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Abstract

This paper presents a mathematical derivation of a model for quantum-
classical molecular dynamics (QCMD) as a partial classical limit of the full
Schrodinger equation. This limit is achieved in two steps: separation of the
full wavefunction and short wave asymptotics for its “classical” part. Both
steps can be rigorously justified under certain smallness assumptions. More-
over, the results imply that neither the time-dependent self-consistent field
method nor mixed quantum-semi-classical models lead to better approxima-
tions than QCMD since they depend on the separation step, too. On the
other hand, the theory leads to a characterization of the critical situations
in which the models are in danger of largely deviating from the solution of
the full Schrodinger equation. These critical situations are exemplified in an
illustrative numerical simulation: the collinear collision of an Argon atom
with a harmonic quantum oscillator.
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1 Introduction

Biomolecular systems are characterized by a large number of degrees of
freedom. It meets universal acceptance that a prediction of biomolecular
processes from first principles should ideally be based on a fully quantum
dynamical description of all of these degrees of freedom. Unfortunately, for
large systems the simulation of such a quantum model is impossible even on
the biggest and fastest computers, now and probably for the next decades.
Therefore, typical simulations of biomolecular systems are based on classical
molecular dynamics (MD) assuming that the system of interest obeys a
classical Hamiltonian equation of motion. In this case quantum theory is
only used in order to construct the atom-to-atom interaction potentials in
the context of Born-Oppenheimer approximation.

In many situations classical MD allows a sufficiently accurate descrip-
tion of complex realistic molecular systems. But it simply cannot be valid if
the nature of the process under consideration is “deeply quantum mechan-
ically”, e.g., optical excitation processes, or transfer of key-protons in the
active sites of an enzyme. In those cases a quantum dynamical description is
unavoidable. However, since a full quantum description of, e.g., a complete
enzyme is still not feasible, one is interested in a mized quantum-classical
approach to MD which allows to describe most atoms by the means of clas-
sical mechanics but an important, small portion of the underlying system
by the means of quantum mechanics.

In the literature various models are proposed: Most of them fit into
the scheme shown and explained in Figure 1. In mixed approaches the full
quantum system is first separated via the tensor product ansatz into several
parts with a coupled quantum description. Then, the evolution of each part
can be modeled on different levels: quantally, semi-classically, or (purely)
classically. All the proposed models can clearly be classified via the different
description levels they are mixing: some remain on the quantum level for all
parts and are well-known as time-dependent self-consistent field (TDSCF)-
methods (cf. [15][12] in our context; a lot of references in nuclear physics
use the notion of time-dependent Hartree approximation or time-dependent
mean-field approzimation); other methods combine semi-classical models for
most of the parts with a quantum description for the particularly interest-
ing part, usually called quantum-semi-classical (QSCMD)-models (see [11]
and the references cited therein). However, we are particularly interested in
quantum-classical molecular dynamics (QCMD)-models, which use Hamil-
tonian equations for space and momentum of the “classical” atoms (for



biomolecular systems see [5][6][2]; more references may be found in studies
for van der Waals molecules, e.g., [13][19]).
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Figure 1: Different approaches to quantum-(semi-)classical models. In mixed approaches
the full quantum system is first separated via the tensor product ansatz into parts j with
coupled quantum description. Then, the evolution of each part 7 can be modeled on
different levels: quantally, semi-classically, or (purely) classically. For the entire system
or for each single part, the derivation of the different models from the original quantum
description level can be realized, as indicated, on two different ways. On each way both
steps can be justified strictly mathematically in the context of appropriate asymptotic
expansions. The simultaneous justification of the separation step remains the crucial
point.

Unfortunately enough, essentially two basic QCMD-models are proposed
in the literature [5][4] for biomolecular systems, which differ in a crucial
point and result in essentially different numerical problems. Moreover, it is



claimed that QSCMD-models are a better approximation of the full quantum
behavior, but require significantly larger computational effort. We propose
that a model selection should be guided by a strict analysis of approximation
properties with respect to the solution of the full Schrodinger equation in a
context in which a classical description of most of the atoms is required and
allowed. Hence, we are looking for the “partial classical limit” of the full
quantum dynamics. It should be noted, that semi-classical approximations
are usually applied to the entire quantum system, either using Gaussians
(as [21][20] or the mathematical investigation [16]) or the WKB method (as
many textbooks like [23][10] or in mathematical investigations like [1][25]).
As pointed out in [15], the separation ansatz (and with it TDSCF) occurs
as an intermediate step in a derivation of QCMD and QSCMD from the
full Schrédinger equation. Thus, we simultaneously ask for the validity of
separation in this “partial limit”. As far as the authors know there is no
strict analysis of any time-dependent “partial classical limit” which — in
turn — explains the conceptual differences in the QCMD-models proposed.

The herein presented approach tries to bridge this gap. Its mathematical
results allow to decide which of the two above mentioned models for QCMD
can be derived from a full quantum model by specifying the sense and order
of approximation. On the other hand, the results lead to a characterization
of the situations in which the models are in danger of largely deviating from
the solution of full Schrédinger equation.

The mathematical argumentation follows the red thread of an approach
proposed by [15]: It starts with a separation ansatz for the full Schrédinger
equation, leading to the TDSCF-equations. Then, it is shown via short wave
asymptotics or WBK-approximation that these TDSCF-equations imply a
certain QCMD-model under some smallness assumptions which specify what
is meant by “partial classical limit”. The essential point now is that these
mathematical results for QCMD also lead to a strict justification of the
separation ansatz in this limit.

