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Linear response theory and optimal control for

a molecular system under nonequilibrium conditions

Han Wanga and Carsten Hartmanna and Christof Schüttea,b

aInstitute for Mathematics, Freie Universität Berlin, Germany
bZuse Institute Berlin (ZIB), Germany

Abstract

In this paper, we propose a straightforward generalization of lin-
ear response theory to systems in nonequilibrium that are subject to
nonequilibrium driving. We briefly revisit the standard linear response
result for equilibrium systems, where we consider Langevin dynam-
ics as a special case, and then give an alternative derivation using a
change-of-measure argument that does not rely on any stationarity or
reversibility assumption. This procedure moreover easily enables us
to calculate the second order correction to the linear response formula
(which may or may not be useful in practice). Furthermore, we outline
how the novel nonequilibirum linear response formula can be used to
compute optimal controls of molecular systems for cases in which one
wants to steer the system to maximize a certain target expectation
value. We illustrate our approach with simple numerical examples.

1 Introduction

Standard molecular dynamics simulations are dealing with systems in ther-
mal equilibrium; in this case they are tuned to the canonial or Boltzmann
distribution in the sense that either (1) if one starts from this distribution
it remains invariant under the dynamics or (2) if one generates a very long
trajectory it samples state space with respect this distribution, that is, ev-
ery possible state of the molecular system under consideration is visited
according to the probability given by it. Obviously, this allows to compute
equilibrium expectation values with respect to the canonical distribution
simply be computing long trajectories.

Often, however, one is interested in knowing about the response of the
molecular system to perturbation out of equilibrium. The standard linear
response formula allows to answer this question, at least partially. In the
standard setting it gives us the first order of the change to an equilibrium
expectation value as resulting from the nonequilibrium perturbation. Here,
first order means first order in the size of the perturbation. This linear re-
sponse formula has a long history of extensions and generalizations. In some
sense it has become one of the cornerstones of modern statistical physics
since it can be related to the fluctuation dissipation theorem (FDT) which
roughly states that for appropriate systems in statistical equilibrium, the
average response to small external perturbations can be calculated through
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the knowledge of suitable correlation functions of the unperturbed statistical
system. The standard linear response theory holds in a very general sense
[2] as long as one assumes that the unperturbed system is in equilibrium.

There is an increasing number of articles in the literature that report
on applications of molecular dynamics to nonequilibrium settings. There
are many generalization to so-called nonequilibrium steady states based on
the generality of the FDT [11], but despite its wide use, the present au-
thors do not know of a linear response formula that applies to fully general
nonequilibirium cases. We will provide such a formula for the case that the
underlying dynamics can be described by Langevin dynamics. Furthermore,
we will even provide a formula for the second order response of a Langevin
system in nonequilibrium to a small perturbation.

Instead of applying this theory to a molecular system we will go one
step further. We will outline how the novel nonequilibrium linear response
formula can be used to compute the optimal control of molecular systems.
In optimal control one seeks the optimal way to perturbed a molecular sys-
tem such that a certain target expectation value (e.g. population of certain
states) is maximized under constraints on the energy of the control. In gen-
eral the control drives the molecular system under control out of equilibrium.
Thus, the nonequilibrium linear response formula can be used to find the
optimal correction of the present control regarding the expectation value of
interest.

The outline of the article is as follows: First, we will review the derivation
of the standard linear response formula for rather general diffusion processes
which include which Langevin dynamics. Next, we will show how to derive
first and second order response formulas for the nonequilibrium case and
how to apply these formula for the computation of optimal controls. Finally,
we will validate the nonequilibrium linear response formula and its use for
optimal control for simple test cases. This numerical experiments will also
outline that the use of the linear response formula is imperative for numerical
efficiency and allows to extend the applicability of linear response theory to
stronger perturbations.

