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Hongyuan Zha 

Restricted Singular Value Decomposition of Matrix 
Triplets 

Abstract 

In this paper we introduce the concept of restricted singular values (RSV's) 
of matrix triplets. A theorem concerning the RSV's of a general matrix 
triplet (A, B, C), where A G <LmXn, B G Cm x p and C G <C9Xn, which is called 
restricted singular value decomposition (RSVD) of matrix triplets, is derived. 
This result generalizes the wellknown SVD, GSVD and the recently proposed 
product induced SVD (PSVD). Connection of RSV's with the problem of 
determination of matrix rank under restricted perturbation is also discussed. 

Keywords: Matrix rank, singular values, generalized singular values, prod­
uct induced singular values, restricted singular values, matrix decomposi­
tions. 
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1. Introduction 
Rank determination of matrices is an important problem in numerical linear 
algebra [7]. In applications, A0 the matrix the rank of which is to be deter­
mined is always contaminated with errors, i.e. instead of knowing A0 exactly 
we only have A = Ao + E an approximation of Ao, where E represents the 
error or perturbation matrix. Rank determination problem is how to esti­
mate the rank of A0, HA and some information of E are available. Usually 
only an upper bound on certain norms of E, e.g. 2-norm, is assumed to be 
known. In this case singular value decomposition is an useful tool for solving 
the problem [4,7]. 

In many situations, however, more informations about the error matrix E 
than the simple upper bound of its 2-norm are available, e.g. E has some 
special structure or in other words is restricted to a special class of matrices. 
SVD-based methods in these situations are likely to lead to conservative rank 
estimations. 

In order to illustrate the situation, we give the following simple example. 
Consider matrix 

\a2 ax j 

if we assume that AQ is resulted from the second order ordinary differential 
equation 

d2x dx 
_ . . _ a a _ _ _ fllS = / , 

then only a,\ and a2 are changeable, the "0" and " 1 " entry in A0 are exact. 
Hence the error matrix E can only be of the following three forms: 

i) only a2 is changeable 

ii) only a,\ is changeable 

- ( : : ) • ( : ) - » 
iii) both ax and a2 are changeable 
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Observe that any E of the form in ii) can not change the rank of the original 
matrix A0 while SVD-based method can not lead to such kind of conclusion. 
In this paper we consider the error matrix E which is restricted to a special 
class of matrices, i.e. E — BDC, where B and C are known matrices, and D 
is an arbitrary matrix with an upper bound on its 2-norm. In section 2 we 
introduce the concept of restricted singular values (RSV's) for the restricted 
error matrix E = BDC and discuss the problem of rank determination of 
matrices. In section 3 we consider two special cases of RSV's, i.e. SV's and 
GVS's. In section 4 we derive the main result of this paper which we call 
the RSVD theorem of matrix triplets. Section 5 summarizes the paper and 
gives some comments concerning the further research of RSVD. Although 
only 2-norm is used in this paper, we note that the results of this paper can 
be extended to the case of unitarily invariant norms [5]. 

Nota t ions . In this paper, only the complex matrices are considered while 
the case of real matrices can be considered similarly. Throughout the paper 
£TOXn denotes the set of all m x n complex matrices. The matrix AH is the 
complex conjugate transpose of A, || • || and || • ||^ are the 2-norm and 
Frobenius norm respectively. Is represents the identity matrix of order s, 0 
with different subscripts and superscripts (e.g. 0A ) denotes zero matrices 
of different dimensions. Sometimes we just use I and O to denote identity 
matrix or zero matrix of different dimensions when their dimension is not 
important or clear from the context. 

Note. Originally we used the name "Structured Singular Values" for the 
concept introduced in this paper. Some people, especially B. De Moor, G. 
Golub and S. Van Huff el, brought to our attention that the name was already 
used in control theory under a different setting. Therefore we adopt here the 
name "Restricted Singular Values" which was suggested by B. De Moor and 
G. Golub. 
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2. Restr icted Singular Values and 
Rank Determination of Matrices 
Let A 6 <LmXn and the error matrix be of the form E = BDC, where B £ 
<LmXp, D 6 <PX* and C G C9Xn . 

Definition 2.1. The restricted singular values (RSV's) of the matrix triplet 
(A, B, C) are defined as follows: 

vk(A,B,C)= min {\\D\U\ rank (A + BDC) < k - 1} Jb = l , . . . , n 

(2.1) 

Remark 2.2. If for some k(l < k < n), there is no D € CpX? such that 
rank (A + BDC) < k — 1 then ^ ( A , 5 , C) is defined to be oo. 

Remark 2.3. For notational convenience, we simply define crk(A, B, C) = 
0, for A: = n — min(m, n),..., n. 

Remark 2.4. It is easy to verify that the RSV's are arranged in nonde-
creasing order, i.e. 

