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Abstract

This thesis is concerned with structural properties and the stability behaviour of

two-stage stochastic programs.

Chapter 1 gives an introduction into stochastic programming and a summary of the

main results of the thesis.

In Chapter 2 we present easily verifiable sufficient conditions for the strong conve-

xity of the expected-recourse function in a stochastic program with linear complete

recourse. Different levels of randomness in the data are considered. We start with

models where only the right-hand side of the constraints is random and extend these

results to the situation where also the technology matrix contains random entries.

The statements on strong convexity imply new stability estimates for sets of opti-

mal solutions when perturbing the underlying probability measure. We work out

Hölder estimates (in terms of the L1-Wasserstein distance) for optimal solution sets

to linear recourse models with random technology matrix.

In Chapter 3 (joint work with Werner Römisch, Berlin) we are aiming at the Lip-

schitz stability of optimal solution sets to linear recourse models with random right-

hand side. To this end , we first adapt the distance notion for the underlying

probability measures to the structure of the model and derive a Lipschitz estimate

for optimal solutions based on that distance. Here, the strong convexity established

in Chapter 2 turns out as an essential assumption. For applications, however, a

Lipschitz estimate with respect to a more accesssible probability distance is desira-

ble. Structural properties of the expected-recourse function finally permit such an

estimate in terms of the Kolmogorov-Smirnov distance of linear transforms of the

underlying measures. The general analysis is specified to estimation via empirical

measures. We obtain a law of iterated logarithm, a large deviation estimate and an

estimate for the asymptotic distribution of optimal solution sets.

Chapters 4 and 5 deal with two-stage linear stochastic programs where integrality

constraints occur in the second stage. In Chapter 4 we study basic continuity pro-

perties of the expected-recourse function for models with random right-hand side

and random technology matrix. The joint continuity with respect to the decision

variable and the underlying probability measure leads to qualitative statements on

the stability of local optimal values and local optimal solutions.

In Chapter 5 we demonstrate that a variational distance of probability measures ba-

sed on a suitable Vapnik-Červonenkis class of Borel sets leads to convergence rates

of the Hölder type for the expected recourse as a function of the underlying proba-

bility measure. The rates carry over to the convergence of local optimal values. As



2

an application we again consider estimation via empirical measures. Beside quali-

tative asymptotic results for optimal values and optimal solutions we obtain a law

of iterated logarithm for optimal values.
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Zusammenfassung

Die vorliegende Habilitationsschrift befaßt sich mit Struktureigenschaften und dem

Stabilitätsverhalten zweistufiger stochastischer Optimierungsprobleme.

Kapitel 1 bietet eine Einführung in die stochastische Optimierung und eine Übersicht

über Hauptresultate der Arbeit.

In Kapitel 2 präsentieren wir leicht zu verifizierende hinreichende Bedingungen

für die starke Konvexität von Kompensationsfunktionalen in stochastischen Pro-

grammen mit linearer vollständiger Kompensation. Verschiedene Grade der Zu-

fallsabhängigkeit werden betrachtet. Wir beginnen mit Modellen, in denen nur

die rechte Seite der Nebenbedingungen zufällig ist und erweitern die Resultate auf

den Fall zufälliger Komponenten in der Technologiematrix. Die Aussagen zur star-

ken Konvexität implizieren neue Stabilitätsabschätzungen für Optimalmengen bei

Störung des zugrundeliegenden Wahrscheinlichkeitsmaßes. Wir erhalten Hölder-

Abschätzungen (bezüglich des L1-Wasserstein-Abstandes) für Optimalmengen von

linearen Kompensationsproblemen mit zufälliger Technologiematrix.

In Kapitel 3 (gemeinsame Arbeit mit Werner Römisch, Berlin) streben wir Lipschitz-

Stabilitätsaussagen für Optimalmengen linearer Kompensationsprobleme mit zufäl-

liger rechter Seite an. Zu diesem Zweck passen wir den Abstandsbegriff für die

zugrundeliegenden Wahrscheinlichkeitsmaße zunächst der Modellstruktur an und

leiten eine Lipschitz-Abschätzung für Optimallösungen bezüglich dieses Abstan-

des her. Die in Kapitel 2 erzielte starke Konvexität erweist sich dabei als we-

sentliche Voraussetzung. Für Anwendungen ist jedoch eine Lipschitz-Abschätzung

bezüglich eines leichter auswertbaren Wahrscheinlichkeitsabstandes wünschenswert.

Struktureigenschaften des Kompensationsfunktionals erlauben schließlich eine solche

Abschätzung bezüglich des Kolmogorov-Smirnov Abstandes linerarer Transforma-

tionen der zugrundeliegenden Maße. Die allgemeinen Untersuchungen werden dann

auf die Schätzung mittels empirischer Maße spezifiziert. Wir erhalten ein Gesetz

vom iterierten Logarithmus, eine Abschätzung für große Abweichungen und eine

Abschätzung für die asymptotische Verteilung der Optimalmengen.

Die Kapitel 4 und 5 befassen sich mit zweistufigen linearen stochastischen Optimie-

rungsaufgaben, bei denen Ganzzahligkeitsforderungen in der zweiten Stufe auftreten.

In Kapitel 4 untersuchen wir grundlegende Stetigkeitseigenschaften des Kompensati-

onsfunktionals für Modelle mit zufälliger rechter Seite und zufälliger Technologiema-

trix. Die gemeinsame Stetigkeit bezüglich Entscheidungsvariable und zugrundelie-

gendem Wahrscheinlichkeitsmaß führt zu qualitativen Aussagen über die Stabilität

lokaler Optimalwerte und lokaler Optimallösungen.
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In Kapitel 5 zeigen wir, daß ein Variationsabstand von Wahrscheinlichkeitsmaßen

basierend auf einer geeigneten Vapnik-Červonenkis Klasse von Borelmengen zu Kon-

vergenzraten vom Höldertyp für das Kompensationsfunktional als Funktion des zu-

grundeliegenden Wahrscheinlichkeitsmaßes führt. Die Raten übertragen sich auf

die Konvergenz lokaler Optimalwerte. Als Anwendung betrachten wir erneut die

Schätzung mittels empirischer Maße. Neben qualitativen asymptotischen Resulta-

ten für Optimalwerte und Optimallösungen erhalten wir ein Gesetz vom iterierten

Logarithmus für Optimalwerte.



Chapter 1

Introduction

This thesis is concerned with structural properties and the stability behaviour of sto-

chastic programming models. Stochastic programs are specific nonlinear programs

that are derived from random optimization problems. Their objectives (and/or cons-

traints) are typically given via parameter dependent multiple integrals. Our analysis

aims at relating verifiable properties of basic ingredients of the stochastic program

to its structure and stability. We focus our considerations on two-stage stochastic

programs that may also contain integrality constraints.

In the introduction we collect some fundamentals of stochastic programming me-

thodology and present the main results in condensed form.

1.1 Stochastic Programming Models

The mathematical modelling of phenomena in nature, technology and economics

typically involves some level of uncertainty. Random parameters occuring among

the data of an optimization problem raise the difficulty that, without knowing their

outcomes, it is in general impossible to detect feasibility and/or optimality of a

given decision. Depending on the modelling environment and the availability of

(statistical) information on the random data stochastic programming offers models

for finding optimal decisions under uncertainty. Basically, it is assumed that pro-

bability distributions can be assigned to the random data. Optimal decisions are

then found in a ’here-and-now’ manner, i.e. based on the a priori information alone

without further observation of the random data as it is characteristic for ’wait-and-

see’ approaches.

5
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Stochastic programming was pioneered in the fifties by Dantzig [18], Beale [6], Tint-

ner [120] and Charnes/Cooper [14]. The development of the field until the seventies

is reflected in Kall [46], Wets [131] and Dempster [20]. An overview of recent results

can be obtained from Birge/Wets [11], Ermoliev/Wets [32] and Wets [133].

Let us start with some modelling alternatives in stochastic programming. To this

end we consider the random nonlinear program

min{g0(x, ξ) : g(x, ξ) ≤ 0, x ∈ C}
where ξ ∈ IRS follows a probability distribution on IRS induced by some Borel pro-

bability measure μ on IRS which does not depend on the decision variable x ∈ IRm.

The non-random set C ⊂ IRm is assumed to be non-empty and closed and the functi-

ons g0(x, .) : IR
S −→ IR, g(x, .) : IRS −→ IRm̃ to be at least measurable for all x ∈ C .

In many practical situations the decision x has to be taken before the outcome of ξ

is observed. Take planning in its widest sense as an example: production schedules,

investment strategies and technological designs often have to be settled before kno-

wing all the (random) influences of the environment.Hence, objective function and

constraint set of the underlying optimization problem are not fixed when the deci-

sion x has to be made. Feasibility and optimality of the latter are, thus, meaningless

notions. From mathematical viewpoint there are the alternatives to study the fea-

sibility problem within the framework of parameter dependent inequalities and to

use techniques from multiobjective programming for the optimality issue. But both

these approaches neglect the ”frequency-of-occurrence” information on the unknown

parameters which is captured in the underlying probability distribution.

A conceptual frame for stochastic programs is given by the model

min{
∫
IRS

fo(x, ξ)μ(dξ) :
∫
IRS

fi(x, ξ)μ(dξ) ≤ 0, i = 1, · · · , N, x ∈ C}
where the (measurable) functions fo, fi(i = 1, · · · , N) depend on the modelling en-

vironment. Observe that now, up to finiteness of the integrals, objective and cons-

traints are well defined. To give an impression on the background of the above

abstract model we expand a little on three instances : chance constrained, two- and

multi-stage stochastic programs.

Chance constraints. For some probability level α ∈ [0, 1] we define

f1(x, ξ) =

{
α − 1 if g(x, ξ) ≤ 0

α otherwise.
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Then one confirms that∫
IRS

f1(x, ξ)μ(dξ) ≤ 0

is equivalent to

μ({ξ ∈ IRS : g(x, ξ) ≤ 0} ≥ α.

This reflects a reliability constraint: x ∈ IRm is considered feasible if the proba-

bility of the set of all those ξ ∈ IRS such that g(x, ξ) ≤ 0 exceeds a given level

α. In the literature, this type of constraint is called (joint) probabilistic or chance

constraint. In particular, the situation where g is linear was studied extensively.

Topics addressed in this context include sufficient conditions for the convexity of a

chance constrained set ([67], [77], [78]), procedures for computing function values

and gradients of the relevant constraint functions ([19], [70], [79], [119], [121]) and

stability properties when perturbing the underlying probability measure ([26], [48],

[94], [103], [124]).

Two-stage models. While in a chance constraint model the decision does not

depend in any way on future observations of the random data, the two-stage model,

though being a ”here-and-now” model, includes both long-term anticipatory deci-

sions before and short-term adaptive actions after observation of the random data.

Let us introduce the variables x1 ∈ IRm1 and x2 ∈ IRm2 for the long- and short-term

decisions, respectively. The random optimization problem then reads

min{g0(x1, x2, ξ) : g(x1, x2, ξ) ≤ O, x1 ∈ C1, x2 ∈ C2}
where, for simplicity, C is assumed to be separable, i.e. C = C1 × C2.

Given x1 and ξ the adaptive (recourse, second-stage) action x2 is selected as the

optimal solution x̄2 = x̄2(x1, ξ) of

min{g0(x1, x2, ξ) : g(x1, x2, ξ) ≤ O, x2 ∈ C2}.
The anticipatory (first-stage) decision x1 is selected to minimize the expectation of

g0(x1, x̄2(x1, .), .) subject to x1 ∈ C1:

min{
∫
IRS

g0(x1, x̄2(x1, ξ), ξ)μ(dξ) : x1 ∈ C1}.

The above optimization problem is called two-stage stochastic program or stocha-

stic program with recourse. Its objective function arises as a (multidimensional)
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integral with respect to an implicit integrand which is given as the optimal-value

function of an optimization problem depending on the parameters x1 and ξ. Apart

from its implicity, the latter function is known to be typically non-convex and

non-smooth ([4],[34]). Therefore, the research in two-stage stochastic programming

has concentrated on settings where much more structure is available. The present

thesis confines to two such settings. We will assume that the functions g0 and g

are basically linear and that C2 coincides with either IRm2
+ or a mixed-integer set

IR
m2,1
+ × ZZ

m2,2
+ , (m2,1 + m2,2 = m2). Moreover, the random variable ξ will not oc-

cur in the second-stage objective g0. In the pure linear case the above mentioned

optimal-value function then turns out to be convex and can be described explicitly.

In the mixed-integer case there is no convexity but still some description that is

sufficiently explicit for our purposes.

To illustrate how a two-stage stochastic program arises in practical applications

let us expand a little on the pure linear case. Adapting our notation to the more

standard one we introduce the variables x ∈ IRm and y ∈ IRm̄ for the first- and

second-stage decisions, respectively. For simplicity, we assume that the random

variable ξ ∈ IRS admits a representation ξ = (z, A) ∈ IRs × IRms where z and

A are a vector and a matrix, respectively, that are specified below. Furthermore,

the inequality constraint involving g is changed into an equality constraint. The

functions g0 and g are then specified as follows

g0(x, y, z, A) := cTx+ qTy , g(x, y, z, A) := Ax+Wy − z.

The sets C1 and C2 are a nonempty polyhedron C ⊂ IRm and the non-negative

orthant IRm̄
+ , respectively.

The resulting linear two-stage model can now be written in a compact form:

min{cTx+Q(x) : x ∈ C},
where

Q(x) :=
∫
IRS

Φ(z − Ax)μ(d(z, A))

and

Φ(t) := min{qTy :Wy = t, y ≥ 0}.
Of course, it needs some further assumptions to have the above functions Q and Φ

well-defined. Roughly speaking these consist of a finite first moment for the pro-

bability measure μ and primal plus dual feasibility for the linear program defining
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Φ. We will return to that issue later on when inspecting the structure of two-stage

stochastic programs in more detail.

The following situation gives rise to a model of the above type: Suppose that a

company transforms raw materials into certain products for which there are clients

whose demands have to be met. The transformation causes costs and involves certain

productivities. Further constraints may concern output requirements or capacity

restrictions. Production has to be planned in advance, i.e. before knowing the

exact productivities of the transformation and/or demands of the clients. All that

is known about these data is a probability distribution governing their outcomes. If

the production does not exactly meet the demand additional (recourse) costs occur

for stocking the surplus or compensating the shortfall. The company then aims at

establishing a feasible production schedule such that the production costs plus the

expected recourse costs become minimal.

This precisely fits into the above setting. Indeed, x corresponds to the unknown

production schedule, c reflects the production costs, A the involved productivities

and z the client’s demand; C models possible further constraints. The second-stage

(recourse) decision y ∈ IR2s splits into components y+ ∈ IRs for compensation and

y− ∈ IRs for stocking. Accordingly, q splits into q+ and q− reflecting the respective

costs such that the second stage reads

min{q+Ty+ + q−T y− : y+ − y− = t, y+ ≥ 0, y− ≥ 0}.
The function Q finally coincides with the expected recourse costs based on the (joint)

probability distribution μ for the demand z and the productivity A.

Of course, there is a very simple second stage in the above example. It is easy

to see that the (formally) s-dimensional minimization splits into s separate one-

dimensional minimizations. If the recourse mechanism is more involved this, ho-

wever, can no longer be maintained and a non-separable linear program becomes

relevant. Of course, the mixed-integer case shortly addressed above fits the situation

where integer (including Boolean) decisions occur in the second stage.

For a more detailed exposition of practical applications and solution techniques in

two-stage stochastic programming we refer to the literature ([10], [11], [32], [37],

[42], [43], [45], [47], [49], [69], [99], [100], [101], [102], [127], [128], [132]).

Multi-stage models. The philosophy that underlies a two-stage model is extended

by considering a sequential process of observation and decision, i.e. given the stages
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t = 1, · · · , T there are decisions xt ∈ IRmt and observations ξt ∈ IRst . As in the

two-stage case the (sequences of) decisions and observations determine a cost and

the objective is to find a decision rule (which might reduce to finding an anticipatory

decision x1) such that the expectation of the costs becomes minimal. Again there

are constraints linking decisions and observations. In contrast to the two-stage case,

however, certain information constraints have to be taken into account which reflect

the property that a decision xt must not depend on observations ξt′ for which t
′ > t.

The latter is referred to as non-anticipativity. It is modeled via a nest of sigma

fields. More specifically, if B denotes the sigma field of Borel sets in IRS we have a

sequence

B1 ⊂ B2 ⊂ · · · ⊂ BT ⊂ B

of sigma fields and the decision xt has to be Bt −measurable. Of course, x1 is anti-

cipatory (deterministic) if we put B1 := {∅, IRS}, and in the two-stage case we have

B1 = {∅, IRS},B2 = B.
We do not further expand on multi-stage stochastic programs and refer to the lite-

rature for further details ([21], [30], [33], [35], [36], [73], [91], [130], [133]).

1.2 Structure of Two-Stage Stochastic Programs

1.2.1 Linear Recourse

In this paragraph we introduce into some structural properties of the linear two-

stage model set up in the previous section.

Consider

min{cTx+Q(x) : x ∈ C}(2.1)

where

Q(x) :=
∫
IRS

Φ(z − Ax)μ(d(z, A))(2.2)

and

Φ(t) := min{qTy :Wy = t, y ≥ 0}.(2.3)

Linear two-stage models where the recourse matrix W and/or the recourse costs q

are random will not be considered in this thesis. For details on such models we refer
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to [46],[131].

Properties of the expected recourse function Q are governed by the interplay of the

underlying probability measure μ and the value function Φ. A key issue in this

respect is to find conditions on the problem data which are both not too restrictive

for applications and imply properties of Q that are useful for the theoretical analysis

and the numerical treatment, respectively.

The value function Φ is ruled by linear programming duality. In fact, if we consider

the feasible regions

MP (t) = {y ∈ IRm̄ :Wy = t, y ≥ 0}
and

MD = {u ∈ IRs : W Tu ≤ q}
of the pair of dual linear programs associated to (2.3), then Φ(t) is finite if both

MP (t) �= ∅ and MD �= ∅. Therefore, we impose the following basic assumptions

(A1) (complete recourse) W (IRm̄
+ ) = IRs,

(A2) (dual feasibility) {u ∈ IRs :W Tu ≤ q} �= ∅.
In terms of the modelling background (A1) says that there exists a compensation

(recourse action) whatever the outcome of z − Ax may be. Assumption (A2) then

implies that recourse costs are bounded below.

If (A1) is violated then the model only makes sense if it is guaranteed that

z − Ax ∈ W (IRm̄
+ ) for μ−almost all (z, A) ∈ IRs × IRms. The latter leads to ad-

ditional constraints (called induced constraints) on the first-stage decision x and is

referred to in the literature as relative complete recourse (cf. [46],[131]).

By (A1), (A2) the setMD is non-empty, bounded and, thus, posesses vertices which

we denote by d̃i(i = 1, . . . , �̃). Then

Φ(t) = max
i=1,...,�̃

d̃Ti t.

The value function Φ is, hence, piecewise linear and convex. The linearity regions of

Φ coincide with the (outer) normal cones Ki to MD at the vertices d̃i(i = 1, . . . , �̃)

(cf. [72],[126]).

The integrand in (2.2) now reads

Φ(z −Ax) = max
i=1,...,�̃

d̃Ti (z − Ax).(2.4)
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Therefore, the integral in (2.2) is finite if

(A3)
∫
IRS (‖z‖+ ‖A‖)μ(d(z, A)) < +∞.

Now it holds

Proposition 1.2.1 ([46], [131])

Assume (A1) - (A3), then the function Q is real-valued, convex and Lipschitz con-

tinuous on IRm.

Proposition 1.2.2 ([46], [131])

Assume (A1) - (A3) and let x0 ∈ IRm be such that for all i1, i2 ∈ {1, . . . , �̃}, i1 �= i2

μ({(z, A) ∈ IRS : z −Ax0 ∈ Ki1 ∩ Ki2}) = 0.(2.5)

Then Q is continuously differentiable at x0 and the gradient Q′(x0) is given by

Q′(x0) = −
�̃∑
i=1

∫
z−Ax0∈Ki

AT d̃i μ(d(z, A)).(2.6)

Proposition 1.2.3 ([68],[129], A non-random)

Assume (A1) - (A3) and that for any non-singular matrix B ∈ L(IRS , IRS) the

superposition μ◦B has a continuous density such that all lower dimensional densities

are continuous too. Then Q is twice continuously differentiable.

The first-order differentiability statement essentially relies on making Lebesgue’s

dominated convergence theorem work for the partial difference quotients of Q; the

second-order result is gained by establishing existence and continuity of the second-

order partial derivatives. In [68], Proposition 1.2.3 is stated for random matrix A.

Proposition 1.2.3 shows that higher-order differentiability of Q leads to quite in-

volved conditions that are hard to check. Since the sets Ki1 ∩ Ki2 are subsets of

hyperplanes in IRS , (2.5) is verified if, for instance, μ is absolutely continuous with

respect to the Lebesgue measure on IRS.

Given the convexity of Q, it is natural to ask for sufficient conditions guarante-

eing stronger properties such as strict or strong convexity. A function is called
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strictly convex if the usual convexity inequality holds strictly for non-identical argu-

ments. The function Q is called strongly convex ([75]) on a non-empty convex subset

V ⊂ IRm if there exists a κ > 0 such that for all λ ∈ [0, 1] and all x1, x2 ∈ V

Q(λx1 + (1− λ)x2) ≤ λQ(x1) + (1− λ)Q(x2)− κλ(1 − λ)‖x1 − x2‖2.
Strict and strong convexity are useful tools in convex optimization. Strict conve-

xity ensures uniqueness of optimal solutions; under strong convexity decent methods

show improved convergence and the function obeys a certain conditioning ([3]) that

is beneficial for the theoretical analysis (e.g. stability considerations, cf. Section 1.3).

In Chapter 2 we derive sufficient conditions for the strong convexity of Q. Due to the

involved conditions for the twice differentiability of Q we will make some effort to

avoid second derivatives. Recall that the integrand Φ in (2.2) is piecewise linear and

convex. A discrete measure μ then leads to a piecewise linear function Q which can

neither be strictly nor strongly convex. Therefore, we will impose certain continuity

assumptions on μ.

Moreover, a separate treatment of models with random and non-random matrix A,

respectively, is advisable. Indeed, if A is non-random then it can easily be seen that

Q is constant on translates of the null space of A. Since this null space is typically

non-trivial the function Q is ”almost never” strictly (let alone strongly) convex. But

apart from that, some improved convexity can be established for the function

Q̃(χ) :=
∫
IRs

Φ(z − χ)μ(dz)(2.7)

which will be the first main result in Chapter 2:

Proposition 1.2.4 (Theorem 2.2.2 in Chapter 2)

(i) Assume (A1), (A3) and

(A2)* there exists a vector ū ∈ IRs such that W T ū < q componentwise,

(A4) the probability measure μ is absolutely continuous with respect to the

Lebesgue measure on IRs.

Then Q̃ is strictly convex on any open convex subset V ⊂ IRs of the support

of μ.

(ii) Assume (A1), (A2)*, (A3) and
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(A4)* there exist a convex open set V ⊂ IRs, constants r > 0, � > 0 and a

density Θμ of μ such that

Θμ(τ ) ≥ r for all τ ∈ Rs with dist(τ, V ) ≤ �.

Then Q̃ is strongly convex on V .

As to the necessity of the above conditions we prove in Chapter 2 that, given (A1)

- (A4), the condition (A2)∗ is also necessary for the strict convexity of Q̃. Further

remarks concern illustrative examples and possibilities for the explicit verification

of (A2)
∗
.

A basic tool for extending the above proposition to models with random matrix A

is to use conditional and marginal distributions when representing the integral in

(2.2):

Q(x) =
∫

IRms

∫
IRs

Φ(z − Ax) μ2
1(A, dz)μ2(dA).(2.8)

Here, μ2
1(A, .) denotes the (regular) conditional distribution of z given A and μ2 the

marginal distribution of μ with respect to A ([24]).

To formulate the next result we split the matrix A = (A0, A1) into a matrix A0

whose columns are non-random and a matrix A1 where random entries occur. We

will use the symbol E for integration with respect to μ2.

Proposition 1.2.5 (Theorem 2.3.1 in Chapter 2)

Assume (A1) - (A3), let V ⊂ IRm be non-empty, convex and suppose

for μ2-almost all A ∈ IRms the function

Q̃A(χ) :=
∫
IRs

Φ(z − χ)μ2
1(A, dz)

is strongly convex on A(V ) with some modulus κ(A), and there exists

some κ > 0 such that κ(A) ≥ κ for μ2-almost all A;

(2.9)

E(‖A‖2) < +∞;(2.10)

the matrix A1 contains at least m− s columns;(2.11)

Ao has full rank;(2.12)

the matrix E(AT
1A1)−E(A1)

TE(A1) is positive-definite.(2.13)

Then Q is strongly convex on V .
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We will comment on specific situations where the verification of the above condi-

tions (in particular (2.9) and (2.13)) is especially simple. If, for instance, z and A

are stochastically independent then μ2
1(A, .) coincides with the marginal distribution

μ1, and Proposition 1.2.4 can be employed. If in any row of A1 the random entries

are pairwise uncorrelated then the matrix in (2.13) is diagonal with positive entries

along the main diagonal.

Propositions 1.2.4 and 1.2.5 supplement known facts about the structure of Q by

properties that are comparatively easy to verify and use only mild smoothness as-

sumptions. In Chapter 3 of this thesis we will present quantitative results on the

stability of optimal solutions to (2.1) - (2.3) where the strong convexity of Q̃ occurs

as the essential assumption.

1.2.2 Mixed-Integer Linear Recourse

By introducing integrality constraints into the second stage we extend the two-stage

model from the previous subsection:

min{cTx+Q(x) : x ∈ C}(2.14)

where

Q(x) =
∫
IRS

Φ(z − Ax) μ(d(z, A))(2.15)

and

Φ(t) = min{qTy + q′T y′ : Wy +W ′y′ = t, y′ ≥ 0, y ≥ 0, y′ ∈ IRm′
, y ∈ ZZm̄}.(2.16)

The relevance of the above model was already indicated in our discussion of mo-

delling alternatives. Integer variables in the second stage become indispensable if

decisions are Boolean or restricted to multiples of basic quantities. The reason for

considering integer variables in the second stage only is that, when occurring in the

first stage, they can (if at all) be dealt with by means of integer and combinatorial

optimization. In this context we refer to a paper by Wollmer ([135]). Integrality in

the second stage will, obviously, destroy the beneficial structure of Φ met in linear

recourse models. Therefore, again one has to think about the structure of the ex-

pected recourse function Q.
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For the first time, a model fitting into (2.14) - (2.16) was studied by Stougie ([118],

see also [83]) who gave a sufficient condition for the continuity of Q when the second

stage is the following pure-integer linear program

min{qTy : Wy ≥ t, y ≥ 0, y ∈ ZZm̄}.
Further related contributions are due to Artstein/Wets [1], where stability issues

are addressed to which we will come back in Section 1.3, and to Klein Haneveld,

Louveaux, Stougie and van der Vlerk ([60],[61],[66]) who considered the case of

”simple integer recourse” where the second stage reads

min{q+T

y++q−
T

y− : y+ ≥ t, y− ≥ −t, y+ ≥ 0, y− ≥ 0, y+ ∈ ZZm̄, y− ∈ ZZm̄}.(2.17)

The lack of structure in the case of a mixed-integer linear second stage is illustrated

just by the very simple example where

Q(x) =
∫
IR

Φ(z − x)μ(dz) and Φ(t) = min{y : y ≥ t, y ∈ ZZ}.

Here, Φ(t) = 
t� where the symbol 
.� denotes the integer round-up operation. Of

course, Φ is discontinuous and this property is preserved for Q for any discrete mea-

sure μ. Hence, Q also cannot be convex for discrete μ.

Missing continuity and convexity of Q result from the comparatively poor structure

of the value function Φ. Basic facts on the value function of a mixed-integer linear

program are contained in [4],[5],[12]. If we assume that W and W ′ are rational ma-

trices and that Φ(t) ∈ IR for all t ∈ IRs, then it holds:

Proposition 1.2.6 ([5], Theorem 8.1; [12], Theorem 2.1)

There exist constants α > 0, β > 0 such that for all t′, t′′ ∈ IRs we have

|Φ(t′)−Φ(t′′)| ≤ α‖t′ − t′′‖+ β.

Proposition 1.2.7 ([12], Theorem 3.3)

There exist constants γ > 0, δ > 0 and vectors d1, . . . , d� ∈ IRs, d̃1, . . . , d̃�′ ∈ IRs

such that for all t ∈ IRs

Φ(t) = min
y

{qTy + max
j∈{1,...,�}

dTj (t−Wy) : y ∈ Y (t)}
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where

Y (t) = {y ∈ ZZm̄ : y ≥ 0,
∑ |yi| ≤ γ

∑ |br|+ δ,

d̃Tk (t−Wy) ≥ 0, k = 1, . . . , �′}.

These statements imply (cf. Chapter 4) that Φ is lower semicontinuous on IRs and

that the discontinuity points of Φ are contained in (countably many) translates of

hyperplanes given by the facets of the polyhedral cone W ′(IRm′
+ ). Moreover, Φ is

Lipschitz continuous with a uniform modulus on each of the connected components

of the set of continuity points.

Together with the rationality of W and W ′ the following basic asssumptions ensure

that Q is well defined.

(A1)int For all t ∈ IRs there exist y ∈ ZZm̄, y′ ∈ IRm′
such that y ≥ 0, y′ ≥ 0

and Wy +W ′y′ = t.

(A2)int {u ∈ IRs :W Tu ≤ q,W ′Tu ≤ q′} �= ∅
(A3)int

∫
IRS

(‖z‖+ ‖A‖)μ(d(z, A)) < +∞.

Note that the above assumptions are natural extensions of those for linear recourse.

Indeed, (A1)int says that there is always a feasible second-stage action and (A2)int
then guarantees the solvability of the second-stage problem. Using Proposition 1.2.6

it can be shown that a finite first moment of μ ensures finiteness of the integral de-

fining Q(x).

These prerequisites together with Fatou’s lemma and Lebesgue’s dominated conver-

gence theorem will lead us in Chapter 4 to the following basic continuity results for

Q. In particular, Proposition 1.2.9 extends the above mentioned continuity state-

ment in [118].

Proposition 1.2.8 (Proposition 4.3.1 in Chapter 4)

Assume (A1)int – (A3)int, then Q is a real-valued lower semicontinuous function on

IRm.

By E(x) we denote the set of all those (z, A) ∈ IRS such that Φ is discontinuous at

z − Ax.
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Proposition 1.2.9 (Proposition 4.3.2 in Chapter 4)

Assume (A1)int – (A3)int and let x ∈ IRm be such that μ(E(x)) = 0, then Q is

continuous at x.

Since the discontinuities of Φ are concentrated in a set of Lebesgue measure zero the

above proposition in particular says that Q is continuous on IRm if, for μ2-almost all

A ∈ IRms, the conditional distribution μ2
1(A, .) of z given A is absolutely continuous

with respect to the Lebesgue measure on IRs. To find sufficient conditions for the

Lipschitz continuity of Q we again resort to an iterated-integral representation as in

(2.8) and start with the case where A is non-random. It holds

Proposition 1.2.10 (Proposition 4.3.6 in Chapter 4, A non-random)

Assume (A1)int – (A3)int and that μ is absolutely continuous with respect to the

Lebesgue measure on IRs. Assume further that for any non-singular linear trans-

formation B ∈ L(IRs, IRs) the one-dimensional marginal distributions of μ ◦B have

bounded densities which, outside some bounded interval, are monotonically decrea-

sing with growing absolute value of the argument.

