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Abstract

In this paper we present a framework for solving stochastic programs with
complete integer recourse and discretely distributed right-hand side vector,
using Gröbner basis methods from computational algebra to solve the numer-
ous second-stage integer programs. Using structural properties of the integer
expected recourse function, we prove that under mild conditions an optimal
solution is contained in a finite set. Furthermore, we present a basic scheme
to enumerate this set and suggest possible improvements to economize on the
number of function evaluations needed.

� Introduction

In this paper we are concerned with two-stage stochastic integer programs of the
type

min{cx+Q(x) : x ∈ C} (1)

where

Q(x) = Eξv(Tx− ξ) (2)

and

v(s) = min{q̃y : Wy ≥ s, y ∈ ZZm+ }. (3)

Here c is an n-dimensional vector, C = {x ∈ IRn
+ : Ax ≥ b} is a nonempty poly-

hedron with A a q × n matrix and b a q-dimensional vector, T is a p × n-matrix,
q̃ is an m-dimensional vector, and W a p × m-matrix. All matrices/vectors have
real elements except for W , which is a rational matrix. ξ is a random vector in IRp

and Eξ denotes the expectation with respect to ξ. For the moment, we assume that
both Q and v are well-defined; conditions ensuring that will be given later on.

The stochastic program (1) is designed to finding optimal first-stage decisions x
in an optimization problem under uncertainty where the first-stage decisions have
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to be made before knowing the outcome of the random vector ξ, and where second-
stage decisions y serve to compensate possible infeasibilities after having fixed x and
observed ξ. For an introduction into two-stage stochastic programming we refer to
[12].

In contrast to the many algorithms for stochastic programs with continuous
second-stage variables (see e.g. [9]), up to now there is no method that can handle
the above integer second stage efficiently. There are two main difficulties in solving
stochastic integer programming problems. The first one is that, in order to com-
pute one function value Q(x), one has to solve many different (but similar) integer
programs (which are in general NP -hard).

The other difficulty is that the integer requirements on y lead to the value
function v in (3) being in general only lower semicontinuous (see [3]) instead of
convex for continuous variables y. This destroys the convexity of Q met in the
non-integer case and solving (1) amounts to minimizing a non-convex and possibly
discontinuous objective. The latter is a fairly recent field of research with promising
first results [8].

In this paper, we present a framework for solving (1) where the second-stage inte-
ger programs are handled efficiently via Gröbner basis methods from computational
algebra. Employing traditional stochastic programming methodology, the algebraic
techniques are embedded into an algorithmic framework that reduces solving (1) to
inspecting finite sets of candidate points.

Our approach is based on the following main ideas:
We solve the continuous relaxation (i.e. the stochastic program where the integer
requirements in the second stage are dropped) to obtain rough initial information
on the location of the optimal first-stage decisions of the stochastic integer program.
These optimal decisions can be shown to belong to an explicit countable set, which,
under mild assumptions, is even finite. The key problem of computing function
values of Q (which involves solving the second-stage problem for various right-hand
sides) is tackled via a method employing Buchberger’s algorithm for computing
Gröbner bases of polynomial ideals [6]. The integer program is translated into a
subalgebra membership problem in a ring of polynomials. The latter is solved by
an algorithm for the division with remainder of multivariate polynomials that gen-
eralizes the well-known division scheme for polynomials in one variable. A Gröbner
basis of a certain polynomial ideal enters as the essential ingredient into that pro-
cedure. For the various right-hand sides in the initial integer program always the
same Gröbner basis applies, such that solving the integer program for another right-
hand side amounts to just another generalized division of multivariate polynomials.
Computing the Gröbner basis is a hard job (in fact, the bottleneck of our method)
but only has to be done once. Moreover, for the Gröbner basis computation only al-
gebraic information contained in the second stage is needed, such that the Gröbner
basis does not depend on the distribution of the random vector ξ.

Applying the above method to integer linear programs has been proposed for the
first time in [6], (see also [26]). It yields additional information at a possibly high
computational cost that can make it an inefficient method to solve the problem for a
fixed right-hand side. However, the additional information turns out most beneficial
when solving an integer linear program with varying right-hand side. Therefore, the
above method does seem particularly useful for solving integer recourse stochastic
programs.

The main body of research on two-stage stochastic integer programming has
been devoted to structural properties of the second-stage expected value function
Q. In [21], [22], complete recourse models are treated, whereas in [13], [14], [17], the
focus is on simple integer recourse. In the latter case, explicit expressions for the
expected value function are known. Moreover, if only the right-hand side vector is
random and follows a finite discrete distribution, then the model can be translated
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into a continuous simple recourse model by computation of the convex hull.
First attempts to solve stochastic integer programs are described in [15] and [16].

The former approaches the problem by dynamic programming, and can be used only
for problems of relatively small size. The approach in the latter paper is based on
the assumption that the first stage variables are also integral, thereby obtaining
countability of the set of feasible solutions. Moreover, it is implicitly assumed that
computation of the second stage integer problems provides no hardship.

Inspired by a discussion of our basic ideas, Tayur [25] applied Gröbner basis
methods to approximate objective function values for a particular plant manage-
ment problem.

In Section 2 we describe how a Gröbner basis can be used to evaluate the objec-
tive function of a stochastic integer program. The computational bottleneck here
is to find the Gröbner basis. Once having it, function evaluations are cheap.

In Section 3 we show that, if the random vector ξ is discretely distributed as
we will assume, an optimal solution of (1) is contained in a certain countable set.
Under some mild conditions this set of points can even be reduced to a finite set,
as exposed in Section 4.

For an effective method the above set of points is to be enumerated completely.
In Section 5 we propose a basic enumeration scheme that does this job.

Having presented all ingredients, they are put together in Section 6 which con-
tains a short description of the algorithm. This is followed by two possible improve-
ments, both directed at reducing the number of points to be evaluated .

Conclusions and directions for future research on this topic are presented in
Section 7.

Finally, a short introduction into Gröbner basis methods for integer programs
with various references to the literature can be found in the Appendix.

� Function evaluations using Gr�obner bases

Solving the integer programs behind the function values of the expected recourse
function Q is the key problem in integer recourse stochastic programming. Here,
we have to solve

min{q̃y : Wy ≥ s, y ∈ ZZm
+}

for arbitrary right-hand sides s ∈ ZZp (we assume that W is an integer matrix,
hence if s �∈ ZZp then it can be replaced by its componentwise integer round up �s�).
Without loss of generality, we can assume that, after introducing slack variables,
the problem (with properly adjusted q̃, W ) is in equality form

(P) min{q̃y : W y = s, y ∈ ZZm̄+ }

with m̄ = m+ p.
For problems of this type, recently, a solution technique was developed that is

based on Gröbner basis methods from computational algebra [6]. It will turn out
that this method is particularly adapted to our needs, since it allows a considerable
short cut when resolving (a moderately sized) problem (P) for varying right-hand
side. Below we apply the method to (P) and give short explanations of what
is behind the single steps. Further details on Gröbner basis methods for integer
programs can be found in the Appendix.