2 Linear response

In this section, we want to firstly give a simple and formal derivation of the
linear response for equilibrium and nonequilibrium systems. To this end we
consider a general Itô stochastic differential equation of the form

dXt = (b(Xt, t) + εvt)dt+ a(Xt)dBt , t ≥ 0 , (1)

where Xt ∈ Rd, b(·, ·) is a smooth time-dependent vector field, a(·) a smooth
field of d × n matrices and Bt is standard Brownian motion in Rn. Here
vt ∈ Rd is any given driving force applied to the system, which in general
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may depend on Xt and t; ε > 0 is a small parameter. Whenever (1) without
the perturbation εv is considered, we write

dxt = b(xt, t)dt+ a(xt)dBt , t ≥ 0 . (2)

2.1 Small perturbations from equilibrium: Langevin dynam-
ics

We consider the equilibrium and nonequilibrium case separately and start
with the equilibrium case (see, e.g., [5, 14]). To begin with, we assume that
the infinitesimal generator

Aε = A0 + εA1 ,

with
A0 =

1
2
aaT : ∇2 + b · ∇ , A1 = v · ∇

of (1) has an isolated eigenvalue 0 corresponding to the unique invariant
measure of the dynamics for ε = 0 and satisfies a spectral gap condition
(see, e.g., [12]), so that the operator (A∗0)−1A∗1 is bounded (on an appropriate
domain), where A∗0 and A∗1 denote the formal adjoints in L2, e.g., A∗1φ =
−∇(vφ).

Specifically, we are interested in the case that (1) has the form of a
Langevin equation, in which case

b = (∇pH,−∇qH − γ∇pH)T , a = (0, σ)T , (3)

where H : Rd → R, d = 2n is the Hamiltonian of the system, γ = γT >
0 the positive semi-definite n × n friction matrix, σ constant, satisfying
2γ = βσσT for some β > 0, and we have used the convention x = (q, p) ∈
Rn×Rn. Then, under some mild growth conditions on the Hamiltonian for
large arguments, the unperturbed dynamics has a unique invariant measure
with density

ρ0(q, p) =
1
Z
e−βH(q,p) , Z =

∫
e−βH(q,p) dqdp .

and the above spectral gap condition is met. Now let f be any integrable
phase space function and let ρε = ρε(q, p, t) denote the probability density
of Xt = (Qt, Pt), the solution to the Langevin equation (1)&(3), assuming
that (Q0, P0) = (q, p) was distributed according to the invariant density ρ0.
We define the expectation with respect to ρε as

Eρε [f ] =
∫
fρε dqdp .
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A classical result, that is usually derived using a formal expansion of the
solution to the Kolmogorov forward or backward equations in powers of ε,
now states that (see, e.g., [3] and the references therein)

lim
ε→0

Eρε [f ]−Eρ0 [f ]
ε

= Eρ0 [A1A−1
0 (f −Eρ0 [f ])] . (4)

Green-Kubo relations

For the specific case of the Langevin equation (1)&(3), the general linear
response (4) can be recast in form of the better known Green-Kubo formula
[6, 9]. Using the formal operator identity

−A−1
0 g =

∫ ∞
0

etA0g dt ,

that can shown to hold for the generator of the Langevin equation under
mild conditions (formally for functions g that are orthogonal to the nullspace
of A∗0, i.e. functions satisfying Eρ0 [g] = 0), we find that

lim
ε→0

Eρε [f ]−Eρ0 [f ]
ε

= −β
∫ ∞

0
Eρ0 [J(q0, p0)(f(qt, pt)−Eρ0 [f ])] , dt (5)

in terms of the dissipative flux J = −v · ∇H. In other words:

Eρε [f ] ≈ Eρ0 [f ]− εβ
∫ ∞

0
Eρ0 [J(q0, p0)(f(qt, pt)−Eρ0 [f ])] dt ,

where the expectation under the integral is taken over all realizations of the
unperturbed equilibrium Langevin equation (2)&(3) with initial distribution

ρ0(q, p, 0) = ρ0 .

2.2 Nonequilibrium response theory: controlled Langevin
dynamics

The classical response theory has the limitation that the reference (equilib-
rium) distribution ρ0 must be the unique stationary probability measure of
the unperturbed dynamics. Moreover the validity of the linear approxima-
tion relies on a spectral gap condition that is difficult to verify in practice. In
particular the perturbation argument does not provide a framework, under
which the second and even higher order responses can easily be derived.

Girsanov transformation

Here we propose an alternative (purely formal) derivation of the linear re-
sponse result, that is based on a change of drift in the corresponding SDE
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and which allows for an easy generalization of the above linear response re-
sult to nonequilibrium systems. We will briefly review the idea of the change
of drift via Girsanov transformations; for details we refer to the textbook [7].
Let xt, Xt be the solutions to the following stochastic differential equations:

dxt = b(xt, t)dt+ a(xt)dBt (6a)
dXt = (b(Xt, t) + εvt)dt+ a(Xt)dBt (6b)

for 0 ≤ t ≤ T and with fixed initial conditions

x0 = X0 = x .