Then Q is Lipschitz continuous on any bounded subset of IRm.

Examples in Chapter 4 will show that the rather technical boundedness and mono-

tonicity assumptions above are indispensable.

Via a representation like in (2.8) the result is extended to models with random A

(Proposition 4.3.10 in Chapter 4). The assumptions then are very similar but in

terms of μ2
1(A, .) and they have to hold uniformly for μ2-almost all A ∈ IRms.

A class of measures fulfilling the assumptions in Proposition 1.2.10 is given by r-

convex measures (r ∈ (−∞, 0]),[13], whose support is the whole of IRs (Proposi-

tion 4.3.9 in Chapter 4). This class includes, for instance, the nondegenerate multi-

variate normal distribution and the t-distribution.

Presently, statements beyond the above propositions are only available for the (es-

sentially one-dimensional) case of simple integer recourse introduced in (2.17). Such

statements include sufficient conditions for the differentiability of Q ([60],[66]) and

descriptions of the convex hull of the epigraph of Q ([61]).
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1.3 Stability of Two-Stage Stochastic Programs

In two-stage stochastic programming, function values and (provided they do exist)

gradients of the objective are given by multidimensional integrals that often can not

be computed explicitly. Moreover, the modelling is based on the precise knowledge

of the underlying probability distribution which, of course, is quite often a very opti-

mistic assumption. These observations lead to the question whether a two-stage (or

a general) stochastic program behaves stable under perturbations of the underlying

probability measure.

Indeed, if computationally intractable integrals arise one could try to approximate

the given probability measure by ”simpler” ones with favourable numerical proper-

ties. If one has only partial knowledge on the involved probability measure the

model has to be based on an approximation of the ”true” measure.

In both situations the question arises whether one could rely on the approximation,

i.e. whether ”small” perturbations of the measure lead to only ”small” changes in the

optimal value and the solution set. For abstract optimization problems this issue is

addressed in parametric optimization ([4],[34]). Of course, general results from this

field do also underly the stability analysis in (two-stage) stochastic programming.

But what deserves particular attention is the existing specific structure:

- higher-order differentiability of the data and unique solvability of the problem

are rather exceptional,

- to cover important applications it is advisable to select the parameter space

as an abstract (non-linear) space of probability measures,

- continuity of model data jointly in the decision variable and the perturbation

parameter, which is essential for many abstract stability results, requires some

effort to be verified for stochastic programs,

- when aiming at quantitative stability one has to find probability distances that

are properly adjusted to the specific problem classes.

In this thesis we present stability results for the two-stage stochastic programs in-

troduced in Section 1.2. For linear recourse models these results extend an existing

theory. The results for mixed-integer recourse seem to be among the first such fin-

dings in the literature.
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1.3.1 Linear Recourse

Consider the following two-stage stochastic program where the integrating probabi-

lity measure μ occurs as a perturbation parameter

P(μ) min{g(x) +Q(x, μ) : x ∈ C}(3.1)

where

Q(x, μ) :=
∫
IRS

Φ(z −Ax)μ(d(z, A))(3.2)

and

Φ(t) := min{qTy :Wy = t, y ≥ 0}.(3.3)

In (3.1) we assume that g is a convex function on IRm and C ⊂ IRm is a non-empty

closed convex set. This differs a little from the setting in (2.1) - (2.3), but many

stability results remain valid under these more general assumptions, too.

As indicated we will consider (3.1) as an optimization problem varying with the pa-

rameter μ. In the first approaches in the literature, only (Euclidean) parameters of μ

instead of the entire measure μ were exposed to perturbations ([25],[40],[129]). The

authors then employ results on the sensitivity of nonlinear programs (cf. [34] and

the references therein). These results, however, rely on smoothness and uniquen-

ess assumptions which considerably restrict the applicability to recourse models.

Moreover, the Euclidean setting for the parameter space excludes important app-

lications such as estimation via empirical measures. The first papers considering

μ as a parameter varying in a suitable topological (or metric) space of probability

measures are due to Kall [48], Robinson/Wets [88] and Römisch/Wakolbinger [98].

To specify the space of admissible perturbation parameters let us consider the set

P(IRS) of all Borel probability measures on IRS and equip it with weak convergence

of probability measures. A sequence {μn} in P(IRS) is said to converge weakly to

μ ∈ P(IRS), written μn
w−→ μ, if for any bounded continuous function h : IRS → IR

we have∫
IRS

h(ξ)μn(dξ) →
∫
IRS

h(ξ)μ(dξ) as n→ ∞.

In the present thesis, we will employ this notion only for probability measures on a

Euclidean space. The notion can be extended to probability measures on more ge-

neral spaces (e.g. separable metric spaces). A basic reference for weak convergence
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of probability measures is the monograph by Billingsley [9].

By its topological nature, weak convergence of probability measures is the weak∗

convergence on P(IRS) seen as a subset of the space of finite signed measures - the

topological dual to the space of bounded continuous functions on IRS. In finite

dimension, weak convergence of probability measures coincides with the pointwise

convergence of distribution functions at all continuity points of the limiting distri-

bution function. It covers important specific modes of convergence such as almost

surely converging densities (Scheffé’s theorem [9]), empirical measures (Glivenko-

Cantelli almost sure uniform convergence [76]) and discretizations via conditional

expectations (see [10] and [49] for details). Therefore, our parameter space is, on the

one hand, sufficiently comprehensible to cover relevant instances and, on the other

hand, sufficiently rich in structure for substantial statements.

The stability of the model (3.1) will be studied in terms of the optimal-value func-

tion ϕ assigning to μ ∈ P(IRS) the global optimal value of P(μ) and in terms of the

solution set mapping ψ assigning to μ ∈ P(IRS) the set of global optimal solutions.

For linear recourse models the inherent convexity allows us to confine our conside-

rations to global optimal values and solutions.

The subsequent stability results are statements on qualitative and quantitative con-

tinuity of the above mappings. Differentiability is not addressed here. It is treated,

for instance, in [28], [53], [96], [111], [112], [113], [115].

Fairly general qualitative stability results for two-stage stochastic programs with

linear second stage were established by Kall and Robinson/Wets in [48], [88]. In

these papers, the setting is slightly more general than here. We will quote from

them in a form fitting the present setting.

For notational convenience we introduce the following subset of probability measures

Δp,K(IR
S) = {ν ∈ P(IRS) :

∫
IRS

‖ξ‖pν(dξ) ≤ K}

where p > 1 and K > 0 are fixed real numbers.

Proposition 1.3.1 ([48], [88])

Assume (A1), (A2), let μ ∈ Δp,K(IR
S) for some p > 1, K > 0. Suppose further that

ψ(μ) is non-empty and bounded.

Then

(i) the function ϕ (from Δp,K(IR
S) to IR) is continuous at μ;
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(ii) the multifunction ψ (from Δp,K(IR
S) to IRm) is Berge upper semicontinuous at

μ, i.e. for each open set V ⊂ IRm with V ⊃ ψ(μ) there exists a neighbourhood

N of μ in Δp,K(IR
S) such that ψ(ν) ⊂ V for each ν ∈ N ;

(iii) there exists a neighbourhood N of μ in Δp,K(IR
S) such that for all ν ∈ N the

set ψ(ν) is non-empty.

The assumption that μ ∈ Δp,K(IR
S) for some p > 1, K > 0 and the fact that ϕ and

ψ have the above properties as mappings acting on the subset Δp,K(IR
S) (instead of

the whole space P(IRS)) express some uniform integrability which is indispensable

according to an example in [88]. In [48], [88] this uniform integrability is formulated

in a different way: the authors call a family F of measurable, real-valued functions

on IRS uniformly integrable with respect to a subset P0 of P(IRS) if for any ε > 0

there exists a compact set Cε ⊂ IRS such that∫
IRS\Cε

|f(ξ)|ν(dξ) < ε for all f ∈ F and all ν ∈ P0 .

For the stability results it is claimed that, for some bounded open set V ⊃ ψ(μ),

the family

F = {Φ(z − Ax) : x ∈ clV }
is uniformly integrable with respect to a neighbourhood N of μ in P(IRS). It can

be shown that the latter is implied by the assumptions in Proposition 1.3.1.

Approaches to quantitative stability of P(μ) rely on estimating differences of function

values and/or gradients of Q by distances of probability measures. Beside finding

a probability distance that allows an estimate at all one also wishes to ”optimize”

the selection, i.e. one is aimimg at weakest possible assumptions and best possible

convergence rates.

The first quantitative results are due to Römisch/Wakolbinger [98], who proved a

Hölder continuity result for optimal values which is based on the bounded Lipschitz

metric β ([22], [81]). This result was re-established in [92] under slightly weaker mo-

ment conditions on the underlying probability measures. Moreover, a first (Hölder)

estimate (in terms of β) for the Hausdorff distance of solution sets was derived in

[92].

In [93] these estimates were improved by using Lp-Wasserstein distances ([81]). Mo-

ment conditions were further relaxed and Lipschitz instead of Hölder estimates were
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obtained.

Given μ, ν ∈ P(IRS), their Lp-Wasserstein distance Wp is defined as

Wp(μ, ν) =
[
inf

{ ∫
IRS×IRS

‖ξ − ξ̃‖pη(dξ, dξ̃) : η ∈ D(μ, ν)
}]1/p

for all

μ, ν ∈ Mp(IR
S) = {μ′ ∈ P(IRS) :

∫
IRS

‖ξ‖pμ′(dξ) < +∞}

where

D(μ, ν) = {η ∈ P(IRS × IRS) : η ◦ π−1
1 = μ, η ◦ π−1

2 = ν}
and π1, π2 are the first and second projections, respectively.

In [80] it is shown that (Mp(IR
S),Wp) is a metric space and the following equivalence

is established: A sequence {μn} of probability measures in P(IRS) converges in Wp

to μ ∈ Mp(IR
S) if and only if {μn} converges weakly to μ and

lim
n→∞

∫
IRS

‖ξ‖pμn(dξ) =
∫
IRS

‖ξ‖pμ(dξ).

Using Wp it is possible to obtain the following Lipschitz estimate for expectation

functions whose integrands are Lipschitzian on bounded sets. Since Φ is even globally

Lipschitzian (but, with random second-stage costs, in general only Lipschitzian on

bounded sets) the estimate fits to what we encounter in stochastic programs with

linear recourse.

Consider a real-valued function h on IRS which is Lipschitzian on bounded sets, i.e.

Lh(r) := sup
{ |h(ξ)− h(ξ̃)|

‖ξ − ξ̃‖ : ‖ξ‖, ‖ξ̃‖ ≤ r; ξ �= ξ̃
}

< +∞

for each r > 0.

Then it holds

Proposition 1.3.2 ([93])

Let h : IRS → IR be Lipschitzian on bounded sets. Then for all μ, ν ∈ Mp(IR
S)

|
∫
IRS

h(ξ)μ(dξ) −
∫
IRS

h(ξ)ν(dξ)| ≤ (Mq(μ) +Mq(ν)) ·Wp(μ, ν)
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where

p > 1, 1/p + 1/q = 1 and Mq(μ) :=
( ∫
IRS

Lh(‖ξ‖)qμ(dξ)
)1/q

.

Moreover, for globally Lipschitzian h, i.e. if Lh(r) ≤ Lh = const. for all r > 0, it

holds for all μ, ν ∈ M1(IR
S)

|
∫
IRS

h(ξ)μ(dξ) −
∫
IRS

h(ξ)ν(dξ)| ≤ Lh ·W1(μ, ν).

Using well-known facts from parametric optimization the above proposition leads to

a Lipschitz estimate for optimal values.

Proposition 1.3.3 ([93])

Assume (A1) - (A3) and let ψ(μ) be non-empty and bounded. Then there exist

constants L > 0, δ > 0 such that

|ϕ(μ)− ϕ(ν)| ≤ L ·W1(μ, ν)

whenever ν ∈ M1(IR
S),W1(μ, ν) < δ.

Note that, compared to Proposition 1.3.1, the uniform integrability has only vir-

tually vanished in the above statement. Recall that convergence in W1 implies weak

convergence and convergence of the first moments. Due to Theorem 5.4 in [9] this

implies uniform integrability of the family {‖z‖+ ‖A‖‖x‖ : x ∈ clV } with respect

to the members of any weakly convergent sequence μn
w−→ μ. From this the uniform

integrability of the family {Φ(z − Ax) : x ∈ clV } with respect to the same set of

measures follows (cf. [48], [88]).

Proposition 1.3.3 essentially settles the quantitative continuity for optimal values

of P(μ). Using the first part of Proposition 1.3.2 in [93] a similar result was deri-

ved for linear recourse models where, moreover, the second-stage costs q are random.

More complex assumptions are needed for the quantitive stability of optimal solu-

tions. In [93] the following is shown for the Hausdorff distance of solution sets in

models with non-random A.

Proposition 1.3.4 Let in P(μ) the matrix A be non-random, g be a convex quadra-

tic function and C be a polyhedron. Assume (A1) -(A3) and let ψ(μ) be non-empty

and bounded. Suppose further that the function

Q̃(χ, μ) :=
∫
IRs

Φ(z − χ)μ(dz) (cf. (2.7))



Introduction 25

is strongly convex on a convex open set V ⊂ IRs containing A(ψ(μ)).

Then there exist constants L > 0, δ > 0 such that

dH(ψ(μ), ψ(ν)) ≤ L ·W1(μ, ν)
1/2

whenever ν ∈ M1(IR
S),W1(μ, ν) < δ.

Examples in [93] show that the above rate 1/2 is best possible and that the result

is lost for a general convex function g or a general closed convex set C .

Note that the strong convexity discussed in the previous section now enters as a cru-

cial assumption. This is not surprising, since in parametric optimization it is well

known that the quantitative continuity of optimal solutions is governed by a proper

conditioning of the unperturbed objective near the (unperturbed) set of optimal

solutions ([2], [3], [58]). Strong convexity inherits a quadratic conditioning. Indeed,

while the epigraph of a general convex function is supported by hyperplanes, the

epigraph of a strongly convex function is even supported by level sets of quadratic

functions with positive-definite quadratic form. When basing the stability analysis

on estimates of objective function differences (cf. Proposition 1.3.2), the stability

rate is gained as the inverse of the conditioning, hence quadratic conditioning yields

the stability rate 1/2 ([3], [58]).

In Section 1.2 we already pointed out that the strong convexity of Q is a much

too strong assumption for models with non-random A. Note that in the above

proposition it is merely the strong convexity of Q̃ that is needed. Proposition 1.2.4

(Theorem 2.2.2 in Chapter 2) is a handy tool for its verification.

For models P(μ), however, where both z and A are random the strong convexity of

Q itself can be ensured (Proposition 1.2.5 above or Theorem 2.3.1 in Chapter 2). In

Chapter 2, we then obtain the following stability result.

Proposition 1.3.5 (Theorem 2.4.3 in Chapter 2, z and A random)

Consider (3.1) - (3.3). Assume (A1) - (A3) and let ψ(μ) be non-empty, bounded.

Let V ⊂ IRm be some bounded, open, convex set containing ψ(μ) and suppose that

Q is strongly convex on V .

Then there exist constants L > 0, δ > 0 such that

dH(ψ(μ), ψ(ν)) ≤ L ·W1(μ, ν)
1/2

whenever ν ∈ M1(IR
S), W1(μ, ν) < δ.
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Although it is shown by an example that the Hölder rates in the above propositions

are best possible there remains the question whether improved rates can be esta-

blished for subclasses of perturbations. In Chapter 3 we pick up this question for

models with non-random matrix A.

The stability results displayed up to now all rely on estimating differences of func-

tion values in the original and the perturbed models. In Chapter 3 we estimate

differences of (sub-)gradients instead. In [114], [116] Shapiro has established a varia-

tional principle for optimal solutions to abstract parametric programs that is based

on estimating differences of difference quotients. This led us to setting up a pro-

bability (pseudo-)distance incorporating subgradients of the function Q̃. Namely,

given μ, ν ∈ M1(IR
s) and a fixed non-empty closed convex set U ∈ IRm we define

d(μ, ν;U) = sup{‖z∗‖ : z∗ ∈ ∂(Q̃ν − Q̃μ)(Ax), x ∈ U}.
(For notational convenience, here and in Chapter 3, the dependence of Q̃ on the

integrating measure is indicated by a subscript, thus Q̃ν(.) = Q̃(., ν).)

The symbol ”∂” denotes Clarke’s subdifferential ([15]) which is well defined since

Q̃ν − Q̃μ is locally Lipschitzian. Moreover, d(·, ·;U) is only a pseudo-metric on

M1(IR
s) since d(μ, ν;U) = 0 is possible for μ �= ν.

In Chapter 3 we first prove persistence and upper semicontinuity of optimal solutions

to P(μ) when the convergence of the underlying measures is put in terms of d(·, ·;U)
(Proposition 3.2.3 in Chapter 3). Then we address the key issue - a Lipschitz estimate

for the Hausdorff distance of solution sets that is based on d(·, ·;U):
Proposition 1.3.6 (Theorem 3.2.4 in Chapter 3)

Let in P(μ) the matrix A be non-random, g be a convex quadratic function and

C be a polyhedron. Assume (A1) -(A3) and let ψ(μ) be non-empty and bounded.

Suppose further that the function Q̃μ is strongly convex on a convex open set V ⊂ IRs

containing A(ψ(μ)). Let U = clU0, where U0 is an open, convex, bounded set such

that ψ(μ) ⊂ U0 and A(U) ⊂ V . Then there exist constants L > 0, δ > 0 such that

dH(ψ(μ), ψ(ν)) ≤ L · d(μ, ν;U)
whenever ν ∈ M1(IR

s), d(μ, ν;U) < δ.

When wishing to apply this result one faces the problem that, not surprisingly, in

the literature there are no estimates in terms of d(·, ·;U) for specific instances of

weakly converging probability measures. Therefore, we derive an upper estimate of

d(·, ·;U) by the uniform (or Kolmogorov-Smirnov) distance of distribution functions

which leads to the following.
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Proposition 1.3.7 (Corollary 2.5 in Chapter 3)

Adopt the setting of Proposition 1.3.6.

Then there exist non-singular matrices Bi(i = 1, . . . , �) and a constant L > 0 such

that

dH(ψ(μ), ψ(ν)) ≤ L
�∑
i=1

sup
t∈A(U )

|Fμ◦(−Bi)(−B−1
i t)− Fν◦(−Bi)(−B−1

i t)|

whenever ν ∈ M1(IR
s) is chosen such that the right-hand side is sufficiently small.

The above matricesBi(i = 1, . . . , �) form a (minimal) collection of basis submatrices

of W such that each normal cone to a vertex of MD is the union of suitable cones

Bi(IR
s
+) (cf. Section 1.2 and Proposition 2.2.1 in Chapter 2). Fμ◦(−Bi) then denotes

the distribution function of the (image) measure μ ◦ (−Bi).

Propositions 1.3.4, 1.3.6, 1.3.7 work under mild smoothness assumptions and do not

require the uniqueness of optimal solutions. Note that convergence of subgradients

does not imply convergence of function values. Therefore it is not surprising that

our assumptions do not guarantee convergence of optimal values (cf. Example 2.12

in Chapter 3).

In a very similar setting, Shapiro ([116]) has an upper Lipschitz continuity result

for optimal solutions.

For the example showing sharpness of the rate in Proposition 1.3.4 both Propositi-

ons 1.3.4 and 1.3.6 finally lead to identical rates. Hence there is no general superiority

of Proposition 1.3.6 over 1.3.4. However, for important specific modes of perturba-

tion Proposition 1.3.6 yields better rates than Proposition 1.3.4. In Chapter 3 we

will work out contaminated distributions and estimation via empirical measures. To

give an idea, we close this subsection with a conclusion for empirical measures.

Let ξ1., ξ2, . . . , ξn, . . . be independent IRs-valued random variables on a probability

space (Ω,A,P) having joint distribution μ. We consider the empirical measures

μn(ω) :=
1

n

n∑
i=1

δξi(ω) (ω ∈ Ω; n ∈ IN)

and we are interested in the asymptotic behaviour of the solution set ψ(μn(·)) of

P (μn(·)) as n tends to infinity.

There is a rich literature on asymptotic properties of empirical measures (consult
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[39], [117]). In particular, the following law of iterated logarithm for the Kolmogorov-

Smirnov distance of distribution functions is known ([82])

lim sup
n→∞

( n

2 log logn

)1
2 sup
t∈IRs

|Fμ(t)− Fμn(ω)(t)| ≤
1

2
P-almost surely.(3.4)

Together with Proposition 1.3.7 this leads to the following speed-of-convergence

result for optimal solutions.

Proposition 1.3.8 (Proposition 3.3.1 in Chapter 3)

Under the assumptions of Proposition 1.3.6 it holds

lim sup
n→∞

( 2n

log logn

)1
2 · dH(ψ(μ), ψ(μn(ω))) ≤ L� P − almost surely,

where L and � denote the Lipschitz modulus and the number of basis matrices, re-

spectively, arising in Proposition 1.3.7.

This statement supplements the consistency results in [29], [54] by the rates of con-

vergence for solution sets (without requiring unique solvability of P(μ)). Compared

to considerations in [116] we do not need a linear-independence assumption imposed

there.

Further results in Chapter 3 concern a large deviation estimate and an estimate for

the asymptotic distribution of optimal solutions.

1.3.2 Mixed-Integer Recourse

In this subsection we review stability results for stochastic programs with mixed-

integer linear recourse. The model, which will be denoted by P(μ)int, is given as

in (3.1) - (3.3) with the exception that the second stage is a mixed-integer linear

program as in (2.16).

The expected recourse function Q is now typically non-convex (cf. Section 1.2) and

it is appropriate to study the stability of local optima. This, however, causes an

extra problem that has to be settled first.

Consider, for example, a real-valued function on IRm that is constant on some ball

BR with radius R. Of course, the ball BR/2 (around the same point but with radius

R/2) then is a bounded set of local minimizers. If we perturb the function by adding

a non-constant linear function (with arbitrarily small norm) then none of the points
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”in and near” BR/2 remains locally optimal.

In [57], [86] a local stability analysis was proposed that excludes ”pathological” sets

of local minimizers such as the one above. The basic observation is that, when

analyzing the stability of local solutions, one has to include all local minimizers that

are , in some sense, nearby the minimizers one is interested in. In [57], [86], this

leads to the concept of a complete local minimizing set (CLM set):

With some subset V ⊂ IRm we consider localized versions of the optimal-value

function and the solution set mapping

ϕV (μ) := inf{g(x) +Q(x, μ) : x ∈ C ∩ cl V }
ψV (μ) := {x ∈ C ∩ cl V : g(x) +Q(x, μ) = ϕV (μ)}.

Given μ ∈ P(IRS), a non-empty set M ⊂ IRm is then called a CLM set for P(μ)int
with respect to an open set V ⊂ IRm if M ⊂ V and M = ψV (μ).

Note that the set of global minimizers is always a CLM set. The subsequent local

analysis, hence, readily extends to the global situation. Further examples for CLM

sets are strict local minimizers. For more details we refer to [57], [86].

Recall that the convergence of expectations with weakly converging integrating pro-

bability measures was essential to obtain the continuity properties of Q needed for

the analysis in the previous subsection. For linear recourse models the integrands in

the mentioned expectations are globally Lipschitz continuous. Together with uni-

form integrability, this led to qualitative and, together with Lp-Wasserstein metrics,

to quantitative stability statements.

As shown in Section 1.2, the relevant integrands for mixed-integer recourse are dis-

continuous. Therefore, none of the approaches to linear recourse models can be

followed here. For qualitative statements a convergence theorem attributed to Ru-

bin in the literature ([9], Theorem 5.5) will now be a proper tool. The theorem

states that weak convergence of probability measures is preserved when passing to

image measures, provided that the discontinuities of the involved transformations

fall into a set with limit measure zero. Concerning quantitative statements we will

show that a certain discrepancy (or variational distance of probability measures)

allows Hölder estimates for Q. Here, a refined analysis of the value function of a

mixed-integer linear program is necessary.

In the literature, qualitative continuity results for expectations with discontinuous

integrands can be traced back to Langen [64]. We also mention a recent paper by
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Artstein/Wets [1] tackling this problem in the context of stochastic programming.

Without explicitly using Rubin’s theorem the authors obtain results that are similar

to ours. The quantitative statements below seem to belong to the first such state-

ments in the literature.

To formulate our continuity results for Q we again employ the notation

Δp,K(IR
S) = {ν ∈ P(IRS) :

∫
IRS

‖ξ‖pν(dξ) ≤ K} (p > 1, K > 0).

Proposition 1.3.9 (Proposition 4.3.11 in Chapter 4)

Assume (A1)int, (A2)int and let μ ∈ Δp,K(IR
S) for some p > 1, K > 0. If the

conditional distribution μ2
1(A, .) of z given A is absolutely continuous with respect to

the Lebesgue measure on IRs for μ2-almost all A ∈ IRms, then Q, as a function from

IRm ×Δp,K(IR
S) to IR, is continuous on IRm × {μ}.

Employing the concept of a CLM set and basic techniques from Berge’s classical

stability theory ([7], cf. also [4]) then yields the following qualitative stability result.

Proposition 1.3.10 (Proposition 4.4.1 in Chapter 4)

Assume (A1)int, (A2)int, let μ ∈ Δp,K(IR
S) for some p > 1, K > 0 and let the

conditional distribution μ2
1(A, .) of z given A be absolutely continuous with respect

to the Lebesgue measure on IRs for μ2-almost all A ∈ IRms. Suppose further that

there exists a subset M ⊂ IRm which is a CLM set for P(μ)int with respect to some

bounded open set V ⊂ IRm.

Then

(i) the function ϕV (from Δp,K(IR
S) to IR) is continuous at μ;

(ii) the multifunction ψV (from Δp,K(IR
S) to IRm) is Berge upper semicontinuous

at μ,

(iii) there exists a neighbourhood N of μ in Δp,K(IR
S) such that for all ν ∈ N we

have that ψV (ν) is a CLM set for P(ν)int with respect to V .

By Example 3.13 in Chapter 4 no Hölder continuity (at any rate) for Q can be

expected when equipping P(IRS) with the L1-Wasserstein metric. In Chapter 5 we

show that, for non-stochastic A, such a result can be established with respect to a

suitable discrepancy (variational distance of probability measures).
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Given a subclass Bo of Borel sets in IRs, the discrepancy αBo of μ, ν ∈ P(IRs) is

defined by

αBo(μ, ν) := sup{|μ(B)− ν(B)| : B ∈ Bo}.

(Note that the Kolmogorov-Smirnov distance is a discrepancy with Bo taken as the

family of all lower left orthants in IRs.)

In the present situation we take Bo as the class BK of all closed bounded polyhedra

in IRs whose facets (i.e. (s− 1)-dimensional faces) parallel a facet of K = W ′(IRm′
+ )

or a facet of
s

��
i=1

[0, 1].

This selection is motivated by properties of the second-stage value function Φ (cf.

Section 5.2 in Chapter 5). In Chapter 5 we will also show that αBK is a metric and

relate convergence in αBK to weak convergence of probability measures.

We will end up with the following Hölder estimate for the optimal-value function

ϕV .

Proposition 1.3.11 (Theorem 5.4.1 in Chapter 5) Assume (A1)int, (A2)int, let

μ ∈ P(IRs) be absolutely continuous with respect to the Lebesgue measure on IRs and

let there exist constants p > 1 and K > 0 such that μ ∈ Δp,K(IR
s). Suppose further

that there exists a subset M ⊂ IRm which is a CLM set for P(μ)int with respect to

some bounded open set V ⊂ IRm.

Then there exist constants L > 0 and δ > 0 such that

|ϕV (μ)− ϕV (ν)| ≤ L · αBK(μ, ν)
p−1

p(s+1)

whenever ν ∈ Δp,K(IR
s), αBK(μ, ν) < δ.

The convergence rate in the above statement improves if the second stage in P(μ)int
is a pure integer linear program.

Since, up to location in parallel hyperplanes, there are only finitely many facets

occuring in the elements of BK, the family BK forms a Vapnik-Červonenkis class

(VČ class) of Borel sets in IRs ([122], [76], [117]). The law of iterated logarithm

in (3.4) extends to discrepancies αBo where Bo is a VČ class ([62]). Therefore,

Proposition 1.3.11 leads to the following speed-of-asymptotic-convergence result for

optimal values when estimating μ in P(μ)int by empirical measures.

Proposition 1.3.12 (Proposition 5.5.5 in Chapter 5)

Assume (A1)int, (A2)int, let μ ∈ Δp,K(IR
s) for some p > 1, K > 0 and suppose that
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there exists a subset M ⊂ IRm which is a CLM set for P(μ)int with respect to some

bounded open set V ∈ IRm.

Then there exists a constant c > 0 such that for P -almost all ω ∈ Ω

lim sup
n→∞

( n

2 log logn

) 1
2
· p−1
p(s+1) |ϕV (μn(ω))− ϕV (μ)| ≤ c.

Further asymptotic-convergence results in Chapter 5 concern the continuity of op-

timal values and the upper semicontinuity of optimal solutions.



Chapter 2

Strong Convexity in Stochastic

Programs with Complete Recourse

Abstract

For stochastic programs with complete (linear) recourse we present easily verifia-

ble sufficient conditions for the strong convexity of the expected-recourse function.

Both, programs with random right-hand side and with random technology matrix

are considered. Among the implications of strong convexity those with respect to

the stability of stochastic programs are worked out in detail. In this way, former

results on the quantitative stability of optimal solutions are extended.

2.1 Introduction

We are interested in deriving strengthened versions of convexity (mainly strong

convexity) for the objective function in a stochastic program with complete (linear)

recourse. The latter is given by

min{g(x) +Q(x) : x ∈ C},(1.1)

where

Q(x) =
∫
Ω

Φ(z(ω)− A(ω)x)P (dω)(1.2)

and

Φ(t) = min{qTy : Wy = t, y ≥ 0}.(1.3)

33
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Here, g : IRm → IR is a convex function and C ⊂ IRm is a non-empty closed

convex set. Furthermore, we have some probability space (Ω,A, P ) and measurable

mappings z : Ω → IRs, A : Ω → IRms. The images of A are understood as s ×m

matrices. Often it will be convenient to consider the probability measure μ :=

P ◦ (z, A)−1, which is induced on IR(m+1)s by the mapping (z, A) : Ω → IRs × Rms.

Finally, q ∈ IRm̄ and W ∈ L(IRm̄, IRs) are a fixed vector and matrix, respectively.

The following hypotheses ensure that the function Q in (1.2) is well defined (for

details see [46], [131]):

(A1) (complete recourse) for each t ∈ IRs there exists some y ∈ IRm̄
+ such that

Wy = t,

(A2) (dual feasibility) there exists some u ∈ IRs such that W Tu ≤ q,

(A3) (finite first moment)
∫

IR(m+1)s

(‖z‖+ ‖A‖)μ(d(z, A)) < +∞.

In connection with a vector, ‖.‖ denotes the Euclidean norm. In connection with a

matrix, it denotes the induced matrix norm.

Stochastic programs with (complete) recourse arise in the modelling of two-stage

optimization processes, where infeasibilities caused by the uncertainty of data in the

first stage can be compensated in a second stage after realizing the random data.