Buchberger Algorithm for Solving the Second-Stage Programs

Step 1: Let k be any field and fix the polynomial ring k[x1, . . . , xp, y1, . . . , ym̄, t].
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Step 2: Specify a monomial order ≺ in k[x, y, t] that is compatible with q̃ and
guarantees x > y, t > y.

Step 3: Form the ideal I = 〈xw1′ − xw
1′′
y1, . . . , x

wm̄′ − xw
m̄′′

ym̄, x1 · . . . · xp · t − 1〉.
Step 4: Compute the (reduced) Gröbner basis G of I with respect to ≺

using Buchberger’s algorithm.
Step 5: Divide xs by G, yielding the remainder rG(x

s).
Step 6: If rG(x

s) ∈ k[y] then the remainder is a monomial whose exponent vector
is an optimal solution to (P), otherwise, (P) has no feasible solution.

The method’s basic feature is to translate linear diophantine equations into
relations in rings of polynomials and to treat problems like solving an equation
or minimizing over the solution set to an equation via computations involving a
generalized division scheme for multivariate polynomials. Integer vectors typically
reappear as exponent vectors of multivariate monomials. The crucial part of the
method is Step 4 where a powerful tool from computational algebra, Buchberger’s
algorithm, is used.

In Step 1, the underlying ring of polynomials is selected. We have a p−vector
x of indeterminates corresponding to the number of rows in W and a m̄−vector
y corresponding to the number of columns (the number of variables in (P)). The
variable t has a supporting function that will be explained in Step 3.

In Step 2, the objective function q̃ is incorporated by fixing a total order of
the (exponents of the) monomials in k[x, y, t]. Compatibility with q̃ means that
monomials in y are ordered in the same way as their exponent vectors are ordered
by the objective q̃. The notation x > y (and, analogously, t > y) reflects that any
monomial containing a nontrivial x-component dominates any monomial in y.

In Step 3, an ideal in k[x, y, t] is defined via a set of generators. By the first
m̄ generators, the matrix W is translated. Each column w l (l = 1, . . . , m̄) is
represented as wl = wl′ − wl′′ with wl′′ = wl

o1 where wl′ , wl′′ ∈ ZZp+, w
l
o ∈ ZZ+ and

1 denotes the vector of all ones. This representation being non-unique equivalence
classes have to be singled out which is done by the last generator containing the
variable t.

In Step 4, the tremendous part of the work is done: Another generating set
of I with favorable properties, the so-called reduced Gröbner basis G, is computed
by the Buchberger algorithm. The basic computation in Buchberger’s algorithm,
repeated a huge number of times, is a generalized division with remainder of a
multivariate polynomial by a set of multivariate polynomials. It generalizes the
well-known division scheme for polynomials in one variable.

Steps 5 and 6: Here, the problem (P) is actually solved. In the background,
there is a translation of (P) into the problem whether the polynomial xs belongs
to a certain subalgebra in k[x, y, t] [6]. The latter is decided constructively using a
result in [23]: One computes the remainder rG(x

s) of xs on division by G. Here,
the remainder is a monomial. If it is in k[y] then the exponent vector solves (P),
otherwise, (P) has no feasible solution.

Computing Gröbner bases via Buchberger’s algorithm is of exponential com-
plexity and solving large instances of (P) by the above method is far from today’s
possibilities. However, for problems with moderate size Gröbner bases can be found.
They contain the essential information to organize efficiently the repeated solution
of (P) for varying right-hand side. To our knowledge, no other method can supply
comparable information.

Note that the right-hand side s only enters in Step 5, i.e., after computing the
Gröbner basis. Solving (P) then amounts to a single generalized division whereas
computing G can involve millions of such divisions. Therefore, having once com-
puted the (reduced) Gröbner basis corresponding to (P), the computation of the
value function

4



v(s) = min{q̃y : Wy ≥ s, y ∈ ZZm+ }

is cheap!
To illustrate that and without aiming at an efficient implementation we enclose

some initial insight into the computational behavior of the method. To carry out
Steps 4 and 5 we used the general purpose computer algebra package CoCoA
[10]. Present research focuses on exploiting the structure of the binomial ideal I.
In this context, we refer to a geometric interpretation in [26] and a very recent
implementation reported in [11].

We ran our tests on knapsack problems. Of course, the latter have to be fitted
into the form (P) to apply the above method. This leads to additional variables
and equality constraints with direct impact on the number of indeterminates in the
ring k[x, y]. To avoid technicalities, problems are listed in their usual form.

Note that, here, W has only non-negative entries such that it is possible to put
wl′′ = 0 (l = 1, . . . , m̄). Then, the variable t is not needed and I reads

I = 〈xw1 − y1, . . . , x
wm̄ − ym̄〉.

Computations were made on a 486DX4/100 PC.

Example 2.1
(i) max{16y1 + 19y2 + 23y3 + 28y4 :

2y1 + 3y2 + 4y3 + 5y4 ≤ s, yl ∈ {0, 1}, l = 1, . . . , 4}
The underlying ring k[x, y] has 14 indeterminates. A reduced Gröbner basis
with 45 elements was found in 1.1 seconds.

(ii) max{16y1 + 19y2 + 23y3 + 28y4 :
2y1 + 3y2 + 4y3 + 5y4 ≤ s1,
6y1 + y2 + 3y3 + 2y4 ≤ s2, yl ∈ {0, 1}, l= 1, . . . , 4}

The underlying ring k[x, y] has 16 indeterminates. A reduced Gröbner basis
with 55 elements was found in 2.2 seconds.

(iii) max{16y1 + 19y2 + 23y3 + 28y4 + 32y5 + 35y6 + 40y7 :
2y1 + 3y2 + 4y3 + 5y4 + 6y5 + 7y6 + 8y7 ≤ s, yl ∈ {0, 1}, l = 1, . . . , 7}

The underlying ring k[x, y] has 23 indeterminates (the maximum possible in
the CoCoA version we had). A reduced Gröbner basis with 471 elements was
found in 179.2 seconds.

�

After having computed the Gröbner bases we solved the above knapsack prob-
lems for various right-hand sides s by carrying out the division in Step 5 of the
above method. For the first two problems the computing times were at most 0.06
seconds, for the last problem they ranged from 0.05 to 0.17 seconds.

