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1 Introduction

We consider the following linear stochastic program with integer recourse

min{cTx +Q(x) : x ∈ C} (1.1)

where

Q(x) =
∫
IRs

Φ(z − Ax)μ(dz) (1.2)

and

Φ(t) = min{qTy : Wy ≥ t, y ∈ ZZm̄
+ }. (1.3)

Here, c ∈ IRm, C ⊂ IRm is a non-empty polyhedron, q ∈ IRm̄,W ∈ L(IRm̄, IRs) is an integral

matrix, and μ is a Borel probability measure on IRs. Basically, we assume that for each t ∈ IRs

there exists a y ∈ ZZm̄
+ such that Wy ≥ t, that there exists a u ∈ IRs

+ such that WTu ≤ q and

that
∫
IRs ‖z‖μ(dz) < ∞.

Problem (1.1) - (1.3) arises as a deterministic equivalent to a random mixed-integer linear pro-

gram where decisions x and y have to be taken before and after the realization of the random

parameter z, respectively. Compared with conventional stochastic programs with linear re-

course it is integrality of the recourse variable y that is specific with (1.1) - (1.3) and prevents

the application of standard techniques. For further details on modeling in recourse stochastic

programming we refer to [6].

In [8] it is shown that the above basic assumptions imply Q to be real-valued and lower semicon-

tinuous on IRm. As a value function of an integer linear program, Φ is typically discontinuous.

If μ is discrete with finite support then the function Q computes as a convex combination of

discontinuous functions. Continuity of Q is gained when μ has a density (Proposition 3.2 in [8]).

In that case, however, the integral in (1.2) causes tremendous numerical difficulties, since the

dimension of the space where μ lives on is too large for numerical integration procedures. In [8]

it is also shown (Proposition 4.1) that (1.1) - (1.3) is stable in that, with suitable topologies,

optimal values and optimal solutions are (semi-)continuous (multi-)functions of the probability

measure μ. Hence, a discrete measure μ in (1.1) - (1.3) is acceptable both from the theoretical

and the practical side. Then, (1.1) - (1.3) is a discontinuous minimization problem. In what

follows we discuss three approaches to solving this non-standard minimization problem: mollifier

subgradients [4], decompositon [1] and pointwise computation of the objective [9].

2 Mollifier Subgradients

In [4], discontinuous minmization is tackled by averaging the objective via convolution with

smooth kernels (mollifiers). Under mild assumptions met in the present context, the epigraph

of the original objective is the Kuratowski set limit of the epigraphs of the averaged functions

(epi-convergence, Theorem 3.7 in [4]). Optimal values and optimal solutions of the approximate
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minimization problems hence converge to those of the original one. The averaged objectives

being at least locally Lipschitzian, (sub-)gradient methods can be used for their minimization.

To see the difficulties with the above method consider the example where, in (1.1) - (1.3),

Φ(t) = min{y1+ y2 : y1− y2 ≥ t, y ∈ ZZ2
+}, c = −1

2 , C = IR1
+, A = −1 and μ assigns probability

1 to z = 0. Then cTx + Q(x) = −1
2x + �x	 and any non-negative integer is a local solution

to our problem. By epi-convergence, approximations sooner or later will obey as many local

solutions as the original. Subgradient methods at best produce local solutions such that the

global optimization issue is left open with this approach.

3 Decomposition

Let μ have mass points z1, . . . , zN with probabilities p1, . . . , pN . Problem (1.1) - (1.3) then can

be written as a (large-scale) mixed-integer linear program:

min{cTx + p1q
Ty1 + · · ·+ pNqTyN : x ∈ C, Ax+Wy1 ≥ z1, y1 ∈ ZZm̄

+ ,
...

Ax+WyN ≥ zN , yN ∈ ZZm̄
+ }

Decomposition approaches take advantage of the fact that, for x fixed, the above minimization

separates into

Φ(zi − Ax) = min{qTyi : Wyi ≥ zi − Ax, yi ∈ ZZm̄
+ }, i = 1, . . . , N.

Without integer requirements on the variables yi the function

Q(x) =
N∑
i=1

piΦ(zi − Ax)

is convex and with dj(j = 1, . . . , J) denoting the vertices of {u ∈ IRs
+ : WTu ≤ q} it holds

Φ(zi − Ax) = max
j=1,...,J

dTj (zi − Ax).

Decomposition methods for the non-integer version of problem (1.1) - (1.3) then in principle

proceed as follows (cf. e.g. [6]): The variable x is iterated via a master program

min{cTx+ Q̃(x) : x ∈ C}

where Q̃ is a convex (e.g. piecewise linear) lower approximate of Q. Given x, the separate

minimizations are conventional linear programs with differing right-hand sides. These are usually

solved with dual simplex techniques yielding vertices from {d1, . . . , dJ}. The latter are used to

update the maximum defining Φ and, thus, to update the approximate Q̃ (optimality cut). By

our basic assumptions, the separate linear programs are always solvable. In general, this is not

the case, and feasibility cuts improving the approximation of the domain of Φ can be read off

the final tableau. The algorithm stops if, for the actual iterate, objective function values in the

master and in the original program are the same or close to each other.
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Let us now outline properties of the master program and the separate optimization problems if

integrality is taken into account. This issue is treated in detail by Carøe and Tind in [1]. The

following is based on this paper.

