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Abstract

We consider a single server system consisting of n queues with different types of customers
(Poisson streams) and k permanent customers. The permanent customers and those at the head
of the queues are served in processor-sharing by the service facility (head-of-the-line processor-
sharing). The stability condition and a pseudo work conservation law will be given for arbitrary
service time distributions; for exponential service times a pseudo conservation law for the mean
sojourn times can be derived. In case of two queues and exponential service times, the generating
function of the stationary distribution satisfies a functional equation being a Riemann-Hilbert
problem which can be reduced to a Dirichlet problem for a circle. The solution yields the mean
sojourn times as an elliptic integral, which can be computed numerically very efficiently. In
case n � 2 a numerical algorithm for computing the performance measures is presented, which
is efficient for n = 2, 3. Since for n � 4 an exact analytical or/and numerical treatment is
too complex a heuristic approximation for the mean sojourn times of the different types of
customers is given, which in case of a (complete) symmetric system is exact. The numerical
and simulation results show that, over a wide range of parameters, the approximation works
well.

Keywords: head-of-the-line processor-sharing; many queues; permanent customers; sojourn
times; pseudo conservation law; Riemann-Hilbert problem; Dirichlet problem.

1 Introduction

We consider a single server system consisting of n queues with different types of customers and
k permanent customers, cf. Fig. 1. At the n queues there arrive Poisson streams of customers
with intensities λi. The service time distribution of the type i-customers is Bi(x) , i = 1, . . . , n
with Bi(0) = 0. The permanent customers and those at the head of the queues are served in
processor-sharing (PS) by the service facility. This means if there are s (∈ {0, . . . , n}) types
of customers present in the system then the permanent customers and each of the s customers
at the head of the queues get a fraction of 1/(s + k) of the service capacity. The n queues
are served in a FCFS discipline. Note, that the fraction of the service capacity devoted to the
permanent customers changes randomly. This model were applied to an perfomance analysis of
some aspects for an CPU scheduling under UNIX.

PS systems are close approximations of the Round Robin discipline and have been analyzed since
the sixties by many authors, cf. e.g. [K1], [CMT], [Y0], [KY], [KY2], [C], [FMI], [Y1], [Y2],

1This work was supported by a grant from the Siemens AG.
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Figure 1: Many-queue processor-sharing system with k permanent cus-
tomers and n queues of different customer types. �� corresponds to a cus-
tomer.

[O], [Sch], [RS], [M1], [SJ] etc. Firstly the single-queue PS system with equal splitting of the
service capacity among the jobs has been analyzed. Later various generalizations were studied
where a processor shared among many job classes and the instantaneous service rates depend on
the actual different types of customers in the system, e.g. the General PS, the Discriminatory
PS, the Proportional PS, cf. e.g. [C], [FMI]. For details and many references we refer to
the survey papers by Yashkov [Y3], [Y4], [Y5]. In these PS disciplines all jobs receive service
simultaneously, whereas in many-queue head-of-the-line PS systems only those at the head of
the queues receive service. Head-of-the-line PS for two queues and exponential service times
has been analyzed by several authors. Fayolle and Iasnogorodski [FI] derived by considering
two dimensional birth and death processes, albeit complicated, analytical expressions for the
generating function of the queue length in the general case of two asymmetric queues covering
our model, cf. the comments below and Remark 6.3. In [KMM] this generating function is
derived in an elegant manner in the case of a complete symmetric system (λ1 = λ2, equal mean
service times) without permanent customers. For the many-queue PS system (no permanent
customers) in [HKR] a representation of the joint distribution of the queue length is derived
by using power-series expansions in the traffic intensity; the established radius of convergence
decreases rapidly in the number of queues. For heavy-traffic approximations we refer to [Kn],
[M3], [FR]. Head-of-the-line PS systems with limited capacities are analyzed in [FR], [M4]. In
Leung [L] a system that processes interactive and background jobs is analyzed; the scheduling
policy is called Processor-Sharing with Background Jobs. This model is related to our model:
taking in Leung’s notation λ0 = 0, M = n+ k and choosing λn+1 = . . .= λn+k sufficiently large
such that qn+1 = . . . = qn+k = 1 then in case of exponential service times our model can be
considered as a particular case of his model. But the approximations for the mean sojourn times
obtained there cannot be used since the assumptions made for the approximations exclude the
case qn+1 = . . . = qn+k = 1. However, some of the arguments and ideas given there can be used
for our model.
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The paper is organized as follows. In Section 2 the stability condition is derived for the system
by adopting arguments from [L]. Using the Round Robin approximation of the PS discipline in
Section 3 we show that our model can be considered as the limit of a sequence of particular cyclic
queueing models with n queues, switch over times and batch arrivals. Using this transformation
and results from Boxma [B] we derive a pseudo work conservation law, which provides for expo-
nential service times a pseudo conservation law for the sojourn times. In case of exponentially
distributed service times the vector process of the number of customers is a n-dimensional birth
and death process. Since for the practical relevant case n ≥ 4 an exact analytical or/and numer-
ical treatment given later is too complex, we give in Section 4 by using the pseudo conservation
law a heuristic approximation for the mean sojourn times of the different types of customers,
which is exact in the (complete) symmetric case. In Section 5 we present a numerical algorithm
for computing the stationary distribution which is efficient for n = 2, 3. In Section 6 an analytical
solution is given in case of n = 2. The generating function of the stationary distribution satisfies
a functional equation, which can be transformed into a Riemann-Hilbert problem. Although our
particular two dimensional birth and death process and hence our Riemann-Hilbert problem is
a special case of the more general class of birth and death processes treated in [FI] by means of
Riemann-Hilbert problems, we obtain by using different constructions and exploiting the special
structure of our problem more explicite results. The solution of the Riemann-Hilbert problem
can be reduced to a Dirichlet problem for a circle, which solution by Schwarz’s formula yields
the mean sojourn times as an elliptic integral. The results provide also a very efficient algorithm
for computing the mean sojourn times by a numerical integration over a circle. The numerical
and simulation results presented in Section 7 show that over a wide range of parameters the
approximation is excellent and that the numerical algorithms work well.