� A countable number of function evaluations

In this section we show that the set of points in which evaluation of the objective
function by the method presented in the previous section is required is countable in
case right-hand sides ξ follow a discrete distribution. We first give general assump-
tions, also known from continuous recourse modelling, that assure that our model
is well defined. Then we present additional assumptions and resulting properties
of the function Q and the model (1), that lead to countability of the number of
operations required by our method.
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3.1 Assumptions

We assume that

(i) For any s ∈ IRp there exists a y ∈ ZZm+ such that Wy ≥ s.

(ii) There exists a u ∈ IRp
+ such that WTu ≤ q̃.

(iii) The random vector ξ has finite first moment.

Assumption (i) says that, for any possible value of Tx− ξ, there exists a feasible
second-stage (or recourse) decision y. Following the continuous-recourse terminol-
ogy, we say that (1) has complete integer recourse. By assumption (ii), the dual to
the continuous relaxation of (3) has a feasible point. Therefore, (i) and (ii) together
imply that v(Tx− ξ) ∈ IR, for all x ∈ IRn and all ξ ∈ IRp (Proposition I.6.7. in
[18]). Moreover, there exist constants a1, a2 ∈ IR such that for all s1, s2 ∈ IRp

|v(s1)− v(s2)| ≤ a1||s1 − s2||+ a2

(Theorem 8.1, [1]; Theorem 2.1, [3]). Therefore, assumptions (i) - (iii) imply that
Q(x) ∈ IR for all x ∈ IRn, and (1) is well-defined.

The model (1) is a special case of the mixed-integer recourse model studied in
[22]. As a consequence of Proposition 3.1 in [22] we obtain

Lemma 3.1 Assume (i) - (iii), then Q is a real-valued lower semicontinuous func-
tion on IRn, i.e. lim infx→xo Q(x) ≥ Q(xo) for all xo ∈ IRn.

We assume throughout the paper:

(iv) The random vector ξ follows a discrete distribution with finite support Ξ, say
Ξ = {ξ1, ξ2, . . . ξr} and pi = Pr(ξ = ξi).

It is shown in [22] that, under mild assumptions, local optimal values and sets of
local optimal solutions to (1) behave stable if the distribution of ξ is perturbed
with respect to the topology of weak convergence of probability measures (Proposi-
tion 4.1, [22]). Therefore, it is possible to resort to discrete distributions of ξ when
solving (1). If ξ has a continuous distribution then, according to the mentioned
stability result, solutions to (1) can be approximated with any given accuracy if a
discrete distribution is taken for ξ that is sufficiently close to the original one in the
topology of weak convergence.

To be able to apply the Gröbner basis algorithm for function evaluations we
assume:

(v) All elements of W are integers.

Actually, it is sufficient if W is rational. Integrality is then obtained by scaling.
Moreover, assumption (v) serves to facilitate specification of the sets where the

function Q is constant.

3.2 Countability

To establish countability of the number of function evaluations required under the
above assumptions, we first analyze the structure of the expected value function.
In the following, �·� and �·� denote (componentwise) integer round up and round
down, respectively.

For all non-negative integer vectors y, Wy ≥ t impliesWy ≥ �t�. Therefore, the
second-stage value function v is constant on subsets

{s ∈ IRp : �s� = k} = {s : k − (1, . . . , 1)′ < s ≤ k} ∀k ∈ ZZp,
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Figure 1: Example of the partition of [0, 5]× [0, 5] in sets C(·) if T and Ξ are given
by (5).

and the function Q is constant on intersections of such subsets. For every x̄ ∈ IRn,
the function Q is constant on

C(x̄) =

r⋂
i=1

{
x : �Tx − ξi� = �T x̄− ξi�}

=

r⋂
i=1

p⋂
j=1

{
x : �Tjx− ξij� = �Tj x̄− ξij�

}

=

r⋂
i=1

p⋂
j=1

{
x : �Tj x̄− ξij�+ ξij − 1 < Tjx ≤ �Tj x̄− ξij�+ ξij

}
. (4)

Here Tj is the jth row of the matrix T and ξij is the jth component of the ith vector
in the support of ξ.

From (4) we see that every set C(·) is obtained by intersecting r× p sets of the
form ki

j + 〈ξij〉 − 1 < Tjx ≤ kij + 〈ξij〉, where kij ∈ ZZ and 〈ξij〉 = ξij − �ξij� is the

fractional part of ξij . Using this structure, in principle we can construct a partition
of the feasible set C = {x ∈ IRn

+ : Ax ≥ b} in sets where the expected value function
Q is constant. See Figure 1 for an example with

T =

⎛
⎜⎜⎝

.4 .2
1 1
.5 1.25
0 1

⎞
⎟⎟⎠ Ξ =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

.25

.3

.2

.1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

.98
0
.8
.5

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

. (5)

Notice that, since each of the constituting sets is the intersection of an open and a
closed half-space, in general the sets C(·) are neither open nor closed.

Below we will show how the fact that Q is constant on every set C(·) ∩ C can
be used to locate an optimal solution of (1), at least if such sets have vertices. The
following condition guarantees this. According to [19], § 8 we denote by 0+C the
recession cone of the convex polyhedron C, i.e. the set of all directions w ∈ IRn

such that x+ tw ∈ C for some x ∈ C and all t ≥ 0. If

0+C ∩ {x : Tx = 0} = {0} (6)
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then each of the sets C(·) ∩C is bounded and has vertices.
In the next section we will show that, under a mild additional assumption, we

can restrict the search for optimal solutions to a bounded set. In that case existence
of vertices is no longer a question and the condition (6) can be dropped.

In the following theorem we show that the countable set of all vertices of the
sets C(·) ∩ C contains an optimal solution of (1).

Definition 3.1 The countable set V , given by

V = {x ∈ IRn : x is a vertex of C(x) ∩ C},
is called the set of candidates; an element of V is called a candidate point.

Theorem 3.1 Let V , the set of candidates, be non-empty. If argmin{cx+Q(x) :
x ∈ C} �= ∅ then

V ∩ argmin{cx+Q(x) : x ∈ C} �= ∅.
Proof. Let x̄ ∈ argmin{cx + Q(x) : x ∈ C}. For all x ∈ C(x̄) ∩ C we have
Q(x) = Q(x̄). Consider minimizing the linear function cx+Q(x̄) on the closure of
C(x̄) ∩ C, denoted by cl(C(x̄) ∩ C). Since the minimum over this set is attained,
it is attained in one of its vertices, say x̂. If x̂ ∈ C(x̄) ∩ C we are finished, since
in that case Q(x̂) = Q(x̄) and cx̂ ≤ cx̄, implying that the vertex x̂ is an optimal
solution. Otherwise, i.e. if x̂ ∈ cl(C(x̄) ∩ C) \ C(x̄) ∩ C, consider the set C(x̂) ∩ C
which trivially contains x̂ as a vertex. It holds

Q(x̂) ≤ lim
x→x̂

Q(x) = Q(x̄) ∀x ∈ C(x̄) ∩ C,

where the inequality is valid by the lower semicontinuity of Q. Since also cx̂ ≤ cx̄,
it follows that x̂ ∈ V is an optimal solution. �

Thus, in order to find an optimal solution of (1), it is sufficient to consider only
elements of the countable set V . In the next section we present conditions such
that the set of candidates is finite.

