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Abstract

A theoretical investigation of the dynamic properties of integrated optical Er–

doped waveguide lasers is presented. It includes the construction of a physical model

and of numerical techniques which allow reliable simulations of the dynamical be-

haviour of the laser signal depending on essential parameters of the laser device and

on its external, time–dependent pump radiation. Therefore, a physical theory is de-

veloped which describes the propagation of light and its interaction with the active

substrate in the laser cavity. This is realized in two steps. First, a fundamental model

based on Maxwell’s equations and on rate equations for the transitions in the active

medium is constructed. Since this turns out to prohibit reliable simulations, it is,

in a second step, reformulated via averaging in time and space which suppresses the

fluctuations on the fastest time scales but represents them correctly. For this reduced

model reliable and efficient simulation techniques using adaptive control schemes are

designed and implemented. We apply the linear–implicit Euler discretization with

extrapolation in time and a multilevel quadrature scheme in space. Finally, the model

is justified in comparison with experimental observations in four cases of technological

relevance.
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1 Introduction

In parallel with the successful development of erbium–doped fiber amplifiers and lasers

[1, 2, 3], which revolutionized the field of optical communications [4, 5], there has been a

growing interest in erbium–doped planar devices during the last years [6, 7, 8, 9]. The abil-

ity to generate, guide, amplify, filter and modulate light on the same integrated optical chip

opens the possibility to simultaneously combine active and passive components and there-

fore to develop different kinds of multifunctional lossless/amplifying devices and a new

class of integrated optical lasers with promising applications in future technologies. Due

to the increasing complexity of such devices the requirements in the fabrication technology

increase; experimental investigations become costly and time–consuming. Therefore, the

need for theoretical modelling for the analysis of these devices is obvious. Quantitative

but also qualitative modelling is an important tool to improve single components as well

as fully integrated chips, to shorten the development time by simultaneously reducing

the development costs and therefore to accelerate the commercial use of these devices.

Furthermore, theoretical modelling gives a better understanding of the physical processes

involved, because it allows the determination of characteristic properties of the devices as

functions of different technical parameters.

The objective of this paper is to describe the interplay between modelling and simulation

concerning the theoretical investigation of the dynamic properties of integrated optical

Er–doped waveguide lasers. It is a typical example for the cooperation of computational

science and scientific computing in the context of development of a particular technology.

The text is written with the intention that it should be understandable for both, physicist

and numerical mathematician, and that it should summarize the main steps, drawbacks,

and results, but also benefits and problems of the interdisciplinary cooperation in the

presented case.

Fig. 1 schematically shows a waveguide laser. The basic structure is a locally erbium–doped

waveguide with an erbium–concentration profile depending on the lateral coordinates x and

y. These waveguides can be used as optical amplifiers or in combination with feedback

elements (mirrors) on the endfaces as waveguide lasers. Depending on the waveguide

fabrication process, modes with different spatial distributions and certain wavelengths

propagate through the waveguide leading to light/matter–interaction with the active ions.

Therefore, one has to model the time–dependent population densities of the energy levels

of the erbium–ions involved (indicated in the upper left diagram) and the evolution of the
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Fig. 1: Locally erbium–doped waveguide laser of length l. x (y) describes the horizontal (vertical)
direction of the waveguide cross section, z is the propagation direction. In order to describe
the light matter interaction causing optical amplification one has to model the dynamics
of the corresponding population densities (Ni, i = 1, 2 with N0 = N1 +N2) of the erbium–
ions involved (upper left diagram (the terms w12, w21 and A21 will be explained in the
text)) and the evolution of the pump and the signal mode intensities along the propagation
direction (lower right diagram). Especially the signal output power (upper right diagram)
as function of a time–dependent pump input power (lower left diagram) is of particular
interest.
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guided modes in the waveguide taking into account the reflection of these waves at the

waveguide endfaces (sketched schematically in the lower right diagram). The excitation

of the active ions is determined by the external, time–dependent pump radiation (see the

lower left diagram), which is coupled into the waveguide at one of the endfaces (longitudinal

pumping). If sufficient pump power is provided, population inversion (the upper laser

level population exceeds the population of the lower laser level) will be achieved. Then,

amplification due to stimulated emission and therefore, laser operation starts (upper right

diagram).

It meets universal acceptance that a fundamental model for the description of these pro-

cesses must be based on Maxwell’s equations including material laws describing the in-

teraction between light and the Er–atoms in the substrate. However, this interaction can

be seen as a small perturbation of the light propagation properties of the unperturbed

waveguide (without Er–doping). The pure waveguide is characterized by its eigenmodes.

Thus, the fundamental model can be formulated in terms of the interaction of these eigen-

modes. A first modelling step based on this approach is worked out in section 2 and results

in a mathematical problem including coupled partial differential equations (PDEs) with

reflection boundary conditions.

For devices of practical interest this problem unfortunately is numerically intractable, i.e.

the computational effort for a reliable simulation is too large even for the fastest computers

(cf. section 2.2). Therefore, section 3 presents a reformulation of the model via averaging

in time and space which finally leads to an initial value problem (IVP) which now can

be treated numerically. In terms of numerical classification this problem is “stiff”, i.e.

its reliable and efficient integration requires the application of implicit discretizations.

Furthermore, the spatial part of the original problem includes integrals which depend on

the solution and must be evaluated in each time step. Section 4 explains how time and

space discretization can be realized efficiently by using adaptive control schemes which

automatically minimize the computational effort by adapting space–discretization and

stepsizes in time to the properties of the solution.

We want to emphasize that in our understanding “modelling steps” need not be justi-

fied by mathematical proofs but by the usefulness of the resulting model with respect

to comparison with experimental observations. Thus, our model results from physical

construction and reformulation, not from mathematical deduction. After the formula-

tion of the final model equations in section 3, the domain of physics is left and purely

mathematical arguments are used in section 4. In section 5, usefulness of the model is
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discussed via comparison of simulation with experimental observation, considering four

different dynamical processes all of them being of practical importance. All the calcu-

lations presented in this section have been particularly performed for titanium–diffused

erbium–doped lithium–niobate (Ti:Er:LiNbO3) waveguide lasers [8, 9].