The following notations will be used:

Si – random service time of a typical type i-customer,
i.e. Bi(x) = P (Si ≤ x);

mBi , m
(j)
Bi

– first rsp. j-th moment of the service time of a

type i-customer;

�i := λimBi – traffic intensity of type i-customers;

�max := max{�1, . . . , �n}
λ :=

n∑
i=1

λi – total arrival intensity of all customers;

� :=
n∑

i=1
�i – total traffic intensity;

Xi(t) – number of type i-customers in the system at time t (including
the customer at the top of the queue served by the server);

X(t) := (X1(t), . . . , Xn(t)) – vector of the number of customers in the system at time t;

pi := P (Xi(t) ≥ 1) – stationary probability that queue i is not empty;

Vi – sojourn time of a type i-customer in steady state;

V̂i(t) – work load in queue i at time t.

In the steady state situation the argument t will be omitted, i.e. Xi rsp. X denotes the stationary
number of customers in queue i rsp. in the system and V̂i the stationary work load in queue i.
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2 Stability Condition

Let T� be the arrival instants of the customers, I� ∈ {1, . . . , n} the type of the customers and S∗
�

the service times. The input of the system is given by the stationary and ergodic marked point
process Φ = {[T�, I�, S∗

� ]}∞
�=−∞ on the real line with the mark space IK = {1, . . . , n} × IR+, cf.

e.g. [FKAS], [BFL]. By means of Loyne’s monotonicity method (cf. e.g. [Loy], [BFL], [BB])
one can construct a stationary process X(t) of the number of customers in the queues, where
components may become infinity. The system will be called stable, if pi = P (Xi ≥ 1) < 1 for
i = 1, . . . , n, i.e. if each of the queues becomes empty with positive probability. Adapting traffic
load arguments similar as in [L] one finds

Theorem 2.1. The system is stable iff

�+ k�max < 1. (2.1)

Proof. 1) Assume p1, . . . , pn < 1. Let �∗ be the fraction of the service capacity that a permanent
customer gets. (Since the permanent customers are always present, the server is permanently
busy.) Then the traffic intensity �i is just the fraction of service capacity obtained by the type
i-customer. Since the permanent customers are always present and by assumption the type
i-queues are empty with positive probability (i.e. a fraction of time) we get �i < �∗, i = 1, . . . , n
and thus

�max < �∗. (2.2)

Since the server is permanently busy we have �1 + . . .+ �n + k�∗ = 1 and in view of (2.2) we
conclude (2.1).
2) Assume now that (2.1) holds. Without loss of generality we may assume p1 ≤ p2 ≤ . . . ≤ pn.
If the system would not be stable then there would exist j ∈ {1, . . . , n} such that p1 ≤ p2 ≤
. . . ≤ pj−1 < pj = . . . = pn = 1. Analogously to the first part of the proof �i, i ≤ j − 1 is
just the fraction of the service capacity which receives the type i-customer. For i ≥ j the type
i-customers receive the same fraction of the service capacity as the permanent customers which
will be denoted by �∗ as above. Hence

j−1∑
i=1

�i + (n− j + 1)�∗ = 1. (2.3)

Further we conclude

�∗ ≤ �i, i ∈ {j, . . . , n}, (2.4)

since pj = . . . = pn = 1. (If there would exist i ∈ {j, . . . , n} such that �∗ > �i then there would
be not enough load in the system ensuring pi = 1.) From (2.3) and (2.4) it follows

n∑
i=1

�i + k�n ≥
j−1∑
i=1

�i + (n− j + 1)�∗ + k�∗ = 1,
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being a contradiction to (2.1). �

Remark 2.2. An inspection of the proof above shows that no distributional and independence
assumptions where used, i.e. the stability result is true for an arbitrary stationary ergodic input
Φ. In this case λi corresponds to the arrival intensity of the type i-customers (intensity of the
point process Φi =

∑
�
δT�

1I{I� = 1}) and Bi(x) to the service time distribution of a typical type

i-customer which, in general, is defined via the Palm distribution, cf. e.g. [FKAS], [BFL], [BB].

Remark 2.3. The k permanent customers can be considered as one permanent customer getting
the k-fold portion of the service capacity obtained by the customers at the head of the queues.
Theorem 2.1 and Remark 2.2 remain valid; in the proof only a minor change is necessary: instead
of �∗ one considers k�∗ as the fraction of service capacity that the permanent customer gets. In
Sec. 3-6 it will not be used that k is integer-valued, i.e. all results derived are true for positive
real k.

3 Pseudo Conservation Law for Work Load and Waiting Times

We want to derive a pseudo conservation law for the work load and, in case of exponentially
distributed service times, for the sojourn times. We proceed as mentioned in the Introduction.

Round Robin approximation. Consider a fixed time slot q. In the Round Robin discipline the
queues which are not empty and the k permanent customers receive consecutively a quantum
q of service in a cyclic manner; i.e. the server {processor} serves the queues and permanent
customers in a cyclic discipline with a service amount q. Clearly, for q � 1 the Round Robin
discipline is an approximation of the PS discipline (and vice versa) and in the limit q → 0 we
obtain the PS discipline.

Approximation of the service times. For a fixed q � 1 we approximate the service time distri-
butions Bi(x) of Si by lattice distributions: the r.v.

Si,q =

([
Si

q

]
+ 1

)
q, (3.1)

where [x] = max{n ∈ ZZ : n ≤ x}, is an approximation of the service time Si and has the
distribution bi,q(m) = Bi(mq − 0) − Bi((m − 1)q − 0), m ≥ 1, which is concentrated on the
lattice {q, 2q, 3q, . . .}. It holds

Si < Si,q ≤ Si + q, Si,q
D−→

q→0
Si,

lim
q→0

ESi,q = ESi, lim
q→0

E(Si,q)
2 = ES2

i , (3.2)

where
D→ denotes convergence in distribution.