� Finiteness using the continuous relaxation

The purpose of this section is to show how the continuous relaxation of (1) can
be used to reduce the set of candidates defined in the previous section to a finite
set, under mild conditions. The continuous relaxation is obtained by dropping the
integrality conditions on the second-stage variables in (3):

min{cx+QR(x) : x ∈ C} (7)

where

QR(x) = Eξ vR(Tx− ξ) (8)

and

vR(s) = min{q̃y : Wy ≥ s, y ∈ IRm
+}. (9)

By (i) - (iii), the problem (7) is well defined. Its optimal value is, clearly, a lower
bound to the optimal value of (1).

The following result is the basic tool that allows the use of the continuous re-
laxation to restrict the set of candidate points.
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Lemma 4.1 Let C be a non-empty set, and f and f̄ real functions on C such that
f̄(x) ≤ f(x) for all x ∈ C. Then, for all x̄ ∈ C,

argmin
x∈C

f(x) ⊂ {x ∈ C : f̄(x) ≤ f(x̄)}.

Moreover, the difference between these sets is smaller according as f̄ is a better
approximation of f and f(x̄) is a better approximation of infx∈C f(x). In particular,
if f̄(x̄) = f(x̄) and x̄ ∈ argminx∈C f̄(x) then x̄ ∈ argminx∈C f(x).

Proof. For any x̄ ∈ C

argmin
x∈C

f(x) =
⋂
y∈C

{x ∈ C : f(x) ≤ f(y)}

⊂
⋂
y∈C

{x ∈ C : f̄(x) ≤ f(y)}

⊂ {x ∈ C : f̄(x) ≤ f(x̄)},

where the tightness of each inclusion clearly depends on the indicated properties of
f and x̄, respectively.

The last claim follows directly from the assumptions. We have f(x̄) = f̄(x̄) ≤
f̄(x) ≤ f(x) for all x ∈ C, which precisely means that x̄ ∈ argminx∈C f(x). �

Since QR is a lower bound for Q on IRn, this lemma implies that for any feasible x̄
the corresponding level set of the objective of the continuous relaxation, denoted by
L(cx̄+Q(x̄)), contains all minimizers of the integer recourse problem (1). Moreover,
each time a feasible point with a lower objective value is found, the level set can
be shrinked, thus reducing the number of points that have to be enumerated even
further.

It is immediately clear now that if there is a bounded level set then the set
of candidates is finite. To arrive at conditions under which this is the case, we
first review a well-known dual representation of the function QR and using this
representation we discuss a (partial) description of the level sets L(·). We will use
these also in the next section where we discuss how to actually enumerate the set
of candidates.

By linear programming duality, we obtain

vR(s) = max{su : W ′u ≤ q̃, u ∈ IRp
+}.

Assumptions (i) - (ii) together imply that the set MD = {u ∈ IRp
+ : WT u ≤ q̃} is a

nonempty compact polyhedron. Denoting its vertices by d1, . . . , dNo we obtain

vR(s) = max
l=1,...,No

dls.

Hence,

QR(x) =

r∑
i=1

pivR(Tx− ξi) =

r∑
i=1

pi max
l=1,...,No

dl(Tx− ξi)

is a piecewise linear convex function on IRn.
As explained above, approximations of lower level sets associated with QR are

used in our algorithm. These sets are constructed as follows:
With a subset {d1, . . . , dN} (N ≤ No) of the vertices of MD , the function

Q̄R(x) = max
l=1,...,N

dl(Tx− ξ̄)

9



where

ξ̄ =

r∑
i=1

piξi

forms a lower bound to QR. Indeed, by the convexity of QR and Jensen’s inequality,
we have for all x ∈ IRn

QR(x) ≥ vR(Tx− ξ̄)

= max
l=1,...,No

dl(Tx− ξ̄)

≥ max
l=1,...,N

dl(Tx− ξ̄)

= Q̄R(x).

An (outer) approximation of the lower level set

L(α) = {x ∈ C : cx+QR(x) ≤ α} (10)

is thus given by

L̄(α) = {x ∈ C : cx+ dl(Tx− ξ̄) ≤ α, l = 1, . . . , N}. (11)

For problems with very moderate size, the complete list of vertices of MD can be
obtained via stochastic programming pre-processing techniques as in [12], [28], or
by general vertex enumeration methods (cf. [5] for a comfortable implementation).
In general, however, one has to live with a partial list of vertices. Algorithms for
(non-integer) stochastic programs like the regularized decomposition method [20]
yield such a list in the course of computation. Since, later on, we begin solving (1)
by solving its continuous relaxation, we can assume that at least a partial list of
vertices of MD is available.

As mentioned before, for our set of candidates, and hence for our method, to
be finite, it will be essential that L̄(α) is bounded. Therefore, we add some simple
conditions to enforce the latter. Recall that 0+C denotes the recession cone of C.

Lemma 4.2 A nonempty approximate level set L̄(α) is bounded, provided that

{w ∈ 0+C : (c+ dlT )w ≤ 0, l = 1, . . . , N} = {0}.
Proof. Obviously,

L̄(α) ⊆ {x ∈ C : cx+ dlTx ≤ α+max
l

dlξ̄, l = 1, . . . , N}.

By our assumption, the recession cone of the latter set is {0}. Therefore, this set is
bounded by Theorem 8.4 in [19]. �

Lemma 4.3 If the solution set to the continuous relaxation (7) is nonempty and
bounded, then

{w ∈ 0+C : (c + dlT )w ≤ 0, l = 1, . . . , No} = {0}.
Proof. Assume that there exists w �= 0 such that w ∈ 0+C and (c + dlT )w ≤
0, l = 1, . . . , No, and let x̄ ∈ IRn be in the solution set to the continuous relaxation.
Then it holds for all t ≥ 0

c(x̄+ tw) + dl(T (x̄+ tw) − ξi) ≤ cx̄+ dl(T x̄− ξi), i = 1, . . . , r, l = 1, . . . , No.

Taking the maximum over l and summing up over i yields

c(x̄+ tw) +QR(x̄+ tw) ≤ cx̄+QR(x) for all t ≥ 0.

By w ∈ 0+C, it holds x̄+tw ∈ C for all t ≥ 0. By w �= 0, this implies unboundedness
of the solution set to the continuous relaxation, a contradiction. �
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Remark 4.1 Provided the continuous relaxation has a nonempty, bounded solu-
tion set, it is possible to achieve boundedness of L̄(α) by finding sufficiently many
vertices d1, . . . , dN , in an extreme case, all the d1, . . . , dNo.