In the present chapter we place the main accent on studying analytical properties of

the expected-recourse function Q in (1.2). From the literature ([46], [131]) it is well-

known that Q is a convex function on IRm, provided (A1) - (A3) hold. Furthermore,

Q is continuously differentiable if μ has some continuity properties. Higher-order

differentiability of Q has been investigated, too ([68], [129]).

Our aim is to develop sufficient conditions for the strong convexity of Q, i.e. given

some convex subset V ⊂ IRm there exists some κ > 0 such that for all x1, x2 ∈ V

and all λ ∈ [0, 1]

Q(λx1 + (1 − λ)x2) ≤ λQ(x1) + (1 − λ)Q(x2)− κλ(1 − λ)‖x1 − x2‖2.(1.4)

This notion plays an important role for quantitative investigations in convex analy-

sis. Provided that Q is sufficiently smooth, strong convexity is equivalent to strong

monotonicity of the gradient and positive definiteness of the Hessian, respectively

([74], [75], [123]). In our analysis the former equivalence will be used to verify strong

convexity. The following motivates our interest in strong convexity:

(i) Strongly convex functions obey nice properties when being minimized with

standard methods of non-linear programming (e.g. if Q has a Lipschitzian
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gradient, then the steepest-descent method is linearly convergent). Of course,

difficulties in computing the integral in (1.2) prevent an application of such

standard methods for the stochastic program (1.1). However, there exist nu-

merical approaches to stochastic programming which ”imitate” descent tech-

niques by using estimated (sub)gradients instead of the true ones [43]. In

this context, it is reasonable to presume a more rapid convergence when the

original function Q is strongly convex.

(ii) If Q is strongly convex near the solution set of (1.1), then there is a unique

minimizerx∗ and for any feasible x ∈ IRm that is sufficiently close to x∗ we have
Q(x) ≥ Q(x∗)+ 1

2
κ‖x−x∗‖2. The latter can be considered as a specific form of

a well-conditioned (local) minimizer as studied for instance in [3]. Implications

of such a conditioning for asymptotic properties of estimations in stochastic

programming have recently been studied in [50]. For the uniqueness of the

minimizer, of course, already strict convexity is sufficient. As a by-product of

our analysis we will also obtain a sufficient condition for strict convexity.

(iii) The stability analysis of stochastic programs is another field where the strong

convexity of Q (or suitable relaxations) turn out beneficial ([27], [93], [116]).

A number of quantitative stability results for optimal solutions are based on

the strong convexity of the objective function in the unperturbed problem.

The present chapter contributes to the above lines of research by establishing easily

verifiable sufficient conditions for strong convexity in terms of the data in (1.1) -

(1.3) (Sections 2.2 and 2.3). Hence, it is possible to check right from the model (1.1)

- (1.3) whether it has favourable numerical properties, is well-conditioned in some

sense or behaves stable under perturbations. In Section 2.4 we present implications

of the structural results on Q for the stability of the model (1.1) - (1.3) when

subjecting the underlying probability measure μ to perturbations. The latter is

motivated both by numerical reasons and by often having only partial information

on the ”true” measure μ (cf. [27], [48], [88], [116], [124]).

2.2 Strong Convexity - Non-Stochastic Techno-

logy Matrix

Quite often, the model (1.1) - (1.3) is studied in the specific situation where the

matrix A is non-random, or formally, where A : Ω → IRms is constant P -almost

surely. Then, of course, the function Q from (1.2) is constant on translates of the
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null space of A. If the latter is non-trivial, one easily confirms that Q cannot be

strongly convex. This leads to analyzing the function

Q̃(χ) :=
∫
IRs

Φ(z − χ)μ(dz),(2.1)

where χ ∈ IRs and μ denotes the probability measure on IRs induced by z : Ω → IRs.

Strong convexity of Q̃ arises as an essential assumption in the stability analysis for

stochastic programs ([93], [95] and Chapter 3) and, as it will turn out in Section 2.3,

it is crucial for the strong convexity of Q if A is random.

We impose the basic hypotheses (A1) - (A3) and note that, here, (A3) reads

(A3)
∫
IRs

‖z‖μ(dz) < +∞.

Furthermore, we assume

(A4) the probability measure μ is absolutely continuous with respect to the

Lebesgue measure on IRs.

It is well-known ([46], [131]) that, given (A1) - (A4), the function Q̃ is continuously

differentiable on IRs. Then, Q̃ is strongly convex (with constant κ > 0) on some

convex subset V ⊂ IRs if and only if

(Q̃′(χ1)− Q̃′(χ2))
T (χ1 − χ2) ≥ 2κ‖χ1 − χ2‖2

for all χ1, χ2 ∈ V ([74], [123]).

Before presenting the main result of this section we collect a few prerequisites from

linear parametric programming about the value function

Φ(t) = min{qTy : Wy = t, y ≥ 0}.

The following pair of dual linear programs is associated to Φ:

min{qTy : Wy = t, y ≥ 0},(2.2)

max{tTu : W Tu ≤ q} .(2.3)

By (A1) and (A2), both programs are solvable for any t ∈ IRs. Furthermore, the

feasible region MD of (2.3) is compact and, therefore, it coincides with the convex

hull of its vertices d̃1, . . . , d̃�̃ ∈ IRs. According to Satz 6.7 in ([72], p. 156) and the

Basis Decomposition Theorem in [126] the following holds
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Proposition 2.2.1 Assume (A1), (A2), then

(i) Φ(t) = max
i=1,...,�̃

d̃Ti t for all t ∈ IRs;

(ii) Φ(t) = d̃Ti t for all t ∈ Ki, where Ki denotes the normal cone to MD at d̃i, i.e.

Ki = {v ∈ IRs : vT (u− d̃i) ≤ 0 for all u ∈MD} (i = 1, . . . , �̃);

(iii) it holds that
�̃⋃
i=1

Ki = IRs, and for i1 �= i2 the intersection Ki1 ∩ Ki2 coincides

with a common closed face of dimension less than s;

(iv) Ki1 ∩Ki2 has dimension s−1 if and only if the vertices d̃i1 and d̃i2are adjacent;

(v) each of the cones Ki is a finite union of simplicial cones which can be re-

presented as B(IRs
+), i.e. as the image of IRs

+ under a linear transformation

B ∈ L(IRs, IRs) induced by a basis submatrix B of W .

In our notation we now have the following representation for the gradient of Q̃ (cf.

[46], [131]):

Q̃′(χ) =
�̃∑
i=1

(−d̃i)μ(χ +Ki),

where χ +Ki stands for the Minkowski sum {χ}+Ki. Introducing the notations

di := −d̃i, fi(χ) := μ(χ +Ki) and I := {1, . . . , �̃}
we obtain

Q̃′(χ) =
∑
i∈I

difi(χ).(2.4)

Furthermore, supp μ denotes the smallest closed set C ⊂ IRs with μ(C) = 1.

The following theorem is the main result of the present section.

Theorem 2.2.2

(i) Assume (A1), (A3), (A4) and

(A2)* there exists a vector ū ∈ IRs such that W T ū < q componentwise.

Then Q̃ is strictly convex on any open convex subset V ⊂ IRs of supp μ.

(ii) Assume (A1), (A2)*, (A3) and
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(A4)* there exist a convex open set V ⊂ IRs, constants r > 0, � > 0 and a

density Θμ of μ such that

Θμ(t
′) ≥ r for all t′ ∈ Rs with dist(t′, V ) ≤ �.

Then Q̃ is strongly convex on V .

Proof: The proofs for the parts (i) and (ii) differ only in their final steps. The

subsequent joint considerations are based on (A1), (A2)*, (A3) and (A4).

Let V ⊂ IRs be some convex open subset of supp μ, let χ ∈ V and v ∈ IRs such

that χ + v ∈ V . The proof will finally be given by monotonicity arguments, i.e. by

(uniform) lower estimates for

(Q̃′(χ+ v)− Q̃′(χ))Tv.

In view of (2.4) it holds

(Q̃′(χ+ v)− Q̃′(χ))Tv =
∑
i∈I

fi(χ + v)dTi v −
∑
i∈I

fi(χ)d
T
i v.(2.5)

By (A4) and Proposition 2.2.1 (iii),

∑
i∈I

fi(χ+ v) =
∑
i∈I

fi(χ) = 1

and, of course,

fi(χ + v) ≥ 0, fi(χ) ≥ 0 for all i ∈ I.

Therefore we have two well-defined probability distributions on IR with mass points

dTi v (i ∈ I) and masses fi(χ + v) (i ∈ I) and fi(χ) (i ∈ I), respectively. Denoting

the corresponding distribution functions by Fv and Fo,v, respectively, the identity

(2.5) is continued using Riemann-Stieltjes integrals and integration by parts:

(Q̃′(χ+ v)− Q̃′(χ))Tv =
∫
IR

τdFv(τ )−
∫
IR

τdFo,v(τ )(2.6)

=
∫
IR

(Fo,v(τ )− Fv(τ ))dτ.

Now let us confirm that

Fo,v(τ )− Fv(τ ) ≥ 0 for all τ ∈ IR.(2.7)
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Denote Iv(τ ) = {i ∈ I : dTi v ≤ τ}. By (A4) it holds

Fo,v(τ ) = μ
( ⋃
i∈Iv(τ )

{χ+Ki}
)

and

Fv(τ ) = μ
( ⋃
i∈Iv(τ )

{χ+ v +Ki})

We establish (2.7) by showing that for arbitrary τ ∈ IR⋃
i∈Iv(τ )

{χ + v +Ki} ⊂ ⋃
i∈Iv(τ )

{χ+Ki}.(2.8)

Let Iv(τ ) �= ∅ and Iv(τ ) �= I , otherwise (2.8) is trivial. Assume there were io ∈ Iv(τ )

and

wio ∈ {χ+ v +Kio} ∩ {IRs \ ⋃
i∈Iv(τ )

{χ +Ki}}.

Then there would exist i1 ∈ I \ Iv(τ ) such that

wio ∈ χ+Ki1

(recall that
⋃
i∈I

Ki = IRs).

Since i1 /∈ Iv(τ ) and io ∈ Iv(τ ), we have

dTiov ≤ τ < dTi1v.(2.9)

Denote D := conv{di : i ∈ I} and recall that di = −d̃i (i ∈ I). The definition of Ki

(cf. Proposition 2.2.1 (ii)) yields

di ∈ argmin{tTd : d ∈ D} for all t ∈ Ki and all i ∈ I.(2.10)

In view of wio − χ− v ∈ Kio we have by (2.10)

dio ∈ arg min{(wio − χ− v)Td : d ∈ D}.(2.11)

Furthermore, wio − χ ∈ Ki1 and (2.10) yield

di1 ∈ arg min{(wio − χ)Td : d ∈ D}.(2.12)

In particular, (2.11) implies

(wio − χ− v)Tdio ≤ (wio − χ− v)Tdi1

and therefore

(wio − χ)Tdio ≤ (wio − χ)Tdi1 − vTdi1 + vTdio <

(2.9)

(wio − χ)Tdi1,
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which contradicts (2.12), and (2.7) is shown.

In the next step we show that

α∗ := min
j∈I

inf
ṽ∈Kj
‖ṽ‖=1

max
i∈I

di,dj adjacent

(di − dj)
T ṽ > 0.(2.13)

It is easy to see that (2.10) implies α∗ ≥ 0. So let us assume that α∗ = 0. Then, for

some j ∈ I ,

inf
ṽ∈Kj
‖ṽ‖=1

max
i∈I

di,dj adjacent

(di − dj)
T ṽ = 0.

Hence, for any n ∈ IN \ {0} there exists a vn ∈ Kj, ‖vn‖ = 1 such that

(di − dj)
T vn ≤ 1

n

for all i ∈ I such that di and dj are adjacent.

By compactness, the sequence {vn} has an accumulation point v̄ ∈ Kj, ‖v̄‖ = 1.

Passing to the limit in the above inequality yields

(di − dj)
T v̄ = 0

for all i ∈ I such that di and dj are adjacent. Since v̄ �= 0, the latter implies

int D = ∅, which is impossible due to (A2)*. (Recall that −di (i ∈ I) are the

vertices of the feasible set in (2.3).)

For the remainder let us fix some constant α > 0 such that α < α∗. For v ∈ IRs

introduced at the beginning of the proof there exists some j = j(v) ∈ I such that

v ∈ Kj. By (2.10) we obtain dTj v ≤ dTi v for all i ∈ I . Using (2.7) we may estimate

below the final expression in (2.6) and obtain

(Q̃′(χ+ v)− Q̃′(χ))Tv ≥
dTj v+α‖v‖∫
dTj v

(Fo,v(τ )− Fv(τ ))dτ.(2.14)

By (2.13), there exists an i∗ = i∗(v) ∈ I such that di∗ and dj are adjacent and

dTj v + α‖v‖ < dTi∗v.

Consider Fi∗j := Ki∗∩Kj . Since di∗ and dj are adjacent, Proposition 2.1 (iv) implies

that Fi∗j is a joint facet (closed (s− 1)-dimensional face) of Ki∗ and Kj.

Then, for all τ ∈ IR with dTj v ≤ τ ≤ dTj v + α‖v‖ the following inclusion is valid⋃
0≤λ<1

{χ + λv + Fi∗j} ⊂ {χ +
⋃

i∈Iv(τ )
Ki} \ {χ + v +

⋃
i∈Iv(τ )

Ki}.(2.15)
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Let us first verify

⋃
0≤λ<1

{χ + λv + Fi∗j} ⊂ {χ +
⋃

i∈Iv(τ )
Ki}.(2.16)

Of course, j ∈ Iv(τ ) for each of the above τ ∈ IR. Consider arbitrary λ ∈ [0, 1) and

vi∗j ∈ Fi∗j ⊂ Kj. Since Kj is a convex cone and v ∈ Kj, this implies λv + vi∗j ∈ Kj ,

verifying (2.16).

Now we show that

⋃
0≤λ<1

{χ + λv + Fi∗j} ∩ {χ+ v +
⋃

i∈Iv(τ )
Ki} = ∅ for all τ in question.

Assume on the contrary that for some τ in question there were λ ∈ [0, 1), vi∗j ∈ Fi∗j ,

ui ∈ Ki (i ∈ Iv(τ )) such that

χ + λv + vi∗j = χ + v + ui.

This would yield

ui = −(1− λ)v + vi∗j ∈ Ki

and, by (2.10),

(vi∗j − (1 − λ)v)Tdi ≤ (vi∗j − (1 − λ)v)Td for all d ∈ D.

In particular

(vi∗j − (1 − λ)v)Tdi ≤ (vi∗j − (1 − λ)v)Tdi∗,

implying

vTi∗jdi − vTi∗jdi∗ ≤ (1 − λ)vT (di − di∗).

By the selection of i∗ and by i ∈ Iv(τ ) we have

vTdi∗ > vTdj + α‖v‖ ≥ τ ≥ vTdi.

Hence

vTi∗jdi − vTi∗jdi∗ < 0
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in contradiction to vi∗j ∈ Fi∗j ⊂ Ki∗ and (2.10). This verifies (2.15).

Let τ ∈ IR such that dTj v ≤ τ ≤ dTj v+α‖v‖. Then, the following holds due to (A4),

(2.8) and (2.15):

Fo,v(τ )− Fv(τ ) = μ
( ⋃
i∈Iv(τ )

{χ +Ki}
)
− μ

( ⋃
i∈Iv(τ )

{χ+ v +Ki}
)

= μ
({
χ +

⋃
i∈Iv(τ )

Ki

}
\
{
χ+ v +

⋃
i∈Iv(τ )

Ki

})

≥ μ
( ⋃

0≤λ≤1

{χ + λv + Fi∗j}
)
.

The last expression does not depend on τ . Hence, (2.14) implies

(Q̃′(χ+ v)− Q̃′(χ))Tv ≥ α · ‖v‖ · μ
( ⋃
0≤λ≤1

{χ + λv + Fi∗j}
)
.(2.17)

The set
⋃

0≤λ≤1
{χ+λv+Fi∗j} is cylindric and located between the two parallel affine

hyperplanes

χ + span Fi∗j and χ+ v + span Fi∗j .

We start the (lower) estimation of μ(
⋃

0≤λ≤1
{χ+λv+Fi∗j}) by deriving a lower bound

for the Hausdorff distance of the above hyperplanes.

Recall that Fi∗j = Ki∗ ∩ Kj and therefore ((2.10))

vTi∗jdi∗ = vTi∗jdj = min{vTi∗jd : d ∈ D} for all vi∗j ∈ Fi∗j.

Since Fi∗j is (s − 1)-dimensional, the orthogonal complement (span Fi∗j)
⊥ is thus

spanned by the vector di∗ − dj.

Hence, the Hausdorff distance of χ+ span Fi∗j and χ+ v + span Fi∗j equals

(di∗ − dj)
T v

‖di∗ − dj‖ .(2.18)

Introducing the positive constant

δ := max{‖di1 − di2‖ : i1, i2 ∈ I, di1, di2 adjacent}

we obtain

(di∗ − dj)
T v

‖di∗ − dj‖ ≥ α

δ
‖v‖.(2.19)
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Let us now verify the assertions (i) and (ii) of our theorem. Since V is an open

subset of supp μ and χ ∈ V , it holds

μ
( ⋃

0≤λ≤1

{χ+ λv + Fi∗(v)j(v)}
)
> 0 for all v ∈ IRs \ {0}.

Together with (2.17) this yields

(Q̃′(χ+ v)− Q̃′(χ))Tv > 0

for all χ ∈ V and all v ∈ IRs \ {0} such that χ+ v ∈ V .

Hence, the gradient of Q̃ is strictly monotone and, therefore, Q̃ is strictly convex on

V .

Now impose (A4)* and denote F 

i∗j := {ṽ ∈ Fi∗j : ‖ṽ‖ ≤ �}. Then it holds

μ
( ⋃

0≤λ≤1

{χ+ λv + Fi∗j}
)

≥ μ
( ⋃
0≤λ≤1

{χ+ λv + F

i∗j}

)
(2.20)

≥ r · �s
( ⋃
0≤λ≤1

{λv + F

i∗j}

)

where �s denotes the s-dimensional Lebesgue measure.

By (2.18) amd (2.19) one obtains

�s
( ⋃
0≤λ≤1

{λv + F

i∗j}

)
≥ α

δ
‖v‖ · �s−1(F


i∗j

)
.(2.21)

We introduce the constant

�min = min{�s−1(F

i1i2

) : i1, i2 ∈ I, Fi1,i2 = Ki1 ∩ Ki2 is a facet}
Altogether, only finitely many facets Fi1i2 may occur. Therefore, �min > 0. Using

(2.17), (2.20) and (2.21) we finally obtain

(Q̃′(χ+ v)− Q̃′(χ))Tv ≥ α · ‖v‖ · r · α
δ
‖v‖ · �min = α2�minδ

−1r‖v‖2.

By construction, the (positive) constants α, δ and �min do neither depend on χ nor

on v. Hence Q̃ is strongly convex on V with the constant κ̃ = 1
2
α2�minδ

−1r.

In what follows, we discuss the assumptions of the above theorem, present special

cases and comment on relations to elder results.

Proposition 2.2.3 Assume (A1), (A2), (A3), (A4). Then (A2)* is necessary for

the strict convexity of Q̃.
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Proof: Assume that Q̃ is strictly convex and that (A2)* does not hold. Then there

exist v̄o ∈ IRs, vo ∈ IRs \ {0} such that

conv{di : i ∈ I} ⊂ v̄o + (span{vo})⊥.

With arbitrary χ ∈ IRs we have

(Q̃′(χ+ vo)− Q̃′(χ))Tvo =
(∑
i∈I

fi(χ+ vo)di −
∑
i∈I

fi(χ)di
)T
vo = 0

in contradiction to the strict monotonicity of Q̃′.

Remark 2.2.4 If μ can be represented as a convex combination μ = λμ1+(1−λ)μ2

(with 0 < λ < 1), then Theorem 2.2.2 already works if (A4) (or (A4)*) holds for

one of the measures μ1, μ2, only. Indeed, Q̃ is then strictly (strongly) convex as the

sum of a convex and a strictly (strongly) convex function.

Remark 2.2.5 If (A4)* fails, i.e. if there does not exist a positive uniform lower

bound for the density Θμ, then the estimate (2.17) in the proof of Theorem 2.2.2 can

be used to check whether some modified lower bound

(Q̃′(χ+ v)− Q̃′(χ))Tv ≥ κ‖v‖ · φ(‖v‖)

is available, where φ : IR+ → IR+ is some strictly increasing function with φ(0) = 0.

In this way one obtains another type of monotonicity of Q̃′ resulting in another type

of uniform convexity for Q̃. More specifically, the convexity module ‖χ1 − χ2‖2 in

the definition of strong convexity is replaced by φ̃(‖χ1 − χ2‖), where φ̃ : IR+ → IR+

is a strictly increasing function with φ̃(0) = 0. For a detailed discussion of this type

of uniform convexity see [123].

Remark 2.2.6 The proof of Theorem 2.2.2 also gives some indication how to pro-

ceed when wishing to estimate the strong-convexity constant κ̃. Then, of course,

much depends on how explicit the polyhedron MD (cf. (2.3)), its vertices and nor-

mal cones are available. In Section 2.3 it will be important that (for fixed � > 0) the

constant κ̃ is of the form κ̃ = κ̃o(q,W ) · κ̃1(μ) where κ̃o = 1
2
α2δ−1�min depends only

on q, W and κ̃1 = r depends only on μ.

Remark 2.2.7 If (A2) is fulfilled but not (A2)*, the latter may be guaranteed by a

proper increase of the second stage costs qk (k = 1, . . . , m̄).
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To illustrate the impact of assumption (A2)* we consider the function Q̃ for

W =

(
1 0 −1 0

1 1 1 −1

)

and different instances of the cost vector q ∈ IR4. It is easy to see that W fulfils

(A1), and we will always assume that μ ∈ P(IR2) is selected in such a way that (A3)

and (A4) are met.

Let q = (−1,−1,−1, 1)T . Then the feasible region MD in (2.3) degenerates to

a singleton. Of course, (A2)* is violated and, moreover, there is only one vertex

of MD. Hence, the gradient of Q̃ is constant, and Q̃ is linear. If we increase

the costs to q = (1,−1, 1, 1)T , then MD turns into the convex hull of the points

(−2,−1)T and (2,−1)T . Therefore, the second component of Q̃′ is always equal

to 1, implying that Q̃′ cannot be strictly monotone. For q = (1, 0, 1, 1)T we have

MD = conv{(−1, 0)T , (1, 0)T , (2,−1)T , (−2,−1)T} which has a non-empty interior,

and Theorem 2.2(i) works.

In the following proposition we present necessary and sufficient conditions for (A2)*

for two specific classes of second-stage problems.

Proposition 2.2.8

(i) (Extended simple recourse) Suppose that W ∈ L(IR2s, IRs), W = (H,−H)

with some non-singular matrix H = L(IRs, IRs). Split q into q+, q− such that

qT = (q+T , q−T ), q+, q− ∈ IRs. Then (A1) is always fulfilled and (A2)* holds

if and only if q+ + q− > 0 componentwise.

(ii) Suppose that W ∈ L(IRs+1, IRs) fulfils (A1) and that (A2) holds. Then (A2)*

is fulfilled if and only if q /∈ imW T .

Proof:

(i) It is well-known that our assumptions imply (A1). Furthermore, it holds

W Tu < q for some u ∈ IRs

iff HTu < q+ and −HTu < q− for some u ∈ IRs

iff −q− < HTu < q+ for some u ∈ IRs

iff 0 < q+ + q− (since H is non-singular).

(ii) only if: Suppose there were ũ, ū ∈ IRs such that W T ũ = q and W T ū < q.

Consider u(τ ) = ũ+ τ (ū− ũ) for arbitrary τ > 0. It holds

W Tu(τ ) = W T ũ+ τW T (ū− ũ) < q for all τ > 0.
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Hence, the set {u ∈ IRs : W Tu ≤ q} is unbounded in contradiction to (A1),

(A2) and the duality theorem of linear programming.

if: (A1) and W ∈ L(IRs+1, IRs) imply that each collection of s different co-

lumns of W forms a nonsingular matrix (see e.g. [46]). Furthermore, the

matrices B1, . . . , Bs+1 formed in this way are just the basis matrices mentio-

ned in Proposition 2.2.1 (v). Moreover, each of the cones Ki here coincides

with Bi(IR
s
+) for some i ∈ {1, . . . , s+ 1}.

For any basis matrix Bi (i ∈ {1, . . . , s + 1}) we denote by Ni the non-basic

part of W (here, of course, Ni always consists of one column) and we denote

by qBi, qNi the sub-vectors of q formed by the components corresponding to

the columns in Bi and Ni, respectively.

Then (cf. e.g. [46]) d̃i = (B−1
i )TqBi and qNi − NT

i (B
−1
i )T qBi ≥ 0 for all

i ∈ {1, . . . , s+ 1}.
Consider W T d̃i. The components of W T d̃i belonging to columns in Bi ob-

viously coincide with the corresponding components in qBi. For the non-basic

component we must have

NT
i d̃i = NT

i (B
−1
i )TqBi < qNi

since otherwise W T d̃i = q in contradiction to q /∈ imW T .

Now it is easy to see that ū := 1
s+1

s+1∑
i=1

d̃i fulfils W
T ū < q componentwise.

Remark 2.2.9 Using completely different techniques, another sufficient condition

for the strong convexity of Q̃ was derived in Theorem 3.1 in [95]. Compared to

Theorem 2.2.2 the analysis in [95] needs the additional assumption that Q̃ has a

locally Lipschitzian gradient. Moreover, the verification of the sufficient condition in

Theorem 3.1 in [95] is more technical since the kernel of the matrix whose columns

are di (i ∈ I) and certain generalized directional derivatives of the functions fi
(i ∈ I) have to be studied.

Altogether, Theorem 2.2.2 provides quite handy tools to verify strict and strong

convexity of Q̃, respectively. Furthermore, it yields information about the structure

of the modulus of strong convexity, and it shows how to perturb recourse models

without additional convexity properties to arrive at strictly or strongly convex func-

tions Q̃.
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2.3 Strong Convexity - Stochastic TechnologyMa-

trix

Let us first recall some concepts from probability theory and introduce a few nota-

tions.

Let πIRs and πIRms denote the projections from IRs × IRms to IRs and IRms, re-

spectively. The induced measures μ1 := μ ◦ π−1
IRs, μ2 := μ ◦ π−1

IRms are then called

the marginal distributions of μ with respect to z and A, respectively. By μ2
1(A, .)

we denote the regular conditional distribution of z given A. It has the following

properties

μ2
1(A, .) is a probability measure on IRs for any A ∈ IRms;(3.1)

the function μ2
1(., B1) : IR

ms → [0, 1] is measurable for any Borel set B1

in IRs;

(3.2)

for any Borel set B in IR(m+1)s it holds

μ(B) =
∫

IRms

∫
IRs

1IB(z, A)μ
2
1(A, dz)μ2(dA),

where 1IB denotes the indicator function of B.

(3.3)

Since μ acts on a complete, separable metric space, the regular conditional distri-

bution μ2
1(A, .) exists, indeed (cf. [24], [38]).

Let us now return to our model (1.1) - (1.3). We will write the images A(ω) of

A in the form A(ω) = (Ao, A1(ω)) where Ao ∈ L(IRk, IRs), A1(ω) ∈ L(IRm−k, IRs),

0 ≤ k ≤ m, and Ao is formed by those column vectors of A(ω) whose entries are

all constant P -almost surely, i.e. in A(ω) we separate the random from the non-

random part. Of course, μ2 is then concentrated on the range space of A(.), i.e. on

a subspace of dimension (at most) (m− k)s.

To sketch the central idea for the subsequent approach we remark that (3.3) implies

for all x ∈ IRm

Q(x) =
∫

IRms

∫
IRs

Φ(z − Ax)μ2
1(A, dz)μ2(dA).

Now assume that the inner integral obeys (with a certain uniformity in A) a strong

convexity as in Section 2.2 and then study the impact of the outer integral. To

simplify the notation we will use the symbol E for integration with respect to μ2.



48 Strong Convexity in Stochastic Programs with Complete Recourse

Theorem 2.3.1 Assume (A1) - (A3), let V ⊂ IRm be non-empty, convex and sup-

pose

for μ2-almost all A ∈ IRms the function

Q̃A(χ) :=
∫
IRs

Φ(z − χ)μ2
1(A, dz)

is strongly convex on Ṽ := A(V ) with some modulus κ(A), and there

exists some κ > 0 such that κ(A) ≥ κ for μ2-almost all A;

(3.4)

E(‖A‖2) < +∞;(3.5)

k ≤ s, i.e. in A1(ω) there are at least m− s columns;(3.6)

Ao has full rank;(3.7)

the matrix E(AT
1A1)−E(A1)

TE(A1) is positive-definite.(3.8)

Then Q is strongly convex on V .

Proof: Let x1, x2 ∈ V and λ ∈ [0, 1]. We have

Q(λx1 + (1 − λ)x2)(3.9)

=
∫

IR(m+1)s

Φ(z −A(λx1 + (1− λ)x2))μ(d(z, A))

=

(3.3)

∫
IRms

∫
IRs

Φ(z − λAx1 − (1− λ)Ax2)μ
2
1(A, dz)μ2(dA)

=
∫

IRms

Q̃A(λAx1 + (1− λ)Ax2)μ2(dA)

≤
(3.4)

∫
IRms

(λQ̃A(Ax1) + (1 − λ)Q̃A(Ax2)− κ(A)λ(1− λ)‖Ax1 − Ax2‖2)μ2(dA)

=

(3.3)

λQ(x1) + (1 − λ)Q(x2)− λ(1 − λ)
∫

IRms

κ(A)‖Ax1 − Ax2‖2μ2(dA)

≤
(3.4)

λQ(x1) + (1 − λ)Q(x2)− κλ(1 − λ)
∫

IRms

‖Ax1 − Ax2‖2μ2(dA)

= λQ(x1) + (1 − λ)Q(x2)− κλ(1 − λ)(x1 − x2)
TE(ATA)(x1 − x2).

It remains to show that the positive-semidefinite matrix E(ATA) is even positive-

definite. Recalling that A = (Ao, A1), where we have omitted the ω in A1 for

convenience, we obtain

E(ATA) = E

(
AT
oAo AT

oA1

AT
1Ao AT

1A1

)
=

(
AT
oAo AT

oE(A1)

E(A1)
TAo E(AT

1A1)

)
.(3.10)
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Due to the assumptions (3.6) and (3.7), the matrix AT
oAo is invertible and we can

multiply (3.10) from the left by(
Ik 0

−E(A1)
TAo(A

T
oAo)

−1 Im−k

)

where Ik, Im−k denote the identities of dimensions k and m− k, respectively. The

multiplication does not change the determinant of (3.10), and yields(
AT
oAo AT

oE(A1)

0 E(AT
1A1)− E(A1)

TAo(A
T
oAo)

−1AT
oE(A1)

)
.

Of course, the above matrix is non-singular if and only if the matrix

E(AT
1A1)− E(A1)

TAo(A
T
oAo)

−1AT
oE(A1),(3.11)

usually called the Schur complement in the literature, is non-singular. Obviously,

(3.11) coincides with

E(AT
1A1)− E(A1)

TE(A1) + E(A1)
T (Is − Ao(A

T
oAo)

−1AT
o )E(A1).

By assumption (3.8) we are done when having verified that

E(A1)
T (Is − Ao(A

T
oAo)

−1AT
o )E(A1)(3.12)

is positive-semidefinite.

