141 717303 0.0 313.64 314.38 2.10 +0.2
fo7_ar2_1 488871 489807 +0.2 179.97 181.46 1.52 +0.8
fo7_ar3_1 1074346 1072910 —0.1 496.14 500.05 3.57 +0.8
fo7_ard_1 2063037 1494929 —27.5 866.25 738.24 7.31 —14.8
fo7_ar5_1 518897 518065 —0.2 238.83 238.33 1.18 —0.2
fuel 3 3 0.0 0.10 0.10 0.00 0.0
gastrans 9 9 0.0 0.21 0.12 0.00 —42.9
gear 1772 2125 +19.9 0.55 0.65 0.00 +18.2
gear2 1717 1089 —36.6 0.68 0.47 0.00 —-30.9
gear3 1772 2125 +19.9 0.51 0.46 0.00 —-9.8
gkocis 3 3 0.0 0.10 0.10 0.00 0.0
m3 43 43 0.0 0.10 0.12 0.00 +20.0
m6 119341 119331 —0.0 40.26 40.25 0.36 —0.0
m7 1337679 1337511 —-0.0 486.80 490.68 2.84 +0.8
m7_ar25_1 8387 8141 —2.9 3.20 3.09 0.00 —3.4
m7_ar2_1 21003 20541 —2.2 6.22 5.68 0.12 —8.7
m7_ar3_1 98854 98031 —0.8 40.62 40.11 0.26 —-1.3
m7_ar4_1 163529 163459 —0.0 58.03 58.40 0.39 +0.6
m7_ar5_1 387403 387425 0.0 159.25 161.40 0.77 +1.4
meanvarx 7 7 0.0 0.13 0.13 0.00 0.0

continued on next page




continued from previous page

nodes solving time
instance LVB off LVBon diff (%] LVBoff LVBon LVB time  diff (%]
meanvarxsc 7 7 0.0 0.14 0.14 0.00 0.0
netmod-_doll 115879 115733 —0.1 2906.79 2912.69 0.56 +0.2
netmod_dol2 583 583 0.0 28.46 28.40 0.01 —0.2
netmod_karl 483 487 +0.8 1.77 1.82 0.00 +2.8
netmod_kar2 483 487 +0.8 1.65 1.65 0.00 0.0
no7_ar25_1 1071694 1071018 —0.1 564.64 570.99 5.60 +1.1
no7.ar3_1 2568064 2565390 —-0.1 1305.33 1299.00 10.14 —-0.5
nvs01 38 40 +5.3 0.10 0.10 0.00 0.0
nvs04 3 3 0.0 0.10 0.10 0.00 0.0
nvs06 21 21 0.0 0.10 0.11 0.00 +10.0
nvsll 5 5 0.0 0.10 0.10 0.00 0.0
nvs12 9 9 0.0 0.10 0.10 0.00 0.0
nvsl3 29 29 0.0 0.10 0.10 0.00 0.0
nvsl5 7 7 0.0 0.10 0.10 0.00 0.0
nvsl6 5 5 0.0 0.10 0.10 0.00 0.0
nvsl7 57 57 0.0 0.10 0.10 0.00 0.0
nvs18 39 37 —5.1 0.10 0.10 0.00 0.0
nvs19 105 107 +1.9 0.15 0.14 0.00 —6.7
nvs20 514107 255511 —50.3 165.62 89.98 1.43 —45.7
nvs21 37 37 0.0 0.10 0.10 0.00 0.0
nvs23 185 183 —1.1 0.26 0.27 0.00 +3.8
nvs24 367 367 0.0 0.46 0.47 0.00 +2.2
ortez 172258 81 —100.0 23.67 0.52 0.00 —97.8
pump 2079411 2117797 +1.8 2461.28 2397.94 6.04 —2.6
ravem 141 141 0.0 1.02 1.09 0.00 +6.9
ravempb 19 19 0.0 0.75 0.73 0.00 —2.7
risk2b 15624 3672 —76.5 3.32 1.43 0.00 —56.9
sepl 56485 45691 —19.1 8.55 7.53 0.14 —11.9
spectra2 39 39 0.0 0.90 0.69 0.00 —23.3
st_eld 5 5 0.0 0.10 0.10 0.00 0.0
st_e29 15 15 0.0 0.10 0.10 0.00 0.0
st_e31 863 863 0.0 0.84 0.90 0.01 +7.1
st_e36 139 139 0.0 0.27 0.19 0.01 —29.6
st_e38 3 3 0.0 0.12 0.12 0.00 0.0
st_e40 37 35 —5.4 0.10 0.10 0.00 0.0
st_testgrl 31 29 —6.5 0.10 0.10 0.00 0.0
st_testgr3 19 5 —73.7 0.10 0.10 0.00 0.0
synthes1 3 3 0.0 0.10 0.10 0.00 0.0
synthes2 3 3 0.0 0.10 0.10 0.00 0.0
synthes3 7 7 0.0 0.10 0.10 0.00 0.0
tln4 636 628 —-1.3 0.46 0.46 0.00 0.0
tln5 10656 9333 —12.4 5.21 4.60 0.04 —11.7
tln6 35889 35612 —0.8 35.25 35.28 0.11 +0.1
tloss 11 11 0.0 0.10 0.10 0.00 0.0
tls2 27 27 0.0 0.10 0.10 0.00 0.0
tls4 2673344 2441601 —8.7 1578.22 1498.11 10.14 —5.1
tltr 16 16 0.0 0.10 0.10 0.00 0.0
util 507 265 —47.7 0.26 0.13 0.00 —50.0
shift. geo. mean 1423 1222 —14.1 8.27 7.69 0.47 —-7.0