2 Basic Model

In this section the fundamental equations for the theoretical modelling of longitudinally

pumped locally erbium–doped waveguide lasers are presented. The model is based on

equations for the pump and signal evolution through the doped waveguide along the prop-

agation direction, which can be derived from Maxwell’s equations (using a semiclassical

approach for the determination of the atomic susceptibility tensor) and on time– and

space–dependent rate equations describing the population dynamics of the energy levels

of the erbium ions involved. The combination with initial and boundary conditions leads

to a full description of the light matter interaction causing optical amplification and laser

operation.

Equation of Continuity:

The propagation of electromagnetic waves in free space is modelled with space– (r) and

time–dependent (t) electric (E(r, t)) and magnetic (H(r, t)) field vectors. In a medium

two more vector fields have to be considered: the dielectric displacement (D(r, t)) and the

magnetic flux density (B(r, t)). The interaction between the vector fields itself and the

medium, in which they propagate, can be described with Maxwell’s theory and specific

material equations. For a dielectric, linear, inhomogeneous material, which is free of

electric charges (ρ(r, t) = 0) and currents (j(r, t) = 0) Maxwell’s equations relate the four

fields E,D,B and H by [10]:

∇× E = −∂tB

∇× H = ∂tD

∇ ·D = 0

∇ ·B = 0.

(1)

For completeness, material equations have to be added connecting the electric displacement

D with the electric field E depending on the electric properties, and the magnetic flux
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density B with the magnetic field H depending on the magnetic properties of the medium:

B = B(H) and D = D(E). (2)

For linear materials these equations are canonically given using the amplitudesÂ(·, ω) of
the “elementary waves” exp(iωt), i.e. via the wavepacket ansatz

A(r, t) =

∞∫
−∞

Â(r, ω, t)eiωtdω A = E,D,B,H (3)

for the field vectors. In our case they read

B̂(r, ω, t) = μ̂(r, ω, t) Ĥ(r, ω, t)

D̂(r, ω, t) = ε̂(r, ω, t) Ê(r, ω, t);
(4)

the amplitudes Â(r, ω, t) are explicitly time–dependent via the time–dependency of the

permeability and the susceptibility tensors, μ̂(r, ω, t) and ε̂(r, ω, t). In the following we

restrict our discussion to nonmagnetic materials – then, μ̂ can be replaced by the constant

vacuum permeability tensor μ̂0 · 1 — and to dielectric materials, in which the dielectric

tensor ε̂ can be expressed as:

ε̂(r, ω, t) = ε(x, y, ω) + Δε(r, ω, t). (5)

The term Δε represents a small space– and time–dependent perturbation of the stationary

dielectric susceptibility tensor ε, which itself contains the waveguide properties. Δε results

from the time–dependent interaction between the propagating light and the active ions

(see Fig. 1). Starting with (1), taking into account (3) and (5), neglecting the term

(∇ · Ê) = −(1/ε̂)∇ε̂ · Ê under the assumption that ε̂ does not vary significantly within a

wavelength distance and, furthermore, using first order approximations (with respect to

Δε and ∂tÊ being small) the following wave equation can be derived [11]:

∇2Ê + μ0ω
2εÊ = μ0ω (2iε∂t − ωΔε) Ê. (6)

Analog assumptions result in a similar equation for Ĥ.

The principal strategy for solving (6) is to transform it using an eigenfunction expansion

with respect to the unperturbed wave equation (Δε = 0)

∇2Ê0 + μ0ω
2εÊ0 = 0 (7)
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for Ê0 = Ê0(x, y, ω), which, as well as ε, is not explicitly time–dependent (∂tÊ0 = 0).

By splitting Ê0 into transversal and longitudinal components (Ê0 = Et + Ez) and using

(1), it can be shown that the longitudinal components can be written as function of

the transversal components. Therefore, we concentrate our further discussion on the

transversal components only. Then, using the product ansatz Ê0 = Ete−iβz, the wave

equation (7) can be reduced to an eigenvalue problem for Et:(
∂2
x + ∂2y + μ0ω

2ε− β2
)
Et = 0. (8)

The corresponding eigenfunctions (Et,m,Ht,m) are called the “eigenmodes” of the waveg-

uide. The eigenvalues βm are either discrete (guided modes) or continuous (radiation

modes) [12]. All the modes, guided and radiation modes, are orthogonal to each other,

and build an orthogonal basis in the appropriate function space [13]. It is convenient to

normalize the modal fields to the total power P of the system. We neglect the radiation

modes, i.e. we restrict the propagation to the subspace spanned by the guided modes

(Galerkin approximation). In this subspace the orthogonal relation can be written as:∫ (
Et,m ×H∗

t,l

)
z
dx dy = 2P sgn(βm) δml. (9)

An arbitrary field distribution can be expressed as a linear combination (superposition)

of the eigenmodes (eigenfunction expansion):

Ê(r, ω, t) =
∑
m

Em(z, t) Et,m(x, y, ω) e−iβmz. (10)

Inserting this expression into (6), taking into account the orthogonality relation (9), and

using the so–called slowly varying amplitude approximation (cf. [14]), the following system

of partial differential equations for E(z, t) can be derived:(
∂
∂z

+ 1
cn

∂
∂t

)
El = −i

∑
m

KmlEm ei(βl−βm)z

Kml(z, ω, t) = sgn(βl)
ω
4P

∫ (
E∗
t,l Δε Et,m

)
dx dy.

(11)

The coupling coefficients Kml are given as overlap integrals between the transversal mode

distributions Et,m, Et,l and the perturbation of the dielectric susceptibility tensor Δε. The

elements of Δε depend on the choice of the coordinate system. Transforming the system to

the main axis the non diagonal elements of the tensor vanish. In this case the knowledge

of just Kll is sufficient. cn = c/n is the light phase velocity in a medium with refractive

index n.