� Enumerating the set of candidates

In the previous sections we have shown that the set of candidates V , intersected
with a level set L of the continuous relaxation, contains an optimal solution of (1).
To obtain an optimal solution we need to enumerate this set completely, which is
finite by assumption. In this section we show how such a complete enumeration can
be organized in a way that takes advantage of the structure of the set of candidates.

By definition every candidate point v ∈ V is a vertex of C(v)∩C, which can be
represented as

{
x ∈ IRn :

kij + 〈ξij〉 − 1 < Tjx ≤ kij + 〈ξij〉, i = 1 . . . r, j = 1 . . . p

Ax ≥ b, x ≥ 0

}
, (12)

for suitable choices of kij ∈ ZZ, i = 1 . . . r, j = 1 . . . p. Since v is a vertex of this set,
it satisfies n independent inequalities from this system with equality.

Remark 5.1 Obviously, we only need to consider candidate points that are con-
tained in the level set L. However, the inequalities defining L are not represented
in (12), since their role differs from the inequalities in terms of the rows of T and
A, and the non-negativities. Indeed, a vertex of C(·) ∩ L that is not also a vertex
of C(·)∩C is not a candidate point as defined in Definition 3.1, and therefore need
not be evaluated.

It is not difficult to see that by considering all choices for kij ∈ ZZ such that {x : Tjx =

kij + 〈ξij〉} ∩L is non-empty, and for every such choice considering all combinations
of n independent equalities, we can obtain a complete list of all candidate points in
L. This idea is the basis of our enumeration method. However, for reasons that will
be explained later on, our enumeration method uses the fact that V can be divided
in subsets of candidate points that all lie on a line segment defined by n − 1 out
of n equality constraints as mentioned above. To give a detailed description of our
enumeration method, we first need to introduce some notation.

For j = 1, . . . , p, define

tuj = max{Tjx : x ∈ L}
tlj = min{Tjx : x ∈ L},

and

Rj =

r⋃
i=1

{
k + 〈ξij〉 : k ∈ ZZ, tlj ≤ k + 〈ξij〉 ≤ tuj

}
.

Each set Rj contains all right-hand side values such that the inequality Tjx ≤ rj,
rj ∈ Rj, may appear in the description (12) of some set C(·) that has a non-
empty intersection with L. Similarly, define Rj = {bj−p}, j = p + 1, . . . , p+ q, and
Rj = {0}, j = p+ q+1, . . . , p+ q+n, to denote the sets of possible right-hand side
values for the inequalities defining the set C = {x ∈ IRn : Ax ≥ b, Ix ≥ 0}, where I
is the n× n identity matrix.

Define the (p+q+n)×n matrix S = (T ;A; I). Finally, let J ⊂ {1, . . . , p+q+n},
|J | = n − 1, be an index set such that the matrix SJ , consisting of the rows Sj,
j ∈ J , has rank n − 1, and let RJ ⊂ IRn−1 be the cartesian product of Rj, j ∈ J .
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For a fixed r ∈ RJ , consider

HJ(r) = {x : SJx = r} ∩ L.

Either HJ(r) = ∅, or it is a line segment with endpoints

xu
J(r) = max{cx : x ∈ HJ(r)}

xl
J(r) = min{cx : x ∈ HJ(r)}

(if c ⊥ HJ(r) use any other objective vector). Now consider a row Sj with j �∈ J
(and Sj not perpendicular to HJ(r)). If, for some right-hand side rj ∈ Rj, the
hyperplane Sjx = rj intersects HJ(r), then this intersection is a candidate point;
we will say that this candidate point is generated on HJ(r) by Sj . To obtain all
candidate points on HJ(r) generated by Sj we determine the intersections of HJ(r)
with all hyperplanes Sjx = rj, where rj ∈ Rj only needs to be considered if rj is
in between Sjx

u
J(r) and Sjx

l
J(r). Repeating this procedure for every row Sj with

j �∈ J , and including xu
J(r) and/or x

l
J(r) if it is on the boundary of the feasible set

C, results in a list of all candidate points on HJ(r).
By repeating the procedure above for every family of parallel line segments, i.e.,

for every possible subset J and every r ∈ RJ , all candidate points in L will be found.
In fact, since every candidate point is on a line segments HJ(·) for n different sets
J , it would be listed n times. This redundancy is easily removed by considering
only candidates generated on HJ(r) by rows Sj with j > maxJ j.

In Section 6.2 we will present some ideas to reduce the number of candidate
points in which function evaluations are required. In particular, we will explain
how to take advantage of the way we organized the enumeration.

� Algorithm

We now have all but one of the ingredients that make up the algorithm to be
presented in this section. The last ingredient concerns the determination of an
appropriate (initial) level set. For this purpose we could choose any point in the
feasible region C, evaluate the objective function in this point, and determine the
level set using the continuous relaxation as described in the previous section. Since
we need to solve the continuous relaxation to obtain a (partial) description of the
level sets anyway, it seems reasonable to use one of its optimal solutions, say xR, as
initial point and L(cxR +Q(xR)) as the initial level set.

6.1 Basic form of the algorithm

The presentation of the algorithm is merely a summary of the ingredients exposed
in the preceding sections. The algorithm consists of the following parts.

1. Compute a Gröbner basis for the second stage integer linear programming
problem as explained in Section 2.

2. Solve the continuous relaxation (7). Let xR be an optimal solution.

3. Compute the objective value cxR + Q(xR) (using the Gröbner basis), and
construct the (partial) level set L(cxR +Q(xR)).

4. For every candidate point in L(cxR +Q(xR)) evaluate the objective function,
using the Gröbner basis to compute the expected value function Q. The
candidate points are enumerated according to the scheme proposed in Section
5. A candidate with smallest function value is an optimal solution to the
problem.
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Under our assumption that the set L(cxR + Q(xR)) is bounded, the number
of candidate points to be evaluated in step 4 is finite. Therefore, the algorithm
determines an optimal solution of (1) in finite time.

6.2 Possible improvements

In this section we propose two possible improvements of the algorithm presented
above. They both aim at reducing the number of candidate points for which the
objective function has to be evaluated. In general, this number can be enormous.
Moreover, every function evaluation takes r evaluations of the second stage value
function v, where we recall that r is the number of mass points in the support Ξ.
Thus, although each evaluation of v by means of the Gröbner basis is cheap, it is
still worthwhile to try to minimize the number of function evaluations needed.

