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Abstract

In the recent years symmetric chaos has been studied intensively. One knows
which symmetries are admissible as the symmetry of an attractor and which tran-
sitions are possible. The numeric has been developed using equivariant functions
for detection of symmetry and augmented systems for determination of transition
points. In this paper we look at this from a sophisticated group theoretic point of
view and from the view of scientific computing, i.e. efficient evaluation of detectives
is an important point. The constructed detectives are based on Young’s seminormal
form for Sn. An application completes the paper.
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1 Introduction

In the recent years a lot of investigation of symmetry in chaos has been done. The book
[10] shows that this is a fascinating topic. A great part of the theory and its numerics
areunderstood. The symmetry of an attractor and its symmetry increasing bifurcation are
detected with the help of some functions, called detectives, see [4], [7]. These functions
recognize the symmetry of attractors and are thus essential for the detection of transition
between attractors with different isotropy. In section 2 we will briefly recall part of those
ideas. Also other aspects of the numeric have been investigated. From the theoretical
side the admissible symmetry groups and the admissible symmetry breaking bifurcations
have been understood, see e.g. [8] and [3].

In this paper we concentrate on a single aspect, namely the detectives. Since these
functions are evaluated many times they are worth to be investigated further. There
remain several open questions concerning the choice of such functions if they consist
of polynomials. For the symmetric group Sn efficient evaluation turns out to be very
important since the order of Sn grows rapidly with n.

Since polynomials and symmetry have been studied in algebra dating back to the last
century, some consequences for detectives are discussed in section 3. The second question
addressed in this section is how detectives are build from smaller functions. Concerning
this construction we suggest criteria for the reliability of a detective.

For a reader not interested in theory section 4 is the main part of this paper. There
the main result, the detective for Sn based on recursive evaluation is presented. The
irreducible representations of Sn can easily be constructed from the Young tableaux. The
representation matrices are called Young’s seminormal form and their construction can be
found in many text books on representation theory, i.e. [15], [16]. Implementation details
have been taken from [5] where these irreducible representations are used for a Sn-version
of FFT. The recursive evaluation makes the detective efficient in comparision to other
choices. Besides this good numerical properties this function is also prefarable in terms
of storage requirements. Results on the distances to the fixed point spaces complete the
section.

Finally, this recursive detective is applied to Josephson junctions coupled in an array
with Sn symmetry. In contrast to [21] where intensive numerical simulations for n = 4
and n = 5 have been done we give an example for n = 10.

2 The concept of detectives

In this section the detection of the symmetry of attractors is recalled.
We are interested in dynamical systems

ẋ = f(x, λ), x ∈ Rn, λ ∈ R (1)

or discrete dynamical systems

xk = f(xk−1, λ), x ∈ Rn, λ ∈ R (2)

which are equivariant with respect to a faithful, orthogonal representation ϑ : G→ Gl(Rn)
of a finite group G. In the following ϑ always refers to this representation.

To make the notion of equivariance more precise we give the following definition.
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Definition 2.1 ([13]) Let ϑ, ρ be two representations of G. A C∞ function h is called
ϑ-ρ-equivariant, if

h(ϑ(t)x) = ρ(t)h(x) ∀ t ∈ G, ∀ x ∈ Rn.

The mapping f in (1) or (2) is assumed to be ϑ-ϑ-equivariant which usually is called
G-equivariant.

In [4] attractors which do not lie completely in a fixed point space are thickened to
open sets. So let A be the class of all open subsets A of Rn with piecewise smooth
boundary that satisfy the dichotomy

ϑ(t)A = A or ϑ(t)A ∩A = ∅ ∀ t ∈ G,

where ϑ is the faithful representation in (1).

H(A) = {t ∈ G|ϑ(t)A = A}
denotes the isotropy group of an attractor. Observables transform the symmetry of at-
tractors into a physical space W .

Definition 2.2 ([4]) Let ρ : G → Gl(W ) be a linear representation. A ϑ-ρ-equivariant
C∞ function φ : Rn → W is called an observable. The vector

Kφ(A) :=
∫
A
φdμ

is an observation, where μ is assumed to be the Lebesgue measure.

The determination of H(A) is thus shifted to determining the isotropy group of Kφ(A) ∈
W denoted by Hφ(A).

Checking isotropy may be done with distances:
Let Fix(H,W ) be the fixed point space of a subgroup H of G within W and

P ρ,H(y) =
1

|H|
∑
t∈H

ρ(t)(y), (3)

the projection onto Fix(H,W ). Then

dH(y) = ||y − P ρ,Hy||22 = ||(Id− P ρ,H)y||22, (4)

gives the distance to the fixed point space. Clearly, the isotropy of y is the maximal
subgroup H with distance zero.