<rk(A,B,C)>ak+1(A,B,C) fc = l , . . . , n - l (2.2) 

We now briefly discuss the connection of RSV's and rank determination of 
matrices. The problem is to estimate the rank of 

A0 = A + BDC 

where (A, B, C) is known and in addition || D ||2 < e. 

Assume further that the following inequalities for e hold: 

a,(A, B,C)>...> <Tk+2(A, B,C)>e> ak+1(A, B,C)>...> an(A, B, C) 

then the best possible estimation of the rank of A0 is k, in the following sense 
that there exists a matrix Do, satisfying || D0 \\2 < e such that 

rank (A + BD0C) = k 

but there exists no D satisfying || D H2 < £ such that 

rank (A + BDC) < k. 

Such strategy of estimation is also used in the determination of numerical 
rank [4,7]. 
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3. Singular Values and Generalized 
Singular Values 
In this section we discuss two special cases of GSV's, i.e. 

1. B = Im and C = In 

2. B = Im or C = In 

we will show that the RSV's of the matrix triplet (A, B, C) corresponding to 
these two special cases are just the wellknown SV's and GSV's respectively. 

3.1 Singular Values of a Complex Matrix 

We first cite the following result: 

Theorem 3.1 [4,5] Let the SV's of A be 

<r\ > ••• >vn > 0 (3.1) 

then 

ak = min {II E \U\ rank (A + E) < k - 1} ib = l , . . . , n (3.2) 
£€Cmxn 

We note that remark 2.3 is also applicable here, i.e. we simply define a^ = 0 
for k = n — min(ra ,n) , . . . ,n. Using the notations of definition 2.1 we can 
rewrite theorem 3.1 as 

Corollary 3.2. 

ak(A, Im, In) = <rk k = l,...,n (3.3) 

It is also easy to establish the following inequalities. 

Corollary 3.3. Assume that B ^ 0 and C ^ 0 then 

<Tk<\\B\\2\\C\\2<Tk(A,B,C) * = l , . . . , n (3.4) 
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3.2 Generalized Singular Values 

We only consider the case that B = Im and C is a general complex matrix. 
The error matrix is now E = DC. The case that B is a general matrix and 
C = In can be discussed similarly. 

The concept of GSV's of matrix pencils was introduced by Van Loan [8] 
(where he used the name £?-SV's). Paige and Saunders provided a slight 
generalization of Van Loan's result in order to treat all the possible cases [6]. 
Since GSV's have many applications in numerical linear algebra problems 
and thus are of their own interests, here we give an alternative derivation 
of the so called generalized singular value decomposition (GSVD) of matrix 
pencils, in which the two matrices have the same number of columns. Our 
approach here is different from Van Loan's, Paige's and Saunders'. 

Theorem 3.4. [6,8]. Let A E CmXn and C G V*n, then there exist unitary 
matrices U and V and nonsingular matrix Q such that 

where 

and 

ZA = 

UAQ= (EA ,0) 

k n — k 
VCQ= (Ec,0) 

k n — k 

(Ir ) 

SA 

\ OA) 

Ec = 
(Oc \ 

Sc 

^ h-r-s ) 

SA = diag (a r + 1 , . . . , ar+s), Sc = diag (ßr+1,.. . ,&+,) 

1 > ar+l >...> ar+s > 0, 0 < ßr+1 < ... < ßr+s < 1 

af + ßf = l » = r + l , . . . , r + 3 

(3.5) 

(3.6) 

(3.7) 

Proof. The proof is constructive and consists of four steps. The transfor­
mations of each step are of the following form 

A(k+1) _ lf(k)A(k)Q(k)^ C(k+1) _ y(k)C(k)Q(k) 

where U^ and V^ are unitary matrices and Q^ nonsingular. In each step 
we only specify the U^k\ V^ and Q^ and the resulted matrices A^k+1^ and 
C(*+1). Set AW = A and C™ = C. 
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Step 1. Let the SVD of C be UlCV1 = diag (O.EJJ*), where E£> 
diag ( s l 5 . . . ,5 t) and 5X > . . . > st > 0. Set 

[/(*) = / , y(1) = t/1 

Q ^ ^ d i a g ^ E ^ 1 ) 

then 

A^= (A? 42)) 

Step 2. Let the SVD of ^f0 be t ^ A ^ = diag ( E ^ O ) where E^2) 

diag (ti,...,tr) and ix > . . . > tr > 0. Set 

UW = U2, W = I 

g(2) = diag(V2 , /)diag((Ei2))-1 ,7) 

then 

A(3) 
7P O ^ ( 3 ) 

13 

0 0 A(S 
rn—r—tt 

C(3) = C(2) 