The first idea relates to the use of the level set L. By Lemma 4.1 all minimizers of
(1) are contained in every level set L(cx̄+Q(x̄)) for every feasible solution x̄. Since
we only need to evaluate candidate points that are in the level set, it seems to be
advantageous to choose the level set as small as possible. This can be implemented
as follows. Recall that the initial level set is L(cxR + Q(xR)), where xR is an
optimal solution of the continuous relaxation (7). As before, we start evaluating
function values in candidate points according to the enumeration scheme presented
in Section 5. However, as soon as we find a candidate with a lower objective value
than xR, say x̂, we can use it to shrink the level set to L(cx̂ + Q(x̂)). This is of
course a subset of L(cxR + Q(xR)), so that in general the number of remaining
candidates is reduced. Clearly, this procedure can be repeated each time a lower
function value is obtained.

Thus, repeatedly updating the level set has the benefit of reducing the number
of candidates to be evaluated. However, this benefit should be set off against the
additional work that the updating brings about. Updating the level set itself comes
virtually free, since only the right-hand sides in (11) are changed. Considering the
enumeration scheme, only the sets Rj, j = 1, . . . , p, have to be updated. For each j,
this boils down to recomputing tuj and tlj by solving an LP problem of size (N+q)×n,
where N is the number of inequalities in the polyhedral description of the (outer
approximation of the) level set, and q is the number of rows of the matrix A. Our
tentative conclusion is that it seems to be beneficial to update the level set, either
every time a better solution is found or only if a significantly lower objective value
is found. Numerical experiments would be useful to reveal the benefit of updating
and may also give information on the best frequency of updating.

The second improvement makes use of the way we organized the complete enu-
meration as presented in Section 5, and actually is the main reason to choose this
enumeration scheme.

Lemma 6.1 Let HJ(r), r ∈ RJ , be a line segment with endpoints xl
J(r) and

xu
J(r) as defined above. Let the candidate point v, not equal to xl

J(r) or x
u
J(r), be

generated on HJ(r) only by rows Tj , j ∈ I ⊂ {1, . . . , p}. Assume that

(i) c(xu
J(r)− xl

J(r)) > 0,

(ii) Tj(x
u
J(r)− xl

J(r)) > 0 for all j ∈ I.

Then v is not an optimal solution of the integer recourse problem (1).

Proof. Let v̄ be the neighboring candidate point of v on HJ(r) in the direction
−(xu

J(r) − xl
J(r)), and for an arbitrary λ ∈ (0, 1) define xλ = λv̄ + (1 − λ)v (see

Figure 6.2). Obviously, xλ ∈ HJ(r). We will show that xλ ∈ C(v) so that Q(xλ) =
Q(v). Since cxλ < cv by Assumption (i), this proves the result.
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Figure 2: Illustration by the proof of Lemma 6.1.

Using (4) we have

C(v) =

p⋂
j=1

Cj(v)

where

Cj(v) =

r⋂
i=1

{
x : �Tjv − ξij� − 1 < Tjx− ξij ≤ �Tjv − ξij�

}
.

Depending on the different roles that a row Tj may play, we distinguish three cases
and each time show that xλ ∈ Cj(v).

If j ∈ I then, since xλ ∈ HJ(r), it holds Tjxλ = Tjv, so that xλ ∈ Cj(v).
If a row Tj generates v on HJ(r) then, by assumption (ii), Tjxλ < Tjv so that

Tjxλ − ξij ≤ �Tjv − ξij� for all i. Since xλ is in between the neighboring candidate

points v̄ and v we also have �Tjxλ − ξij� > �Tjv − ξij� − 1 for all i, and we conclude
that xλ ∈ Cj(v).

Finally, consider the case that j �∈ I and Tj does not generate v on HJ(r). Then
there are two possibilities: either Tjv− ξij < �Tjv− ξij� for all i, or there exists an ī

such that Tjv− ξ īj = �Tjv− ξ īj�. In the first case it follows from the fact that there
are no candidate points in between v̄ and v that xλ ∈ Cj(v). In the latter case,

since Tj does not generate v on HJ(r), it must hold that Tjx− ξ īj = �Tjv − ξ īj� for

all x ∈ HJ(r). Since xλ ∈ HJ(r) we have Tjxλ − ξ īj = �Tjv − ξ īj�, so that also in
this case xλ ∈ Cj(v). �

In our algorithm we may use Lemma 6.1 as follows. Consider a family of line
segments HJ(r), r ∈ RJ . If for some r ∈ RJ it holds that c(xu

J(r)−xl
J (r)) > 0, then

this is true for every r ∈ RJ since all these line segments are parallel. Similarly, if
a row Tj , j �∈ J , satisfies Tj(x

u
J(r)−xl

J(r)) > 0 for one r ∈ RJ , then this inequality
holds for all r ∈ RJ . Therefore, given a family of line segments HJ(r), r ∈ RJ , and
a row Tj, j �∈ J , we check for an arbitrary r ∈ RJ if both c(xu

J(r)− xl
J(r)) > 0 and

Tj(x
u
J(r) − xl

J(r)) > 0. If these conditions are satisfied, we may skip all candidate
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points that are generated by this row on any line segment HJ(r), r ∈ RJ , since by
Lemma 6.1 none of them can be optimal for (1) if they are generated only by this
row Tj. Note that any candidate point that is also generated by a row Ti, i �∈ J ,
i �= j, such that Ti(x

u
J(r) − xl

J(r)) ≤ 0 will still be considered; hence, no possible
optimal solutions will be discarded.

This improvement is very cheap to implement and may result in a significant
reduction of the number of function evaluations needed.

� Concluding remarks

The algorithm presented is one of the first general purpose algorithms devised for
two-stage stochastic integer programming. The basic idea is that once having deter-
mined a Gröbner basis related to the matrix W and the objective q̃ the numerous
solutions of the second stage integer program with varying right-hand sides take
little time. Consequently, this technique for solving integer programs as proposed
in [6] is preeminently suitable for solving stochastic integer programs. At the same
time it also imposes limitations on the present applicability of the method: the
present codes for determining a Gröbner basis can handle matrices of moderate
size only. However, several research groups are working on special purpose variants
of Buchberger’s algorithm for solving (deterministic) integer programs, and any
algorithmical progress in this field can be incorporated directly in our algorithm.

In addition to connecting Gröbner methodology with integer recourse problems
we use structural properties of these problems to construct a countable c.q. finite
set containing an optimal solution. As a result, the integer recourse problem can
be solved using a (complete) enumeration scheme that is guided by the structure
of the set of possible optimal solutions. It would be interesting to investigate the
effect of the improvements proposed in Section 6.2 empirically and theoretically.