For the detection of symmetry of attractors it becomes important that ρ distinguishes
all subgroups, i.e. all subgroups H = Gy of G appear to be isotropy groups in W for one
y ∈ W .

Definition 2.3 ([4] Def. 4.2): Two representations ρ1 : G → Gl(W1) and ρ2 : G →
Gl(W2) are lattice equivalent if there exists a linear isomorphism L :W1 → W2 such that

L(F ix(H,W1)) = F ix(H,W2),

for every subgroup H of G.
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Let ϑi, i = 1, . . . , h denote the inequivalent irreducible representations of G. ϑ1 denotes
the unit representation. For a linear representation ρ : G→ Gl(Rn) let mi(ρ) be the mul-
tiplicity in the canonical decomposition ρ =

∑h
i=1mi(ρ)ϑ

i. Let Pi denote the projection
onto the isotypic component with respect to ϑi.

Lemma 2.4 ([4] Thm. 4.3): ρ =
∑h

i=1 ϑ
i distinguishes all subgroups of G, where ϑi

denote the irreducible representations of G.

A detective is an observable which generically determines all symmetries of sets in A.

Definition 2.5 ([4] Def. 5.1) The observable φ is a detective for G if for each subset
A ∈ A almost all near identity ϑ-ϑ-equivariant diffeomorphism ψ satisfy

Hφ(ψ(A)) = H(A).

Theorem 2.6 ([4] Thm. 5.2): Let φi, i = 1, . . . , h be ϑ-ϑi-equivariant observables which
are polynomial and φi �≡ 0. Then φ = (φ1, . . . , φh) is a detective for G.

It is clear that in Thm. 2.6 it is sufficient to consider all lattice inequivalent irreducible
representations.

It turned out in case where the attractor is contained within a fixed point space of K
one has to be more careful, see [12]. Then the symmetry of A may be one of the subgroups
of NG(K). So the requirement is that φ|Fix(K) is a detective for the group NG(K).

Before we discuss special detectives we shortly discuss the practical evaluation of the
observation. Precise descriptions can be found in the literature. For discrete dynamical
systems one uses

lim
N→∞

1

N

N∑
k=0

φ(fk(x0)),

provided the ergodic theorem is valid. For ordinary differential equations the attractor is
{x(t)|t ≥ 0} and the observation becomes

lim
T→∞

1

T

∫ T

0
φ(x(t))dt.

There are two suggestions for detectives:

1.) In [4],[7] the observable φ(x) = xxt was chosen as detective. φ is isomorphic to a ρ-
ϑ-equivariant mapping where ρ is a subrepresentation of the tensor product ϑ⊗ ϑ∗ where
ϑ∗ : G → Gl(Rn), ϑ∗(t) = ϑ(t−1)t is the contragredient representation. In our case when
ϑ is orthogonal then ϑ∗ = ϑ. Obviously, range φ �= Rn,n.
If ϑ =

∑h
i=1mi(ϑ)ϑ

i is the canonical decomposition and

ϑi ⊗ ϑj =
h∑

k=1

cijk ϑ
k

with the multiplicities cijk being the Clebsch-Gordan coefficients, then

ϑ⊗ ϑ =
h∑

k=1

⎛
⎝ h∑

i,j=1

mi(ϑ) ·mj(ϑ) · cijk
⎞
⎠ϑk =

h∑
k=1

mk(ϑ⊗ ϑ) · ϑk.
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Assume ϑ has the following property:
For each k = 1, . . . , h there exists i and j such that

mi(ϑ) �= 0, mj(ϑ) �= 0 and cijk �= 0.

Assuming this property we havemk(ϑ⊗ϑ) > 0, k = 1, . . . , h. To prove that φ is a detective
for G it remains to show that Pkφ �≡ 0, k = 1, . . . , h. Using the decomposition one needs
to find for each k irreducible representations ϑi, ϑj with cijk > 0 and Pkxix

t
j �≡ 0, where

xi, xj behave like ϑ
i and ϑj, respectively. This can easily be implemented and checked in

a Computer Algebra environment.
In [4] it is shown that ϑ⊗ ϑ distinguishes all subgroups in the case of rings of coupled

cells with G = Dp symmetry. For this p ≥ 3 and the number of equations per cell m ≥ 2
is essential.
2.) A second detective was given by the left regular representation L : G → Gl(R|G|),
see [7]. Its well-known decomposition is

L =
h∑

i=1

mi(L)ϑ
i =

h∑
i=1

dim(ϑi)ϑi.

So any ϑ-L-equivariant mapping φ with P L
i φ �≡ 0, i = 1, . . . , h is a detective. L and ϑ

define a group action on the space of polynomial mappings

δ : G→ Gl(R[x]|G|)

t ↪→ δ(t)

δ(t) : R[x]|G| → R[x]|G|

δ(t)(φ(x)) = L(t)φ(ϑ(t−1)x).