To this end, observe that

Is − Ao(A
T
oAo)

−1AT
o

is the matrix of the orthogonal projection from IRs onto the linear subspace

{u ∈ IRs : AT
o u = 0}

and, hence, is positive-semidefinite. Therefore, also (3.12) is positive-semidefinite.

At the beginning of Section 2.2 we have mentioned the missing strong convexity of

Q for a non-stochastic matrix A. The above theorem shows how randomness in A

improves the convexity properties of Q.

Corollary 2.3.2 Assume (A1) - (A3), let V ⊂ IRm be non-empty, convex and

suppose that (3.4), (3.5) hold. Then, for all x1, x2 ∈ V and all λ ∈ [0, 1], we have

Q(λx1 + (1− λ)x2) ≤ λQ(x1) + (1− λ)Q(x2)− κλ(1 − λ)‖E(A)x1 − E(A)x2‖2.
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Proof: The proof immediately follows from (3.9) and Jensen’s inequality.

Corollary 2.3.2 says that, given (3.4) and the mild integrability assumption (3.5),

one arrives at a strong convexity property which is quite comparable to that for

non-stochastic A with E(A) playing the role of A. ”Investing a bit more”, namely

(3.6) - (3.8), we obtain the ”real” strong convexity for Q (Theorem 2.3.1). Together

with Theorem 2.2.2, Theorem 2.3.1 provides the essential tools for verifying the

strong convexity of Q in (1.2) right from the model (1.1) - (1.3). Of course, the

assumptions in Theorem 2.3.1 need some discussion, which is carried out below. In

particular, assumption (3.4) seems hard to be verified. However, there exist specific

situations where one is able to say a bit more about μ2
1(A, .) and in such cases also

(3.4) can be checked quite easily.

Remark 2.3.3 If the random vectors z and A are stochastically independent, then

μ2
1(A, .) = μ1 holds for μ2-almost all A ∈ IRms. Hence, (3.4) is satisfied if the

function Q̃(χ) :=
∫
IRs

Φ(z − χ)μ1(dz) is strongly convex on
⋃
ω∈Ω

A(ω)(V ).

Remark 2.3.4 Assume (A1), (A2)*, (A3) and suppose that there exist a convex

set V ∈ IRm, constants r > 0, � > 0 and density functions Θ2
1,A of μ2

1(A, .) such

that Θ2
1,A(t

′) ≥ r for all t′ ∈ IRs with dist(t′,
⋃
ω∈Ω

A(ω)(V )) ≤ � and μ2-almost all

A ∈ IRms. Then Theorem 2.2.2 (ii) and Remark 2.6 imply the validity of assumption

(3.4). Of course, the above implies necessarily that
⋃
ω∈Ω

A(ω)(V ) is bounded. Hence,

it is reasonable to assume that V is bounded and that μ2 has bounded support.

Remark 2.3.5 The regular conditional distribution μ2
1(A; .) has a density for μ2-

almost all A ∈ IRms if either z and A are independent and μ1 has a density or if

there exists a joint density of z and the random components in A, or if z and A are

dependent, μ2 is discrete (with countably many mass points) and μ1 has a density.

In the second case, the density for μ2
1(A, .) computes as the quotient of the joint

density and the marginal density for z.

Remark 2.3.6 Assumption (3.8) is fulfilled if in any row of A1(ω) the random

entries are pairwise uncorrelated (i.e. their covariance is zero). Indeed, one then

easily computes that the matrix E(AT
1A1) − E(A1)

TE(A1) is diagonal with positive

entries along the main diagonal.
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2.4 Applications to Stability

Let us now present a few consequences of the preceding results for the stability of

stochastic programs. We will see how the Theorems 2.2.2 and 2.3.1 provide sufficient

stability conditions.

Consider

P (μ) min{g(x) +Q(x, μ) : x ∈ C}

in the same way as in (1.1) - (1.3), but understanding the underlying probability

measure μ as varying in a suitable space of parameters. Stability of P (μ) is now

studied in terms of the (extend real-valued) function ϕ assigning to μ the optimal

value of P (μ) and, in terms of the set-function ψ, assigning to μ the set of optimal

solutions to P (μ). Due to convexity, the optimality is always a global one.

The stability analysis of stochastic programs with respect to perturbations of the

underlying probability measure allows a unified approach to questions arising from

approximating complicated measures by simpler ones or to problems in connection

with incomplete information about the measure. For details see e.g. [27], [48], [88]

- [116], [124].

We specify the parameter space for P (μ) as

M1(IR
S) = {μ′ ∈ P(IRS) :

∫
IRS

‖ξ‖μ′(dξ) < +∞}

where P(IRS) denotes the set of all Borel probability measures on IRS

(S := (m+ 1)s). For μ, ν ∈ M1(IR
S) then the L1-Wasserstein distance is defined as

follows

W1(μ, ν) = inf
{ ∫
IRS×IRS

‖ξ − ξ̃‖η(dξ, dξ̃) : η ∈ D(μ, ν)
}

where

D(μ, ν) = {η ∈ P(IRS × IRS) : η ◦ π−1
1 = μ, η ◦ π−1

2 = ν}.

Now (M1(IR
S),W1) is a metric space, and in [80] it is shown that a sequence {μn}

of probability measures μn ∈ P(IRS) converges in W1 to μ ∈ M1(IR
S) if and only if

{μn} converges weakly to μ and lim
n→∞

∫
IRS

‖ξ‖μn(dξ) = ∫
IRS

‖ξ‖μ(dξ).
The sequence {μn} is said to converge weakly to μ if

∫
h(ξ)μn(dξ) → ∫

h(ξ)μ(dξ)

for any bounded continuous function h : IRS → IR ([9]).
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In [93], [95] analytical properties of the mappings ϕ and ψ were derived when equip-

pingM1(IR
S) with weak convergence and the Wasserstein metric, respectively. Theo-

rem 2.4 in [93] and Proposition 2.1 in [95] represent quite comprehensive results on

the (Lipschitz) continuity of ϕ. Much less is known about (mainly quantitative)

continuity properties of ψ. It has already been observed in [93], [95] that, for non-

stochastic A, the strong convexity of the function Q̃ (cf. (2.1)) is crucial in this

respect. In what follows, we extend the quantitative analysis of solution stability

to the case of a non-stochastic technology matrix A. Simultaneously, our sufficient

conditions for strong convexity provide tools for checking assumptions which are

much easier to handle than those in [93], [95].

Theorem 2.4.1 Consider (1.1) - (1.3), assume (A1) - (A3) and suppose that ψ(μ)

is non-empty and bounded. Let V ⊂ IRm be some open, bounded, convex set contai-

ning ψ(μ) and suppose that (3.4), (3.5) hold.

Then there exist constants L > 0, δ > 0 such that ψ(ν) �= ∅ and

dH(E(A)(ψ(ν)), E(A)(ψ(μ))) ≤ L ·W1(μ, ν)
1/2

whenever ν ∈ M1(IR
S), W1(μ, ν) < δ.

Here, E(A) has the same meaning as in Section 2.3 and dH denotes the usual Haus-

dorff distance of sets.

Proof: By Theorem 2.4 and Remark 2.5 in [93] there exist constants Lo > 0, δo > 0

such that ∅ �= ψ(ν) ⊂ V and

|ϕ(μ) − ϕ(ν)| ≤ LoW1(μ, ν) for all ν ∈ M1(IR
S),W1(μ, ν) < δo.

Denote G(x, ν) := g(x) +Q(x, ν) for all x ∈ IRm, ν ∈ M1(IR
S).

Let x̄ ∈ ψ(μ). The optimality of x̄ and Corollary 2.3.2 imply for all x ∈ C ∩ V :

G(x̄, μ) ≤ G(
1

2
(x+ x̄), μ)

≤ 1

2
G(x, μ) +

1

2
G(x̄, μ)− κ

4
‖E(A)x− E(A)x̄‖2.

This yields

G(x, μ) ≥ G(x̄, μ) +
κ

2
‖E(A)x− E(A)x̄‖2.(4.1)
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By (4.1), the set E(A)(ψ(μ)) is a singleton.

Put δ := δo, consider some ν ∈ M1(IR
S) with W1(μ, ν) < δ and some x ∈ ψ(ν). It

holds

‖E(A)x− E(A)x̄‖2 ≤ 2

κ
(G(x, μ) −G(x̄, μ))

≤ 2

κ
(|ϕ(μ)− ϕ(ν)|+ |G(x, μ)−G(x, ν)|)

≤ 2

κ
(LoW1(μ, ν) + |Q(x, μ)−Q(x, ν)|).

Recall that x ∈ ψ(ν) ⊂ V and that V is bounded. In view of the discussion in [93]

(page 247 and Remarks 2.2, 2.5) there exists some constant L1 > 0 such that

|Q(x, μ)−Q(x, ν)| ≤ L1W1(μ, ν) for all x ∈ V.

Thus

‖E(A)x− E(A)x̄‖2 ≤ 2

κ
(Lo + L1)W1(μ, ν) for all x ∈ ψ(ν).

Theorem 2.4.1 contains Theorem 2.2 in [95] (where A(ω) ≡ A) as a special case.

Therefore, Example 2.3 in [95] can again be used to show that the rate 1/2 on

the right-hand side of the above estimate is best possible. Further, the examples

in Remark 2.9 in [93] show that, for general convex g and C , the above estimate

does not extend to the Hausdorff distance of the solution sets. For a non-stochastic

technology matrix A, the following proposition gives sufficient conditions on g and

C such that the estimate extends.

Proposition 2.4.2 ([93], Theorem 2.7)

Consider (1.1) - (1.3) with non-stochastic A. Assume (A1) - (A3), let ψ(μ) be

non-empty, bounded, g be convex quadratic and C ⊂ IRm be a polyhedron. Suppose

further that the function Q̃ (cf. (2.1)) is strongly convex on a convex open set V

containing A(ψ(μ)).

Then there exist constants L > 0, δ > 0 such that ψ(ν) �= ∅ and

dH(ψ(μ), ψ(ν)) ≤ L ·W1(μ, ν)
1/2

whenever ν ∈ M1(IR
s), W1(μ, ν) < δ.

For recourse models with random technology matrix there is another possibility to

obtain a Hölder estimate for the Hausdorff distance of solution sets. One simply has

to combine Theorem 2.3.1 with the essential ideas from Theorem 2.4.1.
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Theorem 2.4.3 Consider (1.1) - (1.3). Assume (A1) - (A3) and let ψ(μ) be non-

empty, bounded. Let V ⊂ IRm be some bounded, open, convex set containing ψ(μ)

and suppose that (3.4) - (3.8) hold.

Then there exist constants L > 0, δ > 0 such that ψ(ν) �= ∅ and

dH(ψ(μ), ψ(ν)) ≤ L ·W1(μ, ν)
1/2

whenever ν ∈ M1(IR
S), W1(μ, ν) < δ.

Proof: Use the strong convexity of Q instead of the inequality from Corollary 2.3.2

and repeat the proof of Theorem 2.4.1.

Also in the above theorem the exponent 1/2 on the right-hand side of the estimate

is best possible (cf. Example 2.3 in [95], which fits the above setting, too). If the

functions Q̃ and Q are not strongly convex but fulfil some uniform convexity as sket-

ched for Q̃ in Remark 2.2.5, then the technique used in the proof of Theorem 2.4.1

leads to a quantification of solution convergence with the inverse of the convexity

module on the right-hand side of the estimate. This fits into the general framework

for quantitative stability presented in [3].

The strong-convexity issue is also relevant in connection with stability results ob-

tained by other authors: Variants of the second-order sufficient condition (SOSC)

have a central place in Dupačová’s investigations on the stability of recourse pro-

blems (cf. [25], [27]). Obviously, strong convexity is closely related to the SOSC (cf.

also [87]). Replacing the SOSC by the strong convexity of Q on suitable subspaces

enables us to perform a stability analysis in the sense of [25], [27] under less restric-

tive differentiability assumptions on Q. Shapiro [116] (cf. Chapter 3) developed

a quantitative version of the upper semicontinuity of the mapping ψ for recourse

models. His analysis is based on an at least quadratic growth of the objective in

the unperturbed problem along feasible directions near the (possibly multivalued)

solution set. The connection to (4.1) is evident and so strong convexity of Q (or Q̃)

contributes to verifying Shapiro’s growth condition.

The Theorems 2.2.2 and 2.3.1 also provide some guidelines to build the model (1.1)

- (1.3) such that Q becomes strongly convex. For instance, if the second-stage costs

q fulfil (A2) but not (A2)*, then a slight raise of q as mentioned in Remark 2.2.7

can be a remedy. The material in [88] gives the necessary argument that a pertur-

bation of q is possible from the viewpoint of stability. Another possiblity to achieve

a better conditioned model via the strong convexity of the objective is to implant

random elements into A such that the assumptions (3.4) - (3.8) in Theorem 2.3.1

are satisfied. If, for instance, A is originally non-random and the distribution μ1 of
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z fulfils (A4)*, then one could try to randomize suitable components of A (e.g. by

discrete random variables) such that z and A are independent and (3.5) - (3.8) hold.

By Theorem 2.3.1 the resulting Q is strongly convex. The corresponding recourse

model now differs from the original one in its underlying probability distribution.

However, the randomization can be organized in connection with the weak conver-

gence of probability measures, and, again, it is possible to benefit from stability

results when justifying the model change.

Acknowledgement

This chapter has benefitted from discussions with Werner Römisch, Matthias Gel-

brich and Matthias Nowak (all Humboldt-Universität Berlin).



56 Strong Convexity in Stochastic Programs with Complete Recourse



Chapter 3

Lipschitz Stability for Stochastic

Programs with Complete Recourse

Abstract

This chapter investigates the stability of optimal-solution sets to stochastic programs

with complete recourse, where the underlying probability measure is understood as

a parameter varying in some space of probability measures. In [116] Shapiro has

proved Lipschitz upper semicontinuity of the solution set mapping. Inspired by

this result we introduce a subgradient distance for probability distributions and

establish the persistence of optimal solutions. For a subclass of recourse models

we show that the solution set mapping is (Hausdorff) Lipschitz continuous with

respect to the subgradient distance. Moreover, the subgradient distance is estimated

above by the Kolmogorov-Smirnov distance of certain distribution functions related

to the recourse model. The Lipschitz continuity result is illustrated by verifiable

sufficient conditions for stochastic programs to belong to the mentioned subclass and

by examples showing its validity and limitations. Finally, the Lipschitz continuity

result is used to derive some new results on the asymptotic behaviour of optimal

solutions when the probability measure underlying the recourse model is estimated

via empirical measures (law of iterated logarithm, large deviation estimate, estimate

for asymptotic distribution).

This chapter is joint work with Werner Römisch (Humboldt University Berlin).
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3.1 Introduction

We study quantitative stability and asymptotic properties of optimal solutions to

stochastic programs with complete recourse. The latter are given by

P (μ) min{g(x) + Q̃μ(Ax) : x ∈ C},(1.1)

where

Q̃μ(χ) =
∫
IRs

Φ(z − χ)μ(dz)(1.2)

and

Φ(t) = min{qTy :Wy = t, y ≥ 0}.(1.3)

For the data we assume that g : IRm → IR is a convex function, C ⊂ IRm is a

non-empty closed convex set, q ∈ IRm̄ and A, W are matrices of proper dimensions.

As indicated in (1.1), the integrating probability measure μ is understood as a

parameter for which we assume to vary inM1(IR
s) - the space of all Borel probability

measures on IRs with finite first moment, i.e.
∫
IRs

‖z‖μ(dz) < +∞ for all μ ∈ M1(IR
s).

Further assumptions that ensure (1.1) – (1.3) to be well-defined will be given in

Section 3.2.

It is well-known that (1.1) – (1.3) models a two-stage decision process under un-

certainty with first-stage decision x, random entry z and second-stage (or recourse)

decision y. For a more detailed introduction into this class of models, including

a basic analysis of the function Q̃μ in (1.2), we refer to [46], [131]. Here we only

mention that Q̃μ is convex whenever it is well-defined.

In the present chapter, the accent is on studying the impact of changes in the

underlying probability measure μ on the problem (1.1). To this end, we assign

to μ ∈ M1(IR
s) the (global) optimal value ϕ(μ) and the set of (global) optimal

solutions ψ(μ). The mappings ϕ and ψ are common objects of study in the stability

analysis of optimization problems. In the context of stochastic programming the

above set up (i.e. understanding the underlying measure as the quantity subjected to

perturbations) has two principal origins: the numerical intractability of the integral

in (1.2) and the incomplete information on μ that one is faced with in general. In

the first case, approximations of a complicated measure μ by simpler ones give rise

to a perturbation analysis. In the second case, perturbations come in via attempts

to construct some ”reasonable” measure μ based on the (statistical) information

that is available on the random parameter z. For more details on the stability of
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stochastic programs we refer to [28], [29], [48], [54], [88], [93], [111], [112], [113],

[124], [133], [134].

The subsequent analysis is entirely concerned with quantitative continuity properties

of the optimal-set mapping ψ. As in [93], [95] we dispense with the assumption that

the solution set of the unperturbed problem is a singleton.

For the model (1.1) – (1.3), uniqueness of optimal solutions is rather exceptional as

is seen by the following example. Let us already mention that the example does fit

the setting of our central stability estimate, in particular, the function Q̃μ is here

strongly convex on a suitable subset (cf. Theorem 3.2.4 below).

Example 3.1.1 Let in (1.1) – (1.3) m = 2, s = 1, g(x) ≡ 0, A = (1, 0),

(0, 0)T ∈ C, m̄ = 2, q = (1, 1)T , W = (1,−1) and μ be the uniform distri-

bution on the closed interval [−1/2, 1/2]. Then it is straightforward to see that

ψ(μ) = kerA ∩ C = {(0, ξ)T ∈ C, ξ ∈ IR}.

One observes that Q̃μ in (1.2) is always constant on translates of the null space kerA

of A. Hence, uniqueness of optimal solutions is only guaranteed if the constraint set

C picks just one element out of the relevant level set of Q̃μ.

The present investigations have been stimulated by recent results of Shapiro. In

[116] the author proves an upper Lipschitz continuity estimate for ψ under the

assumption that, for the unperturbed problem P (μ), the objective function grows

at least quadratically for feasible points near the set of optimal solutions. The right-

hand side of the estimate essentially consists of the maximal norm of elements arising

in the Clarke subdifferential ([15]) of the function Q̃ν − Q̃μ (cf. (1.2)) at points

belonging to a suitable neighbourhood. Here, Q̃ν corresponds to the perturbed

problem P (ν), ν ∈ M1(IR
s).

In the present chapter we introduce a ”subgradient distance” for μ, ν ∈ M1(IR
s)

based on the above maximal norm (cf. (2.1) below). We focus on the stability of

models which fit into (1.1) – (1.3) and obey the additional properties that g is convex

quadratic, C is a non-empty polyhedron and Q̃μ is strongly convex on a suitable

neighbourhood of A(ψ(μ)). Then, the Lipschitz upper semicontinuity extends to

Lipschitz continuity of the Hausdorff distance of solution sets (Theorem 3.2.4). Since

the subgradient distance of μ, ν ∈ M1(IR
s) can always be estimated above by the

Kolmogorov-Smirnov distance of certain distribution functions related to μ, ν and

the algebra in (1.3) (Corollary 3.2.5, Remark 3.2.6), this leads to a powerful tool

for quantitative statements on the stability of optimal solutions. In Section 3.3,

one such application is worked out in detail – in the presence of empirical measures

we derive some new results on the asymptotic behaviour of solution sets (law of
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iterated logarithm, large deviation estimate, estimate for asymptotic distribution).

In particular, former results are extended to the case where solution sets are not

necessarily singletons. For the large deviation result no additional assumptions on

the underlying probability measure μ are required.

Some further propositions and examples serve to supplement and illustrate the main

issue of the chapter: In Proposition 3.2.3 the persistence of optimal solutions under

perturbations in the ”subgradient distance” is addressed. Corollary 3.2.13 displays

some handy conclusions for the special case of ”simple recourse”. Examples in

Section 3.2 show that Shapiro’s assumptions in [116] do not guarantee the lower

semicontinuity of ψ (Example 3.2.6), that Theorem 3.2.4 is lost for general convex

g and C (Example 3.2.7) and that the setting of Theorem 3.2.4 does not guarantee

stability of the optimal value (Example 3.2.9).

Compared to [93, 95], where the stability analysis is based on the L1-Wasserstein

distance and where Hölder continuity (with exponent 1/2) was obtained, the present

chapter leads to Lipschitz continuity. To outweigh improvements over former results

let us first mention that there exist sequences of measures where both the results

from [93, 95] and the present one lead to the same convergence rates (cf. the below

discussion after Proposition 3.2.13). On the other hand, there are important specific

modes of perturbation (contaminated distributions, empirical measures) where the

Hölder result in [93, 95] yields the rate 1/2, whereas the present approach leads to

the rate 1 (Proposition 3.2.14, Section 3.3).

3.2 Stability

The following basic assumptions are well-known to ensure that the function Q̃μ in

(1.2) is well-defined and convex on IRm (cf. [46], [131]):

(A1) {Wy : y ∈ IRm̄
+} = IRs (complete recourse),

(A2) {u ∈ IRs : W Tu ≤ q} �= ∅ (dual feasibility),

(A3) μ ∈ M1(IR
s).

For arbitrary μ, ν ∈ M1(IR
s) and some fixed non-empty, closed, convex set U ⊂ IRm

we define the following ”subgradient distance” d of μ and ν:

d(μ, ν;U) = sup{‖z∗‖ : z∗ ∈ ∂(Q̃ν − Q̃μ)(Ax), x ∈ U}.(2.1)

Here, ”∂” denotes Clarke’s subdifferential ([15]). Since both Q̃ν and Q̃μ are con-

vex, their difference is locally Lipschitzian and, hence, the Clarke subdifferential in
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(2.1) is well-defined. Provided that U is bounded one uses simple properties of the

Clarke subdifferential to show that d(·, ·;U) is a pseudo-metric onM1(IR
s); note that

d(μ, ν;U) = 0 is possible for μ �= ν. Subsequent considerations involving d will use

the fact that, in finite dimension, the Clarke subdifferential may be represented as

the convex hull of limits of sequences of gradients collected at differentiability points

and possibly avoiding arguments in a set of Lebesgue measure zero (Theorem 2.5.1

in [15]). The following lemma provides some more insight into d.

Lemma 3.2.1 Let h1, h2 : IRs → IR be locally Lipschitzian. Then it holds for

arbitrary χ ∈ IRs that dH(∂h1(χ), ∂h2(χ)) ≤ sup{‖z∗‖ : z∗ ∈ ∂(h1 − h2)(χ)}, where
dH denotes the Hausdorff distance of sets.

Proof: For ∂hi(χ), i = 1, 2, we have the following representation (Theorem 2.5.1 in

[15]):

∂hi(χ) = conv Lhi(χ)
where

Lhi(χ) = {z : there exist χn ∈ Diff(h1) ∩Diff(h2) such that

χn → χ and h′i(χn) → z as n→ ∞}.
Here Diff(hi) denotes the set of differentiability points of hi. Clearly,

Diff(h1) ∩ Diff(h2) ⊂ Diff(hi) and, by Rademacher’s Theorem IRs \ (Diff(h1) ∩
Diff(h2)) has Lebesgue measure zero.

Assume that

dH(∂h1(χ), ∂h2(χ)) > sup{‖z∗‖ : z∗ ∈ ∂(h1 − h2)(χ)}
for some χ ∈ IRs.

This implies

dH(Lh1(χ),Lh2(χ)) > sup{‖z∗‖ : z∗ ∈ ∂(h1 − h2)(χ)},
and, hence, by the definition of the Hausdorff distance, there exists a z∗1,0 ∈ Lh1(χ)
(without loss of generality) such that

‖z∗1,0 − z∗2‖ > sup{‖z∗‖ : z∗ ∈ ∂(h1 − h2)(χ)}(2.2)

for all z∗2 ∈ Lh2(χ).
Since z∗1,0 ∈ Lh1(χ), there exists a sequence of points χn ∈ Diff(h1) ∩ Diff(h2) such

that h′1(χn) → z∗1,0 as n→ ∞.
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Now consider the sequence {h′2(χn)}. By the local Lipschitz property of h2 it has

an accumulation point z∗2,0 that obviously belongs to Lh2(χ). In view of (2.2)

‖z∗1,0 − z∗2,0‖ > sup{‖z∗‖ : z∗ ∈ ∂(h1 − h2)(χ)},
but, on the other hand, z∗1,0− z∗2,0 ∈ Lh1−h2 (χ) ⊂ ∂(h1− h2)(χ), which is an obvious

contradiction.

In our quantitative stability analysis for optimal solutions of perturbed stochastic

programs d will be the distance to measure ”how far” a perturbation P (ν) is away

from the original program P (μ). In the context of stochastic programming also Sha-

piro [116] has used information contained in the definition of d to derive quantitative

stability properties. Kummer [63] has results on the quantitative stability of general

convex programs based on the Hausdorff distance of subgradients, which appears in

Lemma 3.2.1. Our considerations start with the following result by Shapiro [116]:

Theorem 3.2.2 Suppose (A1) - (A3), ψ(μ) �= ∅ and that

there exists a convex open set Uo containing ψ(μ) and a constant α > 0

such that

g(x) + Q̃μ(Ax) ≥ ϕ(μ) + α · dist(x, ψ(μ))2 for all x ∈ C ∩ Uo,
where dist denotes the usual point-to-set distance.

(2.3)

Then the following estimate is valid for all ν ∈ M1(IR
s)

sup
x∈ψ(ν)∩Uo

dist(x, ψ(μ)) ≤ α−1 · d(μ, ν; cl Uo),

where the left-hand side is defined to be zero if ψ(ν) ∩ Uo = ∅.

The above theorem asserts the upper Lipschitz continuity of the solution set mapping

ψ with respect to the pseudo-metric d. It does not contain the persistence of optimal

solutions, i.e. it is not clear whether the perturbed program P (ν) has a non-empty

set of optimal solutions if d(μ, ν; cl Uo) is sufficiently small. The next proposition

answers this question.

Proposition 3.2.3 Suppose (A1) - (A3) and that ψ(μ) is non-empty and bounded.

Let Uo ⊂ IRm be an open, convex, bounded set containing ψ(μ).

Then there exists a constant δ > 0 such that

∅ �= ψ(ν) ⊂ Uo

for all ν ∈ M1(IR
s) such that d(μ, ν; cl Uo) < δ.



Lipschitz Stability for Stochastic Programs with Complete Recourse 63

Proof: We introduce the following notations:

G(x, ν) := g(x) + Q̃ν(Ax), ν ∈ M1(IR
s),

ψd(μ) := argmin{G(x, μ) + dTx : x ∈ C}, d ∈ IRm, and

Nr(M) := {x ∈ IRm : dist(x,M) < r}, M ⊂ IRm, r > 0.

Select some r > 0 such that Nr(ψ(μ)) ⊂ Uo. Since ψ(μ) is bounded and G(·, μ) is
convex, well-known results on the stability of convex programs apply. In particular,

Theorem 4.3.3 and Corollary 4.3.3.2 from [4] imply that there exists a constant

δ′ > 0 such that

∅ �= ψd(μ) ⊂ Nr(ψ(μ)) for all d ∈ IRm with ‖d‖ < δ′.(2.4)

In order to apply results on the stability of certain generalized equations ([63])

we introduce the set-valued mappings Γν : cl Uo → IRm, ν ∈ M1(IR
s), given by

Γν(x) = ∂xG(x, ν) + NC(x). Here, ∂x denotes the subdifferential of G(·, ν) and

NC(x) the normal cone to C at x, both in the sense of convex analysis ([89]).

Of course, x ∈ ψd(μ) is equivalent to −d ∈ Γμ(x).

The compactness of cl Uo, elementary properties of the convex subdifferential and

the normal-cone operator Nc(·) together with relation (2.4) now imply that the

assumptions of Proposition 6 in [63] are fulfilled. Proposition 3 in [63] then says

that Γμ is a regular multifunction, i.e. there exists a constant δ̃ > 0 such that the

generalized equation

0 ∈ Γ̃(x), x ∈ cl Uo

is solvable for any admissible multifunction Γ̃ satisfying

Γμ(x) ⊂ Γ̃(x) + δ̃Bm for all x ∈ cl Uo,

where Bm ⊂ IRm denotes the closed unit ball.

For the definition of admissibility we refer to [63]. For our purposes it is sufficient

to know that upper semicontinuous multifunctions with nonempty, closed, convex

image sets (hence, all the mappings Γν) are admissible.

Let ν ∈ M1(IR
s) such that d(μ, ν; cl Uo) < δ̃. Lemma 3.2.1 now implies that

Γμ(x) ⊂ Γν(x) + δ̃Bm for all x ∈ cl Uo.

By the regularity of Γμ this yields that ψ(ν) is non-empty whenever d(μ, ν; clUo) <

δ̃. Now select δ > 0 such that δ < min{δ ′, δ̃}. Let ν ∈ M1(IR
s) such that
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d(μ, ν; cl Uo) < δ. Then it holds ψ(ν) ∩ cl Uo �= ∅. Let us assume that ψ(ν) �⊂ Uo.

By convexity, this yields ψ(ν) ∩ bd Uo �= ∅. Let x̃ ∈ ψ(ν) ∩ bd Uo. It holds

Γν(x̃) ⊂ Γμ(x̃) + δBm and 0 ∈ Γν(x̃).

Hence, there exists a d̃ ∈ IRm, ‖d̃‖ < δ′ such that d̃ ∈ Γμ(x̃).

By (2.4) this implies x̃ ∈ Nr(ψ(μ)), contradicting Nr(ψ(μ)) ∩ bd Uo = ∅, and the

proof is complete

Now we direct our attention to stochastic programs for which Theorem 3.2.2 extends

to the Lipschitz continuity of ψ with respect to the Hausdorff distance of sets and

the pseudo-metric d of probability measures.

Theorem 3.2.4 Suppose (A1) - (A3) and that ψ(μ) is non-empty and bounded. Let

g be a convex quadratic function and C be a polyhedron. Assume that there exists a

convex open subset V of IRs such that A(ψ(μ)) ⊂ V and the function Q̃μ is strongly

convex on V . Let U = cl Uo, where Uo is an open, convex, bounded set such that

ψ(μ) ⊂ Uo and A(U) ⊂ V .

Then there exist constants L > 0, δ > 0 such that

dH(ψ(μ), ψ(ν)) ≤ L · d(μ, ν;U)
whenever ν ∈ M1(IR

s), d(μ, ν;U) < δ.

Recall that Q̃μ is said to be strongly convex on V if there exists a constant κ > 0

such that for all χ, χ̃ ∈ V and λ ∈ [0, 1]

Q̃μ(λχ + (1− λ)χ̃) ≤ λQ̃μ(χ) + (1 − λ)Q̃μ(χ̃)− κλ(1 − λ)‖χ− χ̃‖2.