System approximation (cyclic queueing system with batch arrivals of quanta and switch over
times). Let q be fixed. In the following we interprete the approximate service times Si,q as a
batch of service quanta with service times q, i.e. if Si,q = mq the customer corresponds to a
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batch of quanta with batch size m. Thus we can approximate the Poisson-arrival process of type
i-customers and their service times as a Poisson-arrival process of batches of quanta q with a
typical batch size

Gi,q =

[
Si

q

]
+ 1 (3.3)

having the distribution

gi,q(m) = P (Gi,q = m) = P

([
Si

q

]
+ 1 = m

)
, (3.4)

cf. (3.1). Combining this with the Round Robin approximation of the PS discipline, we get for
the PS system the following system approximation: Batches of quanta of sizes Gi,q arrive at the
queues according to a Poisson processes (parameter λi). The server serves the n queues in a
cyclic manner where at each queue the top quantum will be served (amount q) if there is any
one. (This is the 1-limited service discipline for cyclic queueing systems.) The service of the
k permanent customers can be interpreted as a switch over time kq from the n-th to the 1-st
queue. Thus we have from the quanta-point of view a cyclic queueing system with n queues,
batch arrivals and a switch over time from the n-th to the 1-st queue, cf. Fig. 2. For q → 0 we
obtain precisely our many-queue PS system with permanent customers.
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Figure 2: System approximation: cyclic queueing system with batch arrivals
of quanta and switch over times from the n-th to the 1-st queue. • =̂ server,

�� =̂ quantum.

In Boxma [B] pseudo conservation laws for cyclic queueing systems with batch arrivals, switch
over times and different queueing disciplines are given. Our system approximation (quanta
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model) is a special case of these systems. In order to apply the results of this paper we need
some notations for the system approximation, where we consider q as fixed. In the derivation
below we use also notations from Boxma ([B]).

EW
q
i – mean waiting time of an arbitrary type i-quantum up to its service;

EV
q
i = EW

q
i + q – mean sojourn time of an arbitrary type i-quantum;

EX
q
i – mean stationary number of type i-quanta in the approximate sys-

tem (at an arbitrary time instant);

λq
i := λiEGi,q – arrival intensity of type i-quanta;

�qi := λqi · q – traffic intensity of type i-quanta;

�q :=
n∑

i=1
�qi – traffic intensity of all quanta;

b(j) :=
n∑

i=1

λi

λ
E(Si,q)

j – j-th moment of the sum of all service times of quanta belonging to
an arbitrary arriving batch of quanta;

EV̂ q
i – mean stationary workload in queue i (at an arbitrary time instant).

Applying formula (3.13) from [B] to our particular quanta model we get

n∑
i=1

�qiEV
q
i =

λb(2)

2(1− �q)
+

n∑
i=1

�qi

(
q − q2

2q

)
+ EY, (3.5)

where EY can be obtained from (3.20) of [B]:

EY =
n∑

i=1

EM
(1)
i + �q

(kq)2

2kq
+

kq

2(1− �q)

(
(�q)2 −

n∑
i=1

(�qi )
2
)
. (3.6)

The quantities EM
(1)
i are determined by the particular service disciplines for the queues in the

cyclic model. In our case of a 1-limited discipline for the quanta we get from (3.27) of [B] ([BG])

EM
(1)
i =

λq
ikq

1− �q

(
�qi (EW

q
i + q) + q

Kii

2EKi

)
=

λ
q
ikq

1− �q

(
�qiEV

q
i + q

Kii

2EKi

)
, (3.7)

where

Kii = EK2
i − EKi (3.8)

and EKi, EK2
i in our case, cf. Definition 2.2 in [B], are given by

EKi =
λi

λ
EGi,q, EK2

i =
λi

λ
E(Gi,q)

2. (3.9)
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Inserting (3.6) – (3.9) into (3.5), we finally find

n∑
i=1

�qiEV
q
i =

n∑
i=1

λi

2(1− �q)
E(Si,q)

2 +
n∑

i=1

1

2
q�qi

+
n∑

i=1

λikEGi,qq

1− �q

(
�qiEV

q
i + q

E(Gi,q)
2 − EGi,q

2EGi,q

)
+
�qkq

2
+

kq

2(1− �q)

(
(�q)2 −

n∑
i=1

(�qi )
2
)
. (3.10)

Considering the i-th queue with the batch arrival process of type i-quanta separately, we deduce
from Little’s formula

EX
q
i = λ

q
iEV

q
i

and thus

�qiEV
q
i = λqiEV

q
i · q = EX

q
i · q. (3.11)

By construction we have the following inequality for the mean time stationary work load EV̂ q
i

in queue i:

q(EX
q
i − 1) ≤ EV̂

q
i ≤ qEX

q
i

and thus

|EV̂ q
i − qEX

q
i | ≤ q. (3.12)

Letting q → 0 the Round Robin service discipline converges to the PS discipline and in view of
(3.11) and (3.12) we get for the mean work load EV̂i in queue i of the original model

EV̂i = lim
q→0

EV̂
q
i = lim

q→0
(qEX

q
i ) = lim

q→0
(�

q
iEV

q
i ). (3.13)

Further we obtain from (3.1)-(3.3):

EGi,qq−→
q→0

ESi, E(Gi,qq)
2−→
q→0

ES2
i , �qi = λi · qEGi,q−→

q→0
�i. (3.14)

Using (3.13) and (3.14) we get from (3.10) by taking the limit q → 0

n∑
i=1

EV̂i =
n∑

i=1

λi

2(1− �)
ES2

i +
n∑

i=1

λikESi

1− �

(
EV̂i +

ES2
i

2ESi

)
. (3.15)
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Rewriting (3.15) we have proved the following

Theorem 3.1 (Pseudo work conservation law). For the mean stationary work loads EV̂i

it holds the pseudo conservation law

n∑
i=1

(
1− k�i − �

)
EV̂i = (k + 1)

n∑
i=1

λi

m
(2)
Bi

2
. (3.16)

Remarks 3.2. 1. For k = 0 one finds from (3.16) the well known relation, cf. [K2],

n∑
i=1

EV̂i =
n∑
i

λim
(2)
Bi

2(1− �)
.