References

[1]

Tobias Achterberg.  Constraint Integer Programming. PhD thesis,
TU Berlin, 2007. http://vs24.kobv.de/opus4-zib/frontdoor/index/
index/docId/1018.

Claire S. Adjiman, Ioannis P. Androulakis, and Christodoulos A. Floudas.
A global optimization method, aBB, for general twice-differentiable con-
strained NLPs—II. Implementation and computational results. Com-
puters & Chemical Engineering, 22(9):1159-1179, 1998. doi:10.1016/
S0098-1354(98)00218-X.

Claire S. Adjiman, Ioannis P. Androulakis, and Christodoulos A. Floudas.
Global optimization of mixed-integer nonlinear problems. AIChE Journal,
46(9)1769*1797,2000.doi:10.1002/aic.690460908.

Pietro Belotti, Jon Lee, Leo Liberti, Francois Margot, and Andreas
Wachter. Branching and bounds tightening techniques for non-convex
MINLP. Optimization Methods & Software, 24:597-634, 2009. doi:
10.1080/10556780903087124.

Timo Berthold, Stefan Heinz, and Stefan Vigerske. Extending a CIP
framework to solve MIQCPs. In Jon Lee and Sven Leyffer, editors,
Mixed-integer nonlinear optimization, volume 154 of The IMA wvolumes
in Mathematics and its Applications, pages 427-444. Springer, 2012.
doi:10.1007/978-1-4614-1927-3_15.

M.R. Bussieck, A.S. Drud, and A. Meeraus. MINLPLib — a collection of
test models for mixed-integer nonlinear programming. INFORMS J. on
Comput., 15(1):114-119, 2003.

Alberto Caprara and Marco Locatelli. Global optimization problems and
domain reduction strategies. Mathematical Programming, 125:123-137,
2010. doi:10.1007/s10107-008-0263-4.

COIN-OR. CppAD. A Package for Differentiation of C++ Algorithms.
http://www.coin-or.org/CppAD.

COIN-OR. Ipopt. Interior point optimizer. http://www.coin-or.org/
Ipopt.

COIN-OR. Couenne. Convex Over and Under ENvelopes for Nonlinear
Estimation. http://www.coin-or.org/Couenne.

COIN-OR. LaGO. Lagrangian Global Optimizer. http://www.coin-or.
org/LaG0.

