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Hongyuan Zha 

A Numerical Algorithm for Computing the Restricted 
Singular Value Decomposition of Matrix Triplets1 

Dedicated to Prof. Richard S. Varga on the occasion of his 60th Birthday. 

Abstract 

This paper presents a numerical algorithm for computing the restricted sin
gular value decomposition of matrix triplets (RSVD). It is shown that one 
can use unitary transformations to separate the regular part from a general 
matrix triplet. After preprocessing on the regular part, one obtains a matrix 
triplet consisting of three upper triangular matrices of the same dimensions. 
The RSVD of this special matrix triplet is computed using the implicit Kog-
betliantz technique. The algorithm is well suited for parallel computation. 

Keywords: Restricted singular values, matrix triplets, unitary transfor
mations, implicit Kogbetliantz technique. 

Subject Classification: AMS(MOS): 65F15, 65F30, 65H15. 

1 Contributed paper accepted for Conference on Approximation Theory and Numerical 
Linear Algebra (in honor of Richard S. Varga), March 30-31, April 1, 1989 





Inhalt 

1 Introduction 2 

2 Separating the Regular Sub-Triplet from a General Matrix 
Triplet 5 

3 Preprocessing of a Regular Matrix Triplet 8 

4 Implicit Kogbetliantz Technique Applied to the Product 
of Three Matrices 11 

Conclusion 14 

References 15 

1 



1. Introduction 
In [9] we introduce the concept of restricted singular values of matrix triplets 
(RSV) as follows. 

Defini t ion 1.1. Let A <E Cm X n , B <E <CmXp and C <E C9 X n , the restricted 
singular values (RSV) of the matrix triplet (A, B, C) are defined as follows 

ak(A,B,C) = minx {\\D\\2\ rank (A+ BDC) < k - 1} (1.1) 

k = 1 , . . . ,n where || • ||2 denotes the spectral norm of a matrix. A main 
theorem concerning the RSV is proved in [9], which is termed as RSVD 
theorem. 

Theorem 1.1. [9], (RSVD). 

1. Let A e Cm x n , B e <Cmxp and C 6 C , X n , then there exist nonsingular 
matrices P, Q and unitary matrices U and V such that 

/ E x 

PAQ = 
S2 

\ 

O? 
0(2) 

A' I 

SX tj 

(1.2.a) 

PBU = 
h OP )(2) 

'B 

Ih 

(1.2.b) 

(1.2.c) 

S4 = // (1.3.a) 
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*+/ 
s R = 

(h 

q — l—r — Si 

oV 

I*2 ) 

p-j-r-s2 

fo& 

(1.3.b) 

j + k 

where £ = diag (<7t) and ax > . . . > aa > 0. 

/ , 

'»i / 

(1.3.c) 

2. Let r = i + j + k , denote 

a. 1, A = l, 7 
a,- = 1, ßi = 0, 7, 

oti = 0, A' = 1, 7i 

Ö,- = (T,_j_fc, Ä = 1, 7, 

a,- = 0, A = 1, 7 

= 0 

= 0 

= 0 

= 1 

= 1 

t = l , . . . , j (1.4.a) 

i=j + l,...,j + k (1.4.b) 

i=j + k + l,...,r (1.4.c) 

i = r + 1 , . . . , r + 5 (1.4.d) 

i = r + 5 + l , . . . , r + 3 + min(5i,s2) (1.4.e) 

then 

(i) fff-(A,5,C) = 
Ä7." 

i = l , . . . , r + s + min(5i,s2) 

(ii) <Ti(A, B,C) = 0 i = r + s + min(si,52) + 1 , . . . , n. 

For the applications of RSVD, the reader is referred to [7] and [10]. The 
purpose of this paper is to provide a numerical algorithm for computing the 
RSVD of general matrix triplets. It is organized as follows. In the second 
section we introduce the concept of regular RSV of a general matrix triplet, 
then we show how to use unitary transformations to separate a regular sub-
triplet which only contains the regular RSV from a general matrix triplet. 
In the third section we provide an efficient algorithm for preprocessing the 
regular sub-triplet resulted from the previous section. In the last section 
we discuss implicit Kogbetliantz technique applied to the product of three 
matrices. In this paper only complex matrices are discussed, however, the 
case of real matrices can be considered similarly. We use CmXn to denote the 
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set of all m by n complex matrices; Is denotes the identity matrix of order 
s; O with different sub- and super-scripts (e.g. 0A ) denotes zero matrices 
with different dimensions. 
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2. Separating the Regular 
Sub-Triplet from a General Matrix 
Triplet 
Definition 2.1. The triplets 

on = o\-j-fc, ßi = 1, 7,- = 1 i = r + 1 , . . . , r + s (2.1.a) 

a,-= 0, /?,• = 1, 7; = 1 i = r + s + l , . . . , r + s + min(51,52) (2.1.b) 

in (1.4) are called the regular RSV of (A, B, C). In other words, they are the 
nontrivial finite RSV of (A, £?, C). From the above definition and Theorem 
1.1, it is easy to obtain the following 