The text is organized in five steps: First, we introduce the two basic
QCMD-models of the literature and explain their crucial difference. In a sec-
ond, motivating step it is shown that only one of both models, interestingly
the less complicated one, may be derived from the full quantum approach.
Third, in Section 4, this motivation is mathematically justified. This implies
a characterization of the possibly problematic scenarios for QCMD-models,
which is exemplified in Section 5. The fifth and last step leads us to the
discussions of our results and their implications for QSCMD-models.

For simplicity of notation we herein restrict the discussion to the case of



only two interacting particles. However, one should note that all the follow-
ing considerations can be extended to arbitrary many particles or degrees
of freedom.

2 QCMD Models

In this section we give an intuitive formulation of the basic QCMD models,
preparing for Sections 3 and 4 in which we show how they fit into the
framework of full quantum models.

Let the two particles have space coordinates z € R? and ¢ € R? and
masses m and M respectively. Moreover, let the interaction potential be-
tween them be V = V(z,q). The basic assumption of QCMD is that the
masses differ significantly: m < M, and that, therefore, the heavier par-
ticle can be modeled classically while the lighter one remains a “quantum
particle”. That is, the quantum particle is described by a wavefunction
1 = 1 (x,t) which obeys Schrédinger’s equation

¢ (1)

p=q(t)

. R2

with a parameterized potential which depends on the location ¢(t) of the
“classical” particle, thus being time-dependent. The location ¢ = ¢(t) is the
solution of a classical Hamiltonian equation of motion

p = —ViU,

in which the time-dependent potential U is given as the original one V
weighted with the probability of finding the quantum particle:

Ulgvt) = (6, VE00) = [ Ve leeola. @

Thus, the forces in (2) are the so-called Hellmann-Feynman forces. Together,
(1) and (2) are the basic equations of motion of QCMD. But one question
is still unaddressed in this intuitive approach: What kind of ¢-dependence
underlies the potential U in order to compute the partial derivative V,U?
There are two answers discussed in the literature:

1. The arguments (q,v) of U are independent unknowns and therefore
we get

VoU = (¢, VoV, 9) ¥). (4)



This can be evaluated directly and (1) together with (2) constitutes a
closed system of equations. This choice is used, e.g., in [5],[6], where,
in addition, the Schrédinger equation is replaced by the Liouville-von
Neumann equation.

2. In [4], QCMD is seen as an extension of the Born-Oppenheimer approx-
imation to our time-dependent situation: the heavier particle may be
fixed for a short instant [tg, to + At] in which the quantum particle be-
haves according to its Schrédinger equation (1). This means, p = ¢(to)
is considered as parameter in (1) and the wavefunction 1 = 1 (u,t) as
in [to, to + At] explicitly depending on this parameter. After this, the
classical position ¢ has to be updated via (2). However this may be re-
alized, the dependence of 1 on p has to be taken into account yielding
the derivative

(<¢7 1) ©)
+ (Vs <,q>¢>+ (Vg V)|

n=q

(5)

which, in turn, leads to the necessity of evaluating V1 in addition.
An algorithmic realization of this approach is presented in [4], result-
ing in a simulation method which causes much more computational
effort in real life applications than the simple choice (4). The Born-
Oppenheimer approximation is understood as being static and the
terms containing V1 are interpreted as corrections caused by fast
motions of the heavy particle. For test simulations using this model
see [2][3].

Which of the two different approaches can be derived from the full quan-
tum model? This means that we would like to relate a QCMD model to the
full Schrédinger equation for both particles:

. h? h?
ih¥ = ( o A, — QMA + V(z, q)) v, (6)
in which the 2-particle wavefunction ¥(t) = W(xz,q,t) lives in the state
space H = L?(R??). We will accomplish such a relation via two approaches:
A motivation via the Ehrenfest theorem (Section 3) and a mathematical
justification (Section 4). Both will indeed result in the intuitive QCMD
model (1) and (2). However they give favor to the gradient evaluation (4),
thus showing that the correction term V1 of (5) cannot be based on the
full quantum model.



3 Motivation of QCMD from full Quantum Model

Let the expectation value of an time-independent observable 4 : L?(R?*?) —
L%(R??) with respect to state W(-,t) € L?(R>?) be denoted

(A)Y(t) = (P(t),A¥(t)) = /\Tl(w,q,t) AW (z,q,t) dz dq.

Then the Ehrenfest theorem [27] states

d i
A = 5 (A
if U is the solution of the Schrédinger equation ihW = HW. One should
note, that this is correct even in the case of a time-dependent Hamilton
operator.

We are interested in the location expectation (¢) and in the expecta-
tion values (P) of the conjugated momentum operator P = —ihV, for the
solution ¥ = W(¢) of (6). The Ehrenfest theorem yields

d 1
5t<q> = up) .
(D) = (V).
with
V) = [ (VY (@) g0 do da, ®

which can only be evaluated if ¥ is known. Remember that (¢) and (P)
correspond to space coordinate and momentum of our “classical” particle.
Still, (7) is a pure quantum theoretical equation. But (8) shows that, already
on this level, that the gradient is inside the expectation value, thus uniquely
leading us to model (4) without need for correction terms. Indeed, one
arrives at exactly the same result by switching into the Heisenberg picture
(cf. [18]).

The system (7) gets the form of the classical equation of motion (2) if
we construct a relation

(VgV) = VoU({9), 1)

This can be done if we give an explicit formulation of our assumption that the
heavier particle “behaves classically”: W is a product of the wavefunctions



1 for the quantum particle and ¢ for the classical one, whose probability
distribution is “classical”, i.e., with very small uncertainty in space. In
other words, we separate W(z,q,t) = ¥(a,t) - ¢(q,t) and assume that ¢ is
an approximate d-function, e.g.:

S SN G ek )] RO 5 €0
o 0:t) = o anyi p( 1e(t)? ) p( h q)' ®)

with €(t) < e < 1. Inserting this into (8) we get (cf. appendix, Lemma 7.1):

(VaV) = (&, ViV (L (@) ¥) + O(€) (10)

and, thus, in the limit ¢ — 0:
(VoV) = (¢, ViV (- (@) ¥), (11)
i.e., we end up with (2) and choice (4). There is no need for considering the

term V9.