6



The term Δε results from doping the material with active ions and is called “(complex)

atomic susceptibility” [15]. For rare–earth doped materials, it can be shown that the real

and the imaginary part of Δε can be written as linear combinations of the space– and

time–dependent population densities of the ground (N1) and the first excited state (N2)

of the active ions:

Δε(r, ω, t) = ε0 (χ′
a(r, ω, t)− iχ′′

a(r, ω, t))

χa
′(rω, t) = +n c

ω

[
κ21(ω)N2(r, t)− κ12(ω)N1(r, t)

]
χ′′
a(r, ω, t) = −n c

ω

[
σ21(ω)N2(r, t)− σ12(ω)N1(r, t)

]
.

(12)

The terms σ12(ω) and σ21(ω) are the wavelength dependent absorption and emission cross

sections; they are proportional to the absorption and emission spectra. κ12(ω) and κ21(ω)

are the cross section for the determination of the gain–induced dispersion. Using expression

(12) equation (11) can be reduced to:(
∂

∂z
+

1

cn

∂

∂t

)
El = 1

2sgn(βl) (g − if)El

g = 1
P
∫

(σ21N2 − σ12N1) |Et,l|2 dx dy

f = 1
P
∫

(κ21N2 − κ12N1) |Et,l|2 dx dy

P =
∫

|Et,l|2 dx dy.

(13)

In this model we are only interested in the evolution of the intensity amplitudes j = jl =

El · E∗
l = |El|2. With the definitions j0 = j0,l = |Et,l|2, and σnm,j = σnm(λj) and with the

normalization condition P =
∫
j0 dx dy = 1 equation (13) transforms to(

± ∂

∂z
+

1

cn

∂

∂t

)
j± =

[
−α̃j +

∫
(σ21,jN2 − σ12,jN1) j0 dx dy

]
j± + χ̃j , (14)

which is known as the equation of continuity for a gain–medium [16]. Waveguide scat-

tering losses and spontaneous emission have been taken into account phenomenologically

by the terms α̃j and χ̃j . The (+) and (−)–sign represents forward (+z) and backward

(−z)–propagating waves. In optically, longitudinally pumped erbium–doped waveguide

structures (14) is valid for the signal (j = s) as well as for the pump mode (j = p).
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Rate Equations:

The space and time–dependent population densities N1, N2 of the corresponding energy

levels of the erbium–ions involved (see (13)) are described with rate equations. Neglecting

ESA (excited state absorption [17]), ASE (amplified spontaneous emission [18]) and interac-

tions between neighbouring erbium–ions (cooperative upconversion, ion migration [19]) am-

plification and therefore laser operation for the wavelength range 1.52μm < λs < 1.62μm

pumped at λp = 1.48μm can be modelled with a quasi–two–level system [11, 20] with

N1 being the population density of the ground level and N2 that of the first excited level

(both levels are split into multiple substates due to the Stark–effect). Using the notation

of [21] the dynamics of the population densities N1 and N2 can be written as:

dN1

dt
= −dN2

dt
= −(R12 +W12)N1 + (A21 + R21 +W21)N2. (15)

Defining the inversion N = N2 − N1 and the total erbium concentration N0 = N2 + N1,

an ordinary differential equation for N (r, t) can be derived:

dN
dt

= (R12 − R21 + W12 − W21 − A21)N0

− (R12 + R21 + W12 + W21 + A21)N.
(16)

The (polarization dependent) transition rates R and W of the pump (j = p) and the signal

(j = s) are proportional to the intensity distributions Ij, which itself can be split into three

terms (the launched pump power P0
j , the transversal mode distributions j0(x, y, λ) and

the amplitudes j(z, t) = j+(z, t) + j−(z, t)), and to the cross sections σnm,j:

Unm =
σnm,j Ij
hνj

=
σnm,j

hc
λj P

0
j j0(x, y, λ) j(z, t) (17)

with U = R,W , nm = 12, 21, j = p, s and h being Planck’s constant. The term A21

describes the spontaneous transition rate which is A21 =
1
τ21

with τ21 being the fluorescence

lifetime of the upper laser level.

Boundary Conditions:

The equations for the pump and the signal intensity amplitudes (14) build a system of

partial differential equations which is coupled to an ordinary differential equation (16) for

the inversion. In order to model the properties of waveguide lasers (as sketched in Fig. 1)
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simultaneously boundary conditions have to be fulfilled at z = 0 and z = l resulting from

the reflection of the forward and backward running modes at the feedback elements [21]:

j+(0, t) = Rj
1 j−(0, t) + δjp (1− Rj

1) P
0ηj

j−(l, t) = Rj
2 j+(l, t)

j = p, s.

(18)

Rj
1 = R1(λj) and Rj

2 = R2(λj) are the reflectivities of the front and the rear mirror

for the wavelength λj, respectively, ηj the coupling efficiency and P0 the normalized

incident pump power within the laser cavity: P0 = Pp,ex(t)/P
0
p with Pp,ex being the

time–dependent external pump power and P0
p the launched pump power.

2.1 Set of Basic Equations

For the following discussion the basic equations (14) and (16) are abbreviated as follows:(
∂

∂z
+

1

cn

∂

∂t

)
j = g(N ) j + χ̃j

d

dt
N = α(j) + β(j)N

(19)

with (
∂

∂z
+

1

cn

∂

∂t

)
j := (A+p

+, A−p
−, A+s

+, A−s
−)

g(N ) := − diag (gp(N ), gp(N ), gs(N ), gs(N ))

j := (p+, p−, s+, s−)

A± :=

(
± ∂

∂z
+

1

cn

∂

∂t

)
χ̃j := (χ̃p, χ̃p, χ̃s, χ̃s)

(20)

Note, that additionally the set of initial values and the boundary conditions (18) has to

be considered in order to obtain a complete model.