Proof: Given an open ball B∞ (with respect to the norm ‖ · ‖∞ and around zero)

such that ψ(μ) ⊂ B∞, we select a δ > 0 such that ∅ �= ψ(ν) ⊂ B∞ for all ν ∈
M1(IR

s), d(μ, ν;U) < δ (Proposition 3.2.3). We denote Co := C ∩ cl B∞. Note

that the compact set Co is again a polyhedron. Then it holds for all ν ∈ M1(IR
s),

d(μ, ν;U) < δ,

ψ(ν) = argmin{g(x) + Q̃ν(Ax) : x ∈ Co}.
Furthermore, the compactness of Co guarantees

min
x

{g(x) + Q̃ν(Ax) : x ∈ Co} = min
x,v

{g(x) + Q̃ν(v) : Ax = v, x ∈ Co}
= min

v
{Q̃ν(v) + min

x
{g(x) : Ax = v, x ∈ Co} : v ∈ A(Co)}.
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Introducing π(v) := min
x

{g(x) : Ax = v, x ∈ Co}, X̄(v) := argmin{g(x) : Ax =

v, x ∈ Co} and Ȳ (ν) := argmin{Q̃ν(v)+π(v) : v ∈ A(Co)}, we obtain by verification

of the respective inclusions

ψ(ν) = X̄(Ȳ (ν))

for all ν ∈ M1(IR
s), d(μ, ν;U) < δ.

The multifunction X̄(·) is Lipschitzian on its effective domain dom X̄ = {v ∈ IRs :

X̄(v) �= ∅}. (Remark at p. 220 in [59], Satz 4.3.3 in [55], cf. the Appendix for a

display of the proof.) Therefore, there exists a constant Lo > 0 such that

dH(ψ(μ), ψ(ν)) = dH(X̄(Ȳ (ν)), X̄(Ȳ (μ))) ≤ Lo · sup
v∈Ȳ (ν)

‖v − vμ‖(2.5)

whenever ν ∈ M1(IR
s), d(μ, ν;U) < δ.

Since π(·) is convex on A(Co) and Q̃μ is strongly convex on V ⊃ A(ψ(μ)), the set

Ȳ (μ) reduces to a singleton {vμ}. Moreover, the function G(v, μ) := Q̃μ(v) + π(v)

is strongly convex on V with modulus κ > 0.

Decrease, if necessary, δ > 0 such that ψ(ν) ⊂ Uo whenever ν ∈ M1(IR
s),

d(μ, ν;U) < δ (Proposition 3.2.3). Let v ∈ Ȳ (ν). Then X̄(v) ⊂ ψ(ν). Since

ψ(ν) ⊂ Uo and {v} = AX̄(v) it follows v ∈ A(Uo) ⊂ V . Consider the point 1
2
(v+vμ)

belonging to A(Co) ∩ V .
Then

G(vμ, μ) ≤ G(
1

2
(v + vμ), μ)

≤ 1

2
G(v, μ) +

1

2
G(vμ, μ)− κ

4
‖v − vμ‖2,

by the strong convexity of G(·, μ) on V .

This implies (if ‖v − vμ‖ �= 0)

κ

2
‖v − vμ‖ ≤ G(v, μ)−G(vμ, μ)

‖v − vμ‖
=

(G(vμ, ν)−G(vμ, μ))− (G(vμ, ν)−G(v, μ))

‖v − vμ‖
≤ (G(vμ, ν)−G(vμ, μ))− (G(v, ν)−G(v, μ))

‖v − vμ‖

≤ |(Q̃ν − Q̃μ)(vμ)− (Q̃ν − Q̃μ)(v)|
‖v − vμ‖
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By Lebourg’s mean value theorem ([15]) there exists a point v∗ on the line segment

[vμ, v] (entirely belonging to A(U)) such that the above estimate continues

≤ sup
∣∣∣〈∂(Q̃ν − Q̃μ)(v

∗),
vμ − v

‖vμ − v‖
〉∣∣∣.

Hence,

sup
v∈Ȳ (ν)

‖v − vμ‖ ≤ 2

κ
sup{‖z∗‖ : z∗ ∈ ∂(Q̃ν − Q̃μ)(v) : v ∈ A(U)}

=
2

κ
d(μ, ν;U).

Together with (2.5) this completes the proof.

Corollary 3.2.5 Adopt the setting of Theorem 3.2.4.

Then there exist non-singular matrices Bi(i = 1, . . . , �) and a constant L > 0 such

that

dH(ψ(μ), ψ(ν)) ≤ L
�∑
i=1

sup
t∈A(U )

|Fμ◦(−Bi)(−B−1
i t)− Fν◦(−Bi)(−B−1

i t)|

whenever ν ∈ M1(IR
s) is chosen such that the right-hand side is sufficiently small.

The notation F refers to the distribution function of the probability measure in the

subscript.

Proof. Using Theorem 2.5.1 in [15] we obtain the following representation of

d(μ, ν;U)

d(μ, ν;U) = sup{‖∇(Q̃ν − Q̃μ)(Ax)‖ : x ∈ U \ E},(2.6)

where E contains those x ∈ IRm such that Q̃ν − Q̃μ is not differentiable at Ax and

A(E) has Lebesgue measure zero.

Recall that the integrand Φ in (1.2) is a piecewise linear convex function on IRs and

that there exist basis submatrices B1, . . . , B� of W such that the simplicial cones

B1(IR
s
+), . . . , B�(IR

s
+) are linearity regions of Φ (in general not the maximal ones)

(cf. [72], [126] or Proposition 2.2.1 in Chapter 2). Of course,
�⋃
i=1

Bi(IR
s
+) = IRs, and

Bi (i = 1, . . . , �) can be chosen in such a way that Bi(IR
s
+)∩Bj(IR

s
+), i �= j, is always

contained in a hyperplane in IRs. Thus, H := IRs \ �⋃
i=1

intBi(IR
s
+) is contained in a

finite union of hyperplanes in IRs.
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Let us now confirm that, for some single hyperplane Ho ⊂ IRs, the set

Zν,o := {χ ∈ IRs : ν(χ +Ho) > 0}
has Lebesgue measure zero: It holds

χ+Ho = χ + {t ∈ IRs : aT t = 0}
= {t ∈ IRs : aT (t− χ) = 0} = a−1({aTχ}),

where a : IRm → IR denotes the linear transformation induced by aT and a−1 is the

pre-image.

Hence, Zν,o = {χ ∈ IRs : ν ◦ a−1({aTχ}) > 0}. Now ν ◦ a−1 is a probability measure

on IR and aTχ is an atom of ν◦a−1. Since ν◦a−1 has at most countably many atoms,

Zν,o is contained in a countable union of hyperplanes and has Lebesgue measure zero.

Therefore the sets

Zμ := {χ ∈ IRs : μ(χ +H) > 0} and Zν := {χ ∈ IRs : ν(χ +H) > 0}
have Lebesgue measure zero.

Now select E in (2.6) as the pre-image A−1(Zμ ∪ Zν).

Then Q̃ν − Q̃μ is differentiable at Ax for all x ∈ U \ E and we have for those x

∇(Q̃ν − Q̃μ)(Ax) =
∫
IRs

∇Φ(z − Ax)(ν − μ)(dz)

=
∫

�⋃
i=1

intBi(IRs
+)

∇Φ(z − Ax)(ν − μ)(dz)

=
�∑
i=1

di · (ν − μ)(Ax+Bi(IR
s
+))

=
�∑
i=1

di(Fν◦(−Bi)(−B−1
i Ax)− Fμ◦(−Bi)(−B−1

i Ax)),

where −di is the gradient of Φ on intBi(IR
s
+), i = 1, . . . , �.

The assertion now immediately follows from Theorem 3.2.4, (2.6) and the above

identity. Since A(U \ E) is less explicitly known than A(U), we finally take the

supremum over the larger set A(U).

Remark 3.2.6 The above estimate is closely related to Theorem 2.1 in [116] where

the author uses the normal cones C̄j (j = 1, . . . , �̃) to the set {u ∈ IRs : W Tu ≤ q}
at its vertices d̃j (j = 1, . . . , �̃). From linear parametric programming it is known
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([72], [126]) that each of the cones C̄j (j = 1, . . . , �̃) is the union of certain cones

Bi(IR
s
+) (i ∈ {1, . . . , �}) arising in the above corollary. We have preferred to use

the cones Bi(IR
s
+) since these are simplicial cones, which allows a direct relation to

distribution functions.

Remark 3.2.7 Consider the right-hand side of the estimate in Corollary 3.2.5 and

take the suprema with respect to t ∈ IRs instead of t ∈ A(U). In this way we obtain

a Lipschitz estimate with respect to the uniform (or Kolmogorov-Smirnov) distance

of the distribution functions Fμ◦(−Bi) and Fν◦(−Bi) (i = 1, . . . , �).

Remark 3.2.8 Theorem 3.2.4 remains valid under any hypotheses on g and C lea-

ding to Lipschitz continuity of the multifunction X̄(v) := argmin{g(x) : Ax = v, x ∈
C}.

The next example shows that (already for contaminated distributions) Theorem 3.2.4

is lost for a general closed convex set C ⊂ IRm. Another counterexample involving

the function g can be constructed following the guidelines of Remark 2.9 in [93].

Example 3.2.9 Let in (1.1) - (1.3) m = 2, s = 1, g(x) ≡ 0, A = (1, 0), C =

{x ∈ IR2 : (x2)
2 ≤ x1}, q = (1, 1)T , W = (1,−1) and μ be the uniform distribution

on [− 1
2
, 1
2
]. Let δ1 denote the probability measure on IR having unit mass at 1 and

construct perturbations μt of μ by setting μt = (1 − t)μ + tδ1, t ∈ [0, 1]. Then,

ψ(μ) = {0} and the strong-convexity assumption for Q̃μ holds for V = (− 1
2
, 1
2
).

Furthermore, one computes that (x1,t,
√
x1,t)

T ∈ ψ(μt) for 0 < t < 2/3, where

x1,t = t/2(1 − t). Hence, x1,t >
1
2
t and dH(ψ(μ), ψ(μt)) ≥ 1√

2

√
t for all t ∈ (0, 2/3).

With U ⊂ IR2 taken as the closed ball around zero with radius 1/2 (for instance)

one confirms that d(μ, μt;U) = const · t, i.e. the assertion of Theorem 3.2.4 does

not hold.

Note that in the above example there is even no upper Lipschitz continuity of ψ.

This indicates that, in general, one cannot hope to obtain the second-order growth

condition (2.3) in Theorem 3.2.2 without adding assumptions on g and C .

Remark 3.2.10 Using similar techniques as in the proof of Theorem 2.7 in [93]

it can be shown that the assumptions from Theorem 3.2.4 imply the second-order

growth condition (2.3) in Theorem 3.2.2 to hold.

The comparison of the Theorems 3.2.2 and 3.2.4 is completed by the following

example, which demonstrates that the setting in Theorem 3.2.2 is the more general
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one. Indeed, Theorem 3.2.2 does not guarantee the lower semicontinuity of the

mapping ψ which, of course, is a special implication of the Hausdorff-Lipschitz

result in Theorem 3.2.4.

Example 3.2.11 Let in (1.1) - (1.3) m = s = 1, g(x) ≡ 0, A = 1, C = [−1, 1],

q = (1, 1)T , W := (1,−1) (”simple recourse”) and μ be the uniform distribution on

[−1,− 1
2
] ∪ [ 1

2
, 1]. Let μ̄ be the uniform distribution on [− 1

2
, 1
2
] and construct pertur-

bations μt of μ by setting μt = μ+t(μ̄−μ), t ∈ [0, 1] (”contaminated distributions”).

Then one computes that ψ(μ) = [− 1
2
, 1
2
] and that

Q̃μ(x) ≥ Q̃μ(xμ) + [dist(x, ψ(μ))]2

for all x ∈ (−1, 1) and all xμ ∈ ψ(μ). Hence (2.3) is fulfilled and Theorem 3.2.2

applies. On the other hand, ψ(μt) = {0} for all t ∈ (0, 1] and d(μ, μt;C) = const · t.
Thus, ψ does not share the Lipschitz property from Theorem 3.2.4, moreover, ψ is

not lower semicontinuous at μ.

The next example is interesting since it shows that Theorem 3.2.4 does not ensure

the stability of the optimal value.

Example 3.2.12 Let in (1.1) - (1.3) m = s = 1, g(x) ≡ 0, C = [−1, 1], A = 1,

q = (1, 1), W = (1,−1), μ = δo and construct pertrubations μn of μ by setting

μn = (1 − 1
n
)δo +

1
n
δn2 (n ∈ IN). Then we have Q̃μ(x) = |x| and, thus, ϕ(μ) = 0,

ψ(μ) = {0}. Furthermore Q̃μn(x) = (1− 1
n
)|x|+ 1

n
(n2−x). Therefore, ψ(μn) = {0},

ϕ(μn) = n. The assumptions of Proposition 2.3 and Theorem 3.2.4 are fulfilled, but

ϕ(μn) → ∞ as n→ ∞.

The following result (established in Chapter 2) provides a handy tool to check the

strong convexity of Q̃μ needed in Theorem 3.2.4.

Proposition 3.2.13 (Theorem 2.2.2 in Chapter 2)

Let V ⊂ IRs be open and convex. Assume

(a) (A1),

(b) there exists a ū ∈ IRs such that W T ū < q componentwise,

(c) (A3),

(d) μ has a density Θμ on IRs,
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(e) there exist constants r > 0, � > 0 such that Θμ(t) ≥ r for all t ∈ IRs such that

dist(t, V ) ≤ �.

Then Q̃μ is strongly convex on V .

In [93], [95] the quantitative continuity of the mapping ψ is studied with respect to

the L1-Wasserstein distanceW1(μ, ν) for measures μ, ν inM1(IR
s) [81]. In fact, Theo-

rem 2.7 in [93] states the Hölder continuity (with exponent 1/2) of dH(ψ(μ), ψ(ν))

with respect to W1(μ, ν) under precisely the same assumptions as in Theorem 3.2.4

in the present chapter. Furthermore, [93] contains an example (Remark 2.9 in [93])

showing the optimality of the convergence rate 1/2. We now analyze this example

with respect to the pseudo-metric d(μ, ν;U): The setting is as in the Examples 3.2.11

and 3.2.12, but μ is taken as the uniform distribution on [−1/2, 1/2] and the per-

turbations μn are given by the distribution functions

Fμn(t) =

{
1/2 t ∈ [−εn, εn)
Fμ(t) otherwise,

where (εn) is arbitrary and tending to zero from above (n → ∞). It holds that

ψ(μ) = {0} and ψ(μn) = [−εn, εn]. The assumptions of Theorem 3.2.4 are fulfil-

led. In [93] we computed W1(μ, μn) = ε2n, which showed optimality of the Hölder

exponent 1/2. Here, we obtain that, with U = [−1/4, 1/4], d(μ, μn;U) = const · εn.
Hence, in the worst case Theorem 3.2.4 does not outperform Theorem 2.7 in [93].

However, for certain specific modes of perturbation, Theorem 3.2.4 yields stronger

estimates than Theorem 2.7 in [93] (contaminated distributions, asymptotic proper-

ties of non-parametric estimators, see the analysis below).

To explain the essence of Theorem 3.2.4 a bit more, let us mention that Theorem 2.7

in [93] also yields the convergence rate 1/2 when replacing the Wasserstein distance

W1 by

d∗(μ, ν;U) = sup{|(Q̃ν − Q̃μ)(Ax)| : x ∈ U},
where U ⊂ IRm is a suitable non-empty, convex, compact set. Therefore, the ap-

proach taken here differs from former ones by measuring the distance of the objecti-

ves in the original and the perturbed programs rather in terms of their subgradients

than in terms of their function values. Of course d(μ, ν;U) may tend to zero while

d∗(μ, ν;U) does not, which explains the collapse of optimal-value convergence ob-

served in Example 3.2.12. Hence, when aiming at the stability of the optimal value

one should resort to a distance like d∗. In [63], Proposition 8, Kummer showed

that convergence to zero of d∗ does imply the same for d, provided that the original

function Q̃μ is differentiable.
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Proposition 3.2.14 (contaminated distributions)

Suppose (A1) - (A3) and that ψ(μ) is non-empty and bounded. Let g be convex

quadratic and C be polyhedral. Assume that there exists a convex open subset V of

IRs such that A(ψ(μ)) ⊂ V and that the function Q̃μ is strongly convex on V . Let

μ̄ ∈ M1(IR
s) be arbitrarily fixed and define μt = (1 − t)μ+ tμ̄, t ∈ [0, 1].

Then there exist constants L > 0 and to > 0 such that

dH(ψ(μ), ψ(μt)) ≤ Lt

for all t ∈ [0, to].

Proof: Note that Q̃μt − Q̃μ = t(Q̃μ̄ − Q̃μ). Calculus rules for the Clarke subdiffe-

rential thus imply that d(μ;μt;U) = t · d(μ, μ̄;U), where, of course, d(μ, μ̄;U) is a

constant. The result now immediately follows from Theorem 3.2.4.

The following result refers to the special case of simple recourse, i.e. Φ in (1.3) is

given by

Φ(t) := min{q+T

y+ + q−
T

y− : y+ − y− = t, y+ ≥ 0, y− ≥ 0}(2.7)

where m̄ = 2s and q+, q− ∈ IRs. By a direct estimate from Theorem 3.2.2 Shapiro

has derived a similar result (Theorem 3.1 in [116]).

Proposition 3.2.15 Let P (μ) be a simple-recourse model, ψ(μ) be non-empty and

bounded, g be convex quadratic and C be a non-empty polyhedron. Assume that

q++q− > 0 (componentwise) and that all the one-dimensional marginal distributions

μj of μ (j = 1, . . . , s) have finite first moments and densities that are positively

bounded below on some open neighbourhoods of the orthogonal projections of ψ(μ)

to the coordinate axes.

Then there exists a constant L > 0 such that

dH(ψ(μ), ψ(ν)) ≤ L ·
s∑
j=1

sup
tj∈projj (A(U ))

|Fμj(tj)− Fνj (tj)|

whenever ν ∈ M1(IR
s) is chosen such that the right-hand side is sufficiently small.

Proof: First note that the function Φ in (2.7) is separable with respect to the

components of t. Therefore, the functions Q̃ν and Q̃μ here only depend on the

one-dimensional marginal distributions of ν and μ (cf. also [46], [131]), and we can

assume without loss of generality that ν, μ are probability measures with indepen-

dent one-dimensional marginals. Then our assumptions and Proposition 3.2.13 yield
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that Q̃μ is strongly convex on some convex open set V ⊃ A(ψ(μ)).

Here, the cones Bi(IR
s
+) (i = 1, . . . , 2s) are orthants.

To estimate (ν − μ)(Ax + Bi(IR
s
+)) let us fix some Bi(IR

s
+) for which we assume

without loss of generality that

Bi(IR
s
+) =

si

��
j=1

(−∞, 0]× s

��
j=si+1

[0,+∞).

Our independence assumption then yields

(ν − μ)(Ax+Bi(IR
s
+)) =

si∏
j=1

νj((−∞, (Ax)j]) ·
s∏

j=si+1

νj([(Ax)j,+∞))

−
si∏
j=1

μj((−∞, (Ax)j]) ·
s∏

j=si+1

μj([(Ax)j,+∞)).

Using the inequality

∣∣∣ s∏
j=1

αj −
s∏
j=1

βj
∣∣∣ ≤ s∑

j=1

|αj − βj| for 0 ≤ αj , βj ≤ 1, j = 1, . . . , s

(which can be shown by induction) we obtain

|(ν − μ)(Ax+Bi(IR
s
+))|

≤
si∑
j=1

|Fνj((Ax)j) − Fμj((Ax)j)|+
s∑

j=si+1

|F−
νj
((Ax)j)− F−

μj
((Ax)j)|,

where the superscripts in the last term indicate limits from the left.

For x ∈ U \ E (with E as in the proof of Corollary 3.2.5) the superscripts can be

dropped and we obtain

|(ν − μ)(Ax+Bi(IR
s
+))| ≤

s∑
j=1

|Fνj((Ax)j)− Fμj((Ax)j)|

and the proof is completed as with Corollary 3.2.5.

3.3 Applications to Asymptotic Analysis

In the present section, we show how to employ the Lipschitz stability result of

Section 3.2 to derive asymptotic properties of optimal solutions when estimating μ in

P (μ) by empiricalmeasures. We obtain a law of iterated logarithm, a large-deviation

estimate and an estimate for the asymptotic distribution of the optimal-solution

sets without imposing that ψ(μ) must be a singleton. The basic tools are known
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limit theorems for the Kolmogorov-Smirnov distance of the empirical distribution

function. Let ξ1., ξ2, . . . , ξn, . . . be independent IRs-valued random variables on a

probability space (Ω,A,P) having joint distribution μ. We consider the empirical

measures

μn(ω) :=
1

n

n∑
i=1

δξi(ω) (ω ∈ Ω; n ∈ IN)

and we are interested in the asymptotic behaviour of the solution set ψ(μn(·)) of

P (μn(·)) as n tends to infinity. Our results are put in terms of the Hausdorff distance

dH(ψ(μ), ψ(μn(·))), which is an A-measurable mapping due to Theorem 2K. in [90].

Proposition 3.3.1 Under the assumptions of Theorem 3.2.4 it holds

lim sup
n→∞

( 2n

log logn

) 1
2 · dH(ψ(μ), ψ(μn(ω))) ≤ L� P− almost surely,

where L and � denote the Lipschitz modulus and the number of basis matrices, re-

spectively, arising in Corollary 3.2.5.

Proof: Let Bj, j = 1, . . . , �, denote the relevant basis submatrices of W .

Then μn(ω) ◦ (−Bj) coincides with the empirical measure of μ ◦ (−Bj) and the

following law of iterated logarithm holds ([82], p. 302, [110])

lim sup
n→∞

( n

2 log log n

)1
2 sup
t∈IRs

|Fμ◦(−Bj)(t)− Fμn(ω)◦(−Bj)(t)| ≤
1

2

P-almost surely for all j = 1, . . . , �.

Hence, the estimate from Corollary 3.2.5 is valid for P-almost all ω ∈ Ω with

ν := μn(ω), provided that n = n(ω) ∈ IN is sufficiently large.

Thus we have for P-almost all ω ∈ Ω

lim sup
n→∞

( n

2 log log n

)1
2 dH(ψ(μ), ψ(μn(ω))) ≤ L�

2

In [29], [54] the authors obtain consistency results under weak hypotheses on the

optimization problems involved (based on the theory of epi-convergence). The above

proposition supplements these results by giving, under stronger assumptions, the

(optimal) rate of convergence for the solution sets. Compared to considerations in

[116] we can dispense with a linear-independence assumptions imposed there. This

became possible, since we used simplical cones instead of more general ones (cf.

Remark 3.2.6). Compared to [29], [134] we do not need the unique solvability of

P (μ).
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Proposition 3.3.2 Under the assumptions of Theorem 3.2.4 there exists a constant

εo > 0 such that it holds for all ε ∈ (0, εo],

lim sup
n→∞

1

n
logP({ω : dH(ψ(μ), ψ(μn(ω))) ≥ ε}) ≤ −2

( ε
L�

)2
.

Proof: For brevity, we introduce the following notation

Υn(ω) := max
j=1,...,�

ηn,j(ω),

ηn,j(ω) := sup
t∈IRs

|Fμ◦(−Bj)(t)− Fμn(ω)◦(−Bj)(t)| (ω ∈ Ω).

Now select εo > 0 in such a way that L�Υn(ω) < εo and Corollary 3.2.5 imply

dH(ψ(μ), ψ(μn(ω))) ≤ L�Υn(ω).

Then we have for each ε ∈ (0, εo] and all n ∈ IN

{ω : dH(ψ(μ), ψ(μn(ω))) ≥ ε} ⊆
{
ω : Υn(ω) ≥ εo

L�

}
∪
{
ω : Υn(ω) ≥ ε

L�

}

=
{
ω : Υn(ω) ≥ ε

L�

}
=

�⋃
j=1

{
ω : ηn,j(ω) ≥ ε

L�

}

and, hence,

P({ω : dH(ψ(μ), ψ(μn(ω))) ≥ ε}) ≤
�∑
j=1

P
({
ω : ηn,j(ω) ≥ ε

L�

})
.

The multivariate version of the Dvoretzky-Kiefer-Wolfowitz inequality (cf. [51],

[110]) then implies that, for each δ > 0 and j ∈ {1, . . . , �}, there exist constants

Cj > 0 such that

P
({
ω : ηn,j(ω) ≥ ε

L�

})
≤ Cj exp

(
− (2 − δ)n

( ε
L�

)2)
for all n ∈ IN.

Hence, we obtain for any n ∈ IN and δ > 0,

1

n
logP({ω : dH(ψ(μ);ψ(μn(ω)) ≥ ε}) ≤ 1

n
log

( �∑
j=1

Cj
)
− (2 − δ)

( ε
L�

)2

and the proof is complete.

Compared to Theorem 4.6 in [50] which represents a large deviation result for more

general stochastic programs, the above proposition only requires the weak moment

condition (A3) and yields an explicit estimate instead of an implicit one involving a
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conditioning function that is often hard to quantify. We also refer to the exponential

bound in Theorem 2 [124] which, in the context of two-stage stochastic programming,

is working for non-unique solutions but only applies to measures μ with bounded

support.

Another substantial step in the asymptotic analysis of optimal solutions would con-

sist of obtaining asymptotic distributions of the sequence of closed random sets

(n1/2(ψ(μn(·))− x))n∈IN (for each x ∈ ψ(μ))

on the hyperspace of closed subsets of IRm. In [53], [112] this problem was tack-

led for stochastic programs involving expectation functions with smooth integrands.

Moreover, it was assumed that the unperturbed problem has a unique optimal so-

lution. For stochastic programs with complete recourse the relevant integrands are

typically non-smooth (cf. (1.2), (1.3)) and uniqueness of optimal solutions is rather

exceptional (cf. Example 3.1.1) such that the results from [53], [112] do not apply.

From Theorem 3.2.4, however, a lower estimate for the asymptotic distribution of

(n1/2dH(ψ(μ), ψ(μn(·))))n∈IN
can be derived. This is done next. The result is inspired by the concept of normalized

convergence and the corresponding techniques in [31]. For simple-recourse models

the lower estimate becomes more detailed (Remark 3.3.4).

Proposition 3.3.3 Under the assumptions of Theorem 3.2.4 there exist probability

distribution functions Gj , j = 1, . . . , �, on IR such that it holds

lim inf
n→∞ P({ω : n

1
2dH(ψ(μ), ψ(μn(ω))) < t}) ≥ 1 +

�∑
j=1

(
Gj

( t

L�

)
− 1

)

for all t ≥ 0, where L and � denote the Lipschitz modulus and the number of basis

matrices, respectively, arising in Corollary 3.2.5.

Proof: Let ηn,j(ω) be given as in the proof of Proposition 3.3.2.

From the asymptotic distribution theory for the Kolmogorov-Smirnov distance it is

known that for each j = 1, . . . , � the sequence

(n
1
2ηn,j(·))n∈IN

converges in distribution to some real random variable ζj (Theorem 2 in [52]; chapt. 2.1.5

in [110]).
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Let t ≥ 0, n ∈ IN and consider the following events in A:

A :=
{
ω : Ln

1
2

�∑
j=1

ηn,j(ω) < t
}
,

Aj :=
{
ω : n

1
2 ηn,j(ω) <

t

L�

}
(j = 1, . . . , �)

Bδ :=
{
ω : L

�∑
j=1

ηn,j(ω) < δ
}
,

where δ > 0 is selected according to Corollary 3.2.5 such that, for all ω ∈ Bδ,

dH(ψ(μ), ψ(μn(ω))) can be estimated by the expression defining Bδ.

Corollary 3.2.5 then yields the following chain of inequalities

P({ω : n
1
2 dH(ψ(μ), ψ(μn(ω))) < t})

≥ P({ω : n
1
2dH(ψ(μ), ψ(μn(ω))) < t} ∩Bδ)

≥ P(A ∩Bδ) ≥ P
( �⋂
j=1

Aj ∩Bδ

)

= P
( �⋂
j=1

Aj

)
−P

( �⋂
j=1

Aj ∩ B̄δ

)

≥ P
( �⋂
j=1

Aj

)
−P(B̄δ)

= 1 −P
( �⋃
j=1

Āj

)
−P(B̄δ)

≥ 1 −
�∑

j=1

P(Āj)−P(B̄δ) = 1 +
�∑

j=1

(P(Aj)− 1) −P(B̄δ)

Hence we obtain the following estimate for all t ≥ 0 and n ∈ IN :

P({ω : n
1
2dH(ψ(μ), ψ(μn(ω))) < t})

≥ 1 +
�∑
j=1

(
P
({
ω : n

1
2ηn,j(ω) <

t

L�

})
− 1

)
−P

({
ω : L

�∑
j=1

ηn,j(ω) ≥ δ
})

The latter probability tends to zero as n → ∞ because of the Glivenko-Cantelli

theorem and we finally obtain via the Portmanteau theorem for each t ≥ 0:

lim inf
n→∞ P({ω : n

1
2dH(ψ(μ), ψ(μn(ω))) < t})

≥ 1 +
�∑
j=1

(
lim inf
n→∞ P

({
ω : n

1
2ηn,j(ω) <

t

L�

}
− 1

))
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≥ 1 +
�∑
j=1

(
P
({
ω : ζj(ω) <

t

L�

})
− 1

)
= 1 +

�∑
j=1

(
Gj

( t

L�

)
− 1

)

where Gj(u) := P({ω : ζj(ω) < u}) for all u ∈ IR.

Remark 3.3.4 Unfortunately, the limit distributions Gj (j = 1, . . . , �) cannot be

characterized in general for multidimensional distributions Fμ◦(−Bj) (see [52]). Ho-

wever, in case of simple recourse we obtain the following estimate by using Co-

rollary 3.2.15 instead of 3.2.5 and under the assumption that all one-dimensional

marginal distributions of μ are continuous:

lim inf
n→∞ P({ω : n

1
2dH(ψ(μ), ψ(μn(ω))) < t}) ≥ 1 + s

(
H
( t

Ls

)
− 1

)

for all t ≥ 0, where H(u) := 1 − 2
∞∑
k=1

(−1)k−1e−2k2u2 (u ≥ 0) is the asymptotic

distribution in the Kolmogorov limit theorem.

Appendix

In this appendix we are concerned with the set-valued mapping

ψ(d) := argmin{xTHx+ cTx : Dx ≤ d}
where H is a symmetric positive semidefinite (m,m)-matrix, c ∈ IRm, D is some

(m̄,m)-matrix and d ∈ IRm̄. For the comfort of the reader we display how the

Lipschitz continuity of ψ on its effective domain dom ψ := {d ∈ IRm̄ : ψ(d) �= ∅} is

derived in [55].

Proposition A.1 There exists a constant L > 0 such that for all d1, d2 ∈ dom ψ

dH(ψ(d1), ψ(d2)) ≤ L‖d1 − d2‖.

Proof: Let d ∈ dom ψ and x̄ ∈ ψ(d). According to Theorem 3, §12.2., in [16] we

have the representation

ψ(d) =M(d, x̄) := {x ∈ IRm : Dx ≤ d, Hx = Hx̄, cTx = cT x̄}.
By Hoffman’s theorem on perturbed linear inequalities ([44],[125]) there exists a

constant Lo > 0 such that for all (d1, x̄1), (d2, x̄2) ∈ domM

dH(M(d1, x̄1),M(d2, x̄2)) ≤ Lo(‖d1 − d2‖+ ‖x̄1 − x̄2‖).(A.1)



78 Lipschitz Stability for Stochastic Programs with Complete Recourse

Consider some fixed do ∈ domψ. Then there exist a constant L1 > 0 (not depending

on do) and a constant δ1 = δ1(do) > 0 such that for all d ∈ domψ with ‖d−do‖ ≤ δ1
it holds

ψ(d) ⊂ ψ(do) + L1‖d− do‖B.(A.2)

([56], [85]).