Proposition 2.2. If a matrix triplet (A, J3, C) has the property that B 
and C are nonsingular, then (A, B, C) only has regular RSV, and such a 
matrix triplet is called a regular matrix triplet. 

The purpose of this section is to show that one can use unitary transforma
tions to separate the regular sub-triplet from a general matrix triplet. The 
whole process consists of five steps, the transformation from one step to the 
next step is of the following form: 

Step k to step k + 1 

/ AW £<*> \ ( A ^ 1 ) ß(fc+1) \ _ / u[k)A^U? ü[k)B^vik) \ 

\ c<*> o ) ~ \ c^1) o ) ~[ vik)c^uik) o ) 
(2.2) 

where U\ ' and V< (i = 1,2) are unitary matrices. A^k\ B^ and C^ are 
the transformed A, B and C at step k. All the submatrices are conformally 
partitioned. Let 

A<°> = A , B^ = B, CW = C (2.3) 

Step 1. Transform C<® to (0\CP) such that Cf > has full column rank 

f (41)| f )} B(1) ) (2-a) 
I (0\ C?) 0 
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Step 2. Transform A^ to '4f 

\ 

o 
such that A\i has full row rank 

A { 2 ) A (2) 
12 

0 A%) 

( o I ci2)) 

51 
(2) 

42 ) 

o 
(2.4.b) 

Step 3. Transform B2 to 

/ / A(3) 

o such that B3 ' has full row rank 

O 

\ O 

A{3) \ ^ 1 2 » 

4(3) 
^ 2 2 

^ 3 2 / 

/ 5j3) \ 

o 

(0|cf) 

\B3 

O 

(3) (2.4.c) 

Step 4. Transform A2 to (̂ 422 |OJ such that A22 has full column rank 

( 4? A(4) A\2 4 4
3

} ̂  
0 4(4) 

^22 0 

{ 0 4(4) 
^32 A{4) 

^ 3 3 / 

/ 5{4) \ 

o 

\ (o\ci4)\cl4)) 
44 ) 

o J 

(2.4.d) 

Step 5. Transform #J4) to ( ä ^ ö ) and C? } to 

and C}3 are nonsingular matrices (see Proposition 2.4.). 

4? , (5) 
•^12 ^ 1 3 

0 , (5) 
n 2 2 0 

0 , (5) 
^32 A{5) 

^ 3 3 / 

/ D ( 5 ) 
-"11 

D ( 5 ) \ i 3 1 2 

0 0 
D ( 5 ) 

\ ^ 3 1 0 ) 

o 
\ 

r ( 5 ) u 12 
^(5) 

22 

^ ( 5 ) 
<^13 

O o 
J 

such that B (5) 
31 

(2.4.e) 

Remark 2.3. Both the QR decomposition (with column pivoting) and 
SVD can be used in the above transformations, for details of QRD and SVD 
see [3] and [8]. 
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Proposition 2.4. After the above five steps, the resulted matrix triplet 
33, .83! , C"i3 ) only consists the regular RSV of (A, B, C) and thus is a 

regular matrix triplet. 

Proof. Since 
£3

4) has full row rank and C3 has full column rank, B^' and 
C[3 are nonsingular. Let us now consider the structure of A^+B^D^C^, 
while D^ are partitioned conformally with B^ and C^ as in (2.4.e), then 

,4(5) + ß(5)D(5)C(5) 

where X12, Xi3 and Xi3 are possible nonzero submatrices of A^+B^D^C^. 
Since in Step 1 to step 5, all the transformations used are unitary (see Re
mark 2.3) and hence nonsingular, A\i and A22 have full row rank and full 
column rank respectively, then 