Suppose that there exists a auxiliary stochastic process ξt ∈ Rm such that

a(Xt)ξt = vt . (7)

The auxiliary variable ξ will be called control variable. We define

Wt = ε

∫ t

0
ξs ds+Bt , 0 ≤ t ≤ T ,

which allows us to express (6b) by

dXt = b(Xt, t)dt+ a(Xt)dWt (8)

It follows from the Girsanov theorem [7, Thm. 8.6.8], sometimes also called
Cameron-Martin-Girsanov theorem [13], thatWt is again a Brownian motion
under a new probability measure that has a density with respect to the
Gaussian probability measure that is generated by the Brownian motion
Bt.1 Specifically, let ν denote the law of the Brownian motion Bt and define
a new probability measure µ on the space of continuous trajectories by

dµ = MTdν

with

Mt = exp
(
−ε
∫ t

0
ξs · dBs −

ε2

2

∫ t

0
|ξs|2ds

)
, 0 ≤ t ≤ T . (9)

Technical details aside, the Girsanov theorem implies that Wt for any func-
tion f = f({Xt}0≤t≤T ) that is integrable with respect to ν, we have the
identity

Eν [f ] :=
∫
f({Xt}0≤t≤T ) dν =

∫
f({Xt}0≤t≤T )

dν

dµ
dµ =: Eµ[M−1

T f ] .

1A quick-and-dirty derivation of the above change-of-measure formula can be easily
obtained, if the noise covariance a(·)a(·)T has full rank with bounded inverse. Then,
using Euler’s method for (6), it follows that (9) is basically the likelihood ratio between
the time-discrete path densities of (6b) and (6a).
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where

M−1
T = exp

(
ε

∫ T

0
ξs · dWs −

ε2

2

∫ T

0
|ξs|2ds

)
is the density of ν relative to µ. Note that the expectation on the right hand
side corresponds to the unperturbed dynamics, because Wt is a standard
Brownian motion under µ, and the expectation is over all realizations of (8)
starting from either any given initial condition X0 = x or an arbitrary initial
distribution. On the other hand, Xt under ν corresponds to the perturbed
dynamics, which should become clear upon comparing equations (6b) and
(8). Another route to the same result is as follows: One writes down the
Onsager-Machlup functional-based path space distribution [8] for (Xt) and
(xt), then computes the reweighting factor from one to the other and gets
MT again.

An alternative linear response formula

Linearization of M−1
T about ε = 0, assuming that the control has bounded

variance, yields the alternative linear response formula

lim
ε→0

Eρε [f ] + Eρ0 [f ]
ε

= Eρ0

[
f({xt}0≤t≤T )

∫ T

0
ξs · dBs

]
, (10)

where xt is the solution (6a) and ρε, ρ0 denote the distributions of the
perturbed and unperturbed dynamics, in accordance with the notation used
in the previous section. Note that ρ0 6= ρ0 does not need to be an equilibrium
distribution. Further note that f and Bt are not independent, hence f times
the integral over the Brownian motion does not average to zero in general.

Remark. By formally expanding M−1
T up to second order we get an anal-

ogous second order response formula:

Eρε [f ] ≈ Eρ0 [f ] + εEρ0

[
f

∫ T

0
ξs · dBs

]
+
ε2

2
Eρ0

[
f

{(∫ T

0
ξs · dWs

)2

−
∫ T

0
|ξs|2 ds

}]
.

(11)

Nonequilibrium Langevin Dynamics

We now link our previous considerations with the previous case and consider
a nonequilibrium Langevin equation. Specifically, we add a non-gradient
perturbation to the Langevin equation

b = (∇pH,−∇qH − γ∇pH +D(q)u)T , a = (0, σ)T , (12)

where u ∈ Rn is some control variable and D(·) ∈ Rn×n satisfies the Fred-
holm alternative range(D(·)) ⊥ ker(σT ), where ker(σT ) denotes the kernel
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of σT . As we are interested in small perturbation δu in the controls u, it is
convenient to further specify what v in (6) is. Specifically, we assume that
v is of the form

v = (0, D(q) δu) (13)

so that equation (7) that determines the change of measure in terms of the
auxiliary control variable ξ (and thus the linear response) reads

σξt = D(Qt) δut .