Now for each d ∈ dom ψ with ‖d − do‖ ≤ δ1 and each x(d) ∈ ψ(d) there exists an

xo = xo(x(d)) ∈ ψ(do) such that

‖xo − x(d)‖ = dist(x(d), ψ(do)).

In particular, it holds

ψ(d) =M(d, x(d)) and ψ(do) =M(do, xo).

Hence, by (A.1) and (A.2),

dH(ψ(d), ψ(do)) = dH(M(d, x(d)),M(do, xo))

≤ Lo(‖d− do‖+ ‖x(d)− xo‖)
≤ Lo(1 + L1)‖d − do‖.

Thus, for any do ∈ dom ψ, there exist a constant L > 0 (not depending on do) and

a constant δ = δ(do) > 0 such that for all d ∈ dom ψ, ‖d− do‖ ≤ δ

dH(ψ(d), ψ(do)) ≤ L‖d − do‖.(A.3)

Using a covering argument the proof is completed:

Provided that dom ψ �= ∅ it holds dom ψ = domMo where Mo(d) = {x ∈ IRm :

Dx ≤ d} ([41]). Therefore, dom ψ is convex.

Now let d1, d2 ∈ domψ and consider the line segment [d1, d2] ⊂ domψ. By compact-

ness, there exist a constant δo > 0 and finitely many points d(0) = d1, . . . , d(N) =

d2 ∈ [d1, d2] such that

– d(i) �= d(j) for all i �= j, d(i+ 1) ∈ [d(i), d(i+ 2)] (i = 0, . . . , N − 2),

– the union of the (open) δo-neighbourhoods Nδo(d(i)) covers [d1, d2],

– for each d(i) (i = 0, . . . , N) the estimate (A.3) holds with do := d(i), δ := δo
and L as above.
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For i = 0, . . . , N − 1 it holds

Nδo(d(i)) ∩Nδo(d(i+ 1)) ∩ [d(i), d(i+ 1)] �= ∅.
Select points d̃(i) (i = 0, . . . , N − 1) from these intersections. Then it holds

dH(ψ(d1), ψ(d2)) ≤ dH(ψ(d(0)), ψ(d̃(0))) + dH(ψ(d̃(0)), ψ(d(1))) + . . . +

+dH(ψ(d̃(N − 1)), ψ(d(N)))

≤ L(‖d(0) − d̃(0)‖ + ‖d̃(0)− d(1)‖ + . . .+ ‖d̃(N − 1) − d(N)‖)
= L‖d1 − d2‖,

and the proof is complete.
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Chapter 4

Structure and Stability in

Stochastic Programs with

Complete Integer Recourse

Abstract

For two-stage stochastic programs with integrality constraints in the second stage

we study continuity properties of the expected recourse as a function both of the

first-stage policy and the integrating probability measure.

Sufficient conditions for lower semicontinuity, continuity and Lipschitz continuity

with respect to the first-stage policy are presented. Furthermore, joint continuity

in the policy and the probability measure is established. This leads to conclusions

on the stability of optimal values and optimal solutions to the two-stage stochastic

program when subjecting the underlying probability measure to perturbations.

4.1 Introduction

Consider a probability space (Ω,A, P ) and measurable mappings z : Ω → IRs,

A : Ω → IRms where the images of A are understood as s×m matrices. A two-stage

stochastic integer program with random technology matrix is then given by

min{g(x) +Q(x) : x ∈ C}

where

Q(x) =
∫
Ω

Φ(z(ω)− A(ω)x)P (dω)

81
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and

Φ(t) = min{qTy+ q′Ty′ : Wy +W ′y′ = t, y′ ≥ 0, y ≥ 0, y′ ∈ IRm′
, y ∈ ZZm̄}.(1.1)

Basically, we assume that g : IRm → IR is continuous, C ⊂ IRm nonempty, closed,

q ∈ IRm̄, q′ ∈ IRm′
and that the matrices W ∈ L(IRm̄, IRs), W ′ ∈ L(IRm′

, IRs) have

rational entries. By ZZm̄ we denote the subset of integer vectors in IRm̄. Further as-

sumptions ensuring that the above expressions are well-defined are presented below.

The measurable mappings z and A induce a probability measure μ := P ◦ (z, A)−1

on IRS where S=(m+1)s. Our model then reads

P (μ) min{g(x) +Q(x, μ) : x ∈ C}

where

Q(x, μ) =
∫
IRS

Φ(z − Ax)μ(d(z, A)).(1.2)

The stochastic program P (μ) is an appropriate model for an optimization process

where, in a first stage, a decision x must be taken under uncertainty on the problem

data z and A, and, in a second stage, a decision (y, y′) is made after realization of

(z, A). The second stage is formalized via the optimization problem behind Φ (see

[46]). The latter, for instance, may model an optimal compensation of the surplus

(shortfall) z−Ax or may deliver detailed scheduling decisions (based on z−Ax) in

a hierarchical system. The integral Q given by (1.2) models the expected additional

costs due to the second-stage action (y, y′). The peculiarities of P (μ) are two-fold:

in the first stage we allow for randomness not only in the vector z but also in the

technology matrix A and in the second (or recourse) stage we restrict some decisions

y to be integral.

Restricting decisions in the second stage of a stochastic program with recourse to be

integers is interesting from theoretical viewpoint since the implications of the ”smoo-

thing effect” of the integral in (1.2) are not obvious. Moreover, in applications a

proper modelling often requires integer variables which, obviously, is especially rele-

vant when the second-stage program is a combinatorial optimization problem ([65],

[83], [118]).

For these reasons we keep the second stage a general linear mixed-integer program.

We study the ”smoothing effect” of the integral in (1.2), i.e. we derive continuity

properties of Q both with respect to x and μ. The joint continuity of Q in x and

μ leads to conclusions on the stability of P (μ) when μ varies in a certain set of

probability measures. Like in other branches of stochastic programming stability
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considerations of the model under perturbations of the integrating probability mea-

sure are important prerequisites when justifying approximation schemes ([10], [49])

or when replacing incompletely known distributions by suitable estimates ([27]).

To obtain a first impression on the difficulties that appear when implanting integra-

lity constraints into the second stage of P (μ) consider the simple example

Q(x, μ) =
∫
IR

Φ(z − x)μ(dz),(1.3)

Φ(t) = min{y : y ≥ t, y ∈ ZZ},
where μ is the uniform distribution on the interval [0, 1/4].

Of course,

Q(x, μ) =
∫
IR


z − x�μ(dz)

where 
a� denotes the smallest integer greater than or equal to a. Simple calculati-

ons show that Q(., μ) is neither convex nor differentiable. Moreover, for a discrete

distribution μ the function Q(., μ) becomes discontinuous. So, in contrast to re-

course problems without integer variables, neither convexity nor differentiability of

Q(., μ) can be expected to hold under reasonably comprehensible assumptions.

Compared to the rich literature on structure and stability for stochastic programs

without integer requirements (as a collection take, for instance, [46], [131] and [27],

[48], [88], [93], [116]) there are only a few contributions to the problems addressed in

the present chapter. The first one seems to be due to Stougie [118] who established

that Q(., μ) is continuous provided that μ has a uniformly continuous density and

that Φ fulfils some boundedness requirement (cf. also [83]).

The more recent papers [60], [61], [66] focus on simple integer recourse where Φ

specifies to

Φ(t) = min{q+T

y+ + q−
T

y− : y+ ≥ t, y− ≥ −t, y+ ≥ 0, y− ≥ 0, y+ ∈ ZZs, y− ∈ ZZs}.
Exploiting the inherent separability the authors derive explicit formulae, (sharp)

convex lower bounds and sufficient conditions for continuity, convexity and diffe-

rentiability of Q(., μ). Whereas [61], [66] treat the case of random right-hand side,

problems containing also a random technology matrix are considered in [60].

Our results on the joint continuity of Q in x and μ are related to continuity results

for expectations with discontinuous integrands obtained in [1] and [64].

The chapter is organized as follows: In Section 4.2 we collect a few prerequisites

from probability theory and basic results on the value function of a mixed-integer
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linear program with parameters in the right-hand side of the constraints ([5], [12]).

In Section 4.3 we present sufficient conditions for lower semicontinuity, continuity

and Lipschitz continuity of Q(., μ) as well as for the joint continuity of Q(., .). In

Section 4.4, we derive continuity of the optimal-value function and Berge upper

semicontinuity of the solution set mapping when understanding P (μ) as a parametric

program with respect to μ.

4.2 Prerequisites

Recall that the integrand Φ in (1.2) is the value-function of a linear mixed-integer

program with parameters in the right-hand side of the equality constraints. Proper-

ties of such value functions are derived, for instance, in the monograph [5] and in

the article [12] from where we quote the propositions below. Basically, we assume

that for each t ∈ IRs the constraint set of the program defining Φ(t) is non-empty

and that Φ(0) = 0. Then Φ(t) ∈ IR for all t ∈ IRs (cf. e.g. [71], Proposition I.6.7.)

and the following proximity result holds:

Proposition 4.2.1 ([5], Theorem 8.1; [12], Theorem 2.1)

There exist constants α > 0, β > 0 such that for all t′, t′′ ∈ IRs we have

|Φ(t′)− Φ(t′′)| ≤ α‖t′ − t′′‖+ β.

Moreover, the value function Φ admits the following representation:

Proposition 4.2.2 ([12], Theorem 3.3)

There exist constants γ > 0, δ > 0 and vectors d1, . . . , d� ∈ IRs, d̃1, . . . , d̃�̃ ∈ IRs

such that for all t ∈ IRs

Φ(t) = min
y

{qTy + max
j∈{1,...,�}

dTj (t−Wy) : y ∈ Y (t)}

where

Y (t) = {y ∈ ZZm̄ : y ≥ 0,
∑ |yi| ≤ γ

∑ |tr|+ δ,

d̃Tk (t−Wy) ≥ 0, k = 1, . . . , �̃}.

Straightforward duality considerations and a proximity argument for optimal solu-

tions led to the above result. In fact, the vectors d1, . . . , d� come up as the vertices

of the polyhedron {u ∈ IRs : W ′Tu ≤ q′}, and the vectors d̃1, . . . , d̃�̃ stem from an

inequality description of the polyhedral cone W ′(IRm′
+ ).
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Continuity properties of Φ can be derived from Proposition 4.2.2. Namely, if Y (.)

remains constant on an open neighbourhood of some point t̄ ∈ IRs, then, on this

neighbourhood, Φ is the pointwise minimum of finitely many continuous (piecewise

linear) functions and, hence, continuous at t̄. If t̃ ∈ IRs is such that Y (.) does not

remain constant on any open neighbourhood of t̃, then there must exist ỹ ∈ ZZm̄,

ỹ ≥ 0 such that at least one of the inequalities

∑ |ỹi| ≤ γ
∑ |t̃r|+ δ

and

d̃Tk (t̃−Wỹ) ≥ 0, k = 1, . . . , �̃

holds as an equation.

In fact, only the second group of inequalities is relevant, as we will explain now:

Using only duality arguments we obtain

Φ(t) = min
y

{qTy +max
j
dTj (t−Wy) : y ≥ 0, y ∈ ZZm̄, d̃Tk (t−Wy) ≥ 0, k = 1, . . . , �̃}.

The merrit of Theorem 3.3 in [12] (Proposition 4.2.2) is to restrict the above mini-

mization(over an infinite set) to the finite set Y (t). If t̃ ∈ IRs is such that, for some

ỹ ∈ ZZm̄, ỹ ≥ 0, the inequality

∑ |ỹi| ≤ γ
∑ |t̃r|+ δ

holds as an equation, then Y (t) changes on any neighbourhood of t̃. But this has no

impact on the result of the minimization, if we assume that the constants γ, δ were

selected in such a way (sufficiently large) that the minimum in Proposition 4.2.2 is

attained for a y ∈ ZZm̄ such that

∑ |yi| < γ
∑ |tr|+ δ.

Hence, the discontinuities of Φ are concentrated in points t ∈ IRs where, for some

y ∈ ZZm̄
+ , at least one of the inequalities

d̃Tk (t−Wy) ≥ 0 , k = 1, . . . , �̃

holds as an equation.

The set of discontinuity points of Φ is thus contained in a countable union of hyper-

planes in IRs, more specifically, in a union of translates of hyperplanes determined

by the facets of the cone W ′(IRm′
+ ).

By the rationality of W ′, the vectors d̃k (k = 1, . . . , �̃) are rational, too. Since also
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W is rational, this implies that there exists a constant ε0 > 0 such that (for all

k = 1, . . . , �̃)

|d̃TkWy1 − d̃TkWy2| > ε0 whenever y1, y2 ∈ ZZm̄, d̃TkWy1 �= d̃TkWy2.

Hence, for any t ∈ IRs, there exists a neighbourhood U(t) such that Y (t′) ⊆ Y (t)

for any t′ ∈ U(t). This implies that lim inf
t′→t

Φ(t′) ≥ Φ(t), i.e. Φ is a lower semi-

continuous function on IRs (cf. also [12], p. 133). An example (for the pure-integer

case) showing how this lower semicontinuity is lost if the constraint matrix contains

irrational entries can be constructed from the example given at page 58 in [4].

One key point in our analysis is that, in (1.2), not only the right-hand side z but

also the technology matrix A can be stochastic. Therefore, the stochastic program

P (μ) contains a joint probability distribution μ of z and A. Moreover, marginal and

conditional distributions of μ will be important for our purposes. For convenience,

we collect these notions here; further details can be found in textbooks on probability

theory ([24], [38]).

Let πIRs and πIRms denote the projections from IRS to IRs and IRms, respectively. The

induced measures μ1 = μ ◦ π−1
IRs, μ2 = μ ◦ π−1

IRms are then referred to as the marginal

distributions of μ with respect to z and A, respectively. By μ2
1(A, .) we denote the

(regular) conditional distribution of z given A. It has the following properties

(2.1) μ2
1(A, .) is a probability measure on IRs for any A ∈ IRms;

(2.2) the function μ2
1(., B1) : IR

ms → [0, 1] is measurable for any Borel set B1

in IRs;

(2.3) for any Borel set B in IRS it holds

μ(B) =
∫

IRms

∫
Rs

1B(z, A)μ
2
1(A, dz)μ2(dA)

where 1B denotes the indicator function of B.

The above family of probability measures μ2
1(A, .) indeed exists, since μ, as a pro-

bability measure on a Euclidean space, satisfies the general assumptions for the exi-

stence of a (regular) conditional distribution (cf. Theorem 10.2.2 in [24], Satz 5.3.21

in [38]).

4.3 Continuity of the Expected Recourse Func-

tion

We impose the following general assumptions to have (1.1), (1.2) well defined:
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(A1) For all t ∈ IRs there exist y ∈ ZZm̄, y′ ∈ IRm′
such that y ≥ 0, y′ ≥ 0 and

Wy +W ′y′ = t.

(A2) There exists a u ∈ IRs such that W Tu ≤ q, W ′Tu ≤ q′.

(A3) It holds that
∫
IRS

(‖z‖+ ‖A‖)μ(d(z, A)) < +∞.

In (A3), ‖z‖ denotes the Euclidean norm of z and ‖A‖ the induced matrix norm of

A. In the context of (stochastic) linear programming (A2) is called ”dual feasibility”.

Assumption (A1) is the natural extension of the complete-recourse assumption for

stochastic programs with (non-integer) recourse and, therefore, referred to as ”com-

plete (mixed-) integer recourse”. Assumption (A3), i.e. the finiteness of the first

moment of μ, is basic for (non-integer) stochastic linear programs too (cf. [46], [131]

and Chapter 2).

Proposition 4.3.1 Assume (A1) – (A3), then Q(., μ) is a real-valued lower semi-

continuous function on IRm.

Proof: Assumptions (A1), (A2) together with the duality theorem of linear pro-

gramming and Lemma 7.1 in [5] imply that Φ(z−Ax) ∈ IR for all z ∈ IR s, A ∈ IRms,

x ∈ IRm (see also Proposition I.6.7 in [71]). Furthermore, Φ is measurable as a lower

semicontinuous function on IRs (see Section 4.2). Assumption (A2) implies that

Φ(0) = 0, and we obtain in light of Proposition 4.2.1

|Q(x, μ)| ≤
∫
IRS

|Φ(z − Ax)− Φ(0)|μ(d(z, A))

≤ α
∫
IRS

‖z −Ax‖μ(d(z, A)) + β
∫

IR(m+1)

μ(d(z, A))

≤ α
∫
IRS

‖z‖μ(d(z, A)) + α‖x‖
∫

IR(m+1)s

‖A‖μ(d(z, A)) + β.

Hence, Q(., μ) is a real-valued function on IRm.

To verify the lower semicontinuity let x ∈ IRm and {xn} be a sequence in IRm

converging to x. Denote r := max
n∈IN

‖xn‖ < +∞.

In view of Proposition 4.2.1 and Φ(0) = 0 we have

Φ(z − Axn) ≥ Φ(0) − |Φ(z −Axn)− Φ(0)|
≥ −α‖z − Axn‖ − β

≥ −α‖z‖ − αr‖A‖ − β.
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Therefore, and by (A3), the function ho(z, A) := −α‖z‖−αr‖A‖−β is an integrable

minorant of all the functions hn(z, A) := Φ(z − Axn) (n ∈ IN).

Now we have

Q(x, μ) =
∫

Φ(z − Ax)μ(d(z, A))

≤
∫

lim inf
n→∞

Φ(z − Axn)μ(d(z, A))

≤ lim inf
n→∞

∫
Φ(z − Axn)μ(d(z, A))

= lim inf
n→∞

Q(xn, μ).

Here, the first estimate follows from the lower semicontinuity of Φ and the second

is a consequence of Fatou’s Lemma which works since we have the above minorant.

Thus, Q(., μ) is lower semicontinuous at x.

Let us remark that, by the above proposition, P (μ) is a ”proper” model in the sense

that one minimizes a lower semicontinuous function and, if the feasible set C is

compact, for instance, the infimum of the objective is finite and actually attained.

To formulate a sufficient condition for the continuity of Q(., μ) at some point x ∈ IRm

we introduce the set E(x) of all those (z, A) ∈ IRS such that Φ is discontinuous at

z − Ax. E(x) is measurable for all x ∈ IRm ([9], p. 225).

Proposition 4.3.2 Assume (A1) – (A3) and let x ∈ IRm be such that μ(E(x)) = 0,

then Q(., μ) is continuous at x.

Proof: Let {xn}∞n=1 be a sequence converging to x. Denote r := max
n∈IN

‖xn‖. Propo-
sition 4.2.1 yields

|Φ(z −Axn)| = |Φ(z − Axn)− Φ(0)|
≤ α‖z − Axn‖+ β

≤ α‖z‖+ αr‖A‖+ β.

In view of (A3), therefore, the function ho(z, A) := α‖z‖+αr‖A‖+β is an integrable

majorant of all the functions |hn(z, A)| where hn(z, A) := Φ(z − Axn).

Due to μ(E(x)) = 0, it holds

hn(z, A) −→
n→∞

h(z, A) := Φ(z − Ax) μ − almost surely,



Structure and Stability in Complete Integer Recourse 89

and Lebesgue’s dominated convergence theorem works:

lim
n→∞Q(xn, μ) = lim

n→∞

∫
IRS

Φ(z − Axn)μ(d(z, A))

=
∫
IRS

lim
n→∞Φ(z − Axn)μ(d(z, A))

=
∫
IRS

Φ(z −Ax)μ(d(z, A))

= Q(x, μ).

Corollary 4.3.3 Assume (A1) – (A3) and let the conditional distribution μ2
1(A, .)

of z given A be absolutely continuous with respect to the Lebesgue measure on IRs

for μ2-almost all A ∈ IRms, (μ2 := μ ◦ π−1
2 ); then Q(., μ) is a continuous function

on IRm.

Proof: As a consequence of Proposition 4.2.2 we obtained in Section 4.2 that the

set of discontinuity points of Φ is contained in a countable union H of hyperplanes

in IRs. Therefore, for any x ∈ IRm, E(x) ⊂ E1(x) where

E1(x) := {(z, A) ∈ IRS : z − Ax ∈ H}. By (2.3),

μ(E1(x)) =
∫

IRms

∫
IRs

1E1(x)(z, A)μ
2
1(A, dz)μ2(dA)

=
∫

IRms

∫
Ax+H

μ2
1(A, dz)μ2(dA).

Since μ2
1(A, .) is absolutely continuous μ2-almost surely, we now have∫

Ax+H
μ2
1(A, dz) = 0 for μ2-almost all A ∈ IRms.

Hence, μ(E1(x)) = 0. This implies μ(E(x)) = 0 for arbitrary x ∈ IRm, and Propo-

sition 4.3.2 yields the assertion.

Remark 4.3.4 If z and A are independent random variables then μ2
1(A, .) is abso-

lutely continuous (for μ2-almost all A ∈ IRms) if already the marginal distribution μ1

has this property. Indeed, μ2
1(A, .) then coincides μ2-almost surely with μ1. Another

instance where Corollary 4.3.3 works is given when there is a joint density of z and

the random components of A (i.e. those which are not constant μ-almost surely).
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If z and A are not independent, then it is not sufficient to claim that μ1 is absolutely

continuous when wishing to satisfy the assumptions of Corollary 4.3.3. Indeed, let

μ ∈ P(IR2) be the uniform distribution concentrated on the line segment

conv{(0, 0), (1
2

√
2, 1

2

√
2)}. Then both μ1 and μ2 coincide with the uniform distribu-

tion on conv{0, 1
2

√
2} and, for 0 ≤ A ≤ 1

2

√
2, μ2

1(A, .) coincides with the measure

concentrated at A.

However, if μ1 is absolutely continuous and μ2 is discrete (with countably many

mass points) then μ2
1(A, .) is absolutely continuous μ2-almost surely. To see this, let

B1 ⊂ IRs have Lebesgue measure zero. Then

0 = μ1(B1) = μ(B1 × IRms) =
∫

IRms

∫
Rs

1B1×IRmsμ2
1(A, dz)μ2(dA)

=
∞∑
j=1

∫
IRs

1B1(z)μ
2
1(Aj, dz) · pj =

∞∑
j=1

pj · μ2
1(Aj, B1)

with suitable mass points Aj and probabilities pj > 0 (j = 1, 2, . . .). This implies

μ2
1(Aj, B1) = 0 for all j, and μ2

1(A, .) is absolutely continuous μ2-almost surely.

Remark 4.3.5 Proposition 4.3.2 and Corollary 4.3.3 extend Theorem 5.1 in [118]

where additional assumptions on Φ and μ are made. In the recent paper [60] a

similar analysis is carried out for simple integer recourse. The authors also show

how to verify the crucial assumption in Proposition 4.3.2 when having information

about conditional distributions given certain components of the random technology

matrix A.

The Lipschitz continuity of Q(., μ) will first be investigated for the case where only

the right-hand side z is random.

Recall from Section 2 that the discontinuity points of Φ are contained in

�̃⋃
k=1

⋃
y∈ZZm̄

{Wy +Hk}

where

Hk = {t ∈ IRs : d̃Tk t = 0}.
By the rationality of W and W ′, the complement of the above union of hyperplanes

admits a representation
⋃
i∈I
Pi where I is countable and cl Pi is a polyhedron for each

i ∈ I . Proposition 4.2.2 yields that, on each of the sets Pi, the function Φ can be

represented as the pointwise minimum of a family of Lipschitz continuous functions

whose Lipschitz constants are bounded by Lo := maxj∈{1,...,�} ‖dj‖. Hence, on each

of the sets Pi, the function Φ is Lipschitz continuous with constant Lo.



Structure and Stability in Complete Integer Recourse 91

Proposition 4.3.6 Assume (A1) – (A3) and that μ is absolutely continuous with

respect to the Lebesgue measure on IRs. Assume further that for any non-singular

linear transformation B ∈ L(IRs, IRs) the one-dimensional marginal distributions of

μ◦B have bounded densities which, outside some bounded interval, are monotonically

decreasing with growing absolute value of the argument.

Then Q is Lipschitz continuous on any bounded subset of IRm.

Proof: Let x′, x′′ belong to some bounded subset D of IRm. Define

S = S(x′, x′′) := {z ∈ IRs : ∃ i ∈ I z − Ax′ ∈ Pi, z − Ax′′ ∈ Pi}.
Then

|Q(x′, μ)−Q(x′′, μ)|
≤

∫
IRs

|Φ(z − Ax′)− Φ(z − Ax′′)|μ(dz)

=
∫
S

|Φ(z − Ax′)− Φ(z − Ax′′)|μ(dz)

+
∫

IRs\S
|Φ(z − Ax′)− Φ(z − Ax′′)|μ(dz)

≤ Lo · ‖A‖ · ‖x′ − x′′‖ · μ(S) +
∫

IRs\S
(α‖Ax′ −Ax′′‖+ β) μ(dz)

≤ (Lo + α)‖A‖‖x′ − x′′‖ + β · μ(IRs \ S)
where we have used Proposition 4.2.1 and the Lipschitz property of Φ discussed

above.

Consider the half spaces

H∗
k = {t ∈ IRs : d̃Tk t ≥ 0}, k = 1, . . . , �̃

and define

H

k =

⋃
y∈ZZm̄

{{Ax′ +Wy +H∗
k} � {Ax′′ +Wy +H∗

k}}

where � denotes the set-theoretic symmetric difference. Then

IRs \ S ⊂
�̃⋃

k=1

H

k .(3.1)

Fix some k ∈ {1, . . . , �̃} and let Bk ∈ L(IRs, IRs) be a non-singular linear trans-

formation sending H∗
k to the half space {t ∈ IRs : t1 ≥ 0}. Let θ̃k = θ

(1)
μ,k be a
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one-dimensional marginal density of the first component with respect to the image

measure μ ◦B−1
k fulfilling the boundedness and monotonicity assumptions listed in

the proposition.

Without loss of generality, we assume that [BkAx
′′]1 > [BkAx

′]1. Denote

τ ′k,y = [Bk(Ax
′ +Wy)]1 and τ

′′
k,y = [Bk(Ax

′′ +Wy)]1. Then it holds

μ(H

k ) = |det B−1

k |∑
y

∫ τ ′′
k,y

τ ′
k,y

θ̃k(τ ) dτ.(3.2)

Since D is bounded, there exists a finite subset Io ⊂ ZZm̄ (independent on x′, x′′)
such that the intervals [τ ′k,y, τ

′′
k,y] meet the interval in the monotonicity assumption

for θ̃k for at most the elements y in Io.

Without loss of generality, let us consider only those y �∈ Io such that τ ′k,y > 0. For

the remaining y �∈ Io a similar monotonicity argument applies. It holds

∑
y �∈Io

∫ τ ′′
k,y

τ ′
k,y

θ̃k(τ ) dτ ≤ ‖Bk‖‖A‖‖x′ − x′′‖ ∑
y �∈Io

θ̃k(τ
′
k,y).(3.3)

Let us show that
∑
y �∈Io θ̃k(τ

′
k,y) is finite: Indeed, by the rationality of W and W ′,

there are no accumulation points of {τ ′k,y}y �∈Io . Hence, there exists an ε > 0 such

that the monotonicity assumption on θ̃k implies

1 ≥ ∑
y �∈Io

∫ τ ′
k,y

τ ′
k,y−ε

θ̃k(τ ) dτ ≥ ∑
y �∈Io

∫ τ ′
k,y

τ ′
k,y−ε

θ̃k(τ
′
k,y) dτ = ε

∑
y �∈Io

θ̃k(τ
′
k,y).

For y ∈ Io the boundedness assumption on θ̃k yields the existence of a bound Lk > 0

such that

∑
y∈Io

∫ τ ′′
k,y

τ ′
k,y

θ̃k(τ ) dτ ≤ Lk · card Io · ‖Bk‖ · ‖A‖ · ‖x′ − x′′‖.(3.4)

By (3.1) – (3.4) there exists a constant L∗ > 0 such that

μ(IRs \ S) ≤ L∗‖A‖‖x′ − x′′‖ for all x′, x′′ ∈ D.

Together with the estimate from the beginning this completes the proof.

The following examples show that the above proposition is no longer valid when

omitting either the boundedness or the monotonicity assumptions on the marginal

densities. In the examples the second-stage program is always as in (1.3). Hence,

Φ(t) = 
t�.
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Example 4.3.7 Let Φ and A be given as in (1.3) and μ ∈ P(IR) with the density

θ(τ ) = τ−1/2 for 0 < τ ≤ 1/4,

which is unbounded.

We obtain

Q(x, μ) =

{
1 if − 3

4
≤ x ≤ 0

1− 2
√
x if 0 ≤ x ≤ 1

4
,

which is not Lipschitz continuous on neighbourhoods of xo = 0.

Example 4.3.8 Let Φ and A be given as in (1.3) and μ ∈ P(IR) with the density

θ(τ ) =

{
1/n for τ ∈

[
n, n+ 1

n2
· c
]
, n = 1, 2, ...

0 else,

where c :=
( ∞∑
n=1

1
n3

)−1
.

Obviously, the monotonicity assumption in Proposition 4.3.6 is not fulfilled.

We show that Q(., μ) is not Lipschitz continuous on neighbourhoods of xo = 0. First,

observe that (A3) holds in view of

∞∫
1

τθ(τ )dτ ≤
∞∑
n=1

(n+ 1) · 1
n
· 1

n2
· c = c

π2

6
+ 1.

For arbitrary x ∈ IR, 0 < x < 1 we have

Q(0, μ)−Q(x, μ) =
∞∑
n=1

n+x∫
n

θ(τ )dτ ≥
n̄(x)∑
n=1

1

n
· x,

where n̄(x) =
⌊√

c
x

⌋
.

Consider xk =
1
k2

· c (k = 1, 2, . . .). The above yields

1

xk
(Q(0, μ)−Q(xk, μ)) ≥

k∑
n=1

1

n
.

Hence, for k → ∞, the left-hand side tends to infinity, showing that Q(., μ) is not

Lipschitz continuous on neighbourhoods of xo = 0.
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The monotonicity assumption in Proposition 4.3.6 is, of course, fulfilled for a mea-

sure μ whose support (i.e. the smallest closed subset in IRs with μ-measure one) is

bounded. The proof of Proposition 4.3.6 has shown that, instead of for arbitrary

non-singular transformations, the assumptions have to hold only for specific trans-

formations related to W ′(IRm′
+ ). Let us remark that there are counterexamples (cf.

e.g. [95]) showing that boundedness of marginal densities is not implied by boun-

dedness of the density of the original measure and that boundedness of marginal

densities is not preserved under linear transformations of the original measure in

general.

To present a class of probability measures which Proposition 4.3.6 applies to, we

introduce the notation Mλ
r (a, b), for r ∈ IR \ {0}, λ ∈ [0, 1], a, b ≥ 0, cf. [17]:

Mλ
r (a, b) :=

{
(λar + (1− λ)br)1/r if a · b > 0

0 if a · b = 0.

By passing to the limit this can be extended to r = 0, r = −∞:

Mλ
o (a, b) = aλb1−λ (if a · b > 0) and

Mλ
−∞(a, b) = min{a, b}.