2. In case of a complete symmetric network, i.e. if λ = λi and B(x) = Bi(x) for i = 1, . . . , n,
one has by symmetry EV̂ := EV̂i for i = 1, . . . , n and from (3.16) thus it follows

EV̂i =
(k + 1)λm

(2)
B

(1− (k + n)�)2
, (3.17)

where � := �i, i = 1, . . . , n.

If the service times are exponentially distributed, i.e.

Bi(t) = 1− e−μit, m
(j)
Bi

=
j!

μj
i

, (3.18)

the memoryloss property yields

EV̂i = EXi · 1

μi
.

Little’s formula yields for the sojourn times of the type i-customers

EXi = λiVi (3.19)

and thus we have

EV̂i = �iEVi. (3.20)

Inserting (3.20) into the pseudo work conversation law (3.16) and taking into account (3.18) we
get
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Theorem 3.3 (Pseudo conservation law for sojourn times). For exponentially distributed
service times the mean sojourn times EVi of the different types of customers satisfy

n∑
i=1

(
1− k�i − �

)
�iEVi = (k + 1)

n∑
i=1

�i
μi

. (3.21)

Remark 3.4. In case of a complete symmetric system, i.e. λ = λi and μ = μi for i = 1, . . . , n,
one has by symmetry EV := EVi, i = 1, . . . , n and from (3.21) it follows

EV =
�(k + 1)

λ(1− (n+ k)�)
, � = λ/μ. (3.22)

4 Heuristic approximation for exponential service times

Throughout this Section we assume that the service times are exponentially distributed, i.e.
Bi(x) = 1− exp(−μix), and that the stability condition (2.1) is satisfied. As mentioned earlier,
then X(t) = (X1(t), . . . , Xn(t)) is a multidimensional birth and death process with the state
space XX = ZZn

+. The stationary distribution p(�) := P (X(t) = �), � ∈ XX is given by the unique
solution of the balance equations

( n∑
i=1

λi +
n∑

i=1

μi1I(�i)

k + 1 +
∑
j �=i

1I(�j)

)
p(�)

(4.1)

=
n∑

i=1

λi1I(�i)p(�− ei) +
n∑

i=1

μi

k + 1 +
∑
j �=i

1I(�j)
p(�+ ei), � ∈ XX

and the normalizing condition

∑
�∈XX

p(�) = 1, (4.2)

where 1I(�j) = 1I{�j ≥ 1}, ei = (0, . . . , 1, . . . , 0) is the i-th unit vector and p(�) := 0 for � 	∈ XX .
In Section 5 an iterative method of successive overrelaxation for solving (4.1), (4.2) is given,
which for n = 2 and 3 works efficiently and yields the EVi. In Section 6 the analytical treatment
for n = 2 provides a very fast numerical algorithm for computing the EVi which is numerical
stable also in heavy traffic situations. But for n ≥ 4 an analytical treatment or/and numerical
computation is not possible in view of limited memory and computing time, since the complexity
of our problem increases rapidly in n. In our practical applications we are also interested in
systems with n = 5, . . . , 10 and hence efficient approximations for the mean sojourn times EVi
of the different customer types are necessary.

Although our model - as mentioned in the Introduction - can be considered as a special case of
the PS model treated by Leung [L], it is not possible to use the approximation given there, since
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the assumtions made for the approximation there, exclude the situation of permanent customers.
However, some of the arguments and ideas given there will be used below.

The approximations for EVi, proposed in the following, base on two approximations and on the
pseudo conversation law for the sojourn times, cf. Theorem 3.3. Our first approximation is

App 1 A served customer leaves behind in the system on average the time-stationary number
of the different customer types.

Remark 4.1. If the departure process would be a Poisson process then App 1 would be ”exact“.
Clearly, in our model the departure process is not a Poisson process.

Consider now the PS discipline as the limit of the Round Robin discipline, cf. Sec.3. A customer
who has received a service quantum q and leaves the system, leaves behind – in mean– the
time stationary mean number of customers in the system, by App 1. Since the service times
are exponentially distributed the probability that a customer leaves the system after having
received a quantum q is equal and independent of the system state. Hence the system state at
the time instants where a customer has received a service quantum q is independent whether the
customer leaves the system or not. Hence a customer finds – in mean – after receiving a service
quantum the mean time stationary number of customers of the different types. The Round
Robin discipline causes an increasing of the actual service times, i.e. the ’effective’ service times
of the customers increase. Let

si(x) – mean effective service time of a type i-customer after having received x time units
of service (i.e. [x/q] service quanta);

si – mean effective service time of a type i-customer.

The mean increment of the effective service time of a marked type i-customer in the Round
Robin approximation satisfies

si(x+ q) = si(x) +

(
k +

n∑
j=1
j �=i

pj + 1

)
q, (4.3)

where pj = P (Xj ≥ 1) is the stationary probability that at least one type i-customer is present.
Formula (4.3) can be justified as follows: a marked type i-customer having received x time units
of service (i.e. [x/q] service quanta) has to wait for its next service quantum q until the other
queues (which have to be served by the server) and the k permanent customers have received their
service quantum. Since the marked type i-customer, after having received a service quantum q,
sees the time-stationary mean number of customers in the system (excluding himself), in mean∑
j �=i

pj + k customers take part in the PS. Thus, in mean after (k +
∑
j �=i

pj + 1)q time units the

type i-customer receives his next service quantum, which implies (4.3). From (4.3) we find

dsi(x)

dx
= ai (4.4)

in the PS discipline, where

ai = k + 1 +
n∑

j=1
j �=i

pj, (4.5)
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and the boundary condition si(0) = 0 holds. From (4.4) it follows si(x) = aix and integrating
with respect to the service time distribution Bi(x) = 1− exp(−μix) yields for the mean effective
service time

si =
∫ ∞

0
aixμie

−μixdx =
ai
μi

. (4.6)

The quantities pi, λi and si are related by

pi = λisi. (4.7)