To be more explicit, the equation we are considering has the form

dQt = ∇pH(Qt, Pt)dt
dPt = −∇qH(Qt, Pt)dt− γ∇pH(Qt, Pt)dt+D(Qt) (ut + εδut)dt+ σdBt,

(14)
so that Xt from above now is (Qt, Pt) and xt = (qt, pt) from above is the
solution of our last equation for ε = 0.

The equation is solvable by the requirement range(D(·)) ⊥ ker(σT ),
which, if σ has full rank, means that D(·) must be invertible almost ev-
erywhere. Hence the linear response formula (10) becomes

lim
ε→0

Eρε [f ]−Eρ0 [f ]
ε

= Eρ0

[
f({(qt, pt)0≤t≤T })

∫ T

0
(σ−1D(qs) δus) · dBs

]
(15)

or, in other words:

Eρε [f ] ≈ Eρ0 [f ] + εEρ0

[
f({qt, pt}0≤t≤T )

∫ T

0
(σ−1D(qs) δus) · dBs

]
. (16)

Here, as before, the expectation on the right is over all realizations of (14)
for ε = 0 with arbitrary initial conditions (fixed or distributed); see also the
remark below on the choice of initial conditions.

Numerical realization

As one can easily get lost in the various integral transformations, measures
ν and µ, distributions ρε and ρε etc. it may be helpful to understand how
the linear response formulas (10) or (15) can be realized algorithmically. To
this end, let (x0, x1, x2, x3, . . .) with xk be the numerical realization of (6a).
Let us further suppose that the initial value x0 = x is fixed. The simplest
possible numerical discretization would be the Euler scheme

xn+1 = xn + ∆t b(xn, tn) +
√

∆t a(xn)ηn+1 , x0 = x ,

with time step ∆t = tk+1 − tk and ηk i.i.d. Gaussian random variables with
mean 0 and unit covariance. (For a Langevin equation such as (14) the
Euler scheme is not recommended, but the basic idea stays the same.) Now
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a simple unbiased estimator of the linear response—i.e. the right hand side
in (10)—would be

R̂ =
1
M

M∑
i=1

f({xk(ωi)}0≤k≤N )
N−1∑
j=0

ξ̂i(ωi) · ηj+1(ωi)

 (17)

with N = bT/∆tc and xk(ωi) denoting the i-th realization of xk, that is
generated by the i-th realization (η1(ωi), . . . , ηk(ωi)) of the Gaussian noise
sequence (ηk)k∈N. The time-discrete control variable is given by

a(xk)ξ̂k = vtk

for any given perturbation v : [0, T ]→ Rm.

Remarks. Some comments on the above result are in order:

(i) The rightmost term in (16) is the linear response to the reference
nonequilibrium process (driven by ut with ε = 0). From (11) we can
also get the second order response term. The latter is bounded by the
assumption that the controls have bounded second moment.

(ii) In the above derivation, we have tacitly assumes that the reference
and the perturbed nonequilibrium processes start from the same ini-
tial value or have the same initial distribution. For fixed initial val-
ues (i.e. points) this assumption cannot be relaxed (because otherwise
dν/dµ does not exist). For distributed initial values, however, there is
no problem for the unperturbed and perturbed dynamics to have differ-
ent initial distribution as long as both distributions are strictly positive
almost everywhere. In this case one can apply a similar reweighing ap-
proach between the initial distribution as we used it for the trajectory
ensemble.

(iii) If one wants to calculate the same expectation value for a family of
nonequilibrium perturbations δut then one does not need to repeat the
calculations of (16) for every member of the family. If it is possible to
express different δut in the same basis, then the responses must only
be calculated for the single basis functions. Then with a linear combi-
nation of the responses on basis functions, one can derive the responses
for the whole family. This feature will be used below when discussion
optimal control as an application of the linear response formula.