It should be noted that this argument does not depend on the Gaussian
form of ¢ — we may use any approximate é-function as we will see in the next
section — but that it depends on the smallness of its variance or location
uncertainty e(t)* < 1.

However, there is some need for a discussion of whether our two assump-
tions:

(A1) W is separable,

(A2) ¢ is a moving approximate §-function, its variance remains uniformly
small €(1)? < ¢ < 1

may lead to an appropriate approximation of the total wavefunction ¥. In-
deed, the above approach can be mathematically refined in a way which
vields an asymptotic expansion of W in terms of two smallness parameters:
For appropriate initial conditions the solution of the QCMD-model using
gradient evaluation (4) approximates the full quantum dynamics up to an
error O(e + h/v/M). Tn particular, our assumptions (A1) and (A2) are
justified if € is small and M large enough. The range of validity of the
asymptotic expansion gives us criteria to decide about the applicability of
the QCMD approach. Moreover, the analysis of the separation step also
leads to a justification of TDSCF-approaches, since those methods depend
on the separation ansatz only.



4 Mathematical Derivation of QCMD

In this section we present a methodology to derive the QCMD model from
the full Schrédinger equation (6) as an approximation in a quite strict sense,
i.e., including the asymptotic size of the error terms. To be specific, we
introduce the following two smallness parameters:

e €2, the variance of the probability density for the particle of mass M
at time zero,

e /v M, measuring the effect of m < M.

The smallness of these two parameters will specify the meaning of “classical”
behavior of the particle with mass M. The approximation procedure works
now in two steps:

e Separation. This yields to an O(e)-perturbation of the wavefunction.

e Short wave asymptotics. This yields an additional error term for the

QCMD model of order (’)(62 + h/VM).

The procedure works within the restriction that the time ¢ under consider-
ation is smaller than a certain maximal value ¢,,,x. Thus, we end up with a
rather precise setup for the validity of the QCMD model, namely

€ and h//M sufficiently small and t < tpax.

These restrictions will be discussed later on.

4.1 First Approximation Step: Separation

We consider the solution W of the full Schrédinger equation (6) with sepa-
rated initial data

Uli—o = Yo @ ¢o, ie., ¥(r,q,0)=10(z)- dolq). (12)

In general, we cannot expect that this initial separation persists in time.
However, to begin with, we assume that the solution ¥ has the form of a
separated wavefunction W defined by

\II(X) = ¢ ® (bv i'e'v \Il®(x7 (],t) = ¢($7t) : (b(qvt)v (13)

i.e., we assume that ¥ = Wg. For this specific case an alternative way of
computing Wg will be derived, which we will use to approximate ¥ in the
general case U # Ug.



Under the assumption ¥ = Wg the full Schrédinger equation (6) can
be separated into two coupled 1-particle Schrédinger equations. Namely,
multiplication of (6) by ¢ and integration with respect to ¢, respectively
multiplication by ¢ and integration with respect to z, yields:

. h2
, (14)
- h
with the time-dependent functions

. h2

7¢(t) = _Zh<¢7 ¢> - m<¢7 Aq¢>7 ( )
15
. h2

The system (14) can be put to a more suitable form, if we note, that the
time-dependent function v4 and v, are responsible for a phase shift only.
To be specific, the relations

vlesty=exp (=3 [ 200 ds) vutost)
" ooty =exp (-1 [ () ds) (.1

hold, where %, and ¢, are the solutions of the simplified system

X 2
(16)

. K2

This nonlinear system is uniquely solvable as can be proven by Galerkin
approximation and energy based compactness arguments. Thus, we may
solve this system instead of (14) whenever the explicit knowledge of the
phase is of no importance. For instance all expectation values are invariant
under phase shift. Inserting the expression for ¢» and ¢ into the definition
(15) of v4 and vy we get

Yo + Yy = _<¢* @ Puy Vhie @ ¢*>



and therefore the following reconstruction of Wg:

y 1
Wy = exp (%/0 (W% (s), VU (5) ds) VL WL =06, (I7)

a relation which may also be found as formula (4.4) in [21]. In this way the
simplified system (16) defines via (17) a separated wavefunction Wg which
respects the initial data (12) — independently of whether the solution W of
the full Schrédinger equation is separated (U = Wg) or not (VU # Ug).

Now, we have to investigate for the case ¥ # W, in which sense WUy as
defined by (17) can nevertheless be viewed as an approximation Vg ~ W.
To this end we differentiate the expression (17) with respect to the time
t, use the equations of the system (16) and get the following modified full
Schrodinger equation:

L d n? n?
Zh—\p@ = (—%Al’ - mAq + V®($7 q7t)) \I}®

with the modified potential

Va(e,q,1) = (&, V(2,-)0) + (¢, V(5 ) = (W, VWg).

A simple calculation shows that the expectation value of the potential re-
mains unchanged, i.e.,

Ve, V¥g) = (g, Val¥y).

Thus, the new potential Vg appears to be somewhat the right separation of
the original potential V.

We now make the following assumption additionally to the initial con-
dition (12):

(A) The probability density |¢|? is an approzimate §-function as defined in
the appendix, i.e.,

16(a,8)* = Xery (0 — q(t), 1)

Further we assume that for ¢ < f,,, this approximate d-function has
uniformly small support:

diam supp ¢(-, t) = O(e).