Step 3. Let the SVD of A$ be U3A^V3 = diag ( E ^ O ) where s j } = 
diag (wi,... ,ws) and Wx > ... > ws > 0. Let a,- = tw,-(l + w])~2 and 
/?,• = (1 + w 2 ) _ 2 , i = r + l , . . . , r + s, and SA = diag ( a r + i , . . . ,ar+a),Sc = 
diag (ßr+i,..., ßr+s)- It is easy to check that a,-, $ (i = r + 1,. •. , r + s) 
satisfy (3.7). Set 

tf <3> = diag (7, t/3), W = diag (7, V3") 

/ I -A{3) \ 
g(3) =

 13 diag (7, y3)diag (7, Sc, 7) 
O 
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then 

A^ = 

( Ir O 

\ o J 

C(4) 

r n — r—t s t — s 

( O \ 

Sc 

V h-T-s J 

n — t s t—s 

Step 4. After suitable permutations Pj and P2
 a n d s e t i = i + r w e obtain 

A ( 5 ) = A(4)Pi = 

C& = PtCMPx = 

/ / , 

/ Oc 

O, 

\ 

O 

O 

which completes the proof. • 

According to [6], corresponding to each column in (3.5) is ascribed a gener­
alized singular pair (at-,/?,-). Following (3.6) we take for the first k of those 
as 

a,- = 1, ßi = 0, i = 1 , . . . , r (3.8.a) 

a,-,ßi as in S^ and SB i = r + 1,... ,r + S (3.8.b) 

a, = 0, ßi = l, i = r + s + l,...,k (3.8.c) 

a, and call them the nontrivial generalized singular pairs of (A,C); -£-(i = 
Pi 

1 , . . . , k) are called GSV's of (A, C). The other n — k pairs corresponding 
to the zero columns in (3.5) are called trivial generalized singular pairs of 
(A,C). 
The following result gives a new characterization of the GSV's of a general 
matrix pencil and states that GSV's are a special case of RSV's. 



Theorem 3.5. With the notation as used in definition 2.1 and theorem 3.4 
we have the following results 

1. 
eci 

and 

<Ti{AJm,C) = Y t = l , . . . , fc 
Pi 

<r i(A,7m,C) = 0 i = k + l,...,n 

A x 

(3.9.a) 

(3.9.b) 

2. let / = rank I I — rank (C) and u = min m, rank then 

\c) { \c)j 
\/D G C m M 

/ < rank (A + DC) < u (3.10) 
and Vfc integer satisfying I < k < n, there exists matrix Dk G CmX? such that 

rank (A + DkC) = k. 

Proof. Let the GSVD of (A,C) be as in theorem 3.4. For arbitrary D G 
<CmX(?, let UDVH = (Dij)^J=1 be partioned conformally with that of E^ and 
Ec, then 

rank (A + DC) 

= rank (UAQ + UDVHVCQ). 

{I IT DnSc D13 OY 

O SA + D22SC D23 O > 

V O D32SC I>33 0 ) 

= rank < 

= r + r a n k 5 ^ ° + D" ^ 
\ \ O O / \D32 D33 

using theorem 3.1, the proof of this part is completed. 

One can verify that 

k = rank 

r = rank 

A 

C 

A 
- rank (C). 

The proof of this part can be easily derived from these expressions. • 

In the following we discuss the problem of uniqueness of GSVD. From the 
GSVD in theorem 3.4, let 

UtAQi = {XA,0) ViCQi = ( E c , 0 ) (i = 1,2) 
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then 

Let 

and 

(u2u*)pA,o) = (sA,o)(g2-1g1) 

(y2y1
/7)(Ec,o) = (Ec,o)(g2-1Qi). 

U2U? = (^,-)?j=i , V2V1
H(Vij)lJ=1 

(3.11.a) 

(3.11.b) 

be block matrices partitioned conformally with the partitions of Y,A and £ 0 
From (3.11.a) 

' Un Ul2SA 0 0 ^ 

U2i U22SA 0 0 

K U31 U32SA 0 0 , 

Qu Qu Q13 Q14 \ 

SAQ2i SAQ22 SAQ23 SAQ24 

K 0 0 0 O j 

hence 

03i = o, u32 = o, Q13 = o, QU = o, Q23 = o, g24 = o 

Un = Q11, Ui2SA = Q12, U2i — SAQZU U22SA = SAQ22 

Since U2U({ is unitary, therefore U13 = O, U23 = 0. From (3.11.b) 

/ O Vl2Sc V13 0 \ ( 0 O O O \ 

O V22SC V23 0 

V o v32sc v33 0 J 
ScQ2i ScQ22 ScQz3 ScQ24 

V Qsi Q32 Q33 Q34 J 

hence 

V12 = 0, V13 = 0, Q21 = 0, Q3i = 0, Q34 = 0 

V22Sc = ScQ22 > ^23 = ScQ23, V32Sc = Q32, Q33 = V33. 