3 Application of the nonequilibrium response for-
mula: optimal control

The nonequilibrium linear response formula can be used for solving cer-
tain optimal control problems. To this end, let us remain in the setting of
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equations (14)–(16) and assume that we are interested choosing the nonequi-
librium forcing u, such that the expected value E[f ] of some utility function

f(u) =
∫ T

0

{
`(qs)−

1
2
|us|2

}
dt+ L(qT )

is maximized where qt is the solution to the controlled Langevin equation
(14) for ε = 0; the functions ` and L are the running cost and the terminal
cost, which are assumed to be continuous and bounded from above; without
loss of generality, ` and L are assumed to depend only on the positions. The
quadratic term is a penalization that makes sure that the controls do not
go through the roof [10, 4]. Let us moreover assume that the controls are
open-loop (i.e. without feedback) and can be represented by

ut =
K∑
k=1

akΦk(t) , ak ∈ R ,

with suitably chosen time dependent, bounded and Lipschitz continuous
vector fields Φk : [0, T ] → Rn, k = 1, . . . ,K. We want to solve the optimal
control problem

max
u∈U

I(u) s.t.

dqt = ∇pH(qt, pt)dt
dpt = −∇qH(qt, pt)dt− γ∇pH(qt, pt)dt+D(qt)utdt+ σdBt .

(18)

where

I(u) = Eρ0

[∫ T

0

{
`(qs)−

1
2
|us|2

}
dt+ L(qT )

]
(19)

and U , the space of admissible controls, consists of all bounded controls

ut =
K∑
k=1

akΦk(t) , ak ∈ R , (20)

Gradient method from linear response

In principle optimal control problems such as (18)–(19) can be solved by
dynamic programming, i,e., by solving the corresponding Hamilton-Jacobi-
Bellman PDE [1]. Expect for very simple, essentially one-dimensional sys-
tems, solving Hamilton-Jacobi-Bellman equations is not an easy task, so we
pursue a different strategy here. The idea is to use that we have restricted
our space of admissible controls to functions of the form (20) with given basis
vector fields and that we can a gradient search in the unknown coefficients
ak, using the iteration

u(n+1) = u(n) + τn∇I(u(n)) ,
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with τn > 0 being an adjustable parameter that determines the length of
each gradient step. The gradient of I can be easily evaluated using the linear
response formula. To see this recall the notion of functional (Gâteaux)
derivatives as directional derivatives along a function v (from a suitable
function space):

δI

δu
=

d

dε

∣∣∣∣
ε=0

I(u+ εv) = 〈∇I(u), v〉 ,

Now the idea is to use that we have restricted our space of admissible controls
to functions of the form (20) with given basis vector fields and do a gradient
search in the unknown coefficients ak. This requires to compute the gradient
with respect to the coefficients. Let the vector

δu =
K∑
k=1

δakΦk(t)

denote the direction along which we want to differentiate where δa1, . . . , δaK
are the coefficients of the vector δu in the basis of the Φk, and note that

δI

δu
=

d

dε

∣∣∣∣
ε=0

I(u+ εδu)

=
(

lim
ε→0

I(u+ εδu)− I(u)
ε

)
· δu

=
(

lim
ε→0

Eρε [f(u+ εδu)]−Eρ0 [f(u)]
ε

)
· δu

provided that the limit exists. The above iteration therefore is equivalent to

a
(n+1)
k = a

(n)
k + τn

∂I

∂ak

∣∣∣∣
ak=a

(n)
k

, (21)

with

∂I

∂ak
= Eρ0

[
f

∫ T

0
(σ−1D(qs)Φk(s)) · dBs +

∫ T

0
us · Φk(s) ds

]
(22)

and Eρ0 [·] being the expectation over all realization of (14) with ε = 0 and
u = u(n) being the current iterate; note that we can compute all partial
derivatives ∂I/∂ak, k = 1, . . . ,K from just one ensemble of nonequilibrium
paths of (qt, pt). Further note that, in general, the updated coefficient a(n+1)

and hence the updated control u(n+1) will depend on the distribution of the
initial conditions at the n-th iteration stage; in particular, if the controls
are computed on-the-fly, the controls will actually be feedback controls de-
pending on the current state.
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4 Numerical Experiments

4.1 Splitting a single-well potential

Figure 1: The single-well potential with splitting driving force. Time T = 20 ps. Since
the driving force is of gradient form, D(q) = −∇qV (q), we plot the nonequilibrium driv-
ing energy of the system. The red, green and blue lines are the potential energy without
nonequilibrium driving, with nonequilibrium driving and the nonequilibrium driving per-
turbed by εδu(t), respectively.