From (4.6), (4.7) and since pi ≤ 1 we get the following fixed point equations for the unknown pi

pi = min

{
1, �i

(
k + 1 +

∑
j �=i

pj

)}
, i = 1, · · · , n. (4.8)

Since (4.6) is an approximation, the solution pi of (4.8) is an approximation of the stationary
probability P (Xi ≥ 1). By the approximation the situation λisi > 1 may occur, which is not
allowed in view of (4.7) and pi ≤ 1. This justifies the boundary 1 in (4.8). It is easy to show that
the mapping f(p1, . . . , pn) : [0, 1]n → [0, 1]n whose components are defined by the right-hand
side of (4.8) is contractive on [0, 1]n with respect to the �1-norm. Hence, by Banach’s fixed point
theorem (4.8) has a unique solution in [0, 1]n which can be obtained by iteration. A better,
explicite way is as follow: Let

t :=
n∑

j=1

pj, (4.9)

i.e. t ∈ [0, n]. Then, from (4.5) we have ai = t+k+1−pi for i = 1, . . . , n and (4.8) is equivalent
to

pi = min{1, �i(t+ k + 1− pi)}, i = 1, . . . , n, (4.10)

and (4.9). But (4.10) is equivalent to

pi = min

{
1,

�i(t+ k + 1)

1 + �i

}
, i = 1, . . . , n. (4.11)

Hence (4.8) is equivalent to (4.11) and

t =
n∑

j=1

min

{
1,

�j(t+ k + 1)

1 + �j

}
,

12



i.e. to (4.11) and

k + 1

t+ k + 1
+

n∑
j=1

min

{
1

t+ k + 1
,

�j
1 + �j

}
= 1. (4.12)

Since the left-hand side of (4.12) is monotonically decreasing for t ∈ [0, n], for t = 0 larger or
equal to 1 and for t = n smaller or equal to 1, equation (4.12) has a unique solution t which
can e.g. be obtained by a bisection procedure. The probabilities pi can then be obtained from
(4.11).
An alternative way for determining t is as follows. Let the queues be ordered such that �1 ≤
�2 ≤ . . .≤ �n. Then there is an � ∈ {0, 1, . . . , n} such that (4.12) transforms into

k + 1

t+ k + 1
+

�∑
j=1

�j
1 + �j

+ (n− �) · 1

t+ k + 1
= 1,

i.e.

t =
n+ k − �+ 1

1−
�∑

j=1

�j
1+�j

− k − 1. (4.13)

The appropriate � can be obtained by inserting the corresponding t values into (4.12).

In case of a load symmetric system, i.e.

� := �1 = . . . = �n , (4.14)

the stability condition (2.1) reduces to

(n+ k)� < 1 (4.15)

and by symmetry it holds p := p1 = . . .= pn ∈ [0, 1]. From (4.8) and (4.15) we find

p =
�(k + 1)

1− (n− 1)�
∈ (0, 1). (4.16)

The approximations pi of the probabilities P (Xi ≥ 1) can be improved by introducing a correc-
tion factor c:

p̄i = c · pi, (4.17)

which will be determined by means of the pseudo conservation law (3.21) for the sojourn times
below. Since the p̄i are probabilities, for the parameter c we have the boundary condition

0 < c < c∗, c∗ := min{1/p1, . . . , 1/pn}. (4.18)
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The approximation of the mean sojourn times of the different customer classes bases on the
following second approximation:

App 2 The type i-queues act independently like isolated M/M/1/∞ queues with a server
utilization p̄i.

App 2 implies for the mean number of customers in queue i

EXi =
p̄i

1− p̄i
=

cpi
1− cpi

, i = 1, . . . , n, (4.19)

and by Little’s formula we get the following approximation for the mean sojourn times

EV
(1)
i,app :=

p̄i
λi(1− p̄i)

=
cpi

λi(1− cpi)
, i = 1, . . . , n. (4.20)

Inserting (4.20) for the sojourn times into (3.21) we get

n∑
i=1

�i
(
1− k�i − �

) cpi
λi(1− cpi)

= (k + 1)
n∑

i=1

�i
μi

. (4.21)

Since the left-hand side of (4.21), denoted by g(c), is monotonically increasing in (0, c∗), g(0) = 0
and lim

c→c∗−0
g(c) = ∞ there is exactly one c ∈ (0, c∗) such that (4.21) is satisfied. This solution

can easily be obtained by a bisection procedure. Summarizing the considerations above we have
the following

Algorithm 1: 1. Solve the fixed point equation (4.8).
2. Compute c ∈ (0, c∗) satisfying (4.21).

3. Compute EV
(1)
i,app from (4.20).

In case of a load symmetric system, i.e. if (4.14) is satisfied and p = pi holds, from (4.21) and
� = λi/μi it follows

cp

1− cp
=

�(k + 1)

1− (k + n)�

and (4.20) yields

EV
(1)
i,app =

�(k + 1)

λi(1− (n+ k)�)
. (4.22)

In case of a complete symmetric system, i.e. if λ = λi, μ = μi, i = 1 . . .n, we deduce from (4.22)

EV
(1)
i,app =

�(k + 1)

λ(1− (n+ k)�)
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in which case the approximation is exact, cf. (3.22).

A further, second approximation for the EVi can be derived by modifying two of the above
arguments: Firstly, one cancels the boundary 1 for the pi in (4.8) which yields

pi = �i
(
k + 1 +

∑
j �=i

pj
)
= �i(k + 1 + t− pi), i = 1, . . . , n, (4.23)

where t = p1 + . . .+ pn as before. From (4.23) we get

pi = (k + 1+ t)
�i

1 + �i
, i = 1, . . . , n. (4.24)

Summation over i yields an explicite expression for t. Inserting this in (4.24) we get

pi =
k + 1

1−
n∑

j=1

�j
1+�j

· �i
1 + �i

, i = 1, . . . , n. (4.25)

From the stability condition (2.1) it follows pi > 0, but pi > 1 may occur, as numerical examples
show.