This is a linear representation.

P δ,G =
1

|G|
∑
t∈G

δ(t), (5)

is a projection onto the trivial component wrt δ which consists of ϑ-L-equivariant map-
pings. In [21] it is suggested to choose a polynomial p(x) and q(x) = (p(x), 0, . . . , 0)t. An
observable is defined by

φ(x) := P δ,G(q) =
1

|G|
∑
t∈G

δ(t)(q) =
1

|G|
∑
t∈G

L(t−1)((p(ϑ(t)x), 0, . . . , 0)t), (6)

For the special choice p(x) = x1x
2
2 · · ·xn−1

n−1 the mapping φ is a detective for Sn, see [21].

3 Poincaré series and irreducible observables

The aim of this section is to show the richness of polynomial detectives. Appliying some
theory we derive results for the degree of detectives and its decomposition into smaller
functions.

The polynomial, ρ-ϑ-equivariant mappings φ(x) form a module over the ring of ϑ-
invariant polynomials. Then each component φi(x), i = 1, . . . , dim(ρ) is a polynomial. φi
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is said to be homogeneous of degree k if in the representation with monomials φi(x) =∑
j∈J ajx

j only monomials of degree k appear. The vector of polynomials φ(x) is said to be
homogeneous of degree k if for each component either φi(x) ≡ 0 or φi(x) is homogeneous
of degree k. Let mk denote the dimension of the vector space of ϑ-ρ-equivariant mappings
which are homogeneous of degree k.

Theorem 3.1 ([22],[13]) Let ρ and ϑ be linear representations of G. Let mk be the
number of linear independent ρ-ϑ-equivariant polynomial mappings homogeneous of degree
k. Then the Hilbert-Poincaré series is

∞∑
k=0

mkz
k =

1

|G|
∑
t∈G

tr(ρ(t−1))

det(Id− z · ϑ(t)) .

For ρ = ϑ this is exactly the series given by Sattinger [17]. For ρ being the trivial irredu-
cible representation the series is the well-known Molien series for invariant polynomials
which was proved at the end of the last century.

The righthand side is easily evaluated and thus the dimensionsmk for small k are cheaply
determined with a Taylor expansion. This has been implemented in a Computer Algebra
System.

The following theorem is a generalization of the results for the invariants, see e.g. [20]
and for the isotypic components of R[x].

Theorem 3.2 ([22],[13]) There exist n homogeneous invariants σi, i = 1, . . . , n such that
the ϑ-ρ-equivariants form a free module over the subring R[σ]. (The module is Cohen-
Macaulay.)

Thm. 3.2 states that each equivariant has a unique representation
∑
Ai(σ1, . . . , σn)bi with

polynomials Ai. Note that if one considers the invariant ring instaed of the subring R[σ]
such representations are non-unique in general.

The free basis is determined with the help of projections and the series, see [13]. From
Computer Algebra graded Gröbner bases with respect to weighted orderings are used for
this purpose.

Lemma 3.3 The minimal degree of a detective for a given group action ϑ is

d = maxi=1,...,h(kmin(ϑ
i, ϑ)),

where ϑi, i = 1, . . . , h are the pairwise lattice inequivalent irreducible representations which
are necessary to distinguish all subgroups of G. kmin(ϑi, ϑ) is the minimal degree of a
non-zero, homogeneous ϑi-ϑ-equivariant.

Proof: Thm. 2.6 means that for each detective φ(x) the restrictions P ρ
i φ(x) �≡ 0, i =

1, . . . , h hold. The mapping P ρ
i φ(x) contains at least one ϑi-ϑ-equivariant mapping un-

equal zero which has minimal degree kmin(ϑi, ϑ). �
The values kmin(ϑi, ϑ) can easily be read off from the series in Theorem 3.1 with ρ = ϑi.

Detectives may be build from smaller functions. In contrast to above where we used a
decomposition on the image we will now study the consequences of a decomposition in
the domain.
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Definition 3.4 A ϑi-ϑj-equivariant mapping φi
j(x) �≡ 0 is called ϑi-ϑj-observable (irre-

ducible observable).

Remark: There are combinations ϑi, ϑj such that no ϑi-ϑj-observables exist.

Example: D6 = {id, r, r2, r3, r4, r5, s, sr, sr2, sr3, sr4, sr5},
ϑ2(r) = 1, ϑ2(s) = −1 and ϑ5 the 2-dim. faithful representation. Then there exists no
ϑ2-ϑ5-observable, but there are ϑ5-ϑ2-observables. kmin(ϑ5, ϑ2) = 6 can be read off from
the series.