We use the idea of nonequilibrium linear response to investigate the
nonequilibrium phase space probability density distribution, denoted by
ρε(q, p, t), of a one-dimensional model system: one particle in a splitting
single-well potential as shown in Fig. 1. For convenience, we let the mass
of the particle to be 1 amu, and the friction coefficient to be 1 ps−1. The
temperature is the room temperature 300 K, kBT = 2.48 kJ/mol. The
unperturbed Hamiltonian of the system is given by:

H(p, q) =
1
2
p2 + U(q) (23)

with potential

U(q) =
1
2
k q2 (24)

Here k = 8 kJ/(mol nm2). See the red line in Fig. 1 for the potential U . The
nonequilibrium driving D is given by a force of gradient form:

D(q) = −∇qV (q), (25)

where the driving potential V (q) has a Gaussian profile:

V (q) =
1√

2πσ2
exp

{
− q2

2σ2

}
(26)

we use σ = 0.16 nm. The strength of nonequilibrium driving u(t) is set to
be linearly growing, i.e. u(t) = ke · t/T , where ke is a unitless constant. We
consider the perturbation to the system given by εδu(t) = εke · t/T . We
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consider the following parameters: end time T = 20 ps, ke = 1 and ε = 1,
see Fig. 1 for the nonequilibrium driving potential and perturbed potential
at time t = T . The initial distribution ρ0(q, p, 0) is set to be equilibrium
distribution of the unperturbed system.

Figure 2: The plot of ρε(q, p, t) in phase space under the perturbed nonequilibrium
driving described in the text. From left to right the columns present results at times
t = 0, 5, 10 and 20 ps. First row: Results of a brute force nonequilibrium simulation.
Second row: Results of classical equilibrium linear response theory, see the text for details.
Third row: Results using the nonequilibrium linear response result.

Fig. 2 presents the numerical results for the phase space probability
distribution for the splitting single-well potential. From left to right the
four columns present the distribution of the system at time t = 0, 5, 10
and 20 ps. The first row presents the result of a brute force nonequilibrium
simulation. It is clear that at the beginning the distribution has only one
peak around q = 0 and p = 0. As time evolves, an energy barrier develops in
the center of the simulation region and, therefore, the single peak splits into
two equally sized peaks. In the end, the two peaks are entirely seperated.
The brute force nonequilibrium simulation serves as the precise result to
which the response theory should be compared. The second row shows the
result of the traditional equilibrium linear response theory. Please notice
that in this case, since the reference simulation is in equilibrium, we set the
perturbation to

εvt = D(q)(ut + εδut) = 2εD(q)ke · t/T = 2εD(q)δut,

so that the effective perturbation is of strength 2ε = 2. At t ≤ 15 ps,
the accuracy of the equilibrium linear response is perfect. At t = 20 ps,
magnitude of the peaks are relatively too strong, and in the gap between
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them the distribution is actually negative. Since the probability distribution
is always positive, the numerical solution of the equilibrium linear response
is qualitatively wrong. The poor accuracy is due to the fact that the strength
of perturbation is no longer small so that the preliminary assumption of the
classical reponse theory (”small perturbation”) is not satisfied.

The third row of Fig. 2 presents the results computed using the novel
nonequilibrium linear response formula: we first start form the equilibrium
distribution, apply u(t), arrive at a nonequilibrium distribution and then, in
a second step, compute the effect of the nonequilibrium driving δu(t). The
numerical results are satisfactorily consistent with the brute force nonequi-
librium simulation, because the perturbation is still small enough and the
novel linear response theory achieves good accuracy.

4.2 Optimal tilting of a double-well potential

Figure 3: Illustration of the optimal control for tilting the potential. In this plot,
T = 9 ps. Top panel: Optimal control ot as calculated based on a family of piecewise
linear ansatz functions with time interval 1 ps; the blue insertions show the shape of the
nonequilibrium driving potential U + otV at the times indicated by the black arrows.
Bottom panel: Optimal gain I = F (ot) (solid lines) and the probability P of being in the
right well associated with ot (dashed lines) as functions of time along the optimal control.
Red lines: computation using the nonequilibrium linear respect theory. Green lines: brute
force computation as described in the text.