/ A(5) 
X\2 * 1 3 \ 

0 , (5 ) 
^22 0 

\ 0 -^32 
4(5) , o (5 ) D (5 ) r (5 ) 1 
^33 + -"31 -"11 °13 / 

rank {A + BDC) = rank (A& + B^D^C^) 

rank 

/ A{5) 0 0 

0 A*) 
^22 0 

\ 0 0 4(5) , R ( 5 ) n ( 5 ) r ( 5 ) 
^ 3 3 1 -"31 -"11 u 1 3 , 

= rank (A[?) + rank ( A £ } ) + rank ( 4 s + B$D$C[$) 

Combining the above with Definition 1.1 and Proposition 2.2, the proposition 
is proved. • 
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3. Preprocessing of a Regular 
Matrix Triplet 
Let (A,B,C) be a regular matrix triplet A E CmXn arbitrary, B e CmXm and 
C £ <tnXn are nonsingular matrices. We first give the following result which 
can be obtained from definition 1.1. 

Proposition 3.1. Let the singular values of B~1AC~1 be 

o-i > . . . > <T„ > 0 

then 
<Ti(A,B,C) = <Ti »' = / , . . . , n . (3.1) 

For the preprocessing procedure, we distinguish two cases 

1. m > n 

• Transform C to upper triangular form using QR decomposition 
QcC = Re where Re is upper triangular and Qc is unitary. 

• Transform A to upper triangular form 

( RA\ n 
QAA = RA=[ M 

\ O J m—n 

where RA is n x n upper triangular and QA is unitary. 

• Let B — QAB, transform B to upper triangular form 

BQB= (R° M » 
\ 0 R22 J m—n 

n m—n 

where Rß is n x n upper triangular matrix and Qß is unitary. It is 
easy to see that 

Ql{B-*AC-*)Ql = { R~°Rf~cX ) U (3.2) 
V O I m — n 



2. m < n 

• Transform B to upper triangular form using QR decomposition 

BWB = RB 

where Rg is upper triangular and QB is unitary. 

• Transform A to upper triangular form 

AQA = (O, ÄA)-

n — m m 

where RA is upper triangular and QA is unitary. 

• Let C- = CQA, transform C to upper triangular form 

6 = (Rn Rn\ n - m 

\ 0 Re ) m 

n—m m 

where RQ is upper triangular and Qc is unitary. 

It is easy to see that 

QKB-'AC-^Ql = (0 , RB'TARC1) . (3.3) 

Summarizing (3.2) and (3.3), we can transform the regular triplet using uni
tary matrices to a special matrix triplet consisting of three upper triangular 
matrices of order min(m, n). For the detailed description of the QR decom
position and its variants see [3]. 

It is interesting to observe that if in step 5 of section 2 (2.4.e), QR decompo
sitions are used to transform B$ ' to B\± and Ci4) to Cg* respectively. B$ 
and Ci3' are already in upper triangular form. Computational work can be 
reduced if the following more efficient algorithm for preprocessing is applied. 
The idea is to combine step two and three in a single step, so that the aim 
now is to find unitary matrices QA and QB such that QAA and QABQB are 
in upper triangular form. 

We illustrate the procedure of the algorithm using a low dimension example, 
where we assume m = 3 and n = 2. As used conventionally, x represents 
possible nonzero entries of a matrix; ® represents the entry to be zeroed out 
at the current step. The transformations used are complex Givens transfor
mations [3]. 
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X X X \ 

X X B = 

x / 

i) 

V 

X X X \ 

X X 

x / 

(This notation, in words, means complex Givens transformation is applied to 
row 2 and 3 of A and B to zero out the (3.1) entry of B. We will not repeat 
this explanation in the following steps). 

") 

iii) 

iv) 

v) 

vi) 

vii) 

/ x 

x 

t r 
' X X X * 

X X 

x / 

x \ 

X 

X 

x\ 
(x * \ 

X X X 

x ) I O X / 

/ X X 

X 

T T 
X X \ 

X X 

x / 

X X X \ 

X X 

<E> x / 

T T 
X 

X 

V 

X x \ 

X 

X 

X X 

O X 

V o x 

/ X X 

O X 

V o ® 

( x x\ 

O X 

V o o / 

x\ (x x\ 
X O X 

x j l o o / 
To make the paper concise, here we omit the detailed analysis of the operation 
counts of the above procedure. 