Tensor products of representations can be used to construct such small observables
from known observables. Let φ be a η-δ-observable and ψ a η-ρ-observable where δ, η, ρ
are irreducible representations. Then a (δ ⊗ ρ)-η-equivariant observable is defined by χ

χi+j(x) = φi(x) · ψj(x) i = 1, . . . , dim(δ), j = 1, . . . , dim(ρ). (7)

If mk(δ ⊗ ρ) = 1 then Pkχ is a η-ϑk-observable.

Example: Let ϑ2 be the non-trivial, 1-dim representation of S4, ϑ
3 the 2-dim irreducible

representation, and ϑ4, ϑ5 the 3-dim. irreducible representations of S4. Let ϑ
4 be faithful.

It is ϑ5 = ϑ2 ⊗ ϑ4. Let φ(x) be a ϑ3-ϑ2-observable and ψ a ϑ3-ϑ4-observable. Then
χ(x) = φ(x) · ψ(x) is a ϑ3-ϑ5-observable.

Since every representation ϑ has a decomposition ϑ =
∑h

i=1mi(ϑ)ϑ
i the small ϑi-ϑj-

observables can help to build a detective, but in general more complicated functions are
necessary.

Another composition of observables is the following case. Assume the representation
ϑ in the domain decomposes into ϑ = δ1 + δ2 and Rn = V1 + V2, respectively. Let
φi : Vi → Rm be δi-ρ-observables, i = 1, 2. Then (φ1+φ2) : R

n → Rm is a ϑ-ρ-observable.
There may be detectives for G which do not depend on the full domain Rn. But the

contrary seems to be appropriate. The following seems to be a reasonable demand for a
detective φ : Rn → Rm

For all ϑ-invariant subspaces W of Rn the function Ψ : W → Rn,Ψ(w) =
ψ(w1 + w) is not a constant function, where w1 ∈ W⊥ is a fixed value in the
direct complement W ⊥ of W in Rn.

An even sharper demand is that P ρ
i ◦Ψ is not a constant function for i = 2, . . . , h.

4 Detectives with recursive evaluation

Assume that H is a proper subgroup of G and that we already have a detective for H. Is
it possible to use this information in order to construct a detective for G? We looked at
theoretical results on induced representations such as the Frobenius reciprocity and the
Theorem by Mackey (see [19] or [1]), but they are not suitable for practical considerations
since no explicit formulas are obtained. However, for the symmetric group Sn explicit
formulas for the relation between the irreducible representations σα of Sn and Sn−1 are
known, see [5]. The main advantage is that ResSn�1σ

α is already in block diagonal form.
So no innerconnectivity matrices as in [11] are needed. Based on the Young tableaux
we give a detective for Sn which is evaluated recursively. In order to clarify the group
theoretic structure we recall a simple, but useful lemma.
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Lemma 4.1 Let η : G→ Gl(V ) be a linear represenation of G and H a proper subgroup
of G. Furthermore let ti, i = 1, . . . , [G : H] be representatives of left cosets and w ∈ V a
H-invariant vector with respect to ResH(ϑ). Then

v :=
1

[G : H]

[G:H ]∑
i=1

η(ti)w

is G-invariant.

Proof: The left cosets form a partition of G and each g ∈ G corresponds to a permutation
of the left cosets. �

The symmetric group Sn has irreducible representations σ
α, where α = (α1, α2, . . .), αi ≥

αi+1 are the partitions of n, denoted by α � n. These representations can nicely be de-
scribed with the Young diagrams. This is presented in a way suitable for applications
in [5] from where the following recursive sheme for σα was taken. Also [15] and [16] are
interesting references for the irreducible representations of the symmetric group.

Each partition α corresponds to an ordered collection of boxes, the Young diagrams.
The numbers 1, . . . , n are put into the diagram such that in each row and each column the
numbers increase. The number of these so-called standard α-tableau equals the dimension
of σα. The matrices σα(t) are given in a basis indexed by the standard α-tableau, which
are ordered in the last letter sequence which successively compares the last entries in each
row.
Now two facts are important:

a.) The restricted representation decomposes as ResSn�1(σ
α) =

∑
β�n−1,β⊂α σ

β. Moreo-
ver one can work with the same coordinates. Thus σα(t) = diag(σβ(t)), t ∈ Sn−1.

b.) It is sufficient to give σα(t) for generators of the group, e.g. the neighboring trans-
positions (i, i+ 1), i = 1, . . . , n − 1.

The consequence is that the matrices σα(i, i+ 1) are known from the matrices σβ(i, i +
1), β � n − 1, i = 1, . . . , n − 2. For i = n − 1 a precise description of the sparse matrix
σα(n − 1, n) is given in [5]. The sparse matrix σα(i, i + 1) can be stored in a vector of
length 2 · dim(σα), see [5].