The second modification consists in correcting the pi to p̄i such that they are in general again
probabilities, i.e. p̄i ∈ (0, 1), and that in case of long sojourn times, i.e. if P (Xi ≥ 1) ≈ 1, a
stronger correction takes place. We take

p̄i :=
pi

1− (c− 1)pi
, i = 1, . . . , n, (4.26)

where c has the same boundary condition (4.18) as in the first approximation. Clearly, p̄i ∈ (0, 1)
in view of c ∈ (0, c∗). From App 2 we have

EXi =
p̄i

1− p̄i
=

pi
1− cpi

, i = 1, . . . , n (4.27)

and by Little’s formula we get the following second approximation

EV
(2)
i,app :=

p̄i
λi(1− p̄i)

=
pi

λi(1− cpi)
, i = 1, . . . , n. (4.28)

Inserting (4.28) for the sojourn times into (3.21) we obtain

n∑
i=1

�i
(
1− k�i − �

) pi
λi(1− cpi)

= (k + 1)
n∑

i=1

�2i
λi

(4.29)
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which allows to determine c. Namely, from (4.25) and (4.29) one finds for the left-hand side of
(4.29), denoted by g(c):

lim
c→+0

g(c) =
n∑

i=1

�i
(
1− k�i − �

) (k + 1) �i
1+�i

λi(1−
n∑

j=1

�j
1+�j

)
< (k+ 1)

n∑
i=1

�2i
λi

and

lim
c→c∗−0

g(c) = ∞.

Since g(c) is monotonically increasing on (0, c∗), equation (4.29) has a unique solution, which
can be obtained by an bisection procedure. Thus we have the following second approximation.

Algorithm 2: 1. Compute pi from (4.25).
2. Compute c ∈ (0, c∗) satisfying (4.29).

3. Compute EV
(2)
i,app from (4.28).

In case of a load symmetric system, i.e. if (4.14) is satisfied, we obtain for EV
(2)
i,app again the

right-hand side of (4.22) and, in case of a complete symmetric system, i.e. if λ = λi and μ = μi,

the second approximation EV
(2)
i,app becomes again exact, i.e. EV

(2)
i,app = �(k+1)/(λ(1− (n+k)�)),

cf. (3.22).

Remark 4.3. App 2 suggests to approximate the sojourn times Vi by the sojourn times of an
M/M/1/∞ queue with arrival intensity λi and mean service times p̄i/λi, where p̄i is given by
(4.17) or (4.26), respectively:

Vi(x) := P (Vi ≤ x) = 1− e
−λi(1−p̄i)

p̄i
x
, x ≥ 0, (4.30)

cf. e.g. [GK], Vol.II p. 136. In particular this means (4.20), (4.28) and

D2Vi =

(
p̄i

λi(1− p̄i)

)2

. (4.31)

Simulation studies have shown that the approximation (4.31) of the variance is more sensitive

than the EV
(j)
i,app of the EVi.

Remark 4.4. Simulation studies have shown that also in case of non exponential service times
the proposed approximations often yield reasonable results by taking μi = 1/mBi, cf. Section 7.
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5 Iterative numerical algorithm

Consider the system with exponential service times and assume that the stability condition (2.1)
is satisfied. By Little’s formula (3.19) it remains to compute the EXi in order to get the EVi:

EVi =
1

λi

∑
�∈XX

�ip(�) . (5.1)

A standard procedure, cf. e.g. Tijms [T], [GK], Vol.I, is to solve the system of balance equa-
tions (4.1) by first cutting the state space and then using the iterative method of successive
(over)relaxation. In order to get a probability distribution then one has to normalize the so-
lution. In the following we propose a variant of this procedure which has the advantage of a
monotone convergence: Equation (4.1) is of the general form

x(�)q(�) =
∑

m∈XX\{�}
x(m)q(m, �) , � ∈ XX , (5.2)

where q(m, �) ≥ 0 are transition rates of a Markov chain with state space XX = ZZn
+ and

q(�) =
∑

m∈XX\{�}
q(�,m) . (5.3)

Note that XX is not finite. Now, let ω ∈ (0, 2) be a fixed relaxation factor and

x(0)(�) := 1I{� = o}, (5.4)

where o = (0, . . . , 0). Defining for j ∈ ZZ+

x(j+1)(o) := 1 (5.5)

and

x(j+1)(�) :=
ω

q(�)

[ ∑
|m|<|�|

q(m, �)x(j+1)(m) +
∑

|m|≥|�|,m�=�

q(m, �)x(j)(m)
]

+ (1− ω)x(j)(�), � ∈ XX \ {o} (5.6)

we obtain an iteration with a successive relaxation factor ω, where |x| = |x1| + · · · + |xn| for
x = (x1, . . . , xn) ∈ ZZn

+.

Remark 5.1 If the state space is finite and ordered, i.e. of the type XX = {0, . . . , N}, and
if one also uses (5.6) for � = 0 instead of (5.5) and starts with an arbitrary initial vector
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x(0) = (x
(0)
1 , . . . , x

(0)
N ) instead of (5.4) then one obtains the standard iterative method of solving

balance equations with an relaxation factor, cf. e.g. Tijms [T] p.406, which is in case of
overrelaxation, i.e. ω > 1, often very efficiently.

Lemma 5.2 Assume that (5.2), (5.3) has a unique solution denoted by p(�), � ∈ XX . Let
ω ∈ (0, 1]. Then

(i) 0 ≤ x(j)(�) ≤ p(�)/p(o) , � ∈ XX, j ∈ ZZ+; (5.7)

(ii) x(j)(�) ≤ x(j+1)(�) , � ∈ XX, j ∈ ZZ+. (5.8)

(iii) The limits x∗(�) := lim
j→∞

x(j)(�), � ∈ XX exist and satisfy (5.2). In particular x∗(o) = 1.

(iv) p(�) =
x∗(�)∑

m∈XX
x∗(m)

, p(�) = p(o)x∗(�), � ∈ XX.

(v) p(o) =

(
lim
j→∞

∑
|m|<cj

x(j)(m)

)−1

, for each c > 0.