Computer-Aided Systems Laboratory, Princeton University. GloMIQO.
Global Mixed-Integer Quadratic Optimizer. http://helios.princeton.
edu/GloMIQO.


http://vs24.kobv.de/opus4-zib/frontdoor/index/index/docId/1018
http://vs24.kobv.de/opus4-zib/frontdoor/index/index/docId/1018
http://dx.doi.org/10.1016/S0098-1354(98)00218-X
http://dx.doi.org/10.1016/S0098-1354(98)00218-X
http://dx.doi.org/10.1002/aic.690460908
http://dx.doi.org/10.1080/10556780903087124
http://dx.doi.org/10.1080/10556780903087124
http://dx.doi.org/10.1007/978-1-4614-1927-3_15
http://dx.doi.org/10.1007/s10107-008-0263-4
http://www.coin-or.org/CppAD
http://www.coin-or.org/Ipopt
http://www.coin-or.org/Ipopt
http://www.coin-or.org/Couenne
http://www.coin-or.org/LaGO
http://www.coin-or.org/LaGO
http://helios.princeton.edu/GloMIQO
http://helios.princeton.edu/GloMIQO

[13]

[14]

[20]

[21]

IBM. ILOG CPLEX Optimizer. http://www-01.ibm.com/software/
integration/optimization/cplex-optimizer/.

Costas D. Maranas and Christodoulos A. Floudas. Global optimization in
generalized geometric programming. Computers €& Chemical Engineering,
21(4):351-369, 1997. doi:10.1016/S0098-1354(96)00282-7.

Ruth Misener and Christodoulos A. Floudas. GloMIQO: Global mixed-
integer quadratic optimizer. Journal of Global Optimization, pages 1-48,
2012. doi:10.1007/s10898-012-9874-7.

Ivo Nowak and Stefan Vigerske. LaGO: a (heuristic) branch and cut al-
gorithm for nonconvex MINLPs. Central European Journal of Operations
Research, 16(2):127-138, 2008. doi:10.1007/s10100-007-0051-x.

Ignacio Quesada and Ignacio E. Grossmann. Global optimization algo-
rithm for heat exchanger networks. Industrial & Engineering Chemistry
Research, 32(3):487-499, 1993. doi:10.1021/1e00015a012.

Ignacio Quesada and Ignacio E. Grossmann. A global optimization al-
gorithm for linear fractional and bilinear programs. Journal of Global
Optimization, 6:39-76, 1995. doi:10.1007/BF01106605.

Edward M.B. Smith and Constantinos C. Pantelides. A symbolic refor-
mulation/spatial branch-and-bound algorithm for the global optimisation
of nonconvex MINLPs. Computers & Chemical Engineering, 23:457—-478,
1999. doi:10.1016/S0098-1354(98)00286-5.

Mohit Tawarmalani and Nikolaos V. Sahinidis. Convezification and Global
Optimization in Continuous and Mixed-Integer Nonlinear Programming:
Theory, Algorithms, Software, and Applications. Kluwer Academic Pub-
lishers, Dordrecht Boston London, 2002.

Mohit Tawarmalani and Nikolaos V. Sahinidis. Global optimization
of mixed-integer nonlinear programs: A theoretical and computational
study. Mathematical Programming, 99:563-591, 2004. doi:10.1007/
s10107-003-0467-6.

Stefan Vigerske. Decomposition in Multistage Stochastic Programming and
a Constraint Integer Programming Approach to MINLP. PhD thesis, HU
Berlin, 2012.

Andreas Wichter and Lorenz T. Biegler. On the implementation of a
primal-dual interior point filter line search algorithm for large-scale non-
linear programming. Math. Prog., 106(1):25-57, 2006.

Juan M. Zamora and Ignacio E. Grossmann. A branch and contract algo-
rithm for problems with concave univariate, bilinear and linear fractional
terms. Journal of Global Optimization, 14:217-249, 1999. doi:10.1023/A:
1008312714792.

10


http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://dx.doi.org/10.1016/S0098-1354(96)00282-7
http://dx.doi.org/10.1007/s10898-012-9874-7
http://dx.doi.org/10.1007/s10100-007-0051-x
http://dx.doi.org/10.1021/ie00015a012
http://dx.doi.org/10.1007/BF01106605
http://dx.doi.org/10.1016/S0098-1354(98)00286-5
http://dx.doi.org/10.1007/s10107-003-0467-6
http://dx.doi.org/10.1007/s10107-003-0467-6
http://dx.doi.org/10.1023/A:1008312714792
http://dx.doi.org/10.1023/A:1008312714792

[25] Zuse Institute Berlin, Department of Optimization. SCIP. Solving Con-
straint Integer Programs. http://scip.zib.de.

11


http://scip.zib.de

	Introduction
	Lagrangian variable bounds
	Computational results