Based on the two facts above we now develop a recursive detective for the representa-
tion ϑ which describes the permutation of variables. Let for all partitions β � (n− 1) the
mappings f β : Rn−1 → Rdim(σβ ) be ResSn�1(ϑ)-σ

β-equivariant. For each partition α � n
we have by condition a.) a mapping f : Rn−1 → Rdim(σα), f = (fβ1, . . . , fβr). All map-
pings fβ with mβ(ResSn�1(σ

α)) = 1 or equivalently β ⊂ α are involved. The ordering of
the fβ ’s in f is given by the last letter ordering of the standard α-tableaux. Let P be the
projection Rn → Rn−1 (x1, . . . , xn) → (x1, . . . , xn−1). f ◦ P is ResSn�1(ϑ)-η-equivariant
with η =

∑
β�n−1,β⊂α σ

β.

As representatives of left cosets of Sn/Sn−1 the cyclic permutations

ti = (i, i+ 1, . . . , n) = (i, i+ 1)(i+ 1, i+ 2) · · · (n − 1, n), i = 1, . . . , n− 1, tn = id

are chosen.
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Lemma 4.2 Assume the above notations. The mappings F α : Rn → Rdim(σα)

F α(x) =
n∑

i=1

σα(ti)[f ◦ P ](ϑ(t−1
i )x) (8)

are ϑ-σα-equivariant for all partitions α � n.
Proof: Apply Lemma 4.1 with w = f ◦ P and the representation
η(t)w = σα(t)[f ◦ P ](ϑ(t−1)x).

Remark 4.3 i.) Evaluation of F α(x) only needs evaluations at

(x1, . . . , xn−1, x̂n), (x1, . . . , x̂n−1, xn), . . . , (x̂1, x2, . . . , xn),

where the symbol x̂i means that the variable xi is dropped.

ii.) Since the matrices σα(i, i+1) are sparse the necessary matrix-vector operations can
be performed cheaply, see [5, p. 131].

Example 4.4 For S2 = Z2 = {id, (1, 2)} the Young diagrams are

and .

The corresponding irreducible representations are given in the notation above by σβ(1, 2) =
1 for β = 2 and σβ(1, 2) = −1 for β = (1, 1). For n = 3 and the partition α = (1, 2) we
have 2 standard Young tableaux

1 3
2

<
1 2
3

.

By the branching theorem we have

σα(1, 2) =

(
σ(1,1)(1, 2) 0

0 σ2(1, 2)

)
=

( −1 0
0 1

)
.

The last matrix is

σα(2, 3) =

(
1
2

3
4

1 − 1
2

)
=

(
d−1 1 − d−2

1 −d−1

)
,

where d = |x− u|+ |y − v| = 2 is the distance between the positions (x, y) and (u, v) for
n = 3 in the standard α-tableaux. Representatives of left cosets are id, the transposition
(1, 2), and the 3-cycle (1, 2)·(2, 3). Let f2 and f (1,1) be invariant and equivariant functions,
respectively,

f2((1, 2)(x1, x2)) = f2(x2, x1) = σ2(1, 2)f2(x1, x2) = f2(x1, x2)

f (1,1)((1, 2)(x1, x2)) = f (1,1)(x2, x1) = σ(1,1)(1, 2)f (1,1)(x1, x2) = −f (1,1)(x1, x2).

Define f(x1, x2) = (f (1,1)(x1, x2), f
2(x1, x2)) and

F (2,1)(x1, x2, x3) = f(x1, x2) + σ(2,1)(2, 3)f(x1, x3) + σ(2,1)(1, 2)σ(2,1)(2, 3)f(x2, x3).

The mapping F (2,1) is ϑ-σ(2,1)-equivariant, where ϑ is the permutation of variables.
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In order to construct a detective we need that F α is not the zero-mapping. This is
true if there exists x0 ∈ Rn with

F α(x0) =
n∑

i=1

σα(ti)[f ◦ P ](ϑ(t−1
i )x0) �= 0.

Lemma 4.5 Let f β �≡ 0, β � n− 1 be given ResSn�1ϑ-σ
β-equivariant functions. Then for

each partition α � n there exists a Sn−1-invariant function g : Rn−1 → R such that F α

as defined in (8) with f = g · (fβ1 , . . . , fβr), βi ⊂ α is ϑ-σα-equivariant and not the zero
mapping. F = (F α1, . . . , F αs) is a detective for Sn where α1, . . . , αs denote the partitions
of n.

Proof: Choose x0 ∈ Rn such that it is not Sn-invariant and such that fβ(Px0) �= 0. Either
we already have F α(x0) �= 0 with f = (fβ1, . . . , fβr) or we choose an Sn−1-invariant g.
Since fβ(x0) �= 0 and x0 is not invariant it is possible that the values g(Pϑ(t−1

i )x0) are
such that the vectors g(Pϑ(t−1

i )x0)σ
α(ti)f(P (ϑ(t

−1
i )x0)) do not sum to zero. �

Of course the step of Lemma 4.2 can be repeated. Let sj be representatives of the left
cosets of Sn−2 in Sn−1. For example choose sn−1 = id,

sj = (j, j + 1, . . . , n − 1) = (j, j + 1) · · · (n− 2, n − 1), j = 1, . . . , n− 2.