2.2 Numerical Intractability

Up to now, there is no explicit analytical solution of (19) available, in particular none

for nontrivial parameter sets, initial, and boundary data. Thus, one is interested in an

efficient and reliable numerical solution of (19). But unfortunately, (19) is intractable

9



even with help of numerical means. Let us briefly go into some details for explaining

this surprising statement. The equation of continuity (∂z + ∂t/cn)j = g(N )j + χ̃j for the

pump and signal amplitudes j describes the transport of z–variations in j(x, y, z, t) along

the z–axis in time. This implies that, as long as ∂zj
± does not vanish globally in [0, l],

variations in j are running through the waveguide structure with velocity cn along the

z–axis being reflected at the mirrors again and again. They are simultaneously amplified

or damped by their interaction with the erbium ions and by losses. This means that the

smallest time scale of the dynamical behaviour described by (19) lies below the round trip

time

τ :=
2l

cn
=

2l n

c
. (21)

which in typical devices (with device lengths in the order of cm) approximately is τ ≈ 1 ns.

Unfortunately, many questions of practical interest require simulation calculations on a

time interval [0, T ] with a duration T in the range of milliseconds (cf. section 5). Thus,

for solving (19) as it is, any numerical algorithm has to perform

T

τ
� 106 (22)

time steps at least ! Moreover, these are time steps for a BVP (boundary value problem)

based on a partial differential equation. Thus, in each single time step an additional

spatial problem and a large nonlinear system (required for the boundary conditions) have

to be solved. Thus, the computational effort of reliable simulation calculations is much

too large, even for the fastest computers available today. And, worse, even if we would be

able to realize these calculations, we have to expect that the amplification of unavoidable

numerical errors destroys any useful information because of the tremendous number of

time steps.

3 Reformulated Model

We have seen that our basic equations are numerically not tractable, because the space and

time scales of the variation of their solution are too small or rather to short. In order to

make simulation calculations possible we should try to compute the “essential dynamics”

only, i.e. to avoid the evaluation of all oscillatory details (forward and backward running

wave fronts in the cavity). Therefore, we define “essential dynamics” via averaging and

reformulate the model equations (19).
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Why do we call this a reformulation? A first physical model has still been presented and

the next step is done only because of the numerical intractability named. A mathemati-

cian would like to fix the first model trying to construct a purely mathematical deduction

of a reduced model which then should be numerically tractable. In contrast, a physicist

would use modelling arguments (additional physical assumptions, neglect of small terms,

. . .) aiming at the same. The next subsection is organized according to the mathematical

approach, nevertheless it is not a deduction. But it needs two additional modelling as-

sumptions only, which, in addition, can be separated well, are deeply mathematical, and

appear in many similar situations, thus being structural. Because of these facts we call it

a reformulation.

3.1 Averaged Dynamics

Let the average dynamics of a function u = u(x, y, z, t) be defined with respect to the

following averaging operators:

(Atu)(x, y, z, t) :=

∞∫
−∞

wτ (t− t′) u(x, y, z, t′) dt′

(Azu)(x, y, t) :=
1

l

l∫
0

u(x, y, z′, t) dz′

A := Az At,

(23)

where wτ is a filter kernel which makes A and At low pass filters with cut–off frequency

2π/τ , “smoothing” all variations on time scales below the round–trip time τ = 2l/cn.

Now, if (j, N ) is the exact solution of (19), we directly intent to compute

(j̄, N̄) = (Aj,AN ) . (24)

Thus, we have to operate with A on (19) in order to construct equations of motion for the

averaged quantities (̄j, N̄) only. But this leads to a fundamental problem of averaging:

The right hand side of (19), i.e.

h(j, N ) =

(
g(N ) j + χ̃j

α(j) + β(j)N

)
, (25)

is nonlinear and we cannot derive an equation in closed form because of the general

noncommutativities

A (β(j)N ) �= β (Aj) AN
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A (g(N ) j) �= g (AN ) Aj.

This problem cannot be solved by mathematical deduction, i.e. in general it is not possible

to construct a new function H for which Ah(j, N ) = H(Aj,AN ) can be proved mathe-

matically! Therefore, we remodel (19) in order to construct equations for (Aj,AN ) only.

To do this, let us start with the following example–BVP(
± ∂

∂z
+

1

cf

∂

∂t

)
f±(z, t) = −g f±(z, t) (26)

with constant g and the boundary conditions:

f+(z, 0) = ae−gz ,

f−(z, 0) = R2 a e
g(z−2l),

f+(0, t) = η + R1f
−(0, t),

f−(l, t) = R2 f
+(l, t)

∀z ∈ [0, l]

∀z ∈ [0, l]

∀t > 0

∀t > 0

(27)

(28)

(29)

(30)

with a and η being constant, too. For this BVP the following theorem holds (for a proof

see [21]):

Theorem: Let (f+, f−) be the solution of (26), ξ := R1R2 exp(−2gl), and

κ :=
1

l

l∫
0

(e−gz + R2 e
g(z−2l)) dz. (31)

Then, the averaged total intensity f̄ := A (f+ + f−) is given by the solution of

1

cf

d

dt
f̄ =

(
ln(R1R2)

2l
− g

)
f̄ − 1

2l

ln ξ

1− ξ
κ η (32)

with initial value

f̄(0) = κ a. (33)

Moreover, for all t > 0 there is an a ∈ R so that f±(·, t) still fulfills conditions (27) and

(28).

Our first modelling step is inspired by this theorem. Assume that the solution N (x, y, z, ·)
of (19) is known. Set

g0 := Ag(N )(t0). (34)
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With respect to time scales below the round trip time τ , Ag(N ) is nearly a constant, i.e.

we may assume that the variations in Ag(N ) are small

|g0 − Ag(N )(t)| � |g0| ∀t ∈ [t0, t0 + T ] (35)

for T � τ . Hence, in [t0, t0 + T ], we may set Ag(N ) ≡ g0 and use the theorem given

above for replacing the BVP (19) locally in time by an IVP like (32), i.e. the averaged

total intensities of signal and pump

j̄ := A (j+ + j−
)
, j = p, s (36)

are given by

1

cn

d

dt
j̄ =

(
ln(R1R2)

2l
−Agj(N )(t0)

)
j̄ − 1

2l

ln ξ

1− ξ
κ η, j = p, s. (37)

In the second modelling step the following additional assumptions are introduced:

Ag(N ) = g(AN )

A (β(j)N ) = β (Aj) AN.
(38)

With (38) we get from (19) that

d

dt
AN = α (Aj) + β (Aj) AN, (39)

which combined with (37) leads to the following reformulation of the equations of motion

(19):

1

cn

d

dt
j̄ =

(
ln(R1R2)

2l
− gj(AN )(t)

)
j̄ − 1

2l

ln ξ

1− ξ
κ η, j̄ = p̄, s̄

d

dt
AN = α (Aj) + β (Aj) AN.