Proof. In the following we set q(�, �) := 0 for � ∈ XX , for convenience.
(i) The proof will be given by induction. For j = 0 and � ∈ XX assertion (5.7) follows immediately
from (5.4). Assume that (5.7) is true for j = 0, . . . , j∗ − 1 and � ∈ XX . For j = j∗ and � = 0
(5.7) follows from (5.5). Assume now that (5.7) holds for j = j∗ and all � ∈ XX with |�| < |�∗|.
Then we get from (5.2), (5.3) and (5.6)

0 ≤ x(j
∗)(�∗) =

ω

q(�∗)

⎡⎣ ∑
|m|<|�∗|

q(m, �∗)x(j
∗)(m) +

∑
|m|≥|�∗|

q(m, �∗)x(j
∗−1)(m)

⎤⎦
+ (1− ω)x(j

∗−1)(�∗)

≤ ω

q(�∗)

⎡⎣ ∑
|m|<|�∗|

q(m, �∗)
p(m)

p(o)
+

∑
|m|≥|�∗|

q(m, �∗)
p(m)

p(o)

⎤⎦
+ (1− ω)

p(�∗)

p(o)

=
p(�∗)

p(o)
.

Hence (5.7) is true for j = j∗ and � ∈ XX and consequently for all j ∈ ZZ+ and � ∈ XX .
(ii) This will also be proved by induction. In view of (5.4), (5.5) and (5.7) the inequality (5.8)
holds for j = 0 and � ∈ XX . Assume that (5.8) is true for j = 0, 1, . . . , j∗ − 1 and � ∈ XX . (5.8)
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follows for j = j∗ and � = o from (5.5). If (5.8) holds for j = j∗ and all � ∈ XX with |�| < |�∗|
then we get from (5.6)

x(j
∗+1)(�∗) =

ω

q(�∗)

⎡⎣ ∑
|m|<|�∗|

q(m, �∗)x(j
∗+1)(m) +

∑
|m|≥|�∗|

q(m, �∗)x(j
∗)(m)

⎤⎦
+ (1− ω)x(j

∗)(�∗)

≥ ω

q(�∗)

⎡⎣ ∑
|m|<|�∗|

q(m, �∗)x(j
∗)(m) +

∑
|m|≥|�∗|

q(m, �∗)x(j
∗−1)(m)

⎤⎦
+ (1− ω)x(j

∗−1)(�∗)

= x(j
∗)(�∗),

i.e. (5.8) is true for j = j∗ and � = �∗. By induction we conclude (5.8) for j = j∗ and � ∈ XX
and hence for j ∈ ZZ+, � ∈ XX , too.
(iii) From (5.8) it follows that the limits x∗(�) = lim

j→∞
x(j)(�) exist and are finite and x∗(o) = 1

in view of (5.5). Taking in (5.6) the limit as j → ∞ it follows that x∗(m), m ∈ XX satisfies
(5.2) for � 	= o. Multiplying (5.6) with q(�), taking the limit as j → ∞ and summing then over
� ∈ XX \ {o} we get by taking into account (5.3)

∑
�∈XX\{o}

q(�)x∗(�) =
∑

m∈XX
q(m)x∗(m)−

∑
m∈XX\{o}

q(m, o)x∗(m) .

This equality shows that the x∗(m) satisfy (5.2) also for � = o.
(iv) The first statement follows from the fact that x∗(�) is a solution of (5.4) and that the p(�)
are the only probability distribution satisfying (5.4). The second statement is a consequence of
p(o) = (

∑
m∈XX

x∗(m))−1 in view of x∗(o) = 1.

(v) This statement follows in view of the convergent majorant given by (5.7). �

Remark 5.3 As in the general iterative method with overrelaxation we were not able to prove
Lemma 5.2 for ω > 1 in the general case (5.2), even not for our particular birth death process.

The iteration (5.4)-(5.6) has the effect that – as in our particular case (4.1) – even after the first
iteration x(j), j ≥ 1 may have infinite non zero components, which in general makes bounding
necessary in order to get an algorithm which can be implemented. ”Restricting” the iteration
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(5.6) on XXg = {x ∈ ZZn
+, |x| < g}, g ∈ {1, 2, . . .}, we get the following modification of (5.6)

x(j+1)(�) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω
q(�)

[ ∑
|m|<|�|

q(m, �)x(j+1)(m) +
∑

|�|≤|m|≤g,m�=�
q(m, �)x(j)(m)

]

+ (1− ω)x(j)(�), 0 < |�| ≤ g ,

0 otherwise.

(5.9)

The iteration (5.6) yields for j+ |�| ≤ g in our particular case of the multidimensional birth and
death process (4.1) exactly the iteration (5.9). In the general case iteration (5.9) corresponds
to an approximation of the infinite set of equations (5.2) by a finite one. An approximation of
p(�) is

p(�) ≈ x(2g)(�)∑
|m|≤g

x(2g)(m)
, � ∈ XX . (5.10)

The value 2g has been chosen in order to guarantee for a given memory size sufficiently many
iterations. Clearly the factor 2 can be chosen larger which leads to longer CPU times. For
the choice of an appropriate g and a procedure to speed up the ”convergence” we refer to
Section 7. The algorithm (5.4), (5.5), (5.9) and (5.10) was implemented for n = 2, 3. Numerical
computations have shown that in case of overrelaxation ω ∈ (1, 2) the ”convergence” was much
faster than for ω ∈ (0, 1] (although the convergence could not be proved). It was found that

ω := 1.15 + 0.85(�1 + · · ·+ �n + k�max) (5.11)

provides a good relaxation factor. Note that in view of the stability condition ω ∈ (1.15, 2). For
larger loads ω tends to 2.

A further possibility to improve the algorithm is to introduce a dynamic relaxation factor, cf.
Seelen [S]. But we have not proceed in this way.