Then

F α(x) =
n∑

i=1

σα(ti)
⊕

β�n−1,β⊂α

fβ(Pn−1(ϑ(t
−1
i )x) (9)

=
n∑

i=1

σα(ti)
⊕

β�n−1,β⊂α

n−1∑
j=1

σβ(sj)
⊕

γ�n−2,γ⊂β

fγ(Pn−2(ϑ(s
−1
j )Pn−1ϑ(t

−1
i )x).

We use Pk for the restriction to the first k coordinates. Secondly, let us introduce the
notation tkj = (j, j + 1) · · · (k − 1, k) for cyclic permutations. For convenience tkk = id.

k = 1 f(x1) f(x2) f(x3) f(x4)

k = 2
f2(x1, x2)

f (1,1)(x1, x2)
f2(x1, x3)

f (1,1)(x1, x3)
f2(x1, x4)

f (1,1)(x1, x4)
f2(x2, x3)

f (1,1)(x2, x3)
f2(x2, x4)

f (1,1)(x2, x4)
f2(x3, x4)

f (1,1)(x3, x4)

k = 3
f3(x1, x2, x3)

f (2,1)(x1, x2, x3)
f (1,1,1)(x1, x2, x3)

f3(x1, x2, x4)
f (2,1)(x1, x2, x4)
f (1,1,1)(x1, x2, x4)

f3(x1, x3, x4)
f (2,1)(x1, x3, x4)
f (1,1,1)(x1, x3, x4)

f3(x2, x3, x4)
f (2,1)(x2, x3, x4)
f (1,1,1)(x2, x3, x4)

k = 4
f4(x1, x2, x3, x4) f (2,1,1)(x1, x2, x3, x4)

f (3,1)(x1, x2, x3, x4) f (1,1,1,1)(x1, x2, x3, x4)
f (2,2)(x1, x2, x3, x4)

Figure 1: The quantities which are computed in Algorithm 4.6 for n = 4.
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In these notations it is clear that (9) needs intermediate evaluations of type

fβ(Pn−1ϑ(t
n
i )

−1x) =
n−1∑
j=1

σβ(tn−1
j )

⊕
γ⊂n−2,γ⊂β

fγ(Pn−2ϑ(t
n−1
j )−1ϑ(tni )

−1x).

Observe that the arguments Pn−2ϑ(t
n−1
j )−1ϑ(tni )

−1x may be equal although i and j are
different. We have Pn−2ϑ(t

n−1
j )−1ϑ(tni )

−1x = (xν1 , . . . , xνn�2), νi < νi+1, i = 1, . . . , n − 2,
but xνn�1 , xνn with νn−1, νn ∈ {1, . . . , n} \ {ν1, . . . , νn−2} have been deleted. Since the
order of xνn�1 and xνn does not matter this can be achieved in several ways.

Repeating the division process we have the following algorithm

Algorithm 4.6 (Recursive evaluation of a detective for Sn)
Given: f : R→ R, f �≡ c, c ∈ R.
Stored: σβ(k − 1, k), β � k, k = 2, . . . , n
Input: x ∈ Rn

Output: F (x) ∈ Rm, m =
∑

αn dimσα

where F is ϑ-(
∑

α�n σ
α)-equivariant and ϑ describes the permutation of variables.

Initialization: k = 1
Evaluate f(x1), . . . , f(xn).

for k = 2 to n do
for each β � k do
for all possible values of
y = Pkϑ(t

k+1
jk+1

)−1ϑ(tk+2
jk+2

)−1 · · ·ϑ(tnjn)−1x, 1 ≤ ji ≤ i, i = k + 1, . . . , n
(equivalently y = (xν1, . . . , xνk), νi < νi+1, i = 1, . . . , k − 1)

evaluate
fβ(y) = 1

k

∑k
i=1 σ

β(tki )
⊕

γ�k−1,γ⊂β f
γ(Pk−1ϑ((t

k
i )

−1)y)

if β �= k and k ≤ n − 1 then fβ(y) := g · fβ(y) where g =
∑k

j=0(−fk(y))j

Figure 1 shows the numbers which are computed in layers k = 1, 2, 3, 4 for n = 4. The
multiplication with g assures that no components are the zero mapping and gives a nu-
merical balancing in the components.

Lemma 4.7 Algorithm 4.6 evaluates a detective for Sn at x ∈ Rn. More precisely: Let the
representation ϑ denote the permutation of variables and σα the irreducible representations
of Sn corresponding to the partitions α � n (Young’s seminormal form). The values fα(x)
are computed for ϑ-σα-equivariant functions fα �≡ 0.