Appendix

Gröbner Bases

Let k be any field and k[x] denote the ring of polynomials in d variables x =
(x1, . . . , xd). Each monomial xα = xα1

1 · xα2
2 · . . . · xαd

d in k[x] is identified with its

exponent vector α in the set INd where IN denotes the non-negative integers.
Using polynomials in the context of the present paper is basically motivated

by the fact that linear equations with indeterminates in the non-negative integers
have their counterparts in the language of polynomials. Indeed, given an equation
Ay = b where y ∈ INn is unknown and A, b are a non-negative integral d×n−matrix

and d−vector, respectively, we consider the monomials xa1

, . . . , xa
n

and xb in k[x]
where a1, . . . , an denote the columns of A. Then, there exists a solution y ∈ INn to

Ay = b if and only if xb = (xa
1

)y1 · . . . · (xan

)yn , i.e., if and only if the polynomial

xb can be written as a polynomial in xa
1

, . . . , xa
n

. For the precise relations between
integer linear programming and the theory of polynomials, however, it needs the
algebraic prerequisites that we assemble in the present subsection.

A monomial order on k[x] is any relation ≺ on INd that is a total order with 0 as
the unique minimal element and with the property that α ≺ β implies α+γ ≺ β+γ
for all α, β, γ ∈ INd. A familiar example for a monomial order on k[x] is the (purely)
lexicographic order, further examples are listed in [7]. For a polynomial f ∈ k[x],
the maximal monomial with respect to a monomial order ≺ is called the initial (or
leading) monomial and denoted by in≺(f).

15



A subset I ⊂ k[x] is called an ideal if it satisfies: 0 ∈ I, together with f1, f2 also
their sum f1 + f2 belongs to I and if f ∈ I and h ∈ k[x] then hf ∈ k[x]. Given
an arbitrary index set I and fi ∈ k[x], i ∈ I, then the set 〈fi : i ∈ I〉 consisting
of all polynomials which are finite sums of the form

∑
i∈I hifi, hi ∈ k[x], is an

ideal. We say that I = 〈fi : i ∈ I〉 is generated by {fi : i ∈ I} and call the latter
a basis of I. Hilbert’s Basis Theorem asserts that every ideal I ⊂ k[x] has a finite
basis. With an ideal I and a monomial order ≺ we define the initial ideal in≺(I)
by in≺(I) = 〈in≺(f) : f ∈ I〉.

Suppose you are given a finite basis {f1, . . . , f�} of an ideal I and a mono-
mial order ≺. Of course, 〈in≺(f1), . . . , in≺(f�)〉 ⊆ in≺(I), and this inclusion can
be strict, in general (Example 2, [7], p. 74). A finite subset G = {g1, . . . , g�} of
an ideal I is called a Gröbner basis of I with respect to a monomial order ≺ if
〈in≺(f1), . . . , in≺(f�)〉 = in≺(I). It is possible to prove Hilbert’s Basis Theorem
in a way that simultaneously yields the existence of a Gröbner basis (Theorem 4,
Corollary 6, [7], pp. 75,76). As another consequence it follows that I is generated
by G.

If k[x] is equipped with a monomial order then the well-known algorithm for
division with remainder of polynomials in one variable can be generalized to dividing
a multivariate polynomial by a finite set of multivariate polynomials yielding a
remainder. For details consult Chapter 2, § 3 in [7]. Given a monomial order ≺ and
an (ordered) set F = {f1, . . . , f�} ⊂ k[x], the generalized division algorithm rewrites
f ∈ k[x] as f = a1f1 + a2f2 + . . .+ a�f� + rF (f) where a1, . . . , a� ∈ k[x] and either
rF (f) = 0 or the remainder rF (f) is a k−linear combination of monomials none of
which is divisible by any of in≺(f1), . . . , in≺(f�) (Theorem 3, [7], p. 63). In general,
rF (f) depends on the order in which f1, . . . , f� are listed in F (Example 4, [7],
p. 65). Moreover, it is clear that rF (f) = 0 implies f ∈ I = 〈in≺(f1), . . . , in≺(f�)〉.
The reverse implication, however, can fail (Example 5, [7] p. 66). This is different if
G = {g1, . . . , g�} is a Gröbner basis of an ideal I ⊂ k[x] with respect to a monomial
order ≺. Then, for every f ∈ k[x], the remainder rG(f) of f on division by G is
determined uniquely and f ∈ I if and only if rG(f) = 0.

An algorithm for computing Gröbner bases (Buchberger’s Algorithm) is de-
scribed in the next subsection. Gröbner bases together with Buchberger’s Algo-
rithm underlie many algorithms in algebraic geometry and commutative algebra,
for details see [2], [7], [24].

Buchberger’s Algorithm

To formulate a necessary and sufficient condition for a basis G of an ideal I ⊂ k[x]
to be a Gröbner basis (with respect to a fixed monomial order ≺) we introduce the
notion of an S-polynomial of two polynomials f1, f2 ∈ k[x]. To avoid technicalities
we assume that the coefficients (in k) of both in≺(f1) and in≺(f2) are equal to
1. Otherwise, the following can be adjusted in an obvious way. The S-polynomial
S(f1 , f2) of f1 and f2 is defined by S(f1 , f2) = m1f1 −m2f2 where m1, m2 are the
unique monomials satisfying m1in≺(f1) = m2in≺(f2) =least common multiple of
in≺(f1) and in≺(f2), i.e., the S-polynomial is designed to yield cancellation of the
leading monomials. The announced criterion now reads: A basis G = {g1, . . . , g�}
of an ideal I ⊂ k[x] is a Gröbner basis if and only if for all pairs i �= j, the remainder
of S(gi, gj) on division by G is zero (Theorem 6, [7], p. 84). This result is the key
for constructing a Gröbner basis from an arbitrary finite basis of an ideal. The
method is due to Buchberger and will be listed here only in its basic form. Many
improvements were worked out by Buchberger and other authors (see [2], [4], [7]
and the references therein).

Buchberger’s Algorithm
Let I = 〈f1, . . . , f�〉.
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INPUT: F = {f1, . . . , f�}
G := F
REPEAT G′ := G

FOR each pair {p, q}, p �= q, in G′

DO S := rG′(S(p, q))
IF S �= 0 THEN G := G ∪ {S}

UNTIL G = G′.

OUTPUT: A Gröbner basis G = {g1, . . . , gt} of I with F ⊂ G.

Finiteness of the above algorithm essentially relies on the fact that after each
passing through the main loop we have 〈in≺(G′)〉 ⊆ 〈in≺(G)〉, that this inclusion
is strict if G′ �= G and that there is no infinite strictly ascending chain of ideals in
k[x] (Theorem 2, [7], p. 89).

Since Gröbner bases computed by the above algorithm are often unnecessarily
big, unneeded generators are eliminated by the following two-step procedure. For
the justification we refer to the arguments given at pp. 90,91 in [7].

