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Abstract

This paper presents a mathematical derivation of a model for quantum�
classical molecular dynamics �QCMD� as a partial classical limit of the full
Schr�odinger equation� This limit is achieved in two steps� separation of the
full wavefunction and short wave asymptotics for its �classical	 part� Both
steps can be rigorously justi
ed under certain smallness assumptions� More�
over� the results imply that neither the time�dependent self�consistent 
eld
method nor mixed quantum�semi�classical models lead to better approxima�
tions than QCMD since they depend on the separation step� too� On the
other hand� the theory leads to a characterization of the critical situations
in which the models are in danger of largely deviating from the solution of
the full Schr�odinger equation� These critical situations are exempli
ed in an
illustrative numerical simulation� the collinear collision of an Argon atom
with a harmonic quantum oscillator�

Keywords� quantum�classical molecular dynamics� mixed quantum�classi�
cal models� separation� short wave asymptotics� WKB method� semi�classical
approximation� time�dependent self�consistent 
eld approximation� biomo�
lecules�

AMS classi�cation� �
Q
�� �
Q��� �
V��� ��C��



� Introduction

Biomolecular systems are characterized by a large number of degrees of
freedom� It meets universal acceptance that a prediction of biomolecular
processes from �rst principles should ideally be based on a fully quantum
dynamical description of all of these degrees of freedom� Unfortunately� for
large systems the simulation of such a quantum model is impossible even on
the biggest and fastest computers� now and probably for the next decades�
Therefore� typical simulations of biomolecular systems are based on classical
molecular dynamics �MD� assuming that the system of interest obeys a
classical Hamiltonian equation of motion� In this case quantum theory is
only used in order to construct the atom�to�atom interaction potentials in
the context of Born�Oppenheimer approximation�

In many situations classical MD allows a su�ciently accurate descrip�
tion of complex realistic molecular systems� But it simply cannot be valid if
the nature of the process under consideration is 	deeply quantum mechan�
ically
� e�g�� optical excitation processes� or transfer of key�protons in the
active sites of an enzyme� In those cases a quantum dynamical description is
unavoidable� However� since a full quantum description of� e�g�� a complete
enzyme is still not feasible� one is interested in a mixed quantum�classical
approach to MD which allows to describe most atoms by the means of clas�
sical mechanics but an important� small portion of the underlying system
by the means of quantum mechanics�

In the literature various models are proposed� Most of them �t into
the scheme shown and explained in Figure �� In mixed approaches the full
quantum system is �rst separated via the tensor product ansatz into several
parts with a coupled quantum description� Then� the evolution of each part
can be modeled on di
erent levels� quantally� semi�classically� or �purely�
classically� All the proposed models can clearly be classi�ed via the di
erent
description levels they are mixing� some remain on the quantum level for all
parts and are well�known as time�dependent self�consistent �eld �TDSCF��
methods �cf� �������� in our context� a lot of references in nuclear physics
use the notion of time�dependent Hartree approximation or time�dependent
mean��eld approximation�� other methods combine semi�classical models for
most of the parts with a quantum description for the particularly interest�
ing part� usually called quantum�semi�classical �QSCMD��models �see ����
and the references cited therein�� However� we are particularly interested in
quantum�classical molecular dynamics �QCMD��models� which use Hamil�
tonian equations for space and momentum of the 	classical
 atoms �for
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biomolecular systems see ���������� more references may be found in studies
for van der Waals molecules� e�g�� ����������
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Figure �� Di�erent approaches to quantum��semi��classical models� In mixed approaches
the full quantum system is 
rst separated via the tensor product ansatz into parts j with
coupled quantum description� Then� the evolution of each part j can be modeled on
di�erent levels� quantally� semi�classically� or �purely� classically� For the entire system
or for each single part� the derivation of the di�erent models from the original quantum
description level can be realized� as indicated� on two di�erent ways� On each way both
steps can be justi
ed strictly mathematically in the context of appropriate asymptotic
expansions� The simultaneous justi
cation of the separation step remains the crucial
point�

Unfortunately enough� essentially two basic QCMD�models are proposed
in the literature ������ for biomolecular systems� which di�er in a crucial
point and result in essentially di
erent numerical problems� Moreover� it is
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claimed that QSCMD�models are a better approximation of the full quantum
behavior� but require signi�cantly larger computational e
ort� We propose
that a model selection should be guided by a strict analysis of approximation
properties with respect to the solution of the full Schr�odinger equation in a
context in which a classical description of most of the atoms is required and
allowed� Hence� we are looking for the 	partial classical limit
 of the full
quantum dynamics� It should be noted� that semi�classical approximations
are usually applied to the entire quantum system� either using Gaussians
�as �������� or the mathematical investigation ����� or the WKB method �as
many textbooks like �������� or in mathematical investigations like ���������
As pointed out in ����� the separation ansatz �and with it TDSCF� occurs
as an intermediate step in a derivation of QCMD and QSCMD from the
full Schr�odinger equation� Thus� we simultaneously ask for the validity of
separation in this 	partial limit
� As far as the authors know there is no
strict analysis of any time�dependent 	partial classical limit
 which � in
turn � explains the conceptual di
erences in the QCMD�models proposed�

The herein presented approach tries to bridge this gap� Its mathematical
results allow to decide which of the two above mentioned models for QCMD
can be derived from a full quantum model by specifying the sense and order
of approximation� On the other hand� the results lead to a characterization
of the situations in which the models are in danger of largely deviating from
the solution of full Schr�odinger equation�

The mathematical argumentation follows the red thread of an approach
proposed by ����� It starts with a separation ansatz for the full Schr�odinger
equation� leading to the TDSCF�equations� Then� it is shown via short wave
asymptotics or WBK�approximation that these TDSCF�equations imply a
certain QCMD�model under some smallness assumptions which specify what
is meant by 	partial classical limit
� The essential point now is that these
mathematical results for QCMD also lead to a strict justi�cation of the
separation ansatz in this limit�

The text is organized in �ve steps� First� we introduce the two basic
QCMD�models of the literature and explain their crucial di
erence� In a sec�
ond� motivating step it is shown that only one of both models� interestingly
the less complicated one� may be derived from the full quantum approach�
Third� in Section �� this motivation is mathematically justi�ed� This implies
a characterization of the possibly problematic scenarios for QCMD�models�
which is exempli�ed in Section �� The �fth and last step leads us to the
discussions of our results and their implications for QSCMD�models�

For simplicity of notation we herein restrict the discussion to the case of
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only two interacting particles� However� one should note that all the follow�
ing considerations can be extended to arbitrary many particles or degrees
of freedom�

� QCMD Models

In this section we give an intuitive formulation of the basic QCMD models�
preparing for Sections � and � in which we show how they �t into the
framework of full quantum models�

Let the two particles have space coordinates x � R
d and q � R

d and
masses m and M respectively� Moreover� let the interaction potential be�
tween them be V � V �x� q�� The basic assumption of QCMD is that the
masses di
er signi�cantly� m � M � and that� therefore� the heavier par�
ticle can be modeled classically while the lighter one remains a 	quantum
particle
� That is� the quantum particle is described by a wavefunction
� � ��x� t� which obeys Schr�odinger�s equation

i�h �� �

�
� �h�

�m
�x � V �x� ��

������
��q�t�

� ���

with a parameterized potential which depends on the location q�t� of the
	classical
 particle� thus being time�dependent� The location q � q�t� is the
solution of a classical Hamiltonian equation of motion

M �q � p

�p � �rqU�
���

in which the time�dependent potential U is given as the original one V

weighted with the probability of �nding the quantum particle�

U�q� �� t� � h� � V ��� q��i �
Z

V �x� q� j��x� t�j�dx� ���

Thus� the forces in ��� are the so�called Hellmann�Feynman forces� Together�
��� and ��� are the basic equations of motion of QCMD� But one question
is still unaddressed in this intuitive approach� What kind of q�dependence
underlies the potential U in order to compute the partial derivative rqU 
There are two answers discussed in the literature�

�� The arguments �q� �� of U are independent unknowns and therefore
we get

rqU � h� � rqV ��� q��i� ���
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This can be evaluated directly and ��� together with ��� constitutes a
closed system of equations� This choice is used� e�g�� in �������� where�
in addition� the Schr�odinger equation is replaced by the Liouville�von
Neumann equation�

�� In ���� QCMD is seen as an extension of the Born�Oppenheimer approx�
imation to our time�dependent situation� the heavier particle may be
�xed for a short instant �t�� t���t� in which the quantum particle be�
haves according to its Schr�odinger equation ���� This means� � � q�t��
is considered as parameter in ��� and the wavefunction � � ���� t� as
in �t�� t� ��t� explicitly depending on this parameter� After this� the
classical position q has to be updated via ���� However this may be re�
alized� the dependence of � on � has to be taken into account yielding
the derivative

rqU �
�
h� � r�V ��� ���i

� hr�� � V ��� q��i � h� � V ��� q�r��i
����
��q

�
���

which� in turn� leads to the necessity of evaluating r�� in addition�
An algorithmic realization of this approach is presented in ���� result�
ing in a simulation method which causes much more computational
e
ort in real life applications than the simple choice ���� The Born�
Oppenheimer approximation is understood as being static and the
terms containing r�� are interpreted as corrections caused by fast
motions of the heavy particle� For test simulations using this model
see �������

Which of the two di
erent approaches can be derived from the full quan�
tum model This means that we would like to relate a QCMD model to the
full Schr�odinger equation for both particles�

i�h �! �

�
� �h�

�m
�x � �h�

�M
�q � V �x� q�

�
!� ���

in which the ��particle wavefunction !�t� � !�x� q� t� lives in the state
space H � L��R�d�� We will accomplish such a relation via two approaches�
A motivation via the Ehrenfest theorem �Section �� and a mathematical
justi�cation �Section ��� Both will indeed result in the intuitive QCMD
model ��� and ���� However they give favor to the gradient evaluation ����
thus showing that the correction term r�� of ��� cannot be based on the
full quantum model�
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� Motivation of QCMD from full Quantum Model

Let the expectation value of an time�independent observable A � L��R�d��
L��R�d� with respect to state !��� t� � L��R�d� be denoted

hAi�t� � h!�t�� A!�t�i �

Z
�!�x� q� t�A!�x� q� t�dx dq�

Then the Ehrenfest theorem ��"� states

d

dt
hAi �

i

�h
h�H�A�i

if ! is the solution of the Schr�odinger equation i�h �! � H!� One should
note� that this is correct even in the case of a time�dependent Hamilton
operator�

We are interested in the location expectation hqi and in the expecta�
tion values hP i of the conjugated momentum operator P � �i�hrq for the
solution ! � !�t� of ���� The Ehrenfest theorem yields

d

dt
hqi � M�� hP i

d

dt
hP i � � hrqV i�

�"�

with

hrqV i �
Z �

rqV �x� q�
�
j!�x� q� t�j�dx dq� �#�

which can only be evaluated if ! is known� Remember that hqi and hP i
correspond to space coordinate and momentum of our 	classical
 particle�
Still� �"� is a pure quantum theoretical equation� But �#� shows that� already
on this level� that the gradient is inside the expectation value� thus uniquely
leading us to model ��� without need for correction terms� Indeed� one
arrives at exactly the same result by switching into the Heisenberg picture
�cf� ��#���

The system �"� gets the form of the classical equation of motion ��� if
we construct a relation

hrqV i � rqU�hqi� t��

This can be done if we give an explicit formulation of our assumption that the
heavier particle 	behaves classically
� ! is a product of the wavefunctions
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� for the quantum particle and � for the classical one� whose probability
distribution is 	classical
� i�e�� with very small uncertainty in space� In
other words� we separate !�x� q� t� � ��x� t� � ��q� t� and assume that � is
an approximate ��function� e�g��

��x� q� t� �
�

���t�
p
�	�d��

exp

�
� jq � hqij

�

���t��

�
exp

�
i
hP i
�h

q

�
� ���

with ��t� � �� �� Inserting this into �#� we get �cf� appendix� Lemma "����

hrqV i � h� � rqV ��� hqi��i � O���� ����

and� thus� in the limit �� ��

hrqV i � h� � rqV ��� hqi��i� ����

i�e�� we end up with ��� and choice ���� There is no need for considering the
term r���

It should be noted that this argument does not depend on the Gaussian
form of �� wemay use any approximate ��function as we will see in the next
section � but that it depends on the smallness of its variance or location
uncertainty ��t�� � ��

However� there is some need for a discussion of whether our two assump�
tions�

�A�� ! is separable�

�A�� � is a moving approximate ��function� its variance remains uniformly
small ��t�� 
 �� � �

may lead to an appropriate approximation of the total wavefunction !� In�
deed� the above approach can be mathematically re�ned in a way which
yields an asymptotic expansion of ! in terms of two smallness parameters�
For appropriate initial conditions the solution of the QCMD�model using
gradient evaluation ��� approximates the full quantum dynamics up to an
error O�� � �h�

p
M�� In particular� our assumptions �A�� and �A�� are

justi�ed if � is small and M large enough� The range of validity of the
asymptotic expansion gives us criteria to decide about the applicability of
the QCMD approach� Moreover� the analysis of the separation step also
leads to a justi�cation of TDSCF�approaches� since those methods depend
on the separation ansatz only�
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� Mathematical Derivation of QCMD

In this section we present a methodology to derive the QCMD model from
the full Schr�odinger equation ��� as an approximation in a quite strict sense�
i�e�� including the asymptotic size of the error terms� To be speci�c� we
introduce the following two smallness parameters�

� ��� the variance of the probability density for the particle of mass M
at time zero�

� �h�
p
M � measuring the e
ect of m�M �

The smallness of these two parameters will specify the meaning of 	classical

behavior of the particle with mass M � The approximation procedure works
now in two steps�

� Separation� This yields to an O����perturbation of the wavefunction�

� Short wave asymptotics� This yields an additional error term for the
QCMD model of order O��� � �h�

p
M��

The procedure works within the restriction that the time t under consider�
ation is smaller than a certain maximal value tmax� Thus� we end up with a
rather precise setup for the validity of the QCMD model� namely

� and �h�
p
M su�ciently small and t 
 tmax�

These restrictions will be discussed later on�

��� First Approximation Step� Separation

We consider the solution ! of the full Schr�odinger equation ��� with sepa�
rated initial data

!jt�� � �� � ��� i�e�� !�x� q� �� � ���x� � ���q�� ����

In general� we cannot expect that this initial separation persists in time�
However� to begin with� we assume that the solution ! has the form of a
separated wavefunction !� de�ned by

!� � � � �� i�e�� !��x� q� t� � ��x� t� � ��q� t�� ����

i�e�� we assume that ! � !�� For this speci�c case an alternative way of
computing !� will be derived� which we will use to approximate ! in the
general case ! 	� !��
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Under the assumption ! � !� the full Schr�odinger equation ��� can
be separated into two coupled ��particle Schr�odinger equations� Namely�
multiplication of ��� by �� and integration with respect to q� respectively
multiplication by �� and integration with respect to x� yields�

i�h �� �

�
� �h�

�m
�x � h�� V �x� ���i� ���t�

�
��

i�h �� �

�
� �h�

�M
�q � h�� V ��� q��i� ���t�

�
�

����

with the time�dependent functions

���t� � �i�hh�� ��i � �h�

�M
h���q�i�

���t� � �i�hh�� ��i � �h�

�m
h���x�i�

����

The system ���� can be put to a more suitable form� if we note� that the
time�dependent function �� and �� are responsible for a phase shift only�
To be speci�c� the relations

��x� t� � exp

�
� i

�h

Z t

�
���s� ds

�
���x� t�

and

��x� t� � exp

�
� i

�h

Z t

�
���s� ds

�
���x� t�

hold� where �� and �� are the solutions of the simpli�ed system

i�h ��� �

�
� �h�

�m
�x � h��� V �x� ����i

�
���

i�h ��� �

�
� �h�

�M
�q � h��� V ��� q���i

�
���

����

This nonlinear system is uniquely solvable as can be proven by Galerkin
approximation and energy based compactness arguments� Thus� we may
solve this system instead of ���� whenever the explicit knowledge of the
phase is of no importance� For instance all expectation values are invariant
under phase shift� Inserting the expression for � and � into the de�nition
���� of �� and �� we get

�� � �� � �h�� � ��� V �� � ��i
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and therefore the following reconstruction of !��

!� � exp

�
i

�h

Z t

�
h!�

��s�� V!�
��s�i ds

�
!�
�� !�

� � �� � ��� ��"�

a relation which may also be found as formula ����� in ����� In this way the
simpli�ed system ���� de�nes via ��"� a separated wavefunction !� which
respects the initial data ���� � independently of whether the solution ! of
the full Schr�odinger equation is separated �! � !�� or not �! 	� !���

Now� we have to investigate for the case ! 	� !�� in which sense !� as
de�ned by ��"� can nevertheless be viewed as an approximation !� 
 !�
To this end we di
erentiate the expression ��"� with respect to the time
t� use the equations of the system ���� and get the following modi�ed full
Schr�odinger equation�

i�h
d

dt
!� �

�
� �h�

�m
�x � �h�

�M
�q � V��x� q� t�

�
!�

with the modi�ed potential

V��x� q� t� � h�� V �x� ���i� h�� V ��� q��i� h!�� V!�i�
A simple calculation shows that the expectation value of the potential re�
mains unchanged� i�e��

h!�� V!�i � h!�� V�!�i�
Thus� the new potential V� appears to be somewhat the right separation of
the original potential V �

We now make the following assumption additionally to the initial con�
dition �����

�A� The probability density j�j� is an approximate ��function as de�ned in
the appendix� i�e��

j��q� t�j� � 
��t��q � q�t�� t��

Further we assume that for t 
 tmax this approximate ��function has
uniformly small support�

diam supp ���� t� � O����

This means that j���� t�j�� ��� � q�t�� for � � ��
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Assumption �A� implies that the wavepacket � is concentrated along some
particle path q�t�� This assumption will be simpli�ed in Section ���� Our
main approximation result for the separation step is now

Theorem ��� Assumption �A	 implies that the asymptotic error of separa�
tion is given by

!� � !� O���

in the space L��R�d��

Proof� Lemma "�� of the appendix shows

h�� V �x� ���i� V �x� q�t�� � O�����

thus giving

V��x� q� t� � V �x� q�t�� � h�� �V ��� q�� V ��� q�t����i�O�����

Now one easily shows that only the values of V��x� q� t� for q � supp���� t��
determine the solution !�� Taylor expansion yields for these values of q

V��x� q� t� � V �x� q� � O����

The desired result is now implied by standard results from perturbation
theory as for instance Theorem IX����� in �����

Since the system ���� is the basis of the so called time
dependent self

consistent �eld �TDSCF� calculations �cf� ������ we have thus given some
justi�cation of this approach� We should note� that Theorem ��� remains
even valid� if the probability density j�j� supports several particle traces
with a variance of ��� This will be a possible advantage of the TDSCF
approach over the QCMD model� which constitutes a further approximation
step relying on just one particle trace�

��� Second Approximation Step� Short Wave Asymptotics

Now� we will give a further simpli�cation of the separated system ���� for
large masses M � m� As a by�product we will be able to simplify assump�
tion �A��

Using short wave asymptotics ������������ also called WKB method or
semi�classical approximation in the literature� one can prove the validity of
the following asymptotic expansion�

���q� t� � a�q� t� exp

�
i
S�q� t�

�h

�
�O��h�

p
M�� ��#�

��



Remark� The reader should note� that we explicitly state the dependence
on M of the O��h� error term� which usually can be found in the literature� A
simple argument for this particular dependence will be given in the appendix�
Since we apply short wave asymptotics to only part of the system ���� the
limit �h� � would not make sense�

The phase function S and the real amplitude a obey the following equa�
tions� A nonlinear Hamilton�Jacobi equation for S

�S

�t
�

�

�M
�rqS�

� � h�� V ��� q��i� � ����

and a continuity equation for a�

�a�

�t
� divq

�
a�
rqS

M

�
� �� ����

Now� equation ���� for the phase S is a classical Hamilton$Jacobi equa�
tion for the action of a particle with respect to the time�dependent potential
h�� V ��� q��i� The Hamilton�Jacobi theory of classical mechanics ��� states
that the solution of the canonical equations

�q � M��p� q��� � q��

�p � �h��rqV ��� q��i� p��� � rqS�q�� ���
����

satis�es throughout the relation

p�t� � rqS�q�t�� t�� ����

This allows us to construct S��� t� from a �xed initial phase S��� �� as long as
the particle %ow map &t which maps the initial position q� to the solution
q�t� of the Hamiltonian system ���� at time t� i�e��

&tq� � q�t��

is one�to�one� At times t� where at least two di�erent particle pathes meet�
the phase function S gets multi�valued and the asymptotic expansion ���	
ceases to be valid� At those times there will be points qf � &tq�� for which
the %ow is even locally not one�to�one� i�e��

detDq&
tqjq�q� � �� ����
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Such a point qf is called a focal point at time t and all focal points at a
given time are called a caustic� However� there is a time tmax such that for
t 
 tmax there are no focal points at all�

The continuity equation ���� for the probability density a� � j�j� de�
scribes the transport of the initial probability density a��q� �� along the %ow
&t of the velocity �eld �q � rqS�M � A well known consequence of this trans�
port is the following local conservation property of the probability density�Z

�tW
a��q� t�dq �

Z
W
a��q� ��dq

for all domains W � Rd� cf� �#�� This implies in particular that an initially
concentrated wave packet

a��q� �� � 
��q � q�� 
 ��q � q��� for �� �� ����

remains in the limit � � � concentrated at the classical trajectory q�t� �
&tq�� i�e��

a��q� t�� ��q � q�t���

Thus assumption �A� is satis�ed for t 
 tmax if it is satis�ed initially for
t � � in the context of short wave asymptotics M �
� We collect our new
assumption�

�B� The initial preparation �� is given as

���q� � a��q� exp

�
i

�h
p� � q

�
�

where the probability density a�� � j��j� is an approximate ��function
as de�ned in the appendix� i�e��

a��q�
� � 
��q � q���

where 
 has compact support�

We are now able to state in which sense the QCMD model

i�h ��QC �

�
� �h�

�m
�x � V �x� q�

�
�QC � �QC jt�� � ���

M �q � p� q��� � q��

�p � �h�QC �rqV �QCi� p��� � p�

����

serves as an approximation of the system �����
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Theorem ��� Assumption �B	 implies that the QCMD system �
�	 satis�
�es

�QC � �� �O��� � �h�
p
M�

in the space L��Rd� and

q�t� � h��� q��i� O��� � �h�
p
M�

for all t 
 tmax� Moreover� assumption �A	 of Theorem ��� is ful�lled for
these t in the limit M �
�

Proof� The asymptotic expansion ��#� together with Lemma "�� of the
appendix yields the position expectation value

h��� q��i � q�t� � O��� � �h�
p
M�

and the following approximation of the potential for ���

h��� V �x� ����i � V �x� q�t�� � O��� � �h�
p
M ��

which implies the error between �QC and �� by arguments of perturbation
theory� cf� �����

Technical Aside� The detailed statement of the asymptotic expansion
��#� as given in Theorem "�� of the appendix shows that the statement of
assumption �A� concerning the support is in fact only valid up to any power
of �h�

p
M � However� this decrease is rapidly enough to justify Theorem ����

The advantage of the WKB derivation of the QCMD model ���� is the
statement of assumptions under which it can be regarded as a good approx�
imation� Conversely� if these assumptions are not ful�lled the QCMD model
is in danger of largely deviating from the full quantum model� We stress
this important point by collecting the central assumptions in the converse
as potential dangers�

�� If the mass M of the classical particle becomes small� the approxima�
tion may be bad�

�� If the variance �� is not small enough� thus allowing a certain initial
uncertainty in space� we must face the e
ect that the 	width
 of the
probability density a� increases with time due to the divergence of the
velocity %ow �eld� This is related to the fact that the Schr�odinger
equation disintegrates wave packets because of dispersion�

��



�� If the Hamilton�Jacobi equation forms caustics� i�e�� if t � tmax� the
asymptotic expansion ��#� is not valid even for very large masses
M � Caustics may appear in the neighborhood of quantum mechanical
di
raction of the heavier particle�

All these points indicate that a long term validity of the QCMD model
cannot be expected� In Section � these potential dangers will be exempli�ed�

Remark� If the solution of the Hamilton�Jacobi equation gets multivalued
after passing a focal point� the particle of M somewhat splits into several
pathes� Using this multivalued solution one can extend the WKB method
in a way that up to errors of O��h�

p
M� the wavefunction � is concentrated

on these particle pathes� As indicated at the end of Section ��� this yields a
justi�cation of the TDSCF method even in this case for M �
� Since the
WKB method cannot be extended as an asymptotic expansion in �h�

p
M in

the vicinity of focal points� the validity of the TDSCF method at a focal
point remains to be doubtful�

��� Conservation of Energy

The total energy of the full quantum system ��� in the state ! is given by

E�!� � � �h�

�m
h!��x!i � �h�

�M
h!��q!i� h!� V!i�

Inserting the two approximation steps �separation and WKB limit�� we get

E�!� � E�!�� �O���

� h�QC � H�t��QCi � �h�

�M
h�S ��q�Si�O�� � �h�

p
M�

with the time�dependent Hamilton operator

H � � �h�

�m
�x � V ��� q�t��

and the semi�classical wavefunction

�S�q� t� � a�q� t� exp

�
iS�q� t�

�h

�
�

��



Exploiting

rq�S �

�
rqa�

i

�h
arqS

�
exp

�
iS

�h

�
and Lemma "�� of the appendix� we get the following asymptotics for the
kinetic energy of �S �

� �h�

�M
h�S ��q�Si �

�h�

�M
hrq�S �rq�Si

�
�

�M
jp�t�j� � �h�

�M
hrqa�rqai� O�����

Remember� that a���� t� is an approximate ��function at position q�t� and
the relation ���� gives us rqS�q�t�� t� � p�t�� Summarizing� we get

E�!� � h�QC� H�t��QCi� �

�M
jp�t�j� � �E�t� �O�� � �h�

p
M�� ����

where the term

�E�t� �
�h�

�M
hrqa��� t��rqa��� t�i

represents the zero�point energy or self energy of the 	classical
 particle with
mass M �

Remark� Note that we do not have jp�t�j���M � O��h��M�� The reason
is that the asymptotic expansion ��#�� as stated in Theorem "�� of the
appendix� is even valid for a kinetic energy bounded away from zero in the
limit M � 
� i�e�� it allows any initial momentum

jp�j� � cM�

where c is some constant independent of M �

This self energy �E�t� deserves special attention� Its dependence on the
variance �� of the wavepacket is like O������ If we choose for instance at the
initial time t � � a Gaussian wavepacket �� with the amplitude

a��q� �
�

��
p
�	�d��

exp

�
�jq � q�j�

���

�
�

we obtain an initial self energy of

�E� � �E��� �
d �h�

#M��
� ��"�

��



As we will see� this self energy remains nearly constant in time� Since �E is
part of the quantum mechanical description of the 	classical
 particle with
mass M � it is reasonable to view the function

EQC�t� � h�QC � H�t��QCi� �

�M
jp�t�j�

as the natural total energy for the QCMD system ����� This energy is easily
seen to be a conserved quantity�

dEQC

dt
� h�QC � �H�QCi� p

M
�p� h ��QC � H�QCi� h�QC� H ��QCi	 
z �

��

� h�QC �rqV �QCi �q � �q �p

� ��

Now� comparing the energy expression ���� at time t � � and at time t � ��
we obtain by conservation of E�!� and of EQC that

�E�t� � �E� � O��� �h�
p
M�

and
E�!� � EQC ��E� �O�� � �h�

p
M��

Thus� the quantum mechanical energy decomposes up to small terms into
the energy of the QCMD model and the initial self energy of the 	classical

particle�

For the purpose of numerical simulations� it is extremely helpful to note
that the QCMD system ���� constitutes a canonical system with respect to
the energy EQC � To this end we decompose the Hamilton operator

H � Hs � iHa

into the selfadjoint and skewadjoint part and the wavefunction

�QC �
�p
��h

�q� � ip�� ��#�

into a scaled real and imaginary part� Now� introducing the generalized
position

Q � �q�� q�
T

and generalized momentum

P � �p�� p�
T

�"



the energy reads as

EQC � EQC�Q�P � �
�

��h
�hq� � Hsq�i� hp�� Hsp�i� �hp�� Haq�i�� �

�M
jpj��

A simple formal calculation shows� that the corresponding canonical equa�
tions

�Q �
�

�P
EQC � �P � � �

�Q
EQC

are just another form of writing the QCMD system ����� However� one
should note that the partial derivatives have to be interpreted as functional
derivatives� One can easily circumvent the functional analytic technicalities
if one considers Ritz�Galerkin approximation in some orthonormal function
system�

Remark� The scaled decomposition ��#� is commonly used in the literature
to give the Schr�odinger equation a canonical Hamiltonian structure� A more
intrinsic way of this argument in the setting of in�nite Hamiltonian systems
can be found in �"������

� Discussion and Examples

We shall now illustrate the potential dangers of the QCMD method as dis�
cussed at the end of Section ���� Since the �rst two of the mentioned prob�
lems� i�e�� mass M too small and the disintegration of the wavepacket for
larger times� meet common understanding� we herein concentrate on the
third problem� the formation of caustics�

This point can nicely be illustrated by the numerical simulation of a
simple collinear collision of a 	classical
 particle with a harmonic quantum
oscillator �cf� Figure ��� a model problem which has been treated extensively
in the literature without explanation of the di
erences between the QCMD
and the full quantum approach �cf� �������� Using the notation of Section ��
the Hamiltonian of the system in question is given by�

H � � �h�

�m
�x � �h�

�M
�q �

m

�
�� x� � U�jx� qj�	 
z �

�V �x�q�

with masses M � ��u and m � �u� roughly representing Argon �Ar� and a
HCl oscillator respectively� For the interaction potential U we have taken

�#



Equilibrium
position

m M

x

q

Figure �� Scheme of the collinear test system�

the form �cf� �������
U�r� � A exp��br�

with A � ����� � ��� kcal'mol and b � ����#(A��� The frequency � of the
undisturbed oscillator corresponds to a wavenumber of ����cm�� or to an
energy of �h� � ��#� kcal'mol� The initial wavepacket !� is constructed
as follows� !� � �� � �� is a tensor product of the ground state �� of
the undisturbed oscillator and a Gaussian distribution for the 	classical

particle�

���q� �
�

��
p
�	����

exp

�
� jq � hqi�j

�

���

�
exp

�
i
hP i�
�h

q

�

with initial location hqi� � �(A� momentum hP i� directed towards the os�
cillator�s location in x� � � corresponding to an initial kinetic energy of
��� kcal'mol� and location uncertainty � � ���"�(A� We have performed
full quantum �QD�� QCMD� and TDSCF�calculations using the well�known
Fourier�collocation technique as the space discretization and suitable sym�
plectic time�discretizations based on operator splitting ����� We have applied
uniform time steps � � ���� fs over a total time interval t�fs � ��� ����� and a
spatial computation domain x�(A� ���� ���� and q�(A� ��� ��� with ��#�����
meshpoints� Fortunately� for the QCMD�calculations only the ��# point
x�grid is necessary � leading to a tremendous decrease in computational
e
ort�

��



Figure � shows the expectation value hqi for the position of the classical
particle computed via the full QD�simulation and the corresponding classical
trajectory q � q�t� of the QCMD�calculations� The results show� that the
QCMD gives a very good approximation of the full quantum dynamics�
however� with a small but clearly visible di
erence at the time t � ���fs
of the re%ection of the classical particle� Total energy is well�conserved in
both cases by our numerical schemes �Figure ��� which perfectly re%ects the
analytical conservation of energy as discussed in Section ���� This should be
contrasted with the observations in ���� where a non�symplectic numerical
scheme was used�
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hqi� q

in �A

t in fs

Figure �� Results of QD� and QCMD�calculations� Shown is the position expectation
hqi �solid line� of the classical particle and its classical QCMD�trajectory q �dashed line�
versus time�

The di
erence between QD and QCMD in the neighborhood of the turn�
ing point are explained by identifying this point as a focal point� This is
illustrated by Figure � which shows that two nearby starting particle pathes
ql � ql�t�� l � ��� �� cross the particle path q�t� at this critical point� The
ql are solutions of

M �ql � pl

�pl � �h� � rqV ��� ql��i�
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Figure �� Conservation of energy in the QD�simulation �solid line� and the QCMD�
simulation �dashed line�� The di�erence between both values is caused by the zero�point
energy �E� � �h���M�� � ������ kcal�mol of the �classical	 particle as discussed in
Section ����

with initial states

ql��� � hqi� � l �q and pl��� � hP i�
with �q � ����(A� � is �xed to be the solution of the QCMD�calculation�
Thus� small perturbation of the initial data result in no di
erence of the
position value at the critical point� Exactly this is the meaning of the
condition ����� which de�nes a focal point�

Our simple test system can also be used in order to illustrate the disin�
tegration of the wavepacket because of dispersion� This e
ect will always be
signi�cant if the total simulation time T is large enough �as in our case with
T � �ps�� being less important for smaller time scales �T 
 ���fs�� Figure �
shows the evolution of the statistical variances

�q � h!� q�!i � h!� q!i� � hq�i � hqi�

and �x � hx�i � hx i� of position measurement for the full quantum sys�
tem with state !� It is well�known that these magnitudes are the correct
measures for the position uncertainty in a quantum system� i�e�� for the
disintegration of its wavepacket�
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Figure �� Crossing of di�erent particle pathes ql in the focal point �circle�� The solid
line represents the QCMD�trajectory q� the dashed lines the neighboring trajectories q