Since V2V^ is unitary, therefore V21 = O, V3i = O. Furthermore since 
Ĉ 2i = SAQ2i = 0, hence U12 = 0 and Qr2 = 0. Since V32 — Q32SQ1 = 0, 
hence V23 — 0 and Q23 — O. From P22 — S^U^SA and P22 = SQ1V22SC-, 

we obtain 
(SASQ ) V22 = U22(SASc )• 

Let <r,- = ai+r 

ft +r 
i = 1 , . . . , s and £ := SASC = diag (<7tl/Sl 

ah > ... > er,-, and ^ s * = 5. Since a2
i+r + ßf+r = 1 i = 1, 

<=i 
and Sc have the same partition as that of £, i.e. 

SA = diag (ajj J s , , . . . , a,-, ISl), 5c = (ft, ISl,..., ft, / s , ) . 

,criJSl) where 

, s. Hence S1^ 
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From T1V22 = U22 S, we can verify 

Xi V22 = ^ 2 2 ^ 5 S t/22 = U22^-1 

therefore 
C/22 = y22 = d i a g ( ^ , . . . , t / , ) 

where f/, (i = 1 , . . . , /) is unitary matrix of order s,-. 

Summarize the above we obtain 

Qi = Q2 

I Uxx 

U22 

\ QA\ QA2 Q*3 

\ 

o 

Q44 J 

^ = t/2
wdiag(C/11,t/22,t/33) 

and 
V1

H = V2
Hdiag(VluU22tV3a) (3.11.c) 

where Un,1/22^33, Vn, V33 are unitary; Q44 is nonsingular and 
U22 = dmg(Ü1,...,Ül)-
As pointed out in [6], the GSV's of (A, C) are just the SV's of AC"1 , if C is 
nonsingular. In the following we further discuss the case that C is a general 
matrix. 

Corollary 3.6. Using the notations as in theorem 3.4 and let 

(og \ 

C1 = Q c-l 

\ 

V 

If rank 
C 

= n, then C\ is uniquely defined and the SV's of ACt 

contains the noninfinite GSV's of (A, C). 

Proof. Since rank I I = n, any two sets of transformations in theorem 

3.4 satisfy the following relations 

Q, = Q2diag (tf„, tfw, V33), U? = t/^diag (U^U^U^) 
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and V-F = V2
Hdiag (Vii, U22, V33), hence 

(oz \ 
Qi 

= Qi 

= Q* 

SnX 

\ 
( Un 

( O» 

u. 22 

Sn1 

\ 

I 

V33 / 

I J 

Wo? 

V 
SB1 

I J 

(v$ 
u& Vo 

vi) 

Therefore we have proved tha t C\ is well-defined. Furthermore observe that 

UAC%VH = diag (0,SASB\0) 

and only the 00 GSV's of (A, C) are changed to zero SV's of ACj[, the other 
GSV's are preserved in AC\. • 

In the following we discuss some properties of C\. It is easy to check that 
C\~ satisfies the following equations 

ccic = c (3.12.a) 

CA CCA — CA 

(CCtf = CC\ . 

(3.12.b) 

(3.12.c) 

Therefore in the notations of [1]/^^" is a {l,2,3}-inverse of C. It is interesting 
to know how one can uniquely characterize C\~ in the class of {l,2,3}-inverse 
of C. The following theorem answers this question under the condition that 

T h e o r e m 3 .7 . If 
A 

C 
is of full column rank, then C\ is the unique 

solution of the following constrained minimization problem. 

min | | A X | | F 
xeVxq 

(3.13) 
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Subject to 
CXC = C (3.14.a) 

XCX = X (3.14.b) 

(CX)H = CX 

The minimum value is 
r + s a-

M E (F ) 2 ' 
\ i=r+l P< 

(3.14.c) 

Proof. Let C have the decomposition as in (3.5) 

c = vH{ Ec,o)g-1 

k n — k. 

Since rank I J = n, so ifc = n and C = VHEC<2 - 1 . Partition Q ^ A V ^ = 

(A",j)fj=1 conformally with that of E^ and E^. One can verify that X should 
be of the following 'orm 

' 0 X12 X13
 N 

X = Q 0 So1 0 V 

\0 0 Jn_r_s ) 

in order to satisfy ( 

Since 

1 
= 1 

3.14.a) - (3.14.c) 

AXfF 

UAQ Q~1XVH\ 

(Ir ) 

\2F 
f 0 x12 ; Us \ 

= SA 0 S31 c ) 

II 
A

I 
II 

\ 

(-^12,^13)1 

r+s 

=r+l Pi 

OA ) 

F+\ s 
K0 0 I 

ASC \\F 

n—r—s / 

The equality is satisfied if and only if A12 = O and Xi3 = O, i.e. X = C\, 
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Remark 3.9. Along the lines in the proof of theorem 3.7 we can also verify 
that C\ is the unique solution of the following constrained minimization 
problem 

min \\AX\\F 
xeVxn 

subject to 

1. CXC = C 

2. (CX)H = CX 

Remark 3.10. Exchange the rolls of A and C in (3.13) and (3.14), one can 
also show that 

/ / N 
A-C:=Q U 

\ O J 
is the unique solution of the corresponding minimization problem. 