In this section, we consider the following double well potential:

U(q) =
1
2
k(q2 − a2)2 (27)

Here k = 8 kJ/(mol nm4), and a = 1 nm. See the leftmost blue insertion of
Fig. 3 for the shape of the potential. The perturbation is given by a gradient
form tilting of U(q) by means of

D(q) = −∇qV (q) = 1, (28)
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with V (q) = −q. We want to optimally design the tilting such that the
probability of being in the right well is as high as possible at the end time
of the process under a constraint on the energy used for the control in the
sense of the following optimal forcing problem:

Ĩ = max
ut∈F

Eρ0

[
−
∫ T

0

1
2
|us|2 dt+ L(qT )

]
, (29)

with L(qT ) = χ[a−δ,a+δ](qT )/η representing the probability of the end point
of the trajectory, qT , being in the right well (χI denotes the indicator func-
tion of the interval I) with η being a weighting constant, F denoting the
space of function that are piecewise linear on [0, T ] in uniform intervals
of length 1 ps, and ρ0 being the initial nonequilibrium distribution. With
P (T ) = ηEρ0(L(qT )), the probability of ending up in the right well at time
T , and I = ηĨ we thus have

I = max
u∈F

F (u), F (u) = P (T )− η

2

∫ T

0
|ut|2 dt .

It is clear that for an unbiased double-well, P (T ) is 0.5 if we choose ρ0 = ρ0 as
initial distribution. The integral is the “cost” of the control and η indicates
the relative magnitude of the cost.

Fig. 3 presents the numerical results of η = 0.01. Starting from an initial
guess of linear control from u0 = 0 to uT = 1, the gradient search (21)
converges at the 22nd step, when the maximum increment of the control
coefficient maxk |δak| is smaller than 0.02, the termination threshold. The
magnitude of the optimal control

ot = argmaxut∈FF (ut)

is presented in the upper panel of Fig. 3, with blue insertions showing the
shape of the time-dependent optimal control potential U(q) + otV (q) (opti-
mally tilted double-well potential). The maximum I and the corresponding
optimal probability to end up in the right well are given as functions of time
in the lower plot by the solid and dashed lines, respectively. The red lines
in the figure are produced by the nonequilibrium linear response theory de-
veloped in this work, i.e., using (22), and the green lines represent the brute
force reference simulations that has been performed as follows: The opti-
mal control from F is calculated by a gradient descent based optimization
method in which the gradient of the functional with respect to the control
is computed by numerical differentiation (central finite differences) in each
step. The good agreement between the red and green lines demonstrates
that the linear response theory computes the gradient correctly. Please note
that in order to calculate the gradient by the finite difference scheme, one
needs to do 2K nonequilibrium simulations (where K is the dimension of F ;
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here K = 10). In contrast, the nonequilibrium response theory only needs
one nonequilibrium simulation.

When t < 8 ps, the magnitude of the control is still small. Near the end
time T , the magnitude of the control firstly quickly goes up, and then falls
down a little bit. This implies some interesting information. If the system
were able to immediately relax to its equilibrium state (sometimes called
quasi-equilibrium), the population in the right well (dashed lines in Fig. 3)
would immediately go down, as the control decreases. The fact that this
does not happen, indicates that the speed of changing the control is rela-
tively fast compared to the time scale of quasi-equilibration of the system,
so the system does not have enough time to fully relax. Therefore, the ob-
served phenomenon is truly nonequilibrium, and our nonequilibrium linear
response theory is a tool that facilitates the investigation of this optimal
forcing problem in the nonequilibrium setting. The fact that the optimal
control is decreasing at the end of the interval is understandable since the
population in the right well needs time to be build and increasing the control
till the very end would be a waste of energy without corresponding gain in
population.

5 Conclusions and Remarks

We derived first and second order response formulas for molecular dynamics
(driven Langevin dynamics) starting from general nonequilibrium distribu-
tions. For the special case of the initial distribution being the equilibrium
distribution of the unperturbed dynamics, the novel linear response formula
simplifies to the well-known standard formula. We validated the formula
in numerical experiments in comparison to brute-force nonequilibrium sim-
ulations. There, we demonstrated that the nonequilibrium linear response
formula allows to extend the algorithmic use of linear response theory to sig-
nificantly stronger perturbutions of the system since it permits intermediate
steps based on partially propagated nonequilibrium distributions.

By means of this theory we outlined how to use linear response theory
for the computation of optimal controls in molecular dynamics where one
desires to find the optimal perturbation/control that maximizes a target
functional, that is, a certain expectation value (like the population of a
certain region of state space) under a constraint on the energy used in the
perturbation. Application of our nonequilibrium theory allows to compute
the gradient of the target functional by computing expectation values only
for the dynamics at hand which permits efficient application of standard
optimization techniques. We illustrated this technique in application to a
simple test case and validated it in comparison to brute force optimization.
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