Proof: From Lemma 4.2 and the multiple division it is clear that f α is ϑ-σα-equivariant.
It remains to show that fα �≡ 0. Using Lemma 4.5 we need to show that the Sk-invariant
functions g have been chosen sufficiently generic. The main point for a polynomial f for
this to happen is that the polynomial degree of f β is sufficiently large.

The degree of a ϑ-σ(1,...,1)-equivariant polynomial f (1,...,1) �≡ 0 is ≥ n(n−1)
2

. (These
equivariants form a module over the invariant ring generated by

∏n
i=1,j=i+1(xi−xj)). Since

(1, . . . , 1) is the most sensitive case and the functions g are chosen sufficiently generic the
statement follows by Lemma 4.5. �

The proof includes already the proof of the following lemma.
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n n! regular rep. stored perms. Young’s seminormal form
5 120 0.01 sec 0.01 sec 0.01 sec
6 720 0.01 sec 0.02 sec 0.02 sec
7 5040 0.08 sec 0.04 sec 0.10 sec
8 40320 0.67 sec 0.29 sec 0.42 sec
9 362880 6.54 sec 6.60 sec 1.98 sec

10 3628800 77.55 sec − sec 9.47 sec
11 39916800 − sec − sec 48.66 sec

Table 1: Comparison between a detective based on regular representation (implemen-
tations with and without storage of permutations) and a detective based on Young’s
seminormal form (recursion): Computing times for one function evaluation on a Sun 4
implemented in C.

Lemma 4.8 Let ϑ denote the representation of Sn which permutes n variables. Then the
lowest degree maxα�nkmin(σ

α, ϑ) of a polynomial detective is ( n
2
).

Recall the formula 1
|G|
∑
ρ(t)q(ϑ(t−1)x) for a ϑ-ρ-equivariant mapping. A simple choice is

ρ = L the regular representation and q(x) = (p(x), 0, . . . , 0) such that p is a monomial.
Lemma 4.8 shows that p(x) = x1x

2
2 · · ·xn−1

n−1 is a monomial of lowest possible degree in
order to give a detective. In [21] it is shown that this is indeed a detective.

The numerical properties of Algorithm 4.6 are the following. In each step k evaluation
at ( n

k
) values y are needed. The tupel (fk, . . . , f (1,...,1)) has dimension

∑
α�k dimσα.

The determination of these ( n
k
)
∑

α�k dimσα values necessitates #(α � k)k(k−1)
2

matrix-
vector multiplications which are performed cheaply. Here #(α � k) denotes the number
of partitions. The number of additions at layer k is ( n

k
) (k − 1)

∑
α�k dimσα.

If we compare this detective F = ⊕α�nf
α with the detective above based on the left

regular representation we notice that the dimension is much smaller. We have
∑

α�n dimσα

with
∑

α�n(dimσα)2 = |Sn| = n! (the general formula for the dimensions of irreducible
representations) in comparison to n! itself. Table 1 shows the performance of one function
evaluation as n increases. Various implementations for the detective with the left regular
representation have been tested. The powers xji are computed once and stored. The
first alternative is to generate all permutations while the detective is evaluated, but this
requires a lot of trivial computations. We have implemented the algorithm in [18] for
this purpose. The second alternative is to generate the permutations in advance, which
is necessary for the determination of the symmetry of the vector. For this one needs to
know at which position which permutation is placed. But the storage needs n!(n − 1)
integers for pointers. This leads to the effect that for n large a lot of system cpu is spent
on administration of this storage. For n = 10 it even fails to allocate the storage.

The detective based on Young’s seminormal form also necessitates some amount of
storage shown in Table 2. Although the matrices σα(k − 1, k), α � k and some pointers
for σα(i, i+1), i < k−1 need to be stored the computing time is smaller if all σα(i, i+1), i =
1, . . . , k − 1 are stored. For n = 10 the representation matrices need space for 227376
integers and the intermediate function values are stored in 123108 reals. The experience
shows that this detective is prefarable for larger n due to lower dimension and smaller

11



storage requirements.

n n! #(α � n) ∑
α�n dimσα rep.matrices f’s

5 120 7 26 288 int 141 real
6 720 11 76 1048 int 498 real
7 5040 15 232 3832 int 1849 real
8 40320 22 764 14528 int 7192 real
9 362880 30 2620 56448 int 29185 real
10 3628800 42 9496 227376 int 123108 real
11 39916800 56 35696 941296 int 538077 real

Table 2: Comparison of storage requirements between detectives based on regular repre-
sentation and based on Young’s seminormal form.

Finally, we like to mention that Algorithm 4.6 uses a principle known as Divide and
Conquer. For other divide and conquer algorithms see [18].