This means that |¢(-, )] — &(- — ¢(t)) for € — 0.

10



Assumption (A) implies that the wavepacket ¢ is concentrated along some
particle path ¢(¢). This assumption will be simplified in Section 4.2. Our
main approximation result for the separation step is now

Theorem 4.1 Assumption (A) implies that the asymptotic error of separa-
tion is given by

\I}® =v —|— 0(6)
in the space L?(R*®).

Proof. Lemma 7.1 of the appendix shows

(0, V(x,-)9) = V(z,q(t)) + O(e?),
thus giving

Vale,q,0) = V(w,q() + (¢, (V(, ) = V(- q(1)) ) + O(e).

Now one easily shows that only the values of Vig(z, q,t) for ¢ € supp ¢(-,)*
determine the solution Wg. Taylor expansion yields for these values of ¢

V®($7q7t) = V($7Q) + 0(6)

The desired result is now implied by standard results from perturbation
theory as for instance Theorem 1X.2.19 in [22]. O

Since the system (16) is the basis of the so called time-dependent self-
consistent field (TDSCF) calculations (cf. [15]), we have thus given some
justification of this approach. We should note, that Theorem 4.1 remains
even valid, if the probability density |¢|? supports several particle traces
with a variance of ¢2. This will be a possible advantage of the TDSCF
approach over the QCMD model, which constitutes a further approximation
step relying on just one particle trace.

4.2 Second Approximation Step: Short Wave Asymptotics

Now, we will give a further simplification of the separated system (16) for
large masses M > m. As a by-product we will be able to simplify assump-
tion (A).

Using short wave asymptotics [1][23][25], also called WKB method or
semi-classical approximation in the literature, one can prove the validity of
the following asymptotic expansion:

o« (q,t) = a(q,t) exp (Z@) + (’)(h/\/M) (18)

11



Remark. The reader should note, that we explicitly state the dependence
on M of the O(h) error term, which usually can be found in the literature. A
simple argument for this particular dependence will be given in the appendix.
Since we apply short wave asymptotics to only part of the system (16) the
limit & — 0 would not make sense.

The phase function S and the real amplitude a obey the following equa-
tions: A nonlinear Hamilton-Jacobi equation for S

O 57 (Ve (5, V() =0 (19)

and a continuity equation for a?

2
90 | div, <a2 VA‘ZS ) —0. (20)

ot

Now, equation (19) for the phase S is a classical Hamilton—Jacobi equa-
tion for the action of a particle with respect to the time-dependent potential
(0, V(-,¢)®). The Hamilton-Jacobi theory of classical mechanics [1] states
that the solution of the canonical equations

q — M_1p7 Q(O) = 4o, (21)
p = _<¢7qu('7q)¢>7 p(O) = VqS(q070)7
satisfies throughout the relation
p(t) = V,5(q(t),t). (22)

This allows us to construct S(-,¢) from a fized initial phase S(-,0) as long as
the particle flow map ®' which maps the initial position ¢g to the solution
q(t) of the Hamiltonian system (21) at time ¢, i.e.,

g0 = q(1),

is one-to-one. At times ¢, where at least two different particle pathes meet,
the phase function S gets multi-valued and the asymptotic expansion (18)
ceases to be valid. At those times there will be points ¢; = ®'qp, for which
the flow is even locally not one-to-one, i.e.,

det D, ®'¢|,=4, = 0. (23)

12



Such a point ¢y is called a focal point at time ¢ and all focal points at a
given time are called a caustic. However, there is a time ¢, such that for
t < tmax there are no focal points at all.

The continuity equation (20) for the probability density a* = |¢|* de-
scribes the transport of the initial probability density a?(q, 0) along the flow
P! of the velocity field ¢ = V,S/M. A well known consequence of this trans-
port is the following local conservation property of the probability density:

/ az(w)dq:/ a*(q,0)dq
OtW w

for all domains W C R?, cf. [8]. This implies in particular that an initially
concentrated wave packet

a*(q,0) = xc(q — q0) = 8(q — qo), for e < 1, (24)

remains in the limit € — 0 concentrated at the classical trajectory ¢(t) =
Dlgp, i.e.,

a*(q,1) = 8(q — q(t).
Thus assumption (A) is satisfied for ¢ < tpay if it is satisfied initially for
t = 0 in the context of short wave asymptotics M — co. We collect our new
assumption:

(B) The initial preparation ¢q is given as

$o(q) = ao(q) exp (%Po ’ f]) )

where the probability density a2 = |¢o|? is an approzimate §-function

as defined in the appendix, i.e.,

ao(q)? = xe(q — o),
where y has compact support.

We are now able to state in which sense the QCMD model

. h2
ihpge = (—%Aag + V{(z, Q)) Yoo, Yocli=o = o,
p = —(¥Yoc,VVibge), p(0) = po

serves as an approximation of the system (16).

13



Theorem 4.2 Assumption (B) implies that the QUMD system (25) satis-

fies
Yoo = e + O(& + h/VM)

in the space L?(R?) and
q(t) = (6, 40:) + O( + 1/VM)

for all t < tmax. Moreover, assumption (A) of Theorem 4.1 is fulfilled for
these t in the limit M — oc.

Proof. The asymptotic expansion (18) together with Lemma 7.2 of the
appendix yields the position expectation value

(6, q0x) = q(t) + O(¢* + 1/ VM)
and the following approximation of the potential for ,:
(00, V2, )u) = V{2, q(t)) + O(€® + 1/VM),

which implies the error between ¥gc and v, by arguments of perturbation
theory, cf. [22]. D

Technical Aside. The detailed statement of the asymptotic expansion
(18) as given in Theorem 7.3 of the appendix shows that the statement of
assumption (A) concerning the support is in fact only valid up to any power
of h/m However, this decrease is rapidly enough to justify Theorem 4.1.