10 



4. Implicit Kogbetliantz Technique 
Applied to the Product of Three 
Matrices 
The idea of implicitly using Kogbetliantz algorithm is not new, it is firstly 
used in [6] for computing the generalized singular value decomposition (GSVD) 
in [4] for computing the singular decomposition of the product of two ma
trices. Recently algorithms for computing the singular value decomposition 
of the product of three matrices based on GSVD of [2] is proposed. In this 
section we derive a different algorithm which does not base on GSVD. A 
previous version of this algorithm which is designed for implicitly computing 
the SVD of CA~1B appeared in [5]. We assume the reader is familiar with 
Kogbetliantz algorithm and only present the core algorithm here i.e. algo
rithm for implicitly computing the 2 x 2 subproblem. For other issues con
cerning the implementation of Kogbetliantz algorithm, for example, ordering 
schemes, convergence analysis and systolic (parallel) implementation, the 
reader is referred to the above mentioned papers and the references therein. 

From (3.2) and (3.3), we can assume now that A, B and C are upper trian
gular matrices of the same order n, furthermore let 

E = B-XAC-X 

and E = (e^), B = (&tj), A = (atJ) and C = (c^). It is easy to verify that 

- l z x / 
cii cii+l \ 

O c,+ll+1 J 
(4.1) 

for i = 1 , . . . , n — 1. In the following we also consider the case that 

( bii bii+1 ) and 
V o bi+u+1 j 

are possibly singular or nearly singular, so that instead of (4.1) we consider 

(f* /«+! )=&d](bii bii+l 

V o fi+li+i) \ o bi+u+1 

(4-2) 
where adj(T) means the adjoint of T. The idea of using adj is suggested in 
[6]. 
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P r o p o s i t i o n 4 . 1 . Let J\ and J 2 be the combination of rotations and per
mutat ions such tha t 

jH I f* fii+1 )jH=( / « ^ O \ 

\ O fl+li+1 J \0 / l+l i+1 ) 

then we can choose 2 x 2 unitary matrices J 3 and J4 such tha t 

\ O bi+li+1 J 

jja" °"+I U 
0 a, +i«'+i / 

/ c„ c, t + i \ 

V o c,+i,+i / 

are 2 x 2 upper triangular matrices. 

Proof. Let 

6 _ [ &i* &"+l ] T _ / &« *>««+l | 

y O bi+u+1 J \ ba+i bi+li+1 J 

\ O c t '+li+l / \ C«'t'+1 Ct+li+1 / 

In the following we distinguish three cases 

1. If |6,i|2 + |&,+i»|2 T^ 0 and |c;+i;|2 + |6,-+1,-+1|2 ^ 0 chose J 3 and J 4 such that 

hB = lk >+1 ) 
\ O bi+u+i J 

CJA = fa" ",,+1 ) 
\ 0 Ci+u+i J 

It is easy to see tha t 

ba ^ 0 and ci+u+i ^ 0 . 

Let 
/ an aii+1 \ _ I an aii+1 \ 

\ O ai+ii+i J y a.+ii Ot+ij+i / 

One can derive from 

( fa O \ _ / bn ba+i \ I an a , i + 1 \ / en cii+1 

O fi+u+i J \ 0 bi+u+1 J \ ai+u a , + l t + i J \ O ci+u+1 
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that 
aa+i = O 

2. If |6,-,-|2 + |^ii+i|2 = 0 choose J4 unitary such that 

CJA 

choose J3 unitary such that 

cii ci t+1 

0 c,-+i i+i 

Jz 

then 

aii ai t'+l 

0 äi+i ,-+i 

J*B = 

J4 

aii aii+l 

O a,+! l+1 

0 bii+1 

0 6,+i i+i 

3. If |c,+ 1 , |2 + |c,+ii+1 |2 = 0 choose J3 unitary such that 

J3B = 
0 bii+1 

0 ft,+i t+i 

choose J4 unitary such that 

Js 

then 

aii ai t'+l 

CJ4 = 

h = 
aii aii+l 

O a,-+i i + i 

Cii Cii+l 

0 0 

Remark 4.2 The above algorithm can be easily modified when (4.3) is 
computed using the approximate variant proposed in [1]. 
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Conclusion 
This paper presents a numerical algorithm for computing the RSVD of a 
general matrix triplets. The algorithm is based on separating the regular 
sub-triplet from a general matrix triplet and application of implicit Kog-
betliantz technique. Through out the algorithm only unitary transformations 
are used which may guarantee the numerical reliability of the algorithm. De
tailed implementation will be developed in connection with [7] and numerical 
experiments will be reported in a separate paper. 

Acknowledgement. The author wishes sincerely to thank Prof. Dr. P. 
Deuflhard for his support and encouragement and Mrs. S. Wacker for her 
careful and excellent typing of the manuscript. 
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