Step 1: FOR each g ∈ G
DO
IF there exists a p ∈ G \ {g} such that in≺(p) divides in≺(g)
THEN remove g from G

Step 2: FOR each g ∈ G
DO g := rG\{g}(g)

Carrying out this procedure and normalizing the elements in G such that all the
k−coefficients of their initial monomials are equal to 1 yields what is called the
reduced Gröbner basis. If {0} �= I ⊂ k[x] is an ideal then, for a given monomial
order, I has a unique reduced Gröbner basis (Proposition 6, [7], p. 91).

It has to be pointed out that (reduced) Gröbner bases can have a large number
of elements and that (minimal) bounds of the degrees in the members of a Gröbner
basis can be quite large as well. In the literature, examples are given where the
construction of a Gröbner basis for an ideal generated by polynomials of degree less

than or equal to some d can involve polynomials of degree proportional to 22
d

(see
the discussion at the end of Chapter 2 in [7] and the references therein).

Buchberger’s Algorithm for Integer Programs

Suppose we are given the integer linear program

(P) min{cy : Ay = b, y ∈ INn}
where A is an integral d × n-matrix and c, b are integral vectors of dimensions n
and d, respectively. Recall that above the notion of a monomial order in a ring of
polynomials was defined by referring to certain total orders of lattice points. The
ranking induced by the objective-function vector c in (P) is now included into a
monomial order on INn by saying that the order is compatible with c. More precisely,
a monomial order ≺ on INn is compatible with c ∈ ZZn if α ≺ β is equivalent to the
alternative cα < cβ or cα = cβ and α ≺ β.

In [6] it is shown that, if (P) has a minimal solution, then a monomial order
compatible to c exists. A possibility to specify monomial orders is to fix a suitable
matrix B and to say that α ≺ β if and only if Bα is less than Bβ lexicographically.

Now assume that c, A, b have non-negative entries. We will solve (P) by purely
algebraic means. Although the same procedure, in principle, also applies for prob-
lems (P) with general integral data, in that case some technical extensions are
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necessary to which we will come back later on. As sketched at the beginning of
this appendix, the feasibility issue in (P) is equivalent to xb being expressible as

a polynomial in xa
1

, . . . , xa
n

where a1, . . . , an are the columns of A. This, in fact,
amounts to solving the subalgebra membership problem in k[x] whether xb belongs

to the subalgebra generated by xa
1

, . . . , xa
n

.
Shannon and Sweedler [23] tackled subalgebra membership problems in k[x]

via Gröbner bases. To outline their method let k[x] = k[x1, . . . , xd], k[x, y] =
k[x1, . . . , xd, y1, . . . , yn] be polynomial rings and f1, . . . , fn ∈ k[x]. Adopt a mono-
mial order ≺ in k[x, y] such that x > y, i.e., any monomial containing a non-
trivial x-component dominates any monomial in y. Consider the ideal I = 〈f1 −
y1, . . . , fn − yn〉 ⊂ k[x, y] and let G be a Gröbner basis of I with respect to ≺.
Then, in [23] it is shown that g belongs to the subalgebra generated by f1, . . . , fn,
i.e. g ∈ k[f1, . . . , fn], if and only if the remainder rG(g) of g on division by G belongs
to k[y] = k[y1, . . . , yn], and in this case g = rG(g)(f1 , . . . , fn), i.e., g is obtained by
substituting y1, . . . , yn in rG(g) with f1, . . . , fn.

Using the above membership algorithm Conti and Traverso [6] devised the fol-
lowing solution method for (P):

Buchberger Algorithm for Integer Programs

Step 1: Design a ring k[x, y] according to the dimension of A.
Step 2: Specify a monomial order ≺ in k[x, y] that is compatible with c and

guarantees x > y.

Step 3: Form the ideal I = 〈xa1 − y1, . . . , x
an − yn〉.

Step 4: Compute the (reduced) Gröbner basis G of I with respect to ≺
using Buchberger’s algorithm.

Step 5: Divide xb by G.
Step 6: If rG(x

b) ∈ k[y] then the remainder is a monomial whose exponent vector
is an optimal solution to (P), otherwise, (P) has no feasible solution.

Negative entries in A are handled in a way that, although in a different context,
reminds to what is done in linear programming: each vector a ∈ ZZd can be written
(not uniquely !) as a = a′ − a′′ where a′, a′′ have non-negative entries, a′′ = ao1
with a non-negative integer ao and 1 denoting the vector of all ones. In this way,
one gets representations a1

′ − a1
′′
, . . . , an

′ − an
′′
of the columns of A and the above

algorithm is modified as follows:
In Step 1, another indeterminate t is introduced yielding the ring k[x, y, t].

The monomial order in Step 2 in addition has to satisfy t > y. The ideal in

Step 3 reads I = 〈xa1′ − xa
1′′
y1, . . . , x

an′ − xa
n′′
yn, x1 · . . . · xd · t − 1〉. We only

mention that the last binomial among the above generators serves to account for
the non-uniqueness in representing the columns of A. For further details we refer
to [6].

Let us finally add a few comments:
The tremendous part of the method is, of course, Step 4. The exponential

complexity of Buchberger’s algorithm still prevents an application of the method to
large-scale integer linear programs.

On the other hand, and this is crucial in the stochastic-programming context
of the present paper, the right-hand side b enters only after the main part of the
work is done: Having once computed the Gröbner basis, solving (P) for a specific b
amounts to just a single generalized division with remainder.

In our situation, the input basis of I is given by binomials. Notice that the
S-polynomial of two binomials is again a binomial and that dividing a binomial by
a set of binomials yields as remainder either zero or a binomial. Therefore, G has
to consist of binomials. Dividing xb, a monomial, by G, a set of binomials, hence
yields a monomial as remainder.
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In general, forming S-polynomials in the course of Buchberger’s algorithm leads
to polynomials that become longer and longer. In the present case, S-polynomials
have length two which is, of course, beneficial when running Buchberger’s algorithm.

Computer algebra packages usually contain implementations of Buchberger’s
algorithm. Therefore, the method outlined above can be implemented easily. One
only has to make sure that the implementation at hand allows a free choice of the
monomial order, which is impossible in some packages. However, the specifications
hinted at above cannot be exploited with general purpose algorithms. Therefore,
we refer to the work of Thomas [26], who gave a purely geometric interpretation of
the method in terms of directed graphs whose knots are lattice points and whose
edges at the beginning correspond to the input basis of I. Finding the reduced
Gröbner basis via Buchberger’s algorithm then means to rebuild the graph such
that the edges correspond to the members of the Gröbner basis, which in turn can
be understood as an integer programming test set. The geometric version offers the
possibility of implementation via elementary manipulations of integer vectors.

As pointed out above the method involves a certain overhead when aiming at the
solution of (P) for a single right-hand side b only. Based on the geometric insights
of [26] recent research is directed to overcome this. First results along this line can
be found in [27].
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