The advantage of the WKB derivation of the QCMD model (25) is the
statement of assumptions under which it can be regarded as a good approx-
imation. Conversely, if these assumptions are not fulfilled the QCMD model
is in danger of largely deviating from the full quantum model. We stress
this important point by collecting the central assumptions in the converse
as potential dangers:

1. If the mass M of the classical particle becomes small, the approxima-
tion may be bad.

2. If the variance €2

is not small enough, thus allowing a certain initial
uncertainty in space, we must face the effect that the “width” of the
probability density a? increases with time due to the divergence of the
velocity flow field. This is related to the fact that the Schrédinger

equation disintegrates wave packets because of dispersion.

14



3. If the Hamilton-Jacobi equation forms caustics, i.e., if ¢ > tax, the
asymptotic expansion (18) is not valid even for very large masses
M. Caustics may appear in the neighborhood of quantum mechanical
diffraction of the heavier particle.

All these points indicate that a long term validity of the QCMD model
cannot be expected. In Section 5 these potential dangers will be exemplified.

Remark. If the solution of the Hamilton-Jacobi equation gets multivalued
after passing a focal point, the particle of M somewhat splits into several
pathes. Using this multivalued solution one can extend the WKB method
in a way that up to errors of O(h/v/M) the wavefunction ¢ is concentrated
on these particle pathes. As indicated at the end of Section 4.1 this yields a
justification of the TDSCF method even in this case for M — oo. Since the
WHKB method cannot be extended as an asymptotic expansion in h/\/M in
the vicinity of focal points, the validity of the TDSCF method at a focal
point remains to be doubtful.

4.3 Conservation of Energy

The total energy of the full quantum system (6) in the state ¥ is given by

h* h*

Inserting the two approximation steps (separation and WKB limit), we get
EW) = E(Vg)+0(9

= (Yoc, H(t)vqc)

2

- m@& Nyos) + O(e + h/VM)

with the time-dependent Hamilton operator

h?
H=- z B 4
QmA V(- q(t))

and the semi-classical wavefunction

os(q,t) = a(q,t) exp (iS(g,t)) .

15



Exploiting
. g
V,¢s = (an + %quS) exp (%)

and Lemma 7.2 of the appendix, we get the following asymptotics for the
kinetic energy of ¢g:

h? R*

o9 Ae9s) = 5 (Veds, Veds)

_ 1 2 h? 2
= W|P(t)| + m<vqavvqa> + O(€%).

Remember, that a?(-,¢) is an approximate §-function at position ¢(t) and
the relation (22) gives us V,S5(¢(t),t) = p(t). Summarizing, we get

E(¥) = (Yoc, H(t)dge) + ﬁlp(lﬁ)l2 +AE(t) +O(e+1/VM),  (26)

where the term

AE(t) = —<an(-7 t)v Vq(l(', t)>
represents the zero-point energy or self energy of the “classical” particle with
mass M.

Remark. Note that we do not have |p(t)|?/2M = O(h*/M). The reason
is that the asymptotic expansion (18), as stated in Theorem 7.3 of the
appendix, is even valid for a kinetic energy bounded away from zero in the
limit M — oo, i.e., it allows any initial momentum

|p0|2 S CM7

where ¢ is some constant independent of M.

This self energy AF(t) deserves special attention: Its dependence on the
variance € of the wavepacket is like O(¢72). If we choose for instance at the
initial time t = 0 a Gaussian wavepacket ¢g with the amplitude

( ) _ 1 _ |q B q0|2
aplq) = (6 27T)d/2 exp 462 9

we obtain an initial self energy of

d h?
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As we will see, this self energy remains nearly constant in time. Since AF is
part of the quantum mechanical description of the “classical” particle with
mass M, it is reasonable to view the function

L p(o))?

Eqo(t) = (Yo, H(t)¥ac) + 537

as the natural total energy for the QCMD system (25). This energy is easily
seen to be a conserved quantity:

dEQC
dt

(g, Hige) + %p + (Yoo, Hbge) + (boe, Hige)

=0

= (Yqc,VeVigeo)q+ qp
= 0.

Now, comparing the energy expression (26) at time ¢ > 0 and at time ¢ = 0,
we obtain by conservation of E(V) and of Fg¢ that

AE(t) = AFy+ O(e 4+ h/VM)
and
E(V) = Ege + AEy + O(e + h/VM).

Thus, the quantum mechanical energy decomposes up to small terms into
the energy of the QCMD model and the initial self energy of the “classical”
particle.

For the purpose of numerical simulations, it is extremely helpful to note
that the QCMD system (25) constitutes a canonical system with respect to
the energy Fgc. To this end we decompose the Hamilton operator

H=H;+:H,

into the selfadjoint and skewadjoint part and the wavefunction

voo = <=(ay +iny) 23)

into a scaled real and imaginary part. Now, introducing the generalized
position
T
Q= (qll!v (])
and generalized momentum
T
P = (py,p)
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the energy reads as

1 1
Eqo = Eqo(Q, P) = o ((ays Hsay) + (pos Hspy) + 2(py, Hat) + 57101
A simple formal calculation shows, that the corresponding canonical equa-
tions

J J

Q= 8_PEQ07 P= —@EQO

are just another form of writing the QCMD system (25). However, one
should note that the partial derivatives have to be interpreted as functional
derivatives. One can easily circumvent the functional analytic technicalities
if one considers Ritz-Galerkin approximation in some orthonormal function
system.