��

and q� started from a slightly di�erent initial position� Notation as explained in the text�
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0.05
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Figure �� Evolution of variances �q �dashed� and �x �solid� of the full QD�wavepacket�
Note the disintegration of the wavepacket in q�direction in which no attractive potential
is present� It is increasing as long as the particle is moving �free	 and decreasing during
the collision�
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The statistical variances �q and �x represent the variance �� occurring
in our approximation results� We know from the previous section that the
separation step itself introduces an approximation error O���� Therefore�
we are interested in the error caused by separation in the test system� To
that end� we compare the full quantum simulation with the corresponding
TDSCF�calculations connected to the system ����� Figure " presents the
two corresponding position expectations and a comparison with QCMD�
Note� that both� TDSCF and QCMD� show deviations from the full quantum
solution in the region of the focal point� This� indeed� illustrates that they
are both subject to the same underlying approximation error caused by
separation� Moreover� it exempli�es that the proposed analytical approach
�justi�cation of separation via the validity of the step TDSCF � QCMD�
�ts the real situation� The approximation quality of TDSCF and thus of
separation decreases near the problematic point of the QCMD�approach�
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Figure "� Results of QD� and TDSCF�calculations� The picture on the left hand side
shows the corresponding position expectations hqiQD �solid line� and hqiSCF �dashed line�
versus time� The region of the turning point �box� is magni
ed on the right hand side�
Here� the additional dotted line represents the corresponding QCMD�trajectory q� Note�
that this picture does not change� if we re
ne the stepsizes used�
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� Concluding Remarks

We have considered a mixed quantum�classical description of large �bio�mo�
lecular systems� which allows to describe most atoms by the means of classi�
cal mechanics but an important� small portion of the underlying system by
the means of quantum mechanics� The starting point of our investigation
has been to analyze how such a QCMD�model could be derived from the
full Schr�odinger equation and in which sense of approximation� That is� we
were �nally interested in a 	partial classical limit
 which has been estab�
lished via the smallness of two parameters� variance �� of the wavepacket
representing the 	classical
 particle and �h�

p
M corresponding to its mass�

Our approximation result is two�fold�

�R�� Tensor product separation of the full wavefunction is accurate up to
an error of O����

�R�� The classical trajectory computed from ���� approximates the position
expectation of the classical part up to the error O��� � �h�

p
M��

Thus� the total approximation error of QCMD is of order O�� � �h�
p
M��

These results are valid under three conditions �

�C�� the mass M is large enough�

�C�� the initial variance ���t�� is small enough�

�C�� no caustics are present�

which on the other hand� if violated� are connected to scenarios of potential
de�ciencies of the QCMD as exempli�ed in Section ��

Concerning result �R�� the following should be noted� We have chosen
semi�classical limits according to the WKB method as represented by the left
methodical branch of Figure �� We could as well apply semi�classical limits
via Gaussian wavepackets as represented by the right methodical branch of
Figure �� We would then arrive at the following alternative result �cf� ������

�R��� The semi�classical approximation of the classical particle by Gaussian
wavepackets is accurate up to O�

p
�h�M��	��

This avoids the ��dependence in this part of the approximation but leads
to a slower asymptotic error rate in ��M � But nevertheless� with regard
to the total error as an approximation of the full Schr�odinger equation� the
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��dependence �R�� is again introduced by the underlying separation ansatz�
resulting in the estimate O���

p
�h�M��	� of the total approximation error�

which is worse in comparison to our approach�
It should be emphasized� that we discuss the approximation of the full

wavefunction ! in the L��norm� Thus� the results also hold for all expecta�
tion values of ! but not necessarily for 	pointwise
 quantities� which may
be important� The Fourier spectrum of !� e�g�� is well�approximated in a
L��average sense� but amplitudes of single frequencies may be completely
wrong�

Note again that ourmixed approach concerning a 	partial classical limit

di
ers conceptually from approaches which are interested in a description of
the system entirely on a quantal� semi�classical� or classical level�

Summarizing we shortly list some conclusions which are of particular
importance for a comparison of the various models�

� If both conditions �C�� and �C�� are ful�lled� the QCMD does not se�
riously deteriorate the O����approximation already made by the sepa�
ration ansatz� Thus� neither TDSCF nor QSCMD are 	better
 in this
case and QCMD is the �rst choice for practical reasons�

� Using the presented approach� neither the QCMD nor the QSCMD
nor even the TDSCF approach can be justi�ed at caustics or focal
points�

� The QCMD approximation fails at focal points� It eventually can again
be a useful approximation after passing a focal point� but the complex
phase of the wavefunction will jump at each of these transitions by
a shift of 	�� �see ������ This e
ect may explain some corresponding
experimental observations �cf� ����� section II��

� The QCMD approximation can not even detect focal points or caustics�
Focal points may be detected by a numerical solution of the Hamilton�
Jacobi equation ���� for the phase S� e�g�� using particle trajectory
bundles �cf� ������

� Our results do not allow to decide the problem of whether QCSMD
leads to a 	better
 representation of the in%uence of the potential
curvature� as is expected in ����� However� we note that the QSCMD
also fails in detecting caustics and gets problems in this case� e�g�� if
the wavepacket splits into several subpackets�

��



Conclusively� the separation step seems to be the bottleneck for a better ap�
proximation theory or a more precise distinction between the various mixed
quantum��semi�classical models� Investigations concerning correction terms
for the separation ansatz have already been presented in the literature �e�g��
������ but � as far as the authors know � a corresponding mathematical
justi�cation is still missing�

� Appendix

In this appendix we collect several mathematical details which we have
omited in our previous discussions�

��� Approximate ��Functions

Let 
 � C��Rd� be a smooth function� which is normalized according to
the following three conditions�

i�
Z
R
d


�x� dx � ��

ii�

Z
R
d
x
�x� dx � ��

iii�

Z
R
d
�x� x�
�x� dx � I�

where I � R
d�d denotes the identity matrix� The scaled family


��x� � ��d


�
x� x�

�

�

is called an approximate ��function at position x�� since


� � ��� � x��

for �� � in the space D� of distributions� A simple example is given by the
Gaussian distribution function


��x� �
�

��
p
�	�d

exp

�
�jx� x�j�

���

�

of meanvalue x� and variance ���
For technical reasons we impose the additional restriction� that 
 is either