A Borel probability measure μ ∈ P(IRs) is called r-convex, r ∈ [−∞,+∞) (cf. [13],

[17], [78]) if, for each λ ∈ [0, 1],

μ(λC1 + (1− λ)C2) ≥ Mλ
r (μ(C1), μ(C2))(3.5)

holds for all Borel sets C1, C2 ⊂ IRs such that the Minkowski sum λC1 + (1 − λ)C2

is Borel. For r = 0 and r = −∞, μ is also called logarithmic-concave and quasi-

concave, respectively. SinceMλ
r (a, b) is increasing in r, with the remaining variables

fixed, the sets Mr of all r-convex measures are decreasing if r is increasing. In [13],

Theorem 3.2, and [84], Theorem 1, it is shown that μ ∈ Mr (r ∈ (−∞, 0]) if and

only if μ has a density θ such that

θ(λτ1 + (1 − λ)τ2) ≥ Mλ
r/(1−rs)(θ(τ1), θ(τ2))

for all λ ∈ [0, 1], τ1, τ2 ∈ IRs.

From the literature, a number of multivariate probability distributions are known

to be r-convex for some r ∈ (−∞, 0], e.g. the (non-degenerate) multivariate normal

distribution and the t-distribution (cf. [13], p.113).

Proposition 4.3.9 Assume that μ ∈ Mr for some r ∈ (−∞, 0] and that the support

of μ is the whole of IRs. Then the hypotheses of Proposition 4.3.6 are satisfied.
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Proof: First observe that, for each non-singular B ∈ L(IRs, IRs), we have μ◦B ∈ Mr

and supp(μ ◦ B) = IRs. Hence, we are done when having verified the hypotheses

on the one-dimensional marginal distributions in Proposition 4.3.6 for all measures

in Mr. Since Mo ⊂ Mr for each r < 0, we may restrict ourselves to r < 0. Let

μ ∈ Mr and μ(i) (i ∈ {1, . . . , s}) be the one-dimensional marginal distribution of

the i-th component. Let C (i) ⊂ IR be a Borel set, then, by definition,

μ(i)(C (i)) = μ(IR × . . .× IR× C (i) × IR× . . .× IR),

and we obtain by (3.5) that

μ(i) ∈ M(i)
r ,

where M(i)
r ⊂ P(IR) denotes the set of all Borel probability measures on IR that

satisfy (3.5).

Hence, by the theorem quoted above from [13], [84], μ(i) has a density function

θ = θ(i) : IR → IR such that θ
r

1−r is convex (r < 0). Furthermore, supp μ = IRs

implies supp μ(i) = IR.

Therefore, the function θ
r

1−r is continuous on IR, and, in view of the strict monoto-

nicity of the transformation t → t
r

1−r (t > 0), also θ is a continuous function on IR.

Thus, for μ(i) there exists a density function which is bounded on compact subsets

of IR.

Since θ =
(
θ

r
1−r

)1−r
r and t→ t

1−r
r is strictly monotonically decreasing (t > 0, r < 0),

local minimizers of θ
r

1−r are local maximizers of θ and vice versa. Since θ
r

1−r is con-

vex and
∫
IR
θ(τ )dτ = 1, all local maximizers of θ are global ones, and the set of global

maximizers is a bounded interval, which we denote by Ξ.

If there were local maximizers of θ outside Ξ, these would be local minimizers of

θ
r

1−r outside Ξ, in contradiction to the convexity of θ
r

1−r . Hence, θ fulfils the mono-

tonicity property in Proposition 4.3.6.

Since, furthermore, θ is bounded on compact sets, this implies boundedness of θ on

IR.

Using conditional distributions Proposition 4.3.6 can be extended to the general case

where both z and A are random.

Proposition 4.3.10 Assume (A1) – (A3) and let the conditional distribution μ2
1(A, .)

of z given A be absolutely continuous with respect to the Lebesgue measure on IRs

for μ2-almost all A ∈ IRms, (μ2 := μ ◦ π−1
2 ).Assume further that for any non-

singular linear transformation B ∈ L(IRs, IRs) and for μ2-almost all A ∈ IRms the
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one-dimensional marginal distributions of μ2
1(A, .) ◦B have densities which are uni-

formly bounded with respect to A and which, outside some bounded interval not

depending on A, are monotonically decreasing with growing absolute value of the

argument. Then Q(., μ) is Lipschitz continuous on any bounded subset of IRm.

Proof: Let D ⊂ IRm be bounded and x′, x′′ ∈ D. Then we have

|Q(x′, μ) −Q(x′′, μ)|
=

∣∣∣ ∫
IRS

(Φ(z − Ax′)−Φ(z − Ax′′))μ(d(z, A))
∣∣∣

=
∣∣∣ ∫
IRms

∫
IRs

(Φ(z − Ax′)− Φ(z − Ax′′))μ2
1(A, dz)μ2(dA)

∣∣∣
≤

∫
IRms

∣∣∣ ∫
IRs

Φ(z −Ax′)μ2
1(A, dz)−

∫
IRs

Φ(z − Ax′′)μ2
1(A, dz)

∣∣∣μ2(dA).

Our assumptions and Proposition 4.3.6 (cf. also its proof) imply that there exists a

constant L̃ > 0 (independent of A) such that

∣∣∣ ∫
IRs

Φ(z − Ax′)μ2
1(A, dz)−

∫
IRs

Φ(z − Ax′′)μ2
1(A, dz)

∣∣∣ ≤ L̃ · ‖A‖ · ‖x′ − x′′‖.

Hence we obtain

|Q(x′, μ) −Q(x′′, μ)| ≤ L̃
∫

IRms

‖A‖μ2(dA) · ‖x′ − x′′‖.

Note that ∫
IRms

‖A‖μ2(dA) =
∫

IRms

‖A‖
∫
IRs

μ2
1(A, dz)μ2(dA)

=
∫
IRS

‖A‖μ(d(z, A)).

Therefore, assumption (A3) yields the assertion.

If the random variables z and A are independent then the assumptions of Propo-

sition 4.3.10 can be verified using Proposition 4.3.6 since conditional and marginal

distributions coincide.

In the case of dependent random variables z and A the verification of the assumpti-

ons in Proposition 4.3.10 is not so obvious. However, at least for the situation where

we have a joint density for z and the random components of A we can calculate a
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density of μ2
1(A, .) as a quotient of the joint density and the marginal density for A.

The one-dimensional case of simple integer recourse is treated in detail in [60], [61],

[66]. Beside continuity statements the authors derive sufficient conditions for the dif-

ferentiability of Q(., μ) and descriptions of the convex hull of the epigraph of Q(., μ).

Let us now study the continuity of Q as a function jointly of x ∈ IRm and

μ ∈ P(IRS) - the set of all Borel probability measures on IRS. While at IRm we have

the usual convergence, a suitable notion on P(IRS) is that of weak convergence of

probability measures which covers a number of specific convergence modes for proba-

bility measures (e.g. pointwise convergent densities, discretizations via conditional

expectations, convergence of empirical measures). A sequence {μn} of probability

measures in P(IRS) is said to converge weakly to μ ∈ P(IRS), i.e. μn
w−→ μ, if for

any bounded continuous function h : IRS → IR we have∫
IRS

h(ξ)μn(dξ) →
∫
IRS

h(ξ)μ(dξ) as n→ ∞.

A detailed description of the topology of weak convergence of probability measures

can be found in the monograph [9].

For notational convenience we introduce the following subset of probability measures

Δp,K(IR
S) = {ν ∈ P(IRS) :

∫
IRS

‖(z, A)‖pν(d(z, A)) ≤ K}

where p > 1 and K > 0 are fixed real numbers.

Proposition 4.3.11 Assume (A1), (A2) and let μ ∈ Δp,K(IR
S) for some p > 1,

K > 0. If the conditional distribution μ2
1(A, .) of z given A is absolutely continuous

with respect to the Lebesgue measure on IRs for μ2-almost all A ∈ IRms, then Q, as

a function from IRm ×Δp,K(IR
S) to IR, is continuous on IRm × {μ}.

Proof: Take an arbitrary x ∈ IRm and consider sequences {xn}, {μn} in IRm and

Δp,K(IR
S), respectively, such that xn → x and μn

w→ μ as n → ∞. We introduce

functions hn : IRS −→ IR and h : IRS −→ IR defined by

hn(z, A) = Φ(z − Axn) and h(z, A) = Φ(z −Ax)

which are measurable due to the lower semicontinuity of Φ. Consider the set Eo(x)

of all those (z, A) ∈ IRS such that there exists a sequence {(zn, An)}∞n=1 in IRS with

(zn, An) → (z, A) and hn(zn, An) �→ h(z, A).
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In our situation it holds Eo(x) = E(x) with E(x) as in Proposition 4.3.2. Indeed, the

inclusion Eo(x) ⊆ E(x) is easy to see. For the reverse inclusion let (z, A) ∈ E(x) and

{tn}∞n=1 be a sequence in IR
s such that tn → z−Ax and Φ(tn) �→ Φ(z−Ax) as n→ ∞.

Now consider the sequence {zn, An)}∞n=1 given by An = A and zn = tn+Axn. Then

it holds

(zn, An) → (z, A) and hn(zn, An) = Φ(zn − Anxn) = Φ(tn) �→ Φ(z − Ax) = h(z, A).

Hence, (z, A) ∈ Eo(x).

Our assumption now implies μ(Eo(x)) = 0 (cf. proof of Corollary 4.3.3) and we can

apply Rubin’s Theorem ([9], Theorem 5.5). This yields

μn ◦ h−1
n

w−→ μ ◦ h−1 as n→ ∞.(3.6)

To end up with

∫
IRS

hn(z, A)μn(d(z, A)) −→
n→∞

∫
IRS

h(z, A)μ(d(z, A)),(3.7)

which, of course, is just the assertion, we will show that

lim
a→∞ sup

n

∫
{(z,A):|hn(z,A)|≥a}

|hn(z, A)|μn(d(z, A)) = 0.(3.8)

Since p > 1, it holds∫
IRS

|hn(z, A)|pμn(d(z, A))

≥
∫

{|hn(z,A)|≥a}
|hn(z, A)| · |hn(z, A)|p−1μn(d(z, A))

≥ ap−1
∫

{|hn(z,A)|≥a}
|hn(z, A)|μn(d(z, A)).

Therefore ∫
{|hn(z,A)|≥a}

|hn(z, A)|μn(d(z, A)) ≤ a1−p
∫
IRS

|hn(z, A)|pμn(d(z, A)).(3.9)

Proposition 4.2.1 and hn(0) = 0 imply

|hn(z, A)|p ≤ (α‖z‖+ α‖xn‖ · ‖A‖+ β)p.
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Since {xn} is bounded and all μn belong to Δp,K(IR
S) we now have a positive

constant c such that∫
IRS

|hn(z, A)|pμn(d(z, A)) ≤ c for all n ∈ IN.

Using (3.9) we thus obtain (3.8). Finally, (3.6) and Theorem 5.4 in [9] yield (3.7),

and the proof is complete.

Remark 4.3.12 It is straightforward to replace the above assumption on μ2
1(A, .)

by μ(E(x)) = 0 (cf. Proposition 4.3.2) and to end up with continuity of

Q : IRm ×Δp,K(IR
S) → IR at (x, μ).

Proposition 4.3.11 extends corresponding results for non-integer stochastic programs

in [48], [88]. From an example in [88] it is also clear that the joint continuity of Q

is lost if there is no assumption finally leading to the uniform integrability in (3.8).

We have achieved this by claiming that μ ∈ Δp,K(IR
S), p > 1, K > 0.

We close this section with an example illustrating the difficulties that occur when

aiming at quantitative continuity results for Q(x, .) as a function on a suitable (me-

tric) space of probability measures. For non-integer stochastic programs such results

can be obtained when equipping a suitable subset of P(IRS) with the Wasserstein

metric (Proposition 1.3.2 in Chapter 1). We will give an example that, for stochastic

integer programs, there is no Hölder continuity estimate for Q(x, .) with respect to

the Wasserstein distance. This also means that there cannot be a Hölder estimate

with respect to the Prokhorov and the Dudley (or β-) metric, respectively ([81],

[92]).

For the comfort of the reader we briefly introduce the Wasserstein distanceW1(μ, ν)

of two probability measures μ and ν belonging to

M1(IR
S) := {μ′ ∈ P(IRS) :

∫
IRS

‖z′‖μ′(dz′) < +∞}.

It is given by

W1(μ, ν) = inf
{ ∫
IRS×IRS

‖z′ − z′′‖η(dz′, dz′′) : η ∈ D(μ, ν)
}

where

D(μ, ν) := {η ∈ P(IRS × IRS) : η ◦ π−1
1 = μ, η ◦ π−1

2 = ν}
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and π1, π2 denote the first and second projections, respectively.

For details we refer to [81] where it is also shown that for μ, ν ∈ M1(IR)

W1(μ, ν) =

∞∫
−∞

|Fμ(t)− Fν(t)|dt(3.10)

where Fμ, Fν denote the distribution functions of μ and ν, respectively.

Example 4.3.13 Let in (1.2) Φ(z − x) = min{y : y ≥ z − x, y ∈ ZZ}, i.e. A = 1

non-random, and let μ be a distribution of z with support contained in the closed

interval [−1/2,+1/2]. It can be computed (cf. also the explicit formulae in [66])

that for x ∈ [−1/4, 1/4] we have Q(x, μ) = 1 − Fμ(x), where Fμ again denotes the

distribution function of μ. Consider μn ∈ P(IR) (n ≥ 1) with support in [−1/2, 1/2]

and continuous distribution function Fμn fulfilling

Fμn(t) =

{
t1/n + 1

2
for 0 ≤ t ≤ rn

−|t|1/n + 1
2

for −rn ≤ t ≤ 0

with a suitably fixed real number rn > 0, rn < (1
2
)n. Let εn > 0 such that εn < rn.

We construct perturbations μn,εn of μn whose distribution functions coincide with

those of μn for t /∈ [−εn, εn] and which are defined on [−εn, εn] as follows

Fμn,εn
(t) =

{ 1
2
− ε1/nn for −εn ≤ t ≤ 0

1
2
− ε1/nn + 2ε

1−n
n

n · t for 0 ≤ t ≤ εn.

Using (3.10) we compute W1(μn, μn,εn) = ε
n+1
n

n . On the other hand,

|Q(0, μn)−Q(0, μn,εn)| = |Fμn(0) − Fμn,εn
(0)| = ε1/nn . Hence

|Q(0, μn)−Q(0, μn,εn)| =W1(μn, μn,εn)
1/n+1. Since the construction was possible for

any n ∈ IN , n ≥ 1, there is no W1-based Hölder estimate for Q(x, .).

4.4 Stability

In this section we study consequences of the above continuity results for the stability

of

P (μ) min{g(x) +Q(x, μ) : x ∈ C}

when the underlying measure μ is subjected to perturbations. Of course, P (μ) is a

non-convex program, and, hence, also local minimizers should be included into the

analysis. Therefore, beside Berge’s classical stability theory for abstract parametric
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programs [7], local stability results from [57] and [86] will be the main tools for our

investigations. We will see that, having the continuity properties of Section 4.3 at

one’s disposal and using the techniques of [7], [57], [86], it is only a small step to

arrive at the desired stability of P (μ).

Let V ⊂ IRm be an arbitrary subset and cl V denote the closure of V . Then we

introduce the following localized versions for the optimal-value function and the

solution set mapping:

ϕV (μ) := inf{g(x) +Q(x, μ) : x ∈ C ∩ cl V }
ψV (μ) := {x ∈ C ∩ cl V : g(x) +Q(x, μ) = ϕV (μ)}.

A central observation in [57], [86] is that local minimizers of parametric programs

may behave unstable when directly transferring assumptions from global stability

analysis. For local stability analysis it turns out crucial that considerations include

all local minimizers that are, in some sense, nearby the minimizers one is interested

in. This leads to the concept of a complete local minimizing set (CLM set) coined

in [86], which can be formulated in our terminology as follows:

Given μ ∈ P(IRs), a non-empty set M ⊂ IRm is called a CLM set for P (μ) with

respect to an open set V ⊂ IRm if M ⊂ V and M = ψV (μ). Of course, the set of

global minimizers is always a CLM set; further examples are strict local minimizers.

For more details consult [57], [86].

Considering P (μ) as a parametric program whose parameter space is P(IRS) endo-

wed with the topology of weak convergence of probability measures (cf. Section 4.3

and [9]) we have the following result:

Proposition 4.4.1 Assume (A1), (A2), let μ ∈ Δp,K(IR
S) for some p > 1,

K > 0 and let the conditional distribution μ2
1(A, .) of z given A be absolutely con-

tinuous with respect to the Lebesgue measure on IRs for μ2-almost all A ∈ IRms.

Suppose further that M ⊂ IRm is a CLM set for P (μ) with respect to some bounded

open set V ⊂ IRm, i.e. M = ψV (μ).

Then

(i) the function ϕV (from Δp,K(IR
S) to IR) is continuous at μ;

(ii) the multifunction ψV (from Δp,K(IR
S) to IRm) is Berge upper semicontinuous

at μ, i.e. for any open set G in IRm with G ⊃ ψV (μ) there exists a neighbour-

hood U of μ in Δp,K(IR
S) such that ψV (μ

′) ⊂ G whenever μ′ ∈ U ;

(iii) there exists a neighbourhood U ′ of μ in Δp,K(IR
S) such that for all μ′ ∈ U ′ we

have that ψV (μ
′) is a CLM set for P (μ′) with respect to V .
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Proof: Using Proposition 4.3.11 the proof of (i) and (ii) follows the lines of Berge’s

theory (cf. also [4], proof of Theorem 4.2.2) and is therefore not repeated here.

When verifying (iii) the non-emptiness of ψV (μ
′) is gained via the lower semi-

continuity of Q(., μ′) (Proposition 4.3.1); the CLM property then follows from (ii).

Let us add a few comments on the above proposition:

If the location of the (bounded) CLM set ψV (μ) is known, it could be helpful to

know that the assumption on μ2
1(A, .) can be relaxed to claiming that μ(E(x)) = 0

for any x ∈ C ∩ cl V (cf. Remark 4.3.12). Indeed, for the mentioned analysis along

the lines of Berge the continuity of Q is only needed on (C ∩ cl V )× {μ}.
To see that the continuity assumption on μ2

1(A, .) can not be relaxed in general

we consider the following example where only the right-hand side z is random (cf.

(1.3)):

P (μ) min{Q(x, μ) : x ≤ 0},

where

Q(x, μ) =
∫
IR

Φ(z − x)μ(dz),

Φ(t) = min{y : y ≥ t, y ∈ ZZ}.

Let μ be the discrete probability measure with mass 1 at zero and consider a sequence

{μn} in P(IR) where μn assigns mass 1 to zn with zn > 0, zn → 0. The sequence {μn}
weakly converges to μ. Moreover, it holds Q(x, μ) = 
−x� and Q(x, μn) = 
zn−x�.
We consider global minimizers (i.e. V = IR) and obtain ϕ(μ) = 0, ϕ(μn) = 1 for all

n, showing that ϕ is not continuous at μ.

If one relaxes the CLM property of M to assuming that M is a bounded set of local

minimizers to P (μ) then it is also possible to construct counterexamples. Here, the

perturbed programs have no local minimizers at all near M how ”small” the per-

turbation is ever taken.

When analyzing (iii) it is clear that in view of the lower semicontinuity of Q(., μ′)
(Proposition 4.3.1) and the compactness of cl V the sets ψV (μ

′) are always non-

empty. In this context, the essence of (iii) is that non-emptiness of ψV (μ
′) is not

enforced by restricting the objective to a compact, but that, for μ′ sufficiently close

to μ, the sets ψV (μ
′) again consist of local minimizers to P (μ′).

The analogous result to Proposition 4.4.1 for two-stage stochastic programs without

integer requirements was derived in [48], [88].
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In [1] the authors investigated the stability of general stochastic programs invol-

ving discontinuous integrands. Compared with their fairly comprehensible stability

conditions, Proposition 4.4.1 rather focuses on conditions which are verifiable for

stochastic programs with mixed-integer recourse.

Proposition 4.4.1 may also be read as a general justification for numerical proce-

dures that rely on approximating the distribution μ by simpler ones. For instance,

discretizing μ via conditional expectations ([49], [10]) yields, a weakly convergent

sequence of probability measures, provided that support partitions become arbitra-

rily small. Proposition 4.4.1 then ensures convergence of local optimal values and

optimal solutions. Of course, up to now there are no comprehensive algorithms to

solve stochastic integer programs with discrete probability distributions. However,

in the recent paper [61] some substantial progress was made for stochastic programs

with simple integer recourse.
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Chapter 5

Rates of Convergence in

Stochastic Programs with

Complete Integer Recourse

Abstract

The stability of stochastic programs with mixed-integer recourse under perturbati-

ons of the integrating probability measure is considered from a quantitative view-

point. Objective-function values of perturbed stochastic programs are related to

each other via a variational distance of probability measures based on a suitable

Vapnik-Červonenkis class of Borel sets in a Euclidean space. This leads to Hölder

continuity of local optimal values. In the context of estimation via empirical measu-

res the general results imply qualitative and quantitative statements on the asym-

ptotic convergence of local optimal values and optimal solutions.

5.1 Introduction

Consider the following two-stage stochastic integer program:

P (μ) min{g(x) +Q(x, μ) : x ∈ C},

where

Q(x, μ) =
∫
IRs

Φ(z − Ax)μ(dz)(1.1)

and

105



106 Rates of Convergence in Complete Integer Recourse

(1.2) Φ(t) = min{qTy+ q′Ty′ :Wy+W ′y′ = t, y′ ≥ 0, y ≥ 0, y′ ∈ IRm′
, y ∈ ZZm̄}.

We assume that g : IRm → IR is continuous, C ⊂ IRm non-empty, closed, q ∈ IRm̄,

q′ ∈ IRm′
, thatW ∈ L(IRm̄, IRs),W ′ ∈ L(Rm′

, IRs) are matrices with rational entries

and that μ belongs to P(IRs) – the set of all Borel probability measures on IRs.

The model P (μ) arises from a minimization problem with uncertain constraint para-

meters whose realizations are not known when having to fix the (first-stage) decision

variable x. Infeasibilities t occuring after the realization of the uncertain parame-

ters can be compensated at cost Φ(t) by the second-stage optimization procedure

(1.2). Altogether, P (μ) aims at finding a first stage decision x such that the sum of

the first stage costs g(x) and the expected compensation (or recourse) costs Q(x, μ)

becomes minimal.

The above model essentially differs from traditional two-stage stochastic programs

(cf. [46], [131]) by the integrality constraints in the second stage. Whereas integrality

in the first stage (if at all) can be dealt with by fairly conventional means ([135]),

its presence in the second stage is much more cumbersome since the integrand Φ in

(1.1) is discontinuous. However, there are several examples in the literature showing

that integrality of second-stage decisions has to or at least should be included into

the model ([65], [83], [109]).

Structural properties of stochastic programs with integer recourse have been stu-

died in [1], [60], [66], [83], [104], [118]. The present chapter extends convergence

results from [1] and from Chapter 4 by rates of convergence with respect to suitable

distances of probability measures. More specifically, we consider P (μ) as a para-

metric program with the parameter μ varying in some (metric) space of probability

measures. Then we derive Hölder estimates for Q (cf. (1.1)) as a function of the

integrating probability measure which leads to corresponding results for local opti-

mal values of P (μ). Our analysis is motivated by the incomplete information on the

underlying measure μ that is often encountered (e.g. [27]). If μ is approximated by

empirical measures then our general results specify to qualititative and quantitative

results on the asymptotic convergence of (local) optimal values and optimal soluti-

ons. Another motivation for studying P (μ) as a parametric program in μ is given

by numerical techniques that rely on approximating μ by simpler measures ([10],

[49]).

When studying the quantitative continuity of Q as a function of μ a proper di-

stance of probability measures has to be selected at the very beginning. Here, we

want to understand by ”proper” that the distance should both fit to the discon-
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tinuous integrand Φ and metrize (possibly under mild additional hypotheses) the

weak convergence of probability measures ([9]). The difficulty of selecting a suitable

probability distance is illustrated by Example 4.3.13 in Chapter 4 which shows that

probability metrics like the Wasserstein distance ([81]), which led to convergence

rates for Q(x, .) in the non-integer recourse case ([93]), fail when it comes to integer

recourse.

In the present chapter we propose the following variational distance (or discrepancy)

for quantitative investigations of integer recourse models:

αBK(μ, ν) := sup{|μ(B)− ν(B)| : B ∈ BK}

where BK is a suitable class of convex Borel sets in IRs to be specified in Section 5.3.

If the second stage (1.2) is a pure-integer linear program, then BK can be taken as

the class of all lower left orthants in IRs, and αBK coincides with the uniform (or

Kolmogorov-Smirnov) distance of distribution functions. In the general case, BK
still can be selected as a Vapnik-Červonenkis class of subsets of IRs, which allows

some interesting conclusions on the asymptotic behaviour of estimators based on

empirical measures (see Section 5.5 for details).

The chapter is organized as follows: In Section 5.2 we collect some prerequisites from

parametric integer programming on the value function Φ (cf. (1.2)). Section 5.3

contains the central Hölder estimates for Q(x, .). Consequences for the quantitative

stability of local optimal values of P (μ) are derived in Section 5.4. In Section 5.5 we

elaborate the special case where μ is estimated via empirical measures. Throughout,

‖.‖ denotes the �∞-norm in the Euclidean space under consideration; B(t, r) denotes

the closed ball around t with radius r (with respect to ‖.‖).

5.2 Properties of the Value Function

As prerequisites for our subsequent considerations we have to collect some properties

of the value function Φ (cf. (1.2)). The basic literature in this respect consists of [4],

[5], [12]. Let us assume that, for each t ∈ IRs, the constraint set M(t) ⊆ ZZm̄× IRm′

in (1.2) is non-empty and that Φ(0) = 0. Then Φ(t) ∈ IR for all t ∈ IRs (cf. e.g.

[71], Prop. 1.6.7). Since Φ is discontinuous, in general, it is interesting to ask for

continuity regions. Denoting by pr1(M(t)) the projection of M(t) to ZZm̄ we have

the following result:

Lemma 5.2.1 ([4], Theorem 3.4.3, Theorem 5.6.5).

The restrictions of Φ to subsets of IRs where pr1(M(.)) is constant are continuous.
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Subsets of IRs where the projection pr1(M(.)) is constant can be described via

K :=W ′(IRm′
+ ) – the positive span of W ′:

Lemma 5.2.2 ([4], Lemma 5.6.1, Lemma 5.6.2, Theorem 5.6.3).

There exists a countable partition IRs =
∞⋃
i=1

Bi such that

(i) pr1(M(.)) is constant on Bi and, hence, Φ|Bi is continuous;

(ii) each of the sets Bi has a representation Bi = {ti + K} \ No⋃
j=1

{tij + K} where

ti, tij ∈ IRs (i ∈ IN, j = 1, . . . , No), and No does not depend on i.

In [4] the rationality of both W and W ′ is employed to establish the above result.

The authors first show that Bi can be represented as the (set-theoretic) difference of

an (infinite) intersection and an (infinite) union of polyhedral cones. Utilizing the

rationality of W they show that the infinite intersection can be replaced by just one

cone; the rationality of W ′ implies that the infinite union of cones can be replaced

by a finite one. In this context, we refer to an example at page 58 in [4] where some

pathologies are illustrated that can occur if W contains irrational elements.

Lemma 5.2.2 implies a representation of Φ|Bi. It holds

Φ|Bi(t) = min{qTy + q′Ty′ : W ′y′ = t−Wy; y ∈ pr1(M(t)), y′ ≥ 0}(2.1)

= min{qTy + Φ̃(t−Wy) : y ∈ pr1(M(t))}

where Φ̃(t̃) := min{q ′Ty′ : W ′y′ = t̃, y′ ≥ 0} denotes a value function of a linear

program with parameters in the right-hand side of the constraints. The assumptions

on Φ imposed at the beginning imply that Φ̃(t̃) ∈ IR for any t̃ ∈ pos W ′ = K.

Furthermore, it is well-known from the literature ([72], [126]) that Φ̃|K admits a

representation

Φ̃|K(t̃) = max
i=1,...,Ñ

d̃Ti t̃

where d̃i (i = 1, . . . Ñ) are determined by q ′ and W ′.
Thus, the representation (2.1) says that Φ|Bi is the pointwise minimum of countably

many continuous, piecewise linear functions. Moreover, the above argument proves

the following lemma:

Lemma 5.2.3 Φ|Bi is Lipschitz continuous with a constant Lo > 0 not depending

on i.
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Let us now turn to some proximity results for the value function Φ and for optimal

solutions of (1.2).

Lemma 5.2.4 ([5], Theorem 8.1; [12], Theorem 2.1).

There exist constants β1 > 0, β2 > 0, γ1 > 0, γ2 > 0 such that for all t1, t2 ∈ IRs we

have

(i) |Φ(t1)− Φ(t2)| ≤ β1‖t1 − t2‖+ γ1,

(ii) if (y1, y
′
1) ∈ ZZm̄ × IRm′

is optimal in (1.2) with respect to parameter t1, then

there exists a (y2, y
′
2) ∈ ZZm̄ × IRm′

optimal with respect to t2 such that

‖(y1, y′1)− (y2, y
′
2)‖ ≤ β2‖t1 − t2‖+ γ2.

A first consequence of the above lemma which will turn out useful later on is the

following.

Lemma 5.2.5 There exists a number N1 ∈ IN such that for any to ∈ IRs the ball

B(to, 1) is intersected by at most N1 different continuity regions Bi of Φ.
Proof: Let to ∈ IRs be arbitrary and (yo, y

′
o) be optimal in (1.2) with respect to to.

Let t ∈ B(to, 1). By Lemma 5.2.4(ii) there exists a (y, y ′) ∈ ZZm̄× IRm′
optimal with

respect to t such that

‖(yoy′o)− (y, y′)‖ ≤ β2‖to − t‖+ γ2 ≤ β2 + γ2 =: ro,

i.e. for any t ∈ B(to, 1) there exists an optimal (y, y ′) whose y-component belongs

to B(yo, ro) ∩ ZZm̄.

Recalling the representation (2.1) we obtain that for any t ∈ B(to, 1)
Φ(t) = min{qTy + Φ̃(t−Wy) : y ∈ pr1(M(t)) ∩ B(yo, ro)}.

Since there are only finitely many different subsets of pr1(M(t))∩B(yo, ro) the proof

is complete.

A situation deserving special attention is that of pure integer recourse, i.e. Φ is

given by

Φ(t) = min{qTy :Wy ≥ t, y ∈ ZZm̄
+ }.

Introducing slack variables y′ ∈ IRs this fits into the above setting and we have

K = −IRs
+. Furthermore, q ′ = 0 which leads to Φ̃(t̃) = 0 for all t̃ ∈ K, and

Lemma 5.2.3 specifies to Φ|Bi being constant for all i.
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5.3 Rates of Convergence for Expectation Func-

tions

The following basic assumptions are imposed throughout. They guarantee that (1.1)

and (1.2) are well-defined.

(A1) For all t ∈ IRs there exist y ∈ ZZm̄, y′ ∈ IRm′
such that y ≥ 0, y′ ≥ 0 and

Wy +W ′y′ = t.

(A2) There exists a u ∈ IRs such that W Tu ≤ q and W ′Tu ≤ q′.

(A3) It holds that
∫
IRs

‖z‖μ(dz) < +∞.

Note that these assumptions can be read as natural extensions of counterparts for

linear stochastic programs with non-integer recourse ([46], [131]). In Chapter 4 it

is shown that (A1) – (A3) imply that Q(., μ) is a lower semicontinuous real-valued

function on IRm. Let us further remark that (A2) is equivalent to Φ(0) = 0 (which

appeared as an assumption in Section 5.2) and that (A1) in particular implies that

K = posW ′ has a non-empty interior.