Remark. The scaled decomposition (28) is commonly used in the literature
to give the Schrodinger equation a canonical Hamiltonian structure. A more

intrinsic way of this argument in the setting of infinite Hamiltonian systems
can be found in [7][24].

5 Discussion and Examples

We shall now illustrate the potential dangers of the QCMD method as dis-
cussed at the end of Section 4.2. Since the first two of the mentioned prob-
lems, i.e., mass M too small and the disintegration of the wavepacket for
larger times, meet common understanding, we herein concentrate on the
third problem, the formation of caustics.

This point can nicely be illustrated by the numerical simulation of a
simple collinear collision of a “classical” particle with a harmonic quantum
oscillator (cf. Figure 2), a model problem which has been treated extensively
in the literature without explanation of the differences between the QCMD
and the full quantum approach (cf. [5][3]). Using the notation of Section 4,
the Hamiltonian of the system in question is given by:

h* h?

H = —-—A

m
Lo LA, 4 By _
m oa Da 5wt 4 Ulle —ql)

=V(zyq)

with masses M = 40u and m = lu, roughly representing Argon (Ar) and a
HCI oscillator respectively. For the interaction potential U we have taken

18



Equilibrium
position

Figure 2: Scheme of the collinear test system.

the form (cf. [5][3])
U(r) = Aexp(—br)

with A = 1.654 - 10® kcal/mol and b = 2.438A-1. The frequency w of the
undisturbed oscillator corresponds to a wavenumber of 1000cm™! or to an
energy of hw = 2.86 kcal/mol. The initial wavepacket Wy is constructed
as follows: Wg = g @ ¢ is a tensor product of the ground state 1y of
the undisturbed oscillator and a Gaussian distribution for the “classical”

particle:
1 g — {)o|® (P)o
dolq) = BVTE exp (— 2 ) exp (le])

with initial location (g)o = 5A, momentum (P)g directed towards the os-
cillator’s location in zy = 0 corresponding to an initial kinetic energy of
3.9 kcal/mol, and location uncertainty ¢ = 0.075A. We have performed
full quantum (QD), QCMD- and TDSCF-calculations using the well-known
Fourier-collocation technique as the space discretization and suitable sym-
plectic time-discretizations based on operator splitting [26]. We have applied
uniform time steps 7 = 0.05 fs over a total time interval ¢/fs € [0,1000] and a
spatial computation domain z /A€ [—1,0.5] and ¢/A€ [1, 12] with 128 x 1024
meshpoints. Fortunately, for the QCMD-calculations only the 128 point
x-grid is necessary — leading to a tremendous decrease in computational
effort.
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Figure 3 shows the expectation value (g) for the position of the classical
particle computed via the full QD-simulation and the corresponding classical
trajectory ¢ = ¢(t) of the QCMD-calculations. The results show, that the
QCMD gives a very good approximation of the full quantum dynamics,
however, with a small but clearly visible difference at the time ¢ = 350fs
of the reflection of the classical particle. Total energy is well-conserved in
both cases by our numerical schemes (Figure 4), which perfectly reflects the
analytical conservation of energy as discussed in Section 4.3. This should be
contrasted with the observations in [3], where a non-symplectic numerical
scheme was used.

55

4.5

35

25

0 100 200 300 400 500 600
tin fs

Figure 3: Results of QD- and QCMD-calculations. Shown is the position expectation
{(g) (solid line) of the classical particle and its classical QCMD-trajectory ¢ (dashed line)
versus time.

The difference between QD and QCMD in the neighborhood of the turn-
ing point are explained by identifying this point as a focal point. This is
illustrated by Figure 5 which shows that two nearby starting particle pathes
q = q(t), l = —1,1, cross the particle path ¢(t) at this critical point. The
q; are solutions of

Mg = p
pl = _<¢7 qu('7ql) ¢>7
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Figure 4: Conservation of energy in the QD-simulation (solid line) and the QCMD-
simulation (dashed line). The difference between both values is caused by the zero-point
energy AEy = h*/SMe* = 0.0535keal/mol of the “classical” particle as discussed in
Section 4.3.

with initial states

@(0) = (qo +15¢  and  p(0) = (P)o

with 6¢ = 0.01A. ¢ is fized to be the solution of the QCMD-calculation.
Thus, small perturbation of the initial data result in no difference of the
position value at the critical point. Exactly this is the meaning of the
condition (23), which defines a focal point.

Our simple test system can also be used in order to illustrate the disin-
tegration of the wavepacket because of dispersion. This effect will always be
significant if the total simulation time 7" is large enough (as in our case with
T = 1ps), being less important for smaller time scales (7" < 100fs). Figure 6
shows the evolution of the statistical variances

Ag = (U, W) — (T,q0) = (¢*) — (¢)°

and Az = (22) — (2)? of position measurement for the full quantum sys-
tem with state W. It is well-known that these magnitudes are the correct
measures for the position uncertainty in a quantum system, i.e., for the
disintegration of its wavepacket.
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Figure 5: Crossing of different particle pathes g; in the focal point (circle). The solid
line represents the QCMD-trajectory g, the dashed lines the neighboring trajectories g—;
and ¢ started from a slightly different initial position. Notation as explained in the text.
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Figure 6: Evolution of variances Ag (dashed) and Ax (solid) of the full QD-wavepacket.
Note the disintegration of the wavepacket in g-direction in which no attractive potential
is present. [t is increasing as long as the particle is moving “free” and decreasing during
the collision.
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The statistical variances Ag and Az represent the variance ¢? occurring

in our approximation results. We know from the previous section that the
separation step itself introduces an approximation error O(¢). Therefore,
we are interested in the error caused by separation in the test system. To
that end, we compare the full quantum simulation with the corresponding
TDSCF-calculations connected to the system (16). Figure 7 presents the
two corresponding position expectations and a comparison with QCMD.
Note, that both, TDSCF and QCMD, show deviations from the full quantum
solution in the region of the focal point. This, indeed, illustrates that they
are both subject to the same underlying approximation error caused by
separation. Moreover, it exemplifies that the proposed analytical approach
(justification of separation via the validity of the step TDSCF — QCMD)
fits the real situation: The approximation quality of TDSCF and thus of
separation decreases near the problematic point of the QCMD-approach.