Let t ∈ IRs be arbitrary and denote

P = {y ∈ IRm̄
+ : Wy ≥ t}, PI = conv{y ∈ ZZm̄

+ : Wy ≥ t}.
If

H = {y ∈ IRm̄ : γTy ≥ δ}
denotes a half space such that H ⊇ P then

�γ	Ty ≥ δ (since y ≥ 0)

and

�γ	Ty ≥ �δ	 (since y ∈ ZZm̄),

for all y ∈ PI. Here, �.	 denotes the componentwise integer round-up operation.

Denote

HI = {y ∈ IRm̄ : �γ	Ty ≥ �δ	} and P ′ = ∩H⊇PHI .

Now iterate this process by setting

Po = P , . . . ,Pk+1 = (Pk)′, . . . .

A theorem dating back to Chvátal and Schrijver (cf. [7] and the references therein) then says

that P ′ is already given as the intersection of finitely many HI and that there exists a ko ∈ IN

(only depending on W ) such that PI = Pko. As a conclusion we obtain that there are matrices

M1, . . . ,Mko, only depending on W , such that PI admits a representation

PI = {y ∈ IRm̄
+ : �Mko . . .�M2�M1W		 . . .	 ≥ �Mko . . .�M2�M1t		 . . .	}

Denoting by dj(j = 1, . . . , J) the vertices of the polyhedron

{u ∈ IRs
+ : �Mko . . .�M1W	 . . .	Tu ≤ q} we obtain the following representation for Φ:

Φ(zi − Ax)

= min{qTy : �Mko . . .�M1W	 . . .	y ≥ �Mko . . .�M1(zi − Ax)	 . . .	, y ∈ IRm̄
+}

= max{�Mko . . . �M1(zi − Ax)	 . . .	Tu : �Mko . . . �M1W	 . . .	Tu ≤ q, u ∈ IRs
+}

= maxj=1,...,J d
T
j �Mko . . . �M1(zi − Ax)	 . . .	.

Whereas, in the non-integer case, Φ(zi − Ax) computes as the finite maximum of affine linear

functions in x, we now end up with a finite maximum of functions (Chvátal functions) that arise

from affine linear functions by taking finitely many linear combinations and integer round-ups.

For the decomposition approach this has drastic consequences in that the master, formerly a

convex problem, now becomes discontinuous and that the separate optimization problems now

are integer linear programs with varying right-hand sides. Optimality cuts now are Chvátal

instead of linear functions. One possibility to compute them is tracing back the rounding

operations in the course of Gomory’s cutting plane method (for details see [1], [7]).
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4 Pointwise Computation

The above decomposition approach aims at aquiring both pointwise and global information on

the value function Φ with the difficulty that a discontinuous master comes into play for which,

up to now, no efficient minimization methods are known. In the present section, we describe an

approach via pointwise computation of Φ which, on the one hand, uses less information on Φ

but, on the other hand, leads to an algorithm for solving (1.1) - (1.3).

At first, we observe that, by the integrality of W , it holds Φ(t) = Φ(�t	) for all t ∈ IRs since the

feasible sets in (1.3) do not change when passing to the integer round-up.

Consider the lattice

L = ×s
j=1 ∪N

i=1 {−{zij}+ ZZ}
where {.} denotes the fractional part. For each λ ∈ L there exists a λo ∈ L such that

Cλ = {t ∈ IRs : λo < t ≤ λ} does not contain further elements of L. Of course, ∪λ∈LCλ = IRs.

The introduction of L is motivated by the following result.

Proposition 4.1 It holds

min{cTx+Q(x) : x ∈ C}

= min
λ∈Lo

{
N∑
i=1

piΦ(�zi + λ	) + min{cTx : x ∈ C, λo ≤ −Ax ≤ λ}}

where Lo = {λ ∈ L : {x ∈ C : λo < −Ax ≤ λ} 
= ∅}.

Proof: Let us first confirm that Q(x) is constant while −Ax ∈ Cλ. By

λo < −Ax ≤ λ we have

zi + λo < zi − Ax ≤ zi + λ

implying �zi − Ax	 ≤ �zi + λ	 for all i = 1, . . . , N and all −Ax ∈ Cλ. To see that even equality

holds assume on the contrary that there were i, j such that nj = �zij − (Ax)j	 < �zij + λj	.
This would imply

λoj < −(Ax)j ≤ nj − zij < λj

contradicting that there are no further lattice points in Cλ. Hence for all x ∈ IRm such that

−Ax ∈ Cλ

Q(x) =
N∑
i=1

piΦ(zi − Ax) =
N∑
i=1

piΦ(�zi − Ax	) =
N∑
i=1

piΦ(�zi + λ	).
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This implies

min{cTx+ Q(x) : x ∈ C}

= min{cTx+ Q(x) : x ∈ C,−Ax ∈ ∪λ∈LCλ}

= min
λ∈Lo

min
x

{cTx+Q(x) : x ∈ C, λo < −Ax ≤ λ}

= min
λ∈Lo

min
x

{cTx+
N∑
i=1

piΦ(�zi + λ	) : x ∈ C, λo < −Ax ≤ λ}

= min
λ∈Lo

{
N∑
i=1

piΦ(�zi + λ	) + min{cTx : x ∈ C, λo ≤ −Ax ≤ λ}}

where relaxation of the strict inequality in the last row is only possible due to the lower semi-

continuity of Q quoted in the introduction. The proof is complete.