Another way of uniquely characterizing C\ is to generalize the Moore-Penrose 
conditions. 

Theorem 3.11. If I I has full column rank, then C\ is the unique 

solution of the following four equations 

CXC = C (3.15.a) 

XCX = X (3.15.b) 

(CX)H = CX (3.15.c) 

{AHAXC)H = A"AXC (3.15.d) 

Proof. As in the proof of theorem 3.7 X should be of the following form 

O A 1 2 Xi3 \ 

X = Q O Sc1 O 

\ 0 O O ) 

V 
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in order to satisfy (3.15.a) - (3.15.c). Since 

AHAXC = Q~H SA UUH 

\ o) 
( o x13 x13 \ 

\ 

O So1 0 

(o 
o) 

vv2 

= Q -H 

\o o i I 
( O Xu X13 \ 

0 S\Sc2 0 

\o o o 

Q-lQ 

\ 

Snl 
Q - 1 

*/ 

Q-1 

) 

hence (AHAXC)H = AHAXC if and only if X12 = 0 and X13 = 0 i.e. 
X = C\. m 
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4. Restricted Singular Value 
Decomposit ion 
In this section, B and C will be assumed to be general matrices. The key 
observation is the following 

L e m m a 4 .1 . Let P G <[mXm and Q G <[nXn be nonsingular matrices, U G 
(CpXp and V 6 <L?X<? be unitary matrices, then 

ak(PAQ, PBU, VCQ) = ak{A, B,C) k = 1 , . . . , n (4.1) 

This lemma specifies the class of transformations which preserves the RSV's 
of a matrix triplet. 

Theorem 4.2. Let A G CmXn, B G CmXp and C G C«xn, then there exist 
nonsingular matrices P G C m x m and Q G <LnXn, unitary matrices U G <tpxp 

and V G <LqXq such that 

PAQ= s2 

t2 

XA 

op 
Of I 

(4.2.a) 

PBU 
h \ 0 $ 

VCQ= (XC, O™) 

(4.2.b) 

(4.2.c) 

/ h 

XA 
h 

SA ) 

r 

(4.3.a) 
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sB = 
k + l 

( h 

\ 

ofi} 

' * 2 / 

p—J—1 52 V 

q-l-r-Si I 0$ 

Sf7 = 
Sc 

\ In J 
j + k r 

where SA = diag (a;), SB = diag (ft), 5 C = diag (7,) 

where we denote s = j + k + I 

1 > a,- > a i + 1 > 0 ; 0 < ßt < ßi+1 < 1 ; 1 > 7,- > 7,+i > 0 

and 
l i - > 

ßili A+17.-+1 
i = s + 1 , . . . ,s + r — 1 

(4.3.b) 

(4.3.c) 

(4.4.a) 

(4.4.b) 

(4.4.c) 

Proof. The proof is constructive and consists of four steps. The transfor­
mations of each step, according to lemma 4.1, are of the following form 

A(k+1) = p(k)A(k)Q(k) (4.5.a) 

B(k+i) _ p(k)B(k)u(k) 

C(k+i) _ y(k)c(k)Q(k) 

(4.5.b) 

(4.5.c) 

where P^ and QW are nonsingular matrices, U^ and V^ are unitary 
matrices. In each step we only specify the p(k\ Q^ , U^ and V^ and the 
resulted A<~k+1\ £(fc+1> and C(fc+1). Set 
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Step 1. Using theorem 3.4, let the GSVD of (A^, C^) be 

UxA^Qx 

Set 

then 

c(l) ÖA 0 

\ o 1 
l + r Si ti 

VyCMQx = 

(o 

\ 

:W O 

) 
j + k l+r Sx tx 

PW = UI Q^ = Qx d i a g C / , ^ ) " 1 , / ) 

C/(i) = / yd) = vi 

/ / . 

A& = 
j+k 

s(2Wr 
o 

\ 

o 

B& = 

l + r sx tx 

?(2) \ j + k I BY 

I B (2) 

( o 
cw = h+r 

i*i 

O 

j + k 

Step 2. Using theorem 3.4 let the GSVD of 

ft(tfW)-'U_ 
52 + t2 

SA1 

0 

(I, \ 

\ 
I 

o ) 
T 
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/ o 

P2P42 )*72 = 
SP B 

L»2 

o 
p—r — S2 r 

where S^' = diag (s1,...,sr), SB' = diag (ti,...,tr) and 
1 > Si > ... > sr > 0 and 0 < U < ... < tr < 1. Set 

P<2) = diag (/, P2) Q<2> = diag (/, V2,1) 

UW = U2 VW = ding(I,V2
H,I) 

then 

and 

/ / • 

A& = 

j+k 

5?> 

\ 

O 

B& 

o 
si h 

I B{3) Bi3) B™\ 
0 

?B 

' » 2 

o 

p—r — S2 r 

(7(3) = C& 

Step 3. Set 

(I 

P(3) = 

-B?XSB
2))-* -BP \ 

\ 
UW = I and V& = I 

(I 

Q& = 

I J 
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then 
AW = A& 

( B? 