5 2.6
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45 256}
254}
4r 252}
D
(@)ep, 25l
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in A 3 2.48¢ 7
2.46} 1
. p
3t e
2.44} 1
242} 1
250
‘ ‘ 24 ‘
0 200 400 600 300 350 400

tin fs
Figure 7: Results of QD- and TDSCF-calculations. The picture on the left hand side
shows the corresponding position expectations {¢)gp (solid line) and (g)scr (dashed line)
versus time. The region of the turning point (box) is magnified on the right hand side.
Here, the additional dotted line represents the corresponding QCMD-trajectory g. Note,
that this picture does not change, if we refine the stepsizes used.
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6 Concluding Remarks

We have considered a mized quantum-classical description of large (bio)mo-
lecular systems, which allows to describe most atoms by the means of classi-
cal mechanics but an important, small portion of the underlying system by
the means of quantum mechanics. The starting point of our investigation
has been to analyze how such a QCMD-model could be derived from the
full Schrodinger equation and in which sense of approximation. That is, we
were finally interested in a “partial classical limit” which has been estab-
lished via the smallness of two parameters: variance € of the wavepacket
representing the “classical” particle and i/v/M corresponding to its mass.
Our approximation result is two-fold:

(R1) Tensor product separation of the full wavefunction is accurate up to
an error of O(e).

(R2) The classical trajectory computed from (21) approximates the position
expectation of the classical part up to the error O(e? + h/v/M).

Thus, the total approximation error of QCMD is of order O(e + L/vM).

These results are valid under three conditions:
(C1) the mass M is large enough,

(C2) the initial variance €*(to) is small enough,
(C3) no caustics are present,

which on the other hand, if violated, are connected to scenarios of potential
deficiencies of the QCMD as exemplified in Section 5.

Concerning result (R2) the following should be noted: We have chosen
semi-classical limits according to the WKB method as represented by the left
methodical branch of Figure 1. We could as well apply semi-classical limits
via Gaussian wavepackets as represented by the right methodical branch of
Figure 1. We would then arrive at the following alternative result (cf. [16]):

(R2’) The semi-classical approximation of the classical particle by Gaussian
wavepackets is accurate up to O(vh/MY?).

This avoids the e-dependence in this part of the approximation but leads
to a slower asymptotic error rate in 1/M. But nevertheless, with regard
to the total error as an approximation of the full Schrodinger equation, the
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e-dependence (R1) is again introduced by the underlying separation ansatz;
resulting in the estimate O(e + \/ﬁ/Ml/‘l) of the total approximation error,
which is worse in comparison to our approach.

It should be emphasized, that we discuss the approximation of the full
wavefunction ¥ in the L%-norm. Thus, the results also hold for all expecta-
tion values of ¥ but not necessarily for “pointwise” quantities, which may
be important. The Fourier spectrum of V¥, e.g., is well-approximated in a
L?-average sense, but amplitudes of single frequencies may be completely
wrong.

Note again that our mized approach concerning a “partial classical limit”
differs conceptually from approaches which are interested in a description of
the system entirely on a quantal, semi-classical, or classical level.

Summarizing we shortly list some conclusions which are of particular
importance for a comparison of the various models:

e If both conditions (C1) and (C3) are fulfilled, the QCMD does not se-
riously deteriorate the O(¢)-approximation already made by the sepa-
ration ansatz. Thus, neither TDSCF nor QSCMD are “better” in this
case and QCMD is the first choice for practical reasons.

e Using the presented approach, neither the QCMD nor the QSCMD
nor even the TDSCEFE approach can be justified at caustics or focal
points.

e The QCMD approximation fails at focal points. It eventually can again
be a useful approximation after passing a focal point, but the complex
phase of the wavefunction will jump at each of these transitions by
a shift of 7/2 (see [25]). This effect may explain some corresponding
experimental observations (cf. [13], section II).

o The QCMD approximation can not even detect focal points or caustics.
Focal points may be detected by a numerical solution of the Hamilton-
Jacobi equation (19) for the phase 9, e.g., using particle trajectory
bundles (cf. [15]).

e Our results do not allow to decide the problem of whether QCSMD
leads to a “better” representation of the influence of the potential
curvature, as is expected in [21]. However, we note that the QSCMD
also fails in detecting caustics and gets problems in this case, e.g., if
the wavepacket splits into several subpackets.
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Conclusively, the separation step seems to be the bottleneck for a better ap-
proximation theory or a more precise distinction between the various mixed
quantum-(semi)classical models. Investigations concerning correction terms
for the separation ansatz have already been presented in the literature (e.g.,
[14]), but — as far as the authors know — a corresponding mathematical
justification is still missing.

7 Appendix

In this appendix we collect several mathematical details which we have
omited in our previous discussions.

7.1 Approximate é-Functions

Let x € C*(R%) be a smooth function, which is normalized according to
the following three conditions:

i J vl =1,
ii) /Rd xx(z) de =0,
iii) /Rd(ac®x)x(x) de =1,

where T € R4*? denotes the identity matrix. The scaled family

Xe(z) =Ty (x — xo)

€

is called an approximate §-function at position xg, since

Xe — (S( — $0)

for ¢ — 0 in the space D’ of distributions. A simple example is given by the
Gaussian distribution function

1 |z — 2o]?
= P T e

of meanvalue zg and variance €2.