(40)

Returning to a simpler notation by omitting the explicit reference to the averaging process

(AN → A, (p̄, s̄) → j), we denote this in the following form

1

cn

d

dt
j = g̃(N ) j + χ̃j

d

dt
N = α(j) + β(j)N

(41)

with g̃(N ) := (ln(Rp
1R

p
2)/2l− gp(N ), ln(Rs

1R
s
2)/2l− gs(N )).
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3.2 Numerical Classification

The problem given by equation (41) defines an initial value problem. It is an ordinary

differential equation (ODE) for s, p andN (x, y, ·) in time which is non–linear and stiff. The

property “stiffness”, widely discussed in numerical mathematics [22], can be characterized

by the failure of explicit “standard solvers”. The iteration of an explicit discretization

either leaves its stability domain and completely deviates from the solution, or the stepsizes

have to be chosen so small that the algorithm is not efficient compared to integrators

specialized to stiff integration problems. Therefore, an “A–stable” [22], i.e. necessarily

implicit, discretization has to be chosen; details of an efficient choice are given in section 4.

The evolution of N (x, y, ·) is defined by a linear ODE (see (41)). It can be considered

as a family of single ODEs with parameter space (x, y). The members of this family are

spatially decoupled with different coefficients α(x, y, ·) and β(x, y, ·) for each point (x, y).

For completeness we need to know the initial values s(0) and p(0) and the distribution

N (x, y, 0) at time t = 0. The ODEs combined with these initial values determine a unique

set of trajectories s(t), p(t) and N (x, y, t). While the fundamental model was an initial–

boundary–value problem with space–boundary conditions for solutions in space–time, the

reformulation replaces these boundary conditions. We do not consider partial differential

equations, but a family of ordinary differential equations.

4 Numerical Solution of the Reformulated Model

Considering the numerical solution of the well posed initial value problem we employ a

state–of–the–art adaptive time–integrator for the ODE. In addition, we treat the space

distribution of N (x, y, ·) by means of an adaptive quadrature algorithm. Conceptually,

we first discretize the problem in time only, applying a suitable adaptive time integrator

(leading to a nonuniform grid in time). That means, that the remaining spatial subprob-

lems are initially considered to be continuous and that we are able to solve them exactly.

Afterwards, the continuous space is discretized independently for each time step and each

space problem is solved up to the required accuracy (again leading to a nonuniform grid).

This approach is similar to Rothe’s method for parabolic problems, solving continuous

Cauchy problems in space [23].
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4.1 Linear Implicit Time Discretization

As mentioned above we are concerned with a stiff initial value problem. Hence we have

to employ implicit integration schemes, which lead to the necessity of solving a system of

nonlinear equations in each time step. Therefore, implicit discretizations rely on Newton’s

iteration and on the repeated solution of systems of linear equations. Instead of using fully

implicit schemes, we use the linear–implicit Euler scheme, which for the ODE ẋ = f(x, t)

reads

(I − τJ) xk+1 = xk + τ (f(xk, tk)− Jxk) with J := Df(xk, tk). (42)

This discretization requires the solution of only one system of linear equations in each

time step and is shown to be stable for stiff IVPs, too [22]. In our case (see (41)) the

resulting systems of linear equations are of a very special form, because the Jacobian J

has a double arrow sparsity pattern:

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗
. . .

...
...

∗ ∗ ∗
∗ · · · ∗ ∗ ∗
∗ · · · ∗ ∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(43)

Therefore, the iteration of the disretization (42) can be accelerated by improving the linear

algebra. We use a special form of Gauss elimination exploiting the pattern (43) efficiently

(described in detail in [24]). Then, each time step of (42) needs O(n) operations only with

n being the number of unknowns, which is the number of quadrature points plus two (the

unknown amplitudes for the signal and for the pump). Hence, in our case, the application

of (42) is asymptotically as complex as applying an explicit discretization of the same

order. The order of consistency of the linear–implicit Euler discretization is p = 1. For

means of efficient integration we are interested in higher orders. The order is defined via

the local discretization error. If we denote the considered discretization using the discrete

evolution xk+1 = Ψτxk and use the phase flow Φt of the considered ODE (that means

x(t) = Φtx0 is solution of the ODE with initial value x0) then the order is p = p(Ψτ ) iff

|Φτx − Ψτx| = O(τp+1) ∀x. (44)

A higher order integration usually delivers a higher accuracy, or in other words, for fixed

accuracy larger time steps are possible. On the other hand, the computational effort
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for each time step increases with increasing order. Hence, there is an optimal order of

integration which minimizes the total effort (see below).

We use extrapolation [25] for automatic construction of higher order schemes out of single

steps of the linear–implicit Euler discretization. The resulting schemes remain A(α)–stable

[25]. In addition the minimization of the total effort is realized by an adaptive control

scheme (cf. section 4.3).

4.2 Spatial Discretization via Quadrature

Solving (41) we have to compute integrals of the form:∫
j0(x, y) N (x, y, t) dxdy j = p, s. (45)

In general, the numerical computation of integrals is called “quadrature”. Under some

smoothness assumptions on the integrand, we can approximate the integral by a finite

sum of the integrand evaluated at some grid points (xi, yi) times some specific weights wi:∫
j0(x, y) N (x, y, t) dxdy ≈

∑
i

j0(xi, yi) N (xi, yi, t) wi, j = p, s. (46)

The set of grid points and weights represent a so–called quadrature formula. One simple

example for such a formula is the rectangle rule with quadrature points at equidistant

square grids and weights, which all are equal. The quality of the approximation (46) is

again described by the “order” of the quadrature formula [26]. For higher order quadrature

one can vary both quadrature points and weights. The rectangle rule for example is of

order p = 1; we have used quadrature formula of different orders.