B^ = 

0 

\ 

CM = C& 

S$ 

o 
' S 2 

(3) Step 4. Let the SVD of B\ö> be 

^(2) 0 TT R ( 3 ) V _ 3 I ^B 
UzBl Vz~ k [ o o 

where E^ is nonsingular. Let s = j + k + I and 

si 
OCs+i = 

(1+*?)* 
ß.+i = U 

7»+t-
Si 

(1+*?)* 
* = l , . . . , r 

It is easy to verify that {<*„+,}, {/?«+,} and {7«+,-} satisfy (4.4). Let Sc = 
diag (7,+,-), SA — SA Sc and SB = SB, in addition set 

p(4) = d iag( (Sg ) ) - 1 , / )d iag( t / 3 , / ) 

Q « = diag (/, Sc, /)diag ( ( S g V 1 , /)diag (U», I) 

t/W = diag (V3,1) and 

V& = I 

After some manipulation, we obtain the results as stated in (4.2) and (4.4). 
The proof is completed. • 

Remark 4.3. We can also use Dx and D2 positive definite diagonal ma­
trices to scale (SA,SB,SC) to (DISAD2, DSSB, SCD2). For example, we can 
choose Dx and D2 such that D\SB and ScD2 are identity matrices. 
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Similar to (3.8) we define 

Q!i = l, ßi = 1, 7,- = 0 i = l,...,j (4.6.a) 

a< = l, ft = 0, 7,- = 0 i=j + l,...J + k (4.6.b) 

a,- = I, A = 0, 7,- = l i=j + k + l,...,s (4.6.c) 

a,-, /?,-, 7,- as in 5US 5 B and Sc i = s + 1,... ,s + r (4.6.d) 

a,-= 0, A = 1, 7; = 1 i = 5 + r + l , . . . , 5 + r + m i n ( s 1 , s 2 ) (4.6.e) 

to be the nontrivial RSV triplets of (A, J5, C). 

The following theorem relates theorem 4.2 with the concept of RSV's and 
justifies the definition of (4.6) and calling theorem 4.2 the RSVD theorem. 

Theorem 4.4. With the notations as in theorem 4.2 and (4.6) the following 
statements are true: 

1. 
<Ti(A,B,C) = -^~ i = l , . . . , s + r + min(si,s2) (4.7.a) 

Pili 

(Ti(A, B,C) = 0 i = n — (s + r + min(31, s2)) + 1 , . . . , n (4.7.b) 

2. Let 
/ A \ ( A B \ 

I = rank (A, B) + rank I I — rank I 
\B) \C O) 

u = min I rank (A, B), rank I I J 

then VD e <CpX' 
/ < rank (A + BDC) < u (4.8) 

and Vfc integer satisfying / < k < n, there exists matrix Dk G CpX? such that 

rank (A + BDkC) = k . 
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Proof. 1. Let UHDVH = (Dij)fj=1 be a block matrix partitioned confor-
mally with that of £ # and Sc-

rank (A + BDC) 

= rank {PAQ + PBUUHDVHVCQ) 
{ 

= rank 

J, 0 D 12 £>14 

o 
0 

0 

0 
0 

D\zSc 

O Ik 0 0 

0 0 It 0 

0 O SBD32 SA + SBD&SC SBD34 0 

0 0 D42 DUSC D44 0 

0 0 0 0 0 0 

= j + k + / + rank 
SJSAS? 0 \ / Z>33 D34 

0 0 [ D43 D44 

using theorem 3.1., the proof of this part is completed. 

2. For the upper bound, note that 

A + BDC = {A,B)\ DC ]=(I,BD) 
A 

C 

hence 

and 

rank (A + BDC) < rank (A, B) 

rank (A + BDC) < rank 

For the lower bound, we can verify that 

A 

C 

rank 

rank 

rank (A, B) = s + r + s2 

' A ' 

x C 

A B 

C O 

= s 4- r + S\ and 

= s + 2r + s-i 4- s2 hence 

s = rank {A, B) + rank 
C 

— rank 
A B 

C 0 
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R e m a r k 4.5 From the following linear system 