We now address the problem of finding upper estimates for |Q(x, μ) − Q(x, ν)| in
terms of the underlying probability measures μ, ν ∈ P(IRs). Proposition 4.3.11 in

Chapter 4 contains a sufficient condition for the joint continuity of Q in x and μ

with respect to the product topology of the usual one on IRm and that of weak

convergence on P(IRs).

In what follows we will show that a certain discrepancy (or variational distance of

probability measures) leads to Hölder estimates of Q(x, .). Given a class Bo ⊂ B(IRs)

of Borel sets in IRs, the discrepancy αBo(μ, ν) is defined by

αBo(μ, ν) := sup{|μ(B)− ν(B)| : B ∈ Bo}.
Popular instances of Bo in the literature are the families of all lower left orthants or

of all convex Borel sets in IRs (cf. e.g. [8]). For us, a class in between these two

families will be important: Let BK ⊆ B(IRs) denote the class of all (closed) bounded

polyhedra in IRs each of whose facets (i.e. (s−1)-dimensional faces) parallels a facet

of K = posW ′ or a facet of
s

��
i=1

[0, 1].

The discrepancy αBK is then even a metric on P(IRs) which can be seen as follows:

From the definition of a discrepancy αBo we deduct the basic properties of a metric,

except the one that αBo(μ, ν) = 0 implies μ = ν. Let Borth denote the family of

all (closed) lower left orthants in IRs and Bbox denote the family of all boxes, i.e.
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all (closed) bounded polyhedra in IRs whose facets are parallel to facets of
s

��
i=1

[0, 1].

Then it holds for all μ, ν ∈ P(IRs)

αBK(μ, ν) ≥ αBbox
(μ, ν) ≥ αBorth

(μ, ν)

where the last inequality follows from the monotonicity of μ and ν on ascending

sequences of sets. Therefore, αBK(μ, ν) = 0 implies αBorth
(μ, ν) = 0. Since αBorth

is

just the uniform (or Kolmogorov-Smirnov) distance of distribution functions (which

is known to be a metric on P(IRs),[81]), this implies μ = ν.

Let us further introduce

Δp,K(IR
s) :=

{
ν ∈ P(IRs) :

∫
IRs

‖z‖pν(dz) ≤ K
}

where p > 1 and K > 0 are fixed constants.

Then, the following estimate with respect to the discrepancy α(μ, ν) := αBK(μ, ν) is

valid:

Proposition 5.3.1 Suppose (A1), (A2) and let D ⊂ IRm be non-empty and boun-

ded.

Then there exist constants L > 0 and δ > 0 such that

sup
x∈D

|Q(x, μ)−Q(x, ν)| ≤ L · α(μ, ν) p−1
p(s+1)

whenever μ, ν ∈ Δp,K(IR
s), α(μ, ν) < δ.

Proof: Let x ∈ D be arbitrary and μ, ν ∈ Δp,K(IR
s) such that α(μ, ν) < δo := 1.

The bound δo will be further shrinked in the course of the proof. Define the radii

R := α(μ, ν)−1/p(s+1) and r := α(μ, ν)
p−1

p(s+1) .

It holds

|Q(x, μ)−Q(x, ν)| =
∣∣∣ ∫
IRs

Φ(z − Ax)(μ− ν)(dz)
∣∣∣(3.1)

≤
∣∣∣ ∫
Ax+Bo

Φ(z − Ax)(μ− ν)(dz)
∣∣∣+ ∣∣∣ ∫

IRs\{Ax+Bo}
Φ(z − Ax)(μ− ν)(dz)

∣∣∣

where Bo = B(0, R).

Now split Bo into (l
∞−) balls of radius r. The splitting is carried out in a disjunctive

way, i.e. Bo is partitioned into disjoint (measurable) sets whose closures are closed

balls with radius r. In the splitting, balls of radius r are used as long as possible;
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possible gaps are filled with maximal balls of radius less than r. Hence, the number

of elements in the partition of Bo is bounded above by (R
r
+ 1)s ≤ (2R

r
)s.

Each element of the above partition intersects certain continuity regions Bi of Φ
(cf. Lemma 5.2.2); by Lemma 5.2.5 it intersects at most N1 of such regions. From

Lemma 5.2.2(ii) it can be seen that each Bi splits into disjoint (measurable) subsets

whose closures are polyhedra with facets parallel to suitable facets of K. Moreover,

the number of such subsets can be bounded above by a constant only depending

on No (cf. Lemma 5.2.2(ii)) and the number of facets of K. The constant does not

depend on i.

Altogether, Bo is splitted into disjoint subsets Bj (j = 1, . . . , N) whose closures are

polyhedra with facets parallel to suitable facets of K or of
s

��
i=1

[0, 1], i.e. the closures

belong to BK. Furthermore, there exists a constant κ > 0 which is independent on

R and r such that N ≤ κ · (R
r
)s. From each of the sets Bj (j = 1, . . . , N) we pick

an element bj and continue (3.1):

|Q(x, μ)−Q(x, ν)|(3.2)

≤
∣∣∣ N∑
j=1

∫
Ax+Bj

(Φ(z − Ax)−Φ(bj))(μ− ν)(dz) +
N∑
j=1

∫
Ax+Bj

Φ(bj)(μ− ν)(dz)
∣∣∣

+
∣∣∣ ∫
IRs\{Ax+Bo}

Φ(z − Ax)(μ− ν)(dz)
∣∣∣

≤
N∑
j=1

( ∫
Ax+Bj

|Φ(z − Ax)− Φ(bj)|μ(dz) +
∫

Ax+Bj

|Φ(z − Ax)− Φ(bj)|ν(dz)
)

+
N∑
j=1

|Φ(bj)| ·
∣∣∣ ∫
Ax+Bj

(μ− ν)(dz)
∣∣∣+ ∣∣∣ ∫

IRs\{Ax+Bo}
Φ(z −Ax)(μ− ν)(dz)

∣∣∣
≤ Lo · 2r(μ(Ax+Bo) + ν(Ax+Bo)) +

+(β1R + γ1) ·N · α(μ, ν) +
∣∣∣ ∫
IRs\{Ax+Bo}

Φ(z − Ax)(μ− ν)(dz)
∣∣∣.

The first member of the above sum results from Lemma 5.2.3 and the fact that

diam Bj ≤ 2r for all j = 1, . . . , N . Concerning the second member we refer to

Lemma 5.2.4(i) and the fact that Φ(0) = 0. Furthermore for any j = 1, . . . , N

|μ(Ax+Bj)− ν(Ax+Bj)| ≤ sup{|μ(B)− ν(B)| : B ∈ BK}
where, if necessary, Ax+Bj is approximated by a monotone sequence of polyhedra

in BK and the estimate is gained by passing to the limit.
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Now suppose in addition that α(μ, ν) ≤ δ1 where δ1 is selected such that β1R ≥ γ1
and

IRs \ {Ax+Bo} ⊂ {‖z‖ ∈ IRs : ‖z‖ ≥ 1

2
R} for all x ∈ D

(note that D is bounded).

Then we can continue (3.2) as follows

|Q(x, μ)−Q(x, ν)|(3.3)

≤ 4Lor + 2β1R ·N · α(μ, ν) +
∫

‖z‖≥ 1
2
R

|Φ(z−Ax)|μ(dz) +
∫

‖z‖≥ 1
2
R

|Φ(z−Ax)|ν(dz)

≤ 4Lor + 2β1R ·N · α(μ, ν) +
∫

‖z‖≥ 1
2
R

(β1‖z − Ax‖+ γ1)(μ + ν)(dz)

(by Lemma 5.2.4(i) and Φ(0) = 0)

≤ 4Lo · r + 2β1R ·N · α(μ, ν) +
∫

‖z‖≥ 1
2
R

(β1‖z‖+ β1‖Ax‖+ γ1)(μ+ ν)(dz).

Let α(μ, ν) ≤ δ2 where δ2 is selected such that β1‖z‖ ≥ β1‖Ax‖+ γ1 for all x ∈ D

and all ‖z‖ ≥ 1
2
R. Then we can continue

≤ 4Lor + 2β1R ·N · α(μ, ν) + 2β1

∫
‖z‖≥ 1

2
R

‖z‖(μ+ ν)(dz).

Now recall that μ, ν ∈ Δp,K(IR
s). This implies

2K ≥
∫
IRs

‖z‖p(μ + ν)(dz) ≥
∫

‖z‖≥ 1
2
R

‖z‖ · ‖z‖p−1(μ + ν)(dz)

≥ (
1

2
R
)p−1

∫
‖z‖≥ 1

2
R

‖z‖(μ+ ν)(dz).

Hence we can continue (3.3)

|Q(x, μ)−Q(x, ν)| ≤ 4Lor+2β1R ·N ·α(μ, ν)+2β1 ·2K ·2(p−1) ·R−(p−1).(3.4)

The above estimate holds for all x ∈ D and all μ, ν ∈ Δp,K(IR
s) such that

α(μ, ν) ≤ δ := min{δo, δ1, δ2}. Inserting N ≤ κ(R
r
)s, R = α(μ, ν)−1/p(s+1) and

r = α(μ, ν)
p−1

p(s+1) yields the assertion.
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Corollary 5.3.2 Suppose (A1), (A2) and that there exists a bounded set S ⊂ IRs

such that both the supports of μ, ν ∈ P(IRs) are contained in S. Let D ⊆ IRm be

non-empty and bounded. Then there exist constants L > 0 and δ > 0 such that

sup
x∈D

|Q(x, μ)−Q(x, ν)| ≤ L · α(μ, ν)1/s+1

whenever α(μ, ν) < δ.

Proof: In the same notation as in the proof of Proposition 5.3.1 we define the radius

r := α(μ, ν)1/s+1 and put R > 0 as a constant such that S ⊂ Ax+Bo for any x ∈ D.

Repeating the proof of Proposition 5.3.1 until (3.2) and inserting the expressions for

r and N ≤ κ · (R
r
)s = κ · Rs · α(μ, ν)−s/s+1 yields the desired estimate.

Remark 5.3.3 A class B of Borel sets in IRs is called a μ-uniformity class if

sup{|μ(B)− μn(B)| : B ∈ B} → 0 holds for every sequence {μn} in P(IRs) conver-

ging weakly to μ ∈ P(IRs) (cf.[8]). Theorem 2.11 in [8] says that the family Bc of all
convex Borel sets in IRs is a μ-uniformity class if μ is absolutely continuous with re-

spect to the Lebesgue measure in IRs. Since BK ⊂ Bc, this implies that α(μn, μ) → 0

provided that {μn} converges weakly to μ and μ is absolutely continuous.

Remark 5.3.4 In Chapter 4, Proposition 4.3.11, it is stated that Q, as a function

from IRm×Δp,K(IR
s) to IR, is continuous on IRm×{μ}, provided that μ is absolutely

continuous and Δp,K(IR
s) is equipped with weak convergence of probability measures.

By the above remark this result is now obtained as a conclusion of Proposition 5.3.1

which, therefore, can be read as a quantification of the continuity result in Chapter 4.

For the situation of pure integer recourse, i.e. the case where Φ in (1.2) is given by

Φ(t) = min{qTy :Wy ≥ t, y ∈ ZZm̄
+ }

some substantial improvements of Proposition 5.3.1 are possible.

First recall (cf. Section 5.2) that here K = −IRs
+, hence BK consists of all boun-

ded polyhedra whose facets parallel those of
s

��
i=1

[0, 1], i.e. of all boxes in IRs.The

discrepancy αBK(μ, ν) can now be bounded above by the Kolmogorov-Smirnov di-

stance

‖Fμ − Fν‖∞ := sup{|Fμ(t)− Fν(t)| : t ∈ IRs}
of the distribution functions Fμ and Fν:
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Lemma 5.3.5 If K = −IRs
+ then αBK(μ, ν) ≤ 2s · ‖Fμ − Fν‖∞.

Proof: Let B ∈ BK and assume a representation B =
s

��
i=1

[bi, b̄i]. Then B has exactly

2s vertices bj (j = 1, . . . , 2s). Let ε > 0 and consider Bε =
s

��
i=1

(bi−ε, b̄i] with vertices

bj,ε (j = 1, . . . , 2s). According to a well-known formula there exist nj,ε ∈ {0, 1}
(j = 1, . . . , 2s) such that μ(Bε) =

2s∑
j=1

(−1)nj,εFμ(bj,ε).

Therefore

|μ(Bε)− ν(Bε)| ≤ 2s · ‖Fμ − Fν‖∞
for all ε > 0 and all B ∈ BK.
Let ε ↓ 0, the continuity of μ and ν on monotone sequences of sets then implies

|μ(B)− ν(B)| ≤ 2s · ‖Fμ − Fν‖∞ for all B ∈ BK.

Another peculiarity we can benefit from is that here Lemma 5.2.3 holds with Lo = 0,

i.e. Φ is constant on each of the continuity sets Bi.

Proposition 5.3.6 Let P (μ) have pure integer recourse. Suppose (A1), (A2) and let

D ⊂ IRm be non-empty and bounded. Then there exist constants L > 0 and δ > 0

such that

sup
x∈D

|Q(x, μ)−Q(x, ν)| ≤ L · ‖Fμ − Fν‖
p−1
p+s∞

whenever μ, ν ∈ Δp,K(IR
s), ‖Fμ − Fν‖∞ < δ.

Proof: Let x ∈ D be arbitrary and μ, ν ∈ Δp,K(IR
s) such that ‖Fμ−Fν‖∞ < δo := 1.

Define the radii R := ‖Fμ − Fν‖−1/s+p
∞ and r = 1. Let Bo = B(0, R). In view of

Lemma 5.2.5 and Lemma 5.2.2(ii) there exists a constant κ > 0, independent on R,

such that Bo is intersected by at most κ · Rs rectangular continuity regions of Φ.

Now repeat the proof of Proposition 5.3.1 until (3.4) and take into account that

Lo = 0 and N ≤ κ · Rs. This yields

|Q(x, μ)−Q(x, ν)| ≤ 2β1R ·κRs ·2s‖Fμ−Fν‖∞+2β1 ·2K ·2(p−1) ·R−(p−1)(3.5)

provided that μ, ν ∈ Δp,K(IR
s), ‖Fμ − Fν‖∞ ≤ δ with some properly chosen δ > 0.

Inserting R := ‖Fμ − Fν‖−1/s+p
∞ completes the proof.
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Corollary 5.3.7 Let P (μ) have pure integer recourse. Suppose (A1), (A2) and that

there exists a bounded set S ⊂ IRs such that both the supports of μ, ν ∈ P(IRs) are

contained in S. Let D ⊂ IRm be non-empty and bounded. Then there exist constants

L > 0 and δ > 0 such that

sup
x∈D

|Q(x, μ)−Q(x, ν)| ≤ L · ‖Fμ − Fν‖∞

whenever ‖Fμ − Fν‖∞ < δ.

Proof: Adopt the notation from the above proof and put R > 0 as a constant such

that S ⊂ Ax+Bo for any x ∈ D. We obtain the same estimate as in (3.5) with the

difference that the second member of the sum on the right does not appear.

5.4 Rates of Convergence for Optimal Values

In contrast to stochastic programs with non-integer recourse, where Q(., μ) in (1.1)

is always convex, integer recourse models obey local minimizers which are not ne-

cessarily global ones. The subsequent analysis is directed to convergence rates for

optimal values if the underlying probability measure in P (μ) is subjected to per-

turbations. From the literature ([57], [86]) it is well-known that already qualitative

investigations on the convergence of optimal values necessitate an exclusion of pa-

thological types of local minimizers in the unperturbed problem (cf. also Chapter 4).

This leads to the concept of a complete local minimizing set (CLM set) (cf. [57],

[86]) which we will introduce next.

Let V ⊂ IRm be arbitrary and let cl V denote the closure of V . Recall the shape of

P (μ) and consider the following localized optimal value and set of optimal solutions

ϕV (μ) := inf{g(x) +Q(x, μ) : x ∈ C ∩ cl V },
ψV (μ) := {x ∈ C ∩ cl V : g(x) +Q(x, μ) = ϕV (μ)}.

Given μ ∈ P(IRs), a non-empty set M ⊂ IRm is called a CLM set for P (μ) with

respect to an open set V ⊂ IRm if M ⊂ V and M = ψV (μ).

Obvious examples for CLM sets are the set of global minimizers and isolated local

minimizers (cf. [57], [86] for further details).

Theorem 5.4.1 Suppose (A1), (A2), let μ ∈ P(IRs) be absolutely continuous with

respect to the Lebesgue measure on IRs and let there exist constants p > 1 and K > 0
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such that μ ∈ Δp,K(IR
s). Assume further that M ⊂ IRm is a CLM set for P (μ) with

respect to some bounded open set V ⊂ IRm. Then there exist constants L > 0 and

δ > 0 such that

|ϕV (μ)− ϕV (ν)| ≤ L · αBK(μ, ν)
p−1

p(s+1)

whenever ν ∈ Δp,K(IR
s), αBK(μ, ν) < δ.

Proof: Since μ is absolutely continuous, Remark 5.3.3 says that BK is a μ-uniformity

class. In view of Proposition 4.4.1(ii), (iii) in Chapter 4 then there exists a δ > 0 such

that ψV (ν) is a CLM set for P (ν) satisfying ∅ �= ψV (ν) ⊂ V for all ν ∈ Δp,K(IR
s),

αBK(μ, ν) < δ.

Let ν ∈ Δp,K(IR
s), αBK(μ, ν) < δ and xν ∈ ψV (ν), xμ ∈ ψV (μ) =M . Then it holds

ϕV (μ) ≤ g(xν) +Q(xν, μ) ≤ ϕV (ν) + |Q(xν, μ)−Q(xν, ν)|

and

ϕV (ν) ≤ g(xμ) +Q(xμ, ν) ≤ ϕV (μ) + |Q(xμ, ν)−Q(xμ, μ)|.

Hence

|ϕV (μ)− ϕV (ν)| ≤ sup
x∈C∩cl V

|Q(x, μ)−Q(x, ν)|.(4.1)

Since C ∩ clV is a bounded subset, we can apply Proposition 5.3.1 which completes

the proof.

Remark 5.4.2 Let us point out that in the above proof we have also shown that the

sets ψV (ν) are CLM sets and, therefore, sets of local minimizers to P (ν) (i.e. under

minimization over C!). Nonemptiness of ψV (ν) alone is not sufficient for the latter,

since the minimization is restricted to C ∩ cl V .

Remark 5.4.3 Improved versions of Proposition 5.4.1 are straightforward when ad-

opting the more specific setting as in Corollary 5.3.2, Proposition 5.3.6 and Corol-

lary 5.3.7. The rates obtained there directly extend to the convergence of local optimal

values.
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5.5 Asymptotic Convergence

This section is devoted to studying some implications of our previous results for the

asymptotic convergence of (local) optimal values and optimal solutions when esti-

mating the underlying measure μ in P (μ) by empirical measures. Given a sequence

ξ1, ξ2, . . . , ξn, . . . of independent IR
s-valued random variables on some probability

space (Ω,A,P) with joint distribution μ, the empirical measures μn(ω) (ω ∈ Ω,

n ∈ IN) are defined by

μn(ω) =
1

n

n∑
i=1

δξi(ω)

where δξi(ω) denotes the measure with unit mass at ξi(ω) (cf. [24],[39],[76],[117]). A

classiscal result in probability theory (Glivenko-Cantelli Theorem) states that

‖Fμn(ω) − Fμ‖∞ −→
n→∞ 0 for P-almost all ω ∈ Ω .

Recalling that weak convergence of probability measures in P(IRs) is equivalent to

pointwise convergence of the distribution functions at continuity points of the limit

function, the Glivenko-Cantelli Theorem asserts some uniformity of weak conver-

gence. In contrast to the uniformity of weak convergence reflected in Remark 5.3.3

we, here, do not need that the limit measure μ is absolutely continuous. Proposi-

tion 5.3.6, Corollary 5.3.7 and Remark 5.4.3 now allow immediate consequences for

the asymptotic convergence of the objective function and local optimal values when

estimating μ in P (μ) via empirical measures. Instead of elaborating this issue we

take a more general stand and show how to extend the uniformity argument from

lower left orthants (distribution functions) to the class BK introduced in Section 5.3.

This will allow us to prove asymptotic convergence of local optimal values for the ge-

neral case of complete mixed-integer recourse. A proper tool from probability theory

in this respect are Vapnik-Červonenkis classes of Borel sets in IRs ([76], [122]).

Given a family Bo ⊂ B(IRs), let V(Bo) be the smallest k ∈ IN such that for every

set E ⊂ IRs with k elements, not every subset of E is of the form E ∩ B, B ∈ Bo.
Bo is called a Vapnik-Červonenkis class (VČ class) if V(Bo) < +∞.

Lemma 5.5.1 ([39],[76],[122]).

If Bo ⊂ B(IRs) is a VČ class, then

sup{|μn(ω)(B)− μ(B)| : B ∈ Bo} −→
n→∞ 0 for P-almost all ω ∈ Ω.
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It is well-known (e.g. [39],[76],[117]) that the family of all closed halfspaces in IRs

forms a VČ class. Moreover, if B′,B′′ ⊆ B(IRs) are VČ classes then this is also true

for B′∩B′′ and B′∪B′′ where B′ ∪∩ B′′ := {B ′ ∪∩ B ′′ : B ′ ∈ B′, B ′′ ∈ B′′} ([76],[117]).

Now observe, that for each polyhedron in BK the number of facets is bounded above

by 2s plus twice the number of facets of K. Together with the facts just mentioned

this implies that BK is a VČ class.

Furthermore, each element of BK can be represented as an upper level set of a

continuous real-valued function on IRs. Therefore (cf. Proposition 4.5 and the

remark after it in [23]) BK possesses and abstract measurability property called

P ∈Suslin (consult [23], [62] for its definition).

These observations lead to the following result on the speed of the convergence

asserted in Lemma 5.5.1 if we put Bo := BK (law of iterated logarithm). It is a

special case of Corollary 2.4 in [62].

Lemma 5.5.2 It holds

lim sup
n→∞

( n

2 log log n

)1/2 · sup{|μn(ω)(B)− μ(B)| : B ∈ BK} ≤ 1

2

for P-almost all ω ∈ Ω.

Employing the above preliminaries we obtain the following results:

Proposition 5.5.3 Suppose (A1), (A2), let μ ∈ Δp,K(IR
s) for some p > 1, K > 0

and assume that M ⊂ IRm is a CLM set for P (μ) with respect to some bounded open

set V ∈ IRm. Then it holds:

(i) ϕV (μn(ω)) −→
n→∞ ϕV (μ) for P-almost all ω ∈ Ω,

(ii) for any open set Ṽ ⊂ IRm such that ψV (μ) ⊂ Ṽ and P-almost all ω ∈ Ω

there exists an no(ω) ∈ IN such that ψV (μn(ω)) ⊂ Ṽ for all n ≥ no(ω) (upper

semicontinuity of ψV ),

(iii) for P-almost all ω ∈ Ω there exists an n1(ω) ∈ IN such that for all n ≥ n1(ω)

the set ψV (μn(ω)) is a CLM set for P (μn(ω)) with respect to V .

Proof: To simplify the notation we often write μn instead of μn(ω).

Since C ∩ clV is compact and Q(., μn), Q(., μ) are both lower semicontinuous on IRs

(Proposition 4.3.1 in Chapter 4), the sets ψV (μn) and ψV (μ) are both non-empty.

Let xn ∈ ψV (μn) and x ∈ ψV (μ). As in (4.1) we obtain

|ϕV (μn)− ϕV (μ)| ≤ sup
x∈C∩cl V

|Q(x, μn)−Q(x, μ)|.(5.1)



120 Rates of Convergence in Complete Integer Recourse

It holds (cf. e.g. [80], Corollary 2 in chapter 4.1)∫
IRs

‖z‖pμn(dz) −→
n→∞

∫
IRs

‖z‖pμ(dz) for P-almost all ω ∈ Ω.(5.2)

Hence, for P-almost all ω ∈ Ω there exists an n3(ω) ∈ IN such that

μn(ω) ∈ Δp,2K(IR
s) for all n ≥ n3(ω), and Proposition 5.3.1 works in the present

setting (with Δp,2K(IR
s) instead of Δp,K(IR

s)). BK being a VČ class Lemma 5.5.1

and (5.1) together establish (i).

Since C ∩ cl V is compact, upper semicontinuity of ψV is equivalent to closedness

of ψV (cf. [4]), i.e. given xn ∈ ψV (μn) such that xn −→
n→∞ x̄ we have to show that

x̄ ∈ ψV (μ).

Let ω ∈ Ω be such that (i), (5.2) and the assertion of Lemma 5.5.1 hold. Let ε > 0

be arbitrary and n4(ω) ∈ IN such that for n ≥ n4(ω)

g(x̄) +Q(x̄, μ) ≤ g(xn) +Q(xn, μ) + ε/3(5.3)

sup
x∈C∩cl V

|Q(x, μn)−Q(x, μ)| ≤ ε/3(5.4)

|ϕV (μn)− ϕV (μ)| ≤ ε/3.(5.5)

The validity of (5.3) follows from the lower semincontinuity of Q(., μ).

Now it holds for n ≥ n4(ω):

g(x̄) +Q(x̄, μ) ≤ g(xn) +Q(xn, μ) + ε/3

= g(xn) +Q(xn, μn)−Q(xn, μn) +Q(xn, μ) + ε/3

≤ ϕV (μn) + 2ε/3 ≤ ϕV (μ) + ε.

Since ε > 0 was arbitrary this implies x̄ ∈ ψV (μ), and (ii) is shown.

To establish (iii) recall that ψV (μn(ω)) is non-empty due to the lower semicontinuity

of Q(., μn) and the compactness of C∩clV . The remaining part of the CLM property

is a direct consequence of (ii).

Remark 5.5.4 Compared to Proposition 4.4.1 in Chapter 4 it is interesting to note

that the above result shows that in the context of estimation via empirical measures

one can dispense with the smoothness assumption on μ when aiming at qualitative

stability.
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Proposition 5.5.5 Adopt the setting of Proposition 5.5.3. Then there exists a con-

stant c > 0 such that for P-almost all ω ∈ Ω

lim sup
n→∞

( n

2 log log n

)1
2
· p−1
p(s+1) |ϕV (μn(ω))− ϕV (μ)| ≤ c.

Proof: By (5.2) we again have that μn(ω) ∈ Δp,2K(IR
s) for P-almost all ω ∈ Ω

and n ∈ IN sufficiently large. Since BK is a VČ class, Lemma 5.5.1 implies that for

P-almost all ω ∈ Ω and n ∈ IN sufficiently large αBK(μn(ω), μ) < δ where δ is taken

according to Proposition 5.3.1 (with Δp,2K(IR
s) instead of Δp,K(IR

s)). Hence, (5.1)

and Proposition 5.3.1 yield

(
n

2 log logn

) 1
2
· p−1
p(s+1) |ϕV (μn(ω))− ϕV (μ)|

≤ L ·
[( n

2 log log n

)1/2
α(μn(ω), μ)

] p−1
p(s+1)

for P-almost all ω ∈ Ω and n ∈ IN sufficiently large.

Taking the lim sup and employing Lemma 5.5.2 yields the assertion with

c := L · (1
2
)

p−1
p(s+1) .

Remark 5.5.6 If Bo ⊂ B(IRs) is a VČ class, then there exists a function

π : IR+ → IR+ growing at most polynomially such that for any ε > 0 and all

sufficiently large n ∈ IN

P ({ω ∈ Ω : αBo(μn(ω), μ) ≥ ε}) ≤ 4π(2n) exp(−nε2/8)
(cf. [117], p. 829). Combining this result with Proposition 5.4.1 yields an upper

estimate for P ({ω ∈ Ω : |ϕV (μn(ω))− ϕV (μ)| ≥ ε}).
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[27] Dupačová, J.: Stochastic programming with incomplete information: a sur-

vey of results on postoptimization and sensitivity analysis, Optimization 18

(1987), 507-532.
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[29] Dupačová, J.; Wets, R.J-B: Asymptotic behaviour of statistical estimators

and of optimal solutions of stochastic optimization problems, The Annals of

Statistics 16 (1988), 1517-1549.

[30] Eisner, M.J.; Olsen, P.: Duality for stochastic programming interpreted as

L.P. in Lp-space, SIAM Journal Applied Mathematics 28 (1975), 779-792.

[31] Ermoliev, Y.M.; Norkin, V.I.: Normalized convergence in stochastic optimi-

zation, Annals of Operations Research 30 (1991), 187-198.

[32] Ermoliev, Y.M.; Wets, R.J-B (Eds.): Numerical Techniques for Stochastic

Optimization, Springer-Verlag, Berlin, 1988.

[33] Evstigneev, I.V.: Measurable selection and dynamic programming, Mathe-

matics of Operations Research 1 (1976), 267-272.

[34] Fiacco, A.V.: Introduction to Sensitivity and Stability Analysis in Nonlinear

Programming, Academic Press, New York, 1983.

[35] Fiedler, O.; Römisch, W.: Stability in Multistage Stochastic Program-

ming, Schwerpunktprogramm der Deutschen Forschungsgemeinschaft ”An-

wendungsbezogene Optimierung und Steuerung”, Report No. 426 (1993).

[36] Fl̊am, S.D.; Schultz, R.: A new approach to stochastic linear programming,

Numerical Functional Analysis and Optimization 14 (1993), 545-554.

[37] Frauendorfer, K.: Stochastic Two-Stage Programming, Lecture Notes in Eco-

nomics and Mathematical Systems 392, Springer-Verlag, Berlin 1992.

[38] Gänssler, P.; Stute, W.: Wahrscheinlichkeitstheorie, Springer-Verlag, Berlin

1977.



126 Bibliography

[39] Gänssler, P.; Stute, W.: Empirical processes: A survey of results for inde-

pendent and identically distributed random variables, Annals of Probability

7 (1979), 193-243.

[40] Garstka, S.J.: Distribution functions in stochastic programs with recourse: A

parametric analysis, Mathematical Programming 6 (1974), 339-351.

[41] Guddat, J.: Stability in convex quadratic parametric programming, Mathe-

matische Operationsforschung und Statistik 7 (1976), 223-245.

[42] Higle, J.L.; Sen, S.: Stochastic decomposition: an algorithm for two-stage li-

near programs with recourse, Mathematics of Operations Research 16 (1991),

650-669.

[43] Higle, J.L.; Sen, S.; Yakowitz, D.S.: Finite master programs in stochastic de-

composition, Technical Report, SIE Department, University of Tucson, Ari-

zona 1990.

[44] Hoffman, A.J.: On approximate solutions of systems of linear inequalities,

Journal Research National Bureau of Standards 49 (1952), 263-265.

[45] Kall, P.: Approximations to stochastic programs with complete fixed recourse,

Numerische Mathematik 22 (1974), 333-339.

[46] Kall, P.: Stochastic Linear Programming, Springer-Verlag, Berlin, 1976.

[47] Kall, P.; Stoyan, D.: Computational methods for solving two-stage stochastic

linear programming problems with recourse including error bounds, Mathe-

matische Operationsforschung und Statistik, Series Optimization 13 (1982),

431-447.

[48] Kall, P.: On approximations and stability in stochastic programming, Para-

metric Optimization and Related Topics (J. Guddat, H.Th. Jongen, B. Kum-
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