Fixing an appropriate quadrature rule, we only need to know the values of N (x, y, t) at a

fixed number of points (xi, yi). We can compute the evolution of each N (xi, yi, t) by its

initial value N (xi, yi, 0) and its ODE with coefficients determined by the space position

(xi, yi) and the values of s and p. In a post–processing step the distribution N (x, y, t) can

be recovered by means of interpolation in space. Hence we have reduced the number of

unknowns of the system of ODEs from a continuous set to a finite set by means of the

quadrature formula. Of course we introduce an additional error doing this, but we can

control this error by error estimates for the quadrature.
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4.3 Adaptivity

Considering the initial values and all the coefficients to be exact, we have got two different

sources of error in the numerical simulation. The first error is due to time discretization,

the second is the quadrature error. Both errors can be controlled using an adaptive order

and stepsize control in time integration as well as an quadrature formula adapted to the

integrands.

Fig. 2: Adaptive time steps of the extrapolation integrator versus time for a typical simulation of
relaxation oscillations (see section 5).

We want to minimize the total work of the numerical calculation with respect to a pre-

scribed total error tolerance. For the minimization of work of the time integration, we use

large time steps wherever possible and determine the optimal order for each time step.

Stepsizes and orders are chosen automatically based on error–estimates and are controlled

in order to reach the prescribed error tolerance with a minimal amount of work. Let Wk

be the number of operations which have to be performed for the evaluation of a time step

with order p = k and let τk be the stepsize which would be allowed with respect to the

prescribed error tolerance. Then, choose that order kopt for which the effort per stepsize

Wk/τk is minimal. In the context of the linear–implicit Euler discretization and its ex-

trapolation an automatic control scheme realizing this algorithmic idea was proposed in

[27]. We use this scheme as it is implemented in the integrator Eulsim [28]. For further

details see [29].
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Fig. 2 shows the development of the length of the time steps during integration of (19) for

a typical parameter set. It can be seen that adaptive integration is much more efficient

than integration with a fixed (small) stepsize, because in the latter case the stepsize must

be about the smallest stepsize occurring in Fig. 2 for realizing a comparable total error.

Fig. 3: Three–dimensional distribution and adaptive quadrature of N0(x, y) · s0(x, y) in space
(tolerance 0.01, 19 quadrature points in one half of the domain, derived upon a one point
formula).

For spatial discretization we have to select a quadrature formula which guarantees a certain

error tolerance in space. In order to resolve the “details” of the integrands (s0N )(x, y, ·)
and (p0N )(x, y, ·), we typically have to use many quadrature points near these details and

only some points in (x, y)–regions where the integrands are nearly constant. It cannot be

efficient to use equidistributed quadrature points with a small distance which is needed in
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order to resolve the maximum of (s0N ) and (p0N ). An efficient nonuniform distribution

of quadrature points is determined automatically again by employing an adaptive con-

trol scheme [30]. This adaptive procedure uses a standard quadrature formula, e.g. the

rectangle rule, and starts with a rather coarse grid, e.g. with one point in the center of

each of two rectangles into which the integration domain is decomposed. Then, it uses

error estimates in order to decide which of these rectangles must be refined because the

estimated quadrature error is too large. For each rectangle created this is iterated until

the quadrature error meets the prescribed accuracy requirement (see [26]). Fig. 3 shows

such an iteratively bisected domain and the corresponding distribution of the quadrature

points. Due to symmetry, only one half of the domain is used for calculation. Hence the

quadrature formula is constructed symmetric, too.

Using this adaptive quadrature scheme, we can reduce the number of quadrature points

dramatically in comparison to the case of equidistribution. Hence we can use a small

number of unknowns, speeding up the time integration and therefore the whole simulation.

For example, in the situation shown in Fig. 3 our adaptive scheme needs 19 quadrature

points in order to achieve the same accuracy than an uniform grid with 400 equidistributed

points.

4.4 Sensitivity with Respect to Parameters

Our equations of motion (41) are nonlinear and include a lot of parameters (in the equa-

tions, in the boundary conditions, and in the initial data). Clearly, these parameters are

not constants but must be determined by additional investigations either directly from ex-

perimental measurement or indirectly via theoretical modelling (further modelling steps,

i.e. further approximations) [21]. Thus, we have to consider initial uncertainties (“errors”)

in the parameter set and the sensitivity of the solution with respect to these parameters,

i.e. the amplification of these initial errors has to be taken into account. Note, that herein

“amplification of errors” does not denote an effect of the numerical methods applied but an

analytical property of the mathematical problem. Let x = (j, N ) be the state of our laser

system and let us, for simplification of notation, write (41) in the general form x′ = f(x).

Now, let x(t; x0,Λ) be the exact solution of this problem, denoting that the solution de-

pends on the initial data x(t = 0) = x0 and on the parameter set Λ ∈ Rm. In real life

simulations we use a set Λ = Λ0 with an upper estimate e(0) for the initial error, i.e. we
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know that the proper parameter set Λ′
0 fulfills the condition:

‖Λ′
0 − Λ0‖ ≤ e(0). (47)

Then, we are interested in the propagation of the error

e(t) := max
‖Λ−Λ0‖≤e(0)

‖x(t; x0,Λ) − x(t; x0,Λ0)‖, (48)

which typically increases with t. We have tested this sensitivity via numerical experiments

and verified, that the increase in e(t) can be dramatically. For example, the starting point

of the relaxation oscillations (see section 5) is highly sensitive with respect to errors in

χ̃s (see (41)). But fortunately, these numerical experiments showed that all qualitative

results are nearly invariant with respect to small errors (e.g. relation between starting

time, decay time, and stationary state for relaxation oscillations and distance between

single pulses in this case). Drawing a conclusion, already the effect of sensitivity with

respect to uncertain parameters forces us to accept that the model equations do not allow

an overall quantitative description of experimental observations. Nevertheless, the next

section demonstrates that they are appropriate for qualitative investigations.

5 Numerical Results and Comparison with Experiments

The model constructed in the previous sections is based on different modelling steps.