Due to [4], [7] [6] detecting the symmetry of an attractor means computing w :=
1
N

∑N
i=1 F (yi), and distances ||(PH − Id)w||2 for all subgroups H. Here we denote by PH

the projection on the fixed point space of H. The maximal subgroup H with ||(PH −
Id)w||2 = 0 is the symmetry group of the attractor. One still needs to think about how
to perform PH − Id.

For completeness we state:

Lemma 4.9 If η : H → Gl(V ) with η(t) = diag(ϑi(t)), ϑi, i = 1, . . . , h being the irreduci-
ble representations of H, ϑ1 being the trivial irreducible representation then (PH−Id)w =
(0, w2, . . . , wm), m =

∑h
i=1 dim(ϑi).

This suggests to collect within algorithm 4.6 all tupel ⊕β�k,β 	=kf
β(y) for all k = 2, . . . , n

and all possible y. But this needs too much storage.

Lemma 4.10 Let Sn, generated by (1, 2), . . . , (n − 1, n) be represented by η acting as
diag(σα), α � n where σα are the irreducible representations given by the Young tableaux.
Then for Sk generated by (1, 2), . . . , (k − 1, k), k = 2, . . . , n there exists a set of indices Ik
such that

((P Sk − Id)w)i =

{
wi i ∈ Ik
0 i �∈ Ik

(10)

For conjugate subgroups sSks
−1 we have the formula

P sSks
�1 − Id = η(s)(P Sk − Id)η(s−1).

Proof: The vector w decomposes as w = (wn, . . . , wα, . . . , w(1,...,1)) into subvectors wα, α
a partition of n. Since σα =

∑
β�n−1,β⊂α σ

β each wα decomposes into subvectors wα,β, β �
n − 1. The ordering of wα,β depends on the last letter ordering. Repeating this step we
obtain wα1,...,αk where αn is a partition of n and αi is a partition of i with αi ⊂ αi+1, i =
n− 1, . . . , k. The trivial irreducible representation of Sk is denoted by σk. This yields

(P Sk − Id)wαn,...,αk =

{
wαn,...,αk , if αk �= k
0, if αk = k

12
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Remark: For proper subgroups H of Sk it is more difficult to evaluate the distance
||(PH − Id)w||. But once the projections PH,β, β � k in the coordinates of an irreducible
representation σβ of Sk are known, the distance can be evaluated using P Sk − Id.

5 Example

Coupled arrays of Josephson junctions are a typical example of a dynamical system with
Sn-symmetry given by permutations. These arrays have been discussed in various papers,
e.g. [2]. In [21] a lot of numerical simulations of symmetric chaos are presented for the
Josephson junctions for n = 4 and n = 5. Both, the pure capacitive and the pure resistive
cases are treated in that article.
In contrast to [21] our aim is to perform calculations for larger n.
The equations for the pure capacitive load read

ξ̇k = ψk

ψ̇k = 1
3+β

I − 1
β
(ψk + sin(ξk)− 3

n(3+β)

∑n
j=1(ψj + sin(ξj)))

k = 1, . . . , n.

We have done computations for n = 10 using the program code++ [14]. Figure 2 shows
an S10-invariant attractor, where the parameter values have been chosen to be β = 0.2
and I = 1.05. The solution seems to converge against a periodic orbit with S10-symmetry.
The triangular shape in the right picture is explained by the fact that {ξ1 = ξ2, ψ1 = ψ2},
{ξ1 = ξ3, ψ1 = ψ3}, and {ξ2 = ξ3, ψ2 = ψ3} are fixed point spaces which are flow invariant.

The value of the distance ||Id−P S10v|| to the fixed point space of S10 is 1.26185e−07
where the approximate observation v =

∑N
i=1 F (ξ

i) was used and the recursive detective
F was evaluated at N = 3000 points. This small value clearly indicates that the type of
symmetry is S10. It is remarkable small since usually already a value of 0.05 is accepted
to indicate a symmetry type.

In Figure 3 a more complicated attractor is presented. The parameter values are
β = 0.23 and I = 1.13. The distances have been computed for sSks

−1, k = 2, . . . , n
yielding a symmetry different from S10.

In Algorithm 4.6, the recursive detective, the function f was chosen as f(x1) =
x1
4
+

1
4x1

+ 1.
These computations for S10 clearly demonstrated that one needs a sophisticated func-

tion for the detection of symmetry. The computing time depends on the detective since it
is evaluated many times and secondly the distances are computed for a lot of subgroups
of Sn. The recursive detective in Algorithm 4.6 was used successfully and is a typical
example of modern algorithm technique.

Acknowledgments: Special thank are due to Michael Dellnitz for helpful discussions
and to A. Kerber for the hint to the reference [5].
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