For technical reasons we impose the additional restriction, that y is either
Gaussian or has compact support.
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Lemma 7.1 For a given approximate é-function Y. at position xg and a
smooth function f € C“(Rd) of at most exponential growth we get

[ FeIeeyde = fleo) + 5 trace Do) + O,
R

Proof. Taylor expansion yields

[ J@x@de = [ et e)(a)ds
R R
= /d (f(ﬂﬁo) +eDf(xo) v+ ;DZf(xo) Sz @)
R
+ 0(63)) X(z) dx

— fleo)+ S D f(e0) : 1+ O

= o)+ 5 trace DF (o) + O,

where we used the normalizations of y. O
Now we apply this result to the solution p® of the continuity equation

pi + div(pv) =0, P li=0 = Xes (29)

with an approximate é-function as initial data. The time-dependent velocity
field v: R X R — R? is supposed to be smooth and induces a flow map o
by

d ., ¢ 0
%(Px:v((l)x,t), ¢z = 2.
We consider times t < tay < oo for which ®* is a diffeomorphism onto R?,
i.e.,

J(x,t) = det D, ®'x # 0, t < tmax, © € RY.

This is exactly the condition which precludes the existence of focal points
in the WKB method of Section 4.2.

Lemma 7.2 Given a smooth function [ € C“(Rd) of at most exponential
growth. If the initial data p|;=o of (29) constitute an approzimate §-function
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at position xg, the asymptotic expansion

/ f(@)p (2, t) da = f(P'xg) + ; trace D2 f(®'z)
Rd

s valid uniformly in 0 <t < ilpax.

Proof. The solution p® of the continuity equation satisfies the transport
relation

pe(q)txvt)J(xvt) = p(x,0) = xc(2),

which can be found for instance in [8]. Using the well known transformation
formula of multiple integrals we thus get

/df(x)pﬁ(x,t) de = /df(q>fx)pﬁ(q>fx,t)J(x,t) do
R R

= / f(®'2)x (2) da.
Rd
An application of Lemma 7.1 yields the desired result. 0O

7.2 Short Wave Asymptotics

Here we will give a mathematical rigorous statement of the short wave
asymptotics. In the literature semi-classical approximations are usually
stated for h — 0, which would not make much sense in our context. How-
ever, a simple trick translate the usual results to the limit x = h/v/M — 0.
Asymptotics in this quantity x appear for instance in the analysis of the
Born-Oppenheimer adiabatic approximation — a setting where one also
deals with some large mass ratio M/m. A discussion of the adiabatic ap-
proximation in the framework of semiclassical limits may be found in [9][17].

Theorem 7.3 Given the solution ¥ € C™ of the time-dependent Schro-

dinger equation
2

it =~ AV (2, 1)

to the initial data
7
P(2,0) = ag(z) exp <ﬁ5(])w($)) .
We assume that
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i) V € C™ is uniformly bounded from below:

inf V(z,t) > K > —o0, vt > 0.
z€R?

ii) ag € C'*° has compact support.

iii) SY € C* is depending on M in such a way, that SY //M is bounded
in C* and the Hamilton-Jacobi equation (30) has no caustics for t <
tmax uniformly in M.

Then we get the asymptotic expansion
vlat) = ale.tyexp (15(0.0)) + Re.o),

where the remainder satisfies the estimate

h

IRl (10,tmar], L2 (REY) < €

9

for h/VM sufficiently small. The phase function S fulfills the Hamilton-

Jacobi equation
1
St+m|v5|2+vzo, Sl=o = SM, (30)
and the amplitude a satisfies

0 . VS
%QQ + div (aQV) =0, ali=o = ag.

Moreover we have outside the support of a
1R C )2ty supp oy = © ((h/VD1)™)
uniformly in t € [0, tmax]-

Proof. We abbreviate x = fi/v/M and introduce the new time variable 7 =
t/v/'M. The Schrodinger equation transforms with ¢(z, 7) = ¢ (2, 7vM) to

od - K2 . .
ME¢ = —7A¢—|— V($,T\/M)¢
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with initial condition
QL(JU, 0) = ag(z) exp (égo(x)) . So = S(])W/VM.

Theorem 12.3 of Maslov and Fedoriuk [25] states that for some time Ty ax
the asymptotic expansion

Oe,7) = ey exp (28(0,7) ) + R, 7) 31
is valid with the remainder R bounded by

IBll6 (0 o L2(R2Y) < €K IIRE D) 2@y suppag ) = OR)  (32)

for sufficiently small x. Here the phase function fulfills
A 1 A A A
57+§|V5|2‘|‘V:07 Sli=0 = So,

and Tyax may be chosen as large as necessary to prevent the first appearance
of a caustic for .S. The amplitude & obeys

8%&2 +div (a?V8) =0, dli=o = ao. (33)
Now we set
S(x,t) = VMS(z, t/VM), a(z,t)=a(z,t/vVM)

and

R(x,t) = R(x,t/VM).

A simple calculation shows that S fulfills the Hamilton-Jacobi equation (30)
to the initial data S, which by definition of 7.y has no caustics for ¢ <
TmaxV M. However assumption (iii) precludes caustics prior to tmayx Which
shows that we can choose at least

Tmax — tmax/ vV M.

Thus we have the validity of the asymptotic expansion (31) within the re-
quired time interval. All other assertions are simple transformations of (32)

and (33). O
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Remark. In many cases, like for the initial choice

SM = /MS,

with a fixed Sp, this proof shows that one even has

tmax = O(VM).

This means, that caustics appear the later the heavier our particle is — even
if we fix the initial kinetic energy.
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