' rank (A) 

rank (B) I 1 1 1 1 0 0 

1 0 0 1 0 1 

0 0 1 1 1 0 

1 1 1 1 0 1 

1 1 1 1 1 0 

1 1 1 2 1 1 

\ / , • \ J 

k 

I 

r 

•si 

V S 2 / 
\ 

we obtain the following expressions for the integer index: 

j = rank + rank (B) — rank 
C \C 0 

rank I J — rank (B) — rank (C) 
\ C 0 

I — rank (A, B) + rank (C) — rank 
A B 

C O 

4- rank (A) — rank (A, B) — rank 

— rank (A) 

in addition, it is easy to see that 

t2 = m— rank (A, B) 

t\ = n — rank 

If we use Rr(A)(Rc(A)) and Nr(A)(Nc(A)) to denote the linear subspace 
spanned by the rows (or columns) of A and the row (column) null space of A 
respectively, furthermore S\T denotes the complement subspace of T in S, 
such that S\T © T = S and dim(S') is the dimension of the subspace S, then 
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we can express the above integer index using the following geometric terms: 

* = dim(NC(C)\NC(* )) -dim!RC ( * h ^ T j j 

= dim(Nr(B)\Nr(A, B)) - dim(Rr(A, B) n Rr(C, O)) 

I = dim(Rr(A,B)r\Rr(C,0)) 

r = d\m(Rr(A)nRr(C)-dim(Rr(A,B)r\Rr(C,0)) 

= dim(Rc(A) n RC{B)) - dim (Rc I A j n Rc ( B J J 

Sl = dim (NC(A)\NC I A
c J J 

s2 = dim(^r(i4)\iVr(yl,J5)) 

t2 = d im(^ r (A,ß) ) . 

The above expressions can serve as a basis of a geometric derivation of RSVD. 
Before we discuss another two special cases of RSVD, we consider the unique­
ness problem of the RSVD in theorem 4.2. In order to simplify the presenta­
tion, we only discuss the problem under some restrictions, while the general 
case can be discussed similarly. 

T h e o r e m 4.6. Let A 6 CmXn , B e CmXp and C G VXn, in addition we 
assume that 

i) rank (B) = p, rank (C) = q 

ii) rank (A, B) = m, rank I \ = n 

according to theorem 4.2 (here we use the scaled form as stated in remark 
4.3) there exist nonsingular matrices P and Q, unitary matrices U and V 
such that 

PAQ = EA, PBU = E B and VCQ = E c (4.9) 
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where with the restrictions of the ranks as in i) and ii) E^, E B and Ec are 
of the following form: 

O 0 h 0 
o o o it 

j k 

where E = diag (er,-) a > 0 i = min(s,t). 

If there exist P, Q and U, V such that P and Q are nonsingular, U and V 
are unitary and 

T,A = diag {Ijjkji, S) 

( Ij °) k 0 0 

0 0 

\ 0 Is J 

PAQ = ZA, PBÜ = E B and VCQ = E c (4.10) 

then 

P = 

( Ui Si St O \ 

0 S3 S4 O 

O O Vx 0 

\ 0 O O U2 J 

P Q = Q 

( Ui Si S2 O \ 

0 S3 S4 O 

O O Vi O 

\ 0 O 0 V2 ) 

u = u 
Ui O v» = v»(Vl ° 
0 U2 J \0 V2 ) 

where £/,-, Vi, (i = 1,2) are unitary, £3 nonsingular and Si, S2 and ^4 are 
arbitrary. If in addition E hast the following form 

1. 
n+l 

t>s E = (diag (oi/.-j , . . . ,anlin,0),0) and s = ^ij (4.11.a) 

then 
U2 = diag (Uu, • • •, Unn, t/„+i,„+i) 

y2 = diag(t/u,...,/7nn,y2
(2)) 

(4.11.b) 

where Ujj(j = 1 , . . . ,n + 1) is ij x ij unitary matrix, and V2 is unitary 
matrix of order in+i +t — s. 

2. 
diag (cr ,4 , . . . ,<7 n / , n ,0) \ 

o ) 
n+l 

and t = ^2 ij 

if t < s, E = 

(4.12.a) 
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then 
V2 = diag (Vn, . . . , Vnn, K+i.n+i) 

C/2 = diag(F11 , . . . ,Kn,C/2
(2 )) 

(4.12.b) 

where Vjj(j = 1 , . . . ,n + 1) is ij X ij unitary matrix, U^ is unitary matrix 
of order in+i + s — t. 

Proof. From (4.9) and (4.10) we obtain 

(PP1)^ = E A ( g - 1 g ) , ( P - 1 P ) E ß = ZB(ÜHU) and 

(vvH)xc = s c ( g - 1 g ) . 