First, an equation of continuity for the pump and signal intensity amplitudes has been de-

rived starting from Maxwell’s equations. Together with rate equations for the population

densities these equations form a BVP. Second, this has been remodelled via averaging tech-

niques which finally leads to a reduced model consisting of an IVP only. While Maxwell’s

equations are generally accepted for describing light propagation correctly our reduced

model has to be justified by successful comparison with experiments. Such justification is

the objective of this section. The following three subsections will present results numer-

ically derived from our model which qualitatively reproduce corresponding experimental

observations with a specific Er–diffused Ti:LiNbO3 waveguide laser. For these calculations

all parameters included in the model’s equations (19) have been determined experimen-

tally (cf. [11, 21]). In the last subsection a typical example for the discussion process

which arises from differences between experimental observation and simulation results is

considered.
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5.1 Relaxation Oscillations

Relaxation oscillations — a sequence of fairly sharp pulses in the signal output power,

which after a certain time settle down to a quasi–harmonic oscillation finally producing a

fairly constant output — are one of the most notable transient phenomena in solid state

lasers. Typically they appear during the buildup of lasing (after switching on the pump)

or as a response to different kinds of external or internal perturbances of the laser. The

physical mechanism is an interplay between the pump and signal intensities within the

resonator and the population densities of the active ions involved [14].

Fig. 4: Relaxation oscillations of an Er:Ti:LiNbO3–waveguide laser. Left: Simulation. Right:
Experimental result. The incident pump power is constant in time.

Due to its characteristic frequency and damping rate detailed investigations of the relax-

ation oscillations can be used for the extraction of basic laser parameters, as for instance

the quality of the resonator [31]. Furthermore, they indicate the ability for the genera-

tion of short pulses. Nevertheless, in many applications relaxations oscillations, or more

general, irregular fluctuations of the output power of a laser, are unwanted. An exact

description and a reliable control is of particular interest.

For Er–diffused Ti:LiNbO3–waveguide lasers the fundamental phenomena of relaxation os-

cillations have been presented in detail in [21, 32]. The evolution of the pump– and signal

intensity amplitudes as well as the space–dependent inversion and the repetition period as

function of time have been calculated, explained and discussed (using a pre–version of the

model and simulation techniques presented herein). As a representative example Fig. 4

again shows numerically calculated (left diagram) and experimentally observed (right di-

agram) relaxation oscillations of such a waveguide laser. The external pump power was
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kept constant. At the beginning, when the amplitude of the signal is very low, the pump

energy is used to build up and to increase the inversion. After a specific time, the onset

time of the laser, sharp pulses appear. Their amplitudes decrease exponentially against

the constant steady state output power. In general, a quasi quantitative agreement be-

tween calculated and experimentally observed data has been achieved: the calculated laser

onset, the nearly exponential decay, the time–dependent repetition period (the distance

between two neighboring signal pulses as function of time) as well as the steady–state

signal amplitude are in a good accordance with the measurements.

5.2 Gain–Switched Laser Operation

Gain–switching is one method for generating and controlling short light pulses with large

energies and a defined repetition frequency. Instead of pumping the laser continuously,

the excitation process occurs with pump pulses of defined amplitude, width and frequency.

Between two pump pulses the pump power is small. First of all, inversion has to be build

up. After a certain time either a single large output spike or a sequence of more than

one output spike can be generated. The number and the amplitudes of the signal pulses

depend on the (external) pump pulses.

Fig. 5: Simulation of a gain–switched Er:Ti:LiNbO3–waveguide laser.

Such a gain–switched laser operation has been simulated for an Er:Ti:LiNbO3–waveguide

laser based on the techniques presented above. During the first 2ms the laser has been
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Fig. 6: Measured gain–switched operation of an Er:Ti:LiNbO3–waveguide laser. Note that the
experimental situation differs from the simulated one presented in Fig. 5. In the experiment
the pump pulses were adaptively controlled in order to produce one single signal pulse only;
the simulation demonstrates the possibility for generating sequences of signal pulses.

pumped with a constant pump power below the lasing threshold. For times t > 2ms

Gaussian pulses with 3μs width and amplitudes 50 times higher than the constant value

have additionally been superimposed to the constant pump power every 20μs. Fig. 5

shows the resulting output power together with the pump power within the resonator as

a function of time. During the first pump pulse the inversion still is too low for laser

operation. The first signal pulse appears at the end of the second pump pulse. Due to

the decreasing pump and therefore due to the decreasing inversion further signal pulses

are suppressed. During the third and the following pump pulses an irregular sequence of

signal pulses with different amplitudes are generated.

In order to produce one signal pulse at each pump pulse the pump modulation function

has to be adapted. Fig. 6 shows such a behaviour as it is experimentally observed. In

the measurements presented the width and the amplitude of the pump pulses have been

adapted so that for each pump pulse only one signal pulse appears. Nevertheless, during

the first pump pulse a second signal pulse can be seen but strongly suppressed due to the

decreasing pump pulse.
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5.3 Q–Switched Laser Operation

Q–switching or giant pulsing is a another widely used technique for the generation of very

short, very intense pulses at defined times [14]. The principle of this method is to build up

a population inversion inside the laser cavity which is much larger than usual. This can

be realized by decreasing the quality (Q) of the resonator or in other words by increasing

the cavity losses e.g. by removing or blocking one of the feedback laser elements. After

a certain time the losses are suddenly reduced; the quality of the laser is switched to a

higher value. The result is that all the stored energy in form of the accumulated inversion

dumps in only one (giant) single pulse.
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Fig. 7: Q–switched Er:Ti:LiNbO3–waveguide laser. Left: Signal output power and pump power
within the cavity as function of time. Right: Reflectivity of one of the two dielectric
mirrors versus time. The calculations have been obtained using a typical parameter set
[11].
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In LiNbO3 an erbium–doped Q–switched waveguide laser can be fabricated using a waveg-

uide amplifier, an electro–optically switchable directional coupler and different dielectric

mirrors at the waveguide endfaces [11]. By switching the light either in the bar or in the

cross state of the coupler the quality of the resonator is changed. In one case the signal

is reflected by a dielectric mirror (high reflectivity), in the other case by the waveguide

endface (low reflectivity). In Fig. 7 the signal output power, the pump power within the

resonator and the resulting reflectivity of such a laser are shown as computed using the

model presented. A high reflectivity has been periodically adjusted (every 50μs for 1.2μs).