Dropping the integrality constraint in (1.3) we obtain the continuous relaxation of (1.1) - (1.3).

By QR we denote the relaxed expected recourse function according to (1.2). It is well known

that QR is convex and, in case μ is discrete, piecewise linear. By L(α) we denote the lower level

set {x ∈ C : cTx + QR(x) ≤ α}. For the subsequent considerations, instead of L(α) also some

outer polyhedral approximate would be sufficient.

Proposition 4.2 Let Ψ denote the solution set to (1.1) - (1.3) and xo ∈ C.

Then Ψ ⊆ L(cTxo +Q(xo)).

Proof: If there exists x̄ ∈ Ψ with x̄ /∈ L(cTxo +Q(xo)) then

cTxo + Q(xo) ≥ cT x̄+Q(x̄) ≥ cT x̄+QR(x̄) > cTxo + Q(xo)

which is an obvious contradiction.

Proposition 4.1 reduces solving (1.1) - (1.3) to solving a series of integer and conventional

linear programs differing only in their right-hand sides. For linear programs, solution techniques

exploiting this similarity are well known. For integer linear programs this is different, and at

the end of the paper we sketch a first method in this respect which is due to Conti/Traverso [2]

and uses machinery from computational algebra. Its details are also described in [9].

Proposition 4.2 provides information on the location of the solution set Ψ in terms of lower level

sets of the continuous relaxation. Based on the above statements, [9] contains an algorithm

for (1.1) - (1.3) that combines efficient calculation of Φ with a searching procedure involving

(approximations of) level sets of the type L(α). This algorithm roughly outlines as follows:
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1. The optimal solution to the continuous relaxation provides an initial iteration xbest and

an initial search region Lbest = L(cTxbest +Q(xbest)).

2. Lbest is searched by checking lattice points λ in

{λ ∈ Lo : {x ∈ Lbest : λo < −Ax ≤ λ} 
= ∅}.

3. Each search step consists of calculating

∑N
i=1 piΦ(�zi + λ	) + min{cTx : x ∈ C, λo ≤ −Ax ≤ λ}

and setting

x(λ) ∈ argmin{cTx : x ∈ C, λo ≤ −Ax ≤ λ}.

4. If cTx(λ)+Q(x(λ))< cTxbest+Q(xbest), then both xbest and Lbest are updated accordingly;

otherwise, a new lattice point λ is checked.

5. The algorithm stops if no further lattice points remain to be checked.

The algorithm is obviously finite in case Lbest is bounded. Sufficient conditions for the latter are

worked out in [9]. The above scheme conveys only the principal idea of the algorithm. Details

on how to organize the search and to solve the (conventional) linear programs efficiently are

elaborated in [9].

The algorithm’s key issue, however, is the efficient computation of Φ(�zi + λ	). Of course, one

wants to avoid starting the optimization from the beginning any time a new argument (i.e. right-

hand side in (1.3)) �zi+λ	 arrives. Here a solution method proposed in [2] using computational

algebra is employed.

The integer linear program min{qTy : Wy ≥ t, y ∈ ZZm̄
+ } is translated into a subalgebra mem-

bership problem in a suitable ring of polynomials. Lattice points in ZZm̄+ correspond to certain

monomials in the polynomial ring. The ring is equipped with a monomial order that is compat-

ible with the ranking of lattice points induced by the objective function qT y. The columns of W

determine a certain binomial ideal I in the ring. Then, a Gröbner basis G of I with respect to

the mentioned monomial order is computed by Buchberger’s algorithm. The elementary steps in

Buchberger’s algorithm are generalized divisions of multivariate polynomials. Given a finite set

of polynomials, the generalized division algorithm rewrites an arbitrary polynomial as a (poly-

nomial) linear combination of elements in the mentioned set plus a remainder. Computing the

Gröbner basis G is expensive since, in general, exponentially many generalized divisions have to

be performed. However, after having computed G, solving the integer linear program is easy: a

monomial determined by the right-hand side vector t is divded by G. From the remainder, either

an optimal solution can be read off or it can be decided that the integer linear program has no
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feasible points. The right-hand side t enters the procedure only after the tremendous part of the

work (computing G) is done. In that sense, we avoid starting the entire solution process anew

whenever another argument t arises.

General purpose implementations of Buchberger’s algorithm are part of computer algebra pack-

ages. Recent research also focusses on implementations taking advantage of the special structure

met in integer linear programming [5].

The geometric counterpart to the algebraic procedure described above is developed in [10]. The

author shows that the Gröbner basis G geometrically corresponds to a test set ([7]) of the integer

linear program involved.
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