Let 

P := PP-1 = {Pü)ljBl, Q := g - 1 ^ = {Qn)ij=1 

Ü := ÜHU = (Uitfj^, V := V V " = (Vy)?J=1 

be partitioned conformally with those of E^, E^ and Ec. From PY*B = Eß£/ 
we obtain: 

P\i = £Ai> P\4 — ̂ 12> -P21 — O, P24 — O, 

-P31 = O, P34 = O, P41 = f/21, P44 = ^22 

From VTic = ^cQ we obtain: 

Qsi = o, Q32 = O, g4i = o, g42 = o, 
g33 = v i i , g34 = V12, g 43 = v^i, g44 = ^22 

Substitute (4.13) and (4.14) into PEA — ̂ AQ, we obtain: 

(4.13) 

(4.14) 

/ Un Pu Pi3 Ui2Z \ 

O P22 P23 O 

O P32 P33 O 

V ^21 P42 P43 U22E / 

( Qu Q12 Q13 Qu \ 

Q21 Q22 Q23 Q24 

O O V„ V12 

V o o sv21 EV22 J 

Since U21 = Of Vi2 = O and U, V are unitary, hence U12 = O, V2i = O. 

Furthermore: 

Ui:=Qn = Uii, g 2 i = 0 , Qu = 0, Q24 = 0, U2 := U22 

V1:=P33 = Vn, P32 = 0 , P42 = 0 , P43 = 0 , V2 :=V2 2 

and ^72E = EV2. 
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In the following we only consider the case t > s, i.e. 

E = (E, O) where E = diag fal^,..., crnIin, 0) . 

Since 

U2tt
H = ttHU2 

Ui must have the block diagonal form in (4.12.b). From U2T> = EV2, we can 
obtain V2 has the block diagonal form described in (4.12.b). The proof is 
completed. • 

Corollary 4.7. Let A be nonsingular and the nonzero SV's of CA~1B be 

<7i > . . . > aT > 0 

then (A,B,C) has (n — r) 00 RSV's and the r finite RSV's are 

! > . . . > ! > o . 

Proof. Using the decomposition of theorem 4.2, one can show that 

(o \ 

V{CA~XB)U 
0 

O 

ScSA SB ) 

Corollary 4.8. (PSVD [3]) Let B e CmXp and C G CpXn, then there exist 
unitary matrices U and V and nonsingular matrix T such that 

(h 
UBT = OB 

\ 

JB ) 

T~XCV = 
/ Oc 

\ 

where 

E B = diag (s^ , 

1 > si > ... > sT > O , 

s2
i+t-2 = l , * = l , . . . , r 

(4.15.a) 

(4.15.b) 

Sc / 

Ec = diag (U) 

1 >U > • • • > tr > 0 
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Proof. Using theorem 3.2, let the RSVD of (Ip, BH, CH) be 

PIpQ = diag (/,- ,Ik,IhSA) 

(h \ 
PBHÜ = 0$ 

SB ) 

'B 

h 
i oV 

VCHQ = 
\ 

\ Sc J 
Set Q = Qdiag (I,S21) then 

PQ = h 

PBHU --

(h \ 

0 ( i ) 
UB 

VCHQ = 

(O® 

V 

SB ) 

ScS? ) 
W\H the proof is finished if we set U = UH, V = VH, T = PH, 0B = (O^1) 

Oc = (0£Y, S B = SB and S c = ScSj1. 

Remark 4.9. Corollary 4.6 is a simplified version of the product induced 
SVD (PSVD) in [3]. We can also use the techniques established in proving 
theorem 3.4 and theorem 4.2 to give a direct proof of it. 

In the following we discuss the relation between the RSVD of (A,B,C) and 
the eigenstructure problem of 

From theorem 4.2 after suitable permutation II we obtain 

n 

= diag 

PH 0 

O Q 
U1 
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therefore the eigenstructure of the symmetric matrix pencil is the following 

i) 2(j + /) oo eigenvalues corresponding to Jordan block of order 2 
{{j + 1) 2 x 2 Jordan blocks). 

ii) 2k oo eigenvalues corresponding to Jordan block of order 1. 

iii) 2r nonzero finite eigenvalues i ^ - i = s + l , . . . , s + r. 

iv) sx + 52 zero eigenvalues. 

v) (m + n) — 2(j + 1 + k + s) — Si — s2 Kronecker blocks of order 0. 
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5. Concluding Remarks 
In this paper we introduce the concept of RSV's of matrix triplets. A main 
theorem called RSVD is proved for general matrix triplets. Three special 
cases of RSV's, i.e. the wellknown SV's GSV's and the recently proposed 
PSV's are also discussed. Numerical algorithms for computing the RSVD 
of a general matrix triplet and applications of RSVD to total least squares 
problem and regularization problem of general Gauss-Markov linear model 
will appear in separate papers. Perturbation analysis and further applica­
tions of RSVD will be the topics of future research. We hope that RSVD will 
be important not only as a useful theoretical tool for analysing problems in 
numerical linear algebra, statistics and control and system theory, but that 
its algorithmic aspects will also find applications in computer-based methods 
to solve real world problems. 
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[2] and an alternative approach for solving the rank minimization problem 
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