After an inversion build up time of 0.4ms the first signal pulse sets in. An experimental

realization of Q–switching in Er:LiNbO3–waveguide lasers is still under investigation.

5.4 Stochastical Pump Noise

In subsection 5.1 we have compared simulation and experimental results of relaxation

oscillations resulting from a constant external pump input. There are some differences

between the calculated and measured data (see Fig. 4), which are minor on the first glance.

The decay of the pulse intensity is smooth in the simulation result while the measurement

shows an irregular disturbance (shape fluctuation). Surely, a physicist’s first idea for

explaining this difference will be as follows: the assumption of constant external pump

input is idealistic; in the real situation the input will be stochastically disturbed leading

to the observed small irregular disturbance of the output signal. Indeed, as it can be

seen in Fig. 4, the measurement shows that the pump input was not constant in time but

that it looks like a constant one with additional stochastic noise with small amplitude.

Consequently, we should try to reproduce the observed signal fluctuation by simulating a

stochastically disturbed pump.

We construct a model for the perturbed pump input in which we stochastically repeat

to add small deviations with Gaussian shape to the former constant p–value choosing

amplitude and width of each pulse randomly equidistributed. Fig. 8 shows a typical result.

The calculated signal shows characteristic shape fluctuations. This seems to confirm our

guess that the noise in the pump input changes the decay of the signal pulses as it is

observed. But, unfortunately, in some situations the measured signal output does not

show any characteristic pulse decay at all (cf. Fig. 9). The question is, whether this

can be an effect of pump noise, too? Or is it due to some other physical processes? If

pump noise can effect such behaviour we should be able to observe this in simulation
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Fig. 8: Calculated relaxation oscillations of an Er:Ti:LiNbO3–waveguide laser. The incident pump
power has been stochastically disturbed.

calculations using the “right” model for the pump noise. Failing in this would lead to the

assumption that in these cases processes are important which are not correctly represented

in the actual model (e.g. spatial hole burning (frequency beating effect leading to standing

wave patterns in the optical intensity) [14], optical damage (intensity induced refractive

index change) [33], etc.). Up to now, this question is an open one. Some calculations

allow to reproduce the effect but use irrealistically large noise amplitudes (see the middle

diagram of Fig. 10). But the nonlinear nature of the process may lead to similar results

for smaller amplitudes but a “better” noise model. However, this discussion is typical

for the process of understanding physical phenomena using simulation calculations. First,

the reliability of the numerical solution of the model equations allows a direct comparison

between model and experiment, because the possibility of numerical artifacts need not be

discussed simultaneously. Second, even the possible failure of a successful model in some

situations allows the investigation and understanding of its reason.

Independently from the answer to the question asked a few lines above, modellers want

to develop recipes to guarantee the decay of the signal pulses. This can be realized by a

feedback of the signal output power to the external pump input power. Fig. 10 presents

simulation results. The upper diagram shows the calculated relaxation oscillations for a

constant pump input power leading to smooth behaviour as explained in section 5.1. In
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Fig. 9: Measurement of relaxation oscillations in an Er:Ti:LiNbO3–waveguide laser. Instead of
using a (nearly) constant pump power the signal output power is still fluctuating after
1.6ms.

the middle diagram the pump input power has been disturbed stochastically as indicated

by the dotted line resulting in a quasi–chaotic behaviour of the signal. Nevertheless, after

1.2ms (which is 0.5ms later than seen in the unperturbed case) a steady–state signal

output is seen. In order to suppress the unwanted signal spikes a closed control loop

is used. The pump power is controlled by “inverse backcoupling” of the difference of

the signal output power s and the steady state value ŝ wanted. Again, the presented

model allows the simulation of this process. In particular the behaviour of s and p can be

determined with respect to the strength of the backcoupling and ŝ. The lower diagram of

Fig. 10 shows the result obtained for a typical parameter set. The uncorrelated spikes are

damped leading to a behaviour similarly observed in experiments.
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Fig. 10: Calculated results of relaxation oscillations in an Er:Ti:LiNbO3–waveguide laser. The
three diagrams show the behaviour of the signal output power as function of different
pump input powers. In the upper diagram the pump power Pp,ex was held to be constant
in time, in the middle diagram Pp,ex has been stochastically disturbed, which first leads
to a quasi–chaotic behaviour for the signal output power. After 1.2ms a steady state of
fairly constant output power is achieved. The lower diagram shows the answer of the
waveguide laser in which the (perturbed) pump power simultaneously has been coupled
with the inverted signal power. It can be seen that the fluctuations are suppressed.
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6 Conclusions

In the herein considered situation the technologically necessary calculations require reli-

able long term simulations of a complex dynamical behaviour. This demands a theory

which is valid for the description of the processes considered and which, at least in princi-

pal, permits reliable simulations on the computers being available. Therefore, numerical

algorithms have to be constructed which are appropriate for realizing these simulations

efficiently and for controlling their reliability. In our case, the technology of the waveguide

laser devices exploits the coupling between different “active” systems (light and matter)

and therefore introduces a complex interplay between different processes (propagation and

transition). We showed that this complexity demands cooperation between modelling, nu-

merical analysis, algorithm construction, and experimental justification. We passed four

steps: 1. construction of a fundamental model starting from accepted physical theories

(Maxwell and rate equations) and recognizing this model to be numerically intractable,

2. reformulation via averaging resulting in a model with reduced complexity, 3. construc-

tion and implementation of adaptive, error controlling numerical algorithms leading to

efficient and reliable simulations and paying attention to the sensitivity of the solution

with respect to the model parameters, and 4. comparison with experimental observations

and justification of the derived simulation techniques through showing it to be an instru-

ment for quantitative analysis and prediction. Finally, we want to emphasize that we have

not presented a final theory but that discussion and iteration of these four steps leads to a

deeper understanding of the underlying physical processes (cf. section 5.4). In the context

of development particularly, the evolution of this physical understanding is the main topic

of modelling.
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