Gaussian or has compact support�
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Lemma ��� For a given approximate ��function 
� at position x� and a
smooth function f � C��Rd� of at most exponential growth we get

Z
R
d
f�x�
��x� dx � f�x�� �

��

�
traceD�f�x�� �O�����

Proof� Taylor expansion yieldsZ
R
d

f�x�
��x� dx �
Z
R
d

f�x� � �x�
�x� dx

�
Z
R
d

�
f�x�� � �Df�x�� � x�

��

�
D�f�x�� � �x� x�

�O����

�

�x� dx

� f�x�� �
��

�
D�f�x�� � I � O����

� f�x�� �
��

�
traceD�f�x�� �O�����

where we used the normalizations of 
�
Now we apply this result to the solution �� of the continuity equation

��t � div���v� � �� ��jt�� � 
�� ����

with an approximate ��function as initial data� The time�dependent velocity
�eld v � Rd�R� R

d is supposed to be smooth and induces a %ow map &t

by
d

dt
&tx � v�&tx� t�� &�x � x�

We consider times t � tmax 

 for which &t is a di
eomorphism onto Rd�
i�e��

J�x� t� � detDx&
tx 	� �� t 
 tmax� x � R

d �

This is exactly the condition which precludes the existence of focal points
in the WKB method of Section ����

Lemma ��� Given a smooth function f � C��Rd� of at most exponential
growth� If the initial data ��jt�� of �
�	 constitute an approximate ��function
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at position x�� the asymptotic expansion

Z
R
d

f�x����x� t� dx� f�&tx�� �
��

�
traceD�

xf�&
tx�

���
x�x�

� O�����

is valid uniformly in � � t � tmax�

Proof� The solution �� of the continuity equation satis�es the transport
relation

���&tx� t�J�x� t� � ���x� �� � 
��x��

which can be found for instance in �#�� Using the well known transformation
formula of multiple integrals we thus getZ

R
d
f�x����x� t� dx �

Z
R
d
f�&tx����&tx� t� J�x� t� dx

�
Z
R
d

f�&tx�
��x� dx�

An application of Lemma "�� yields the desired result�

��� Short Wave Asymptotics

Here we will give a mathematical rigorous statement of the short wave
asymptotics� In the literature semi�classical approximations are usually
stated for �h � �� which would not make much sense in our context� How�
ever� a simple trick translate the usual results to the limit � � �h�

p
M � ��

Asymptotics in this quantity � appear for instance in the analysis of the
Born�Oppenheimer adiabatic approximation � a setting where one also
deals with some large mass ratio M�m� A discussion of the adiabatic ap�
proximation in the framework of semiclassical limits may be found in �����"��

Theorem ��� Given the solution � � C� of the time�dependent Schr�o�
dinger equation

i�h �� � � �h�

�M
�� � V �x� t��

to the initial data

��x� �� � a��x� exp

�
i

�h
SM� �x�

�
�

We assume that
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i	 V � C� is uniformly bounded from below�

inf
x�Rd

V �x� t� � K � �
� �t � ��

ii	 a� � C� has compact support�

iii	 SM� � C� is depending on M in such a way� that SM� �
p
M is bounded

in C� and the Hamilton�Jacobi equation ���	 has no caustics for t �
tmax uniformly in M �

Then we get the asymptotic expansion

��x� t� � a�x� t� exp

�
i

�h
S�x� t�

�
�R�x� t��

where the remainder satis�es the estimate

kRkC�
��tmax��L��Rd�� � c
�hp
M

for �h�
p
M su�ciently small� The phase function S ful�lls the Hamilton�

Jacobi equation

St �
�

�M
jrSj� � V � �� Sjt�� � SM� � ����

and the amplitude a satis�es

�

�t
a� � div

�
a�
rS
M

�
� �� ajt�� � a��

Moreover we have outside the support of a

kR��� t�kL��Rd n suppa���t�� � O
�
��h�

p
M��

�
uniformly in t � ��� tmax��

Proof� We abbreviate � � �h�
p
M and introduce the new time variable � �

t�
p
M � The Schr�odinger equation transforms with )��x� �� � ��x� �

p
M� to

i�
d

d�
)� � ��

�

�
� )� � V �x� �

p
M� )�

��



with initial condition

)��x� �� � a��x� exp

�
i

�
)S��x�

�
� )S� � SM� �

p
M�

Theorem ���� of Maslov and Fedoriuk ���� states that for some time �max

the asymptotic expansion

)��x� �� � )a�x� �� exp

�
i

�
)S�x� ��

�
� )R�x� �� ����

is valid with the remainder )R bounded by

k )RkC�
���max��L��Rd�� � c�� k )R��� ��kL��Rd n supp�a������ � O���� ����

for su�ciently small �� Here the phase function ful�lls

)S� �
�

�
jr )Sj� � V � �� )Sjt�� � )S��

and �max may be chosen as large as necessary to prevent the �rst appearance
of a caustic for )S� The amplitude )a obeys

�

��
)a� � div

�
)a�r )S

�
� �� )ajt�� � a�� ����

Now we set

S�x� t� �
p
M )S�x� t�

p
M�� a�x� t� � )a�x� t�

p
M�

and
R�x� t� � )R�x� t�

p
M��

A simple calculation shows that S ful�lls the Hamilton�Jacobi equation ����
to the initial data SM� � which by de�nition of �max has no caustics for t �
�max

p
M � However assumption �iii� precludes caustics prior to tmax which

shows that we can choose at least

�max � tmax�
p
M�

Thus we have the validity of the asymptotic expansion ���� within the re�
quired time interval� All other assertions are simple transformations of ����
and �����

��



Remark� In many cases� like for the initial choice

SM� �
p
M )S�

with a �xed )S�� this proof shows that one even has

tmax � O�
p
M��

This means� that caustics appear the later the heavier our particle is � even
if we �x the initial kinetic energy�
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