6 Analytical solution of the Riemann-Hilbert Problem for n=2

In this Section we consider the case of two queues (n = 2) and exponential service times. We
suppose the stability condition to be fulfilled:

�1 + �2 + kmax{�1, �2} < 1. (6.1)

Then, cf. (4.1), (4.2), the stationary distribution p(�1, �2) of the two-dimensional birth and death
process X(t) = (X1(t), X2(t)) satisfies
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(
λ1 + λ2 +

μ11I(�1)

k + 1+ 1I(�2)
+

μ21I(�2)

k + 1+ 1I(�1)

)
p(�1, �2)

= λ11I(�1)p(�1 − 1, �2) + λ21I(�2)p(�1, �2 − 1) (6.2)

+
μ1

k + 1 + 1I(�2)
p(�1 + 1, �2) +

μ2

k + 1 + 1I(�1)
p(�1, �2 + 1), (�1, �2) ∈ ZZ2

+

and

∞∑
�1,�2=0

p(�1, �2) = 1 , (6.3)

where 1I(�i) = 1I{�i ≥ 1} . Let ID := {z ∈ IC : |z| < 1} denote the unit disk in the complex
plane and

F (z1, z2) :=
∞∑

�1,�2=0

p(�1, �2)z
�1
1 z�22 (6.4)

the two-dimensional probability generating function of the stationary distribution, which is

continuous in ID
2
, holomorphic in ID2 and satisfies

F (1, 1) = 1. (6.5)

From (6.4) and using (6.2) one finds after some tricky algebra, which will be omitted here, the
following functional equation

[
λ1(1− z1) +

μ1

k + 2

(
1− 1

z1

)
+ λ2(1− z2) +

μ2

k + 2

(
1− 1

z2

)]
F (z1, z2)

=
[ μ1

k + 2

(
1− 1

z1

)
− μ2

(k + 1)(k+ 2)

(
1− 1

z2

)]
F (0, z2)

+
[ μ2

k + 2

(
1− 1

z2

)
− μ1

(k + 1)(k+ 2)

(
1− 1

z1

)]
F (z1, 0) (6.6)

+
[ μ1

(k + 1)(k + 2)

(
1− 1

z1

)
+

μ2

(k + 1)(k+ 2)

(
1− 1

z2

)]
F (0, 0),

0 < |z1| ≤ 1, 0 < |z2| ≤ 1,

where F (z1, 0), F (0, z2) are unknown boundary functions.
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For the derivation of (6.2), (6.6) we have not used that k is an integer, cf. also Remark 2.3, and
hence we may assume k to be a fixed positive real number in the following, which offers to get
corresponding results for k = 0 by letting k → 0. Let

G(z1) := F (z1, 0) +
1

k
F (0, 0), z1 ∈ ID, (6.7)

H(z2) := F (0, z2) +
1

k
F (0, 0), z2 ∈ ID. (6.8)

Then one finds from the functional equation (6.6)

[
λ1(1− z1) +

μ1

k + 2

(
1− 1

z1

)
+ λ2(1− z2) +

μ2

k + 2

(
1− 1

z2

)]
F (z1, z2)

=
[ μ1

k + 2

(
1− 1

z1

)
− μ2

(k + 1)(k+ 2)

(
1− 1

z2

)]
H(z2) (6.9)

+
[ μ2

k + 2

(
1− 1

z2

)
− μ1

(k + 1)(k+ 2)

(
1− 1

z1

)]
G(z1)

for 0 < |z1| ≤ 1, 0 < |z2| ≤ 1. Now, the problem is the determination of the unknown functions
G(z1) and H(z2). From (6.9) one gets for z1 = 1 rsp. z2 = 1

[1− (k+ 2)�1z1]F (z1, 1) = H(1)− 1

k + 1
G(z1) (6.10)

rsp.

[1− (k+ 2)�2z2]F (1, z2) = G(1)− 1

k + 1
H(z2). (6.11)

Applying the normalizing condition (6.5) we obtain for z1 = z2 = 1

G(1) =
k + 1

k
(1− k�2 − (�1 + �2)) , H(1) =

k + 1

k
(1− k�1 − (�1 + �2)) . (6.12)

Note, since G(1) and H(1) must be positive, cf. (6.7), (6.8), we get from (6.12) that the stability
condition (6.1) must be satisfied. Without loss of generality we assume in the following �1 ≤ �2,
which implies by (6.1)

(k + 2)�1 < 1. (6.13)
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6.1 Analytic continuation of G(z1)

Next we want to construct an analytic continuation of G(z1). For doing this we investigate the
algebraic function g(z1) defined by

λ1(1− z1) +
μ1

k + 2

(
1− 1

z1

)
+ λ2(1− g(z1)) +

μ2

k + 2

(
1− 1

g(z1)

)
= 0. (6.14)

The branch points of g(z1) are the zeros of the root in the explicite expression

g(z1) =
1

2λ2

{[
λ1(1− z1) +

μ1

k + 2

(
1− 1

z1

)
+ λ2 +

μ2

k + 2

]

+

√[
λ1(1− z1) +

μ1

k + 2

(
1− 1

z1

)
+ λ2 +

μ2

k + 2

]2 − 4
λ2μ2

k + 2

}
, (6.15)

i.e. the solutions of

λ1(1− z1) +
μ1

k + 2

(
1− 1

z1

)
= −λ2

(
1± 1√

(k + 2)�2

)2
.

Since the right-hand side of this equation is non positive we conclude by the intermediate value
theorem that there are two branch points of g(z1) in the interval [0, 1] and two in the interval
[ 1
(k+2)�1

,∞). Consequently, choosing a fixed branch the function g(z1) is holomorphic in

A :=
{
z1 ∈ IC : 1 ≤ |z1| ≤ 1

(k + 2)�1
, z1 	= 1, z1 	= 1

(k + 2)�1

}
. (6.16)

In view of (6.14) and by the intermediate value theorem the branch of g(z1) can be chosen such
that

g
( 1√

(k + 2)�1

)
∈ (0, 1). (6.17)

The following lemmata will be needed.

Lemma 6.1 It holds

Re
1

g(z1)
> 1, z1 ∈ A. (6.18)

Proof. For z1 ∈ A it follows
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Re
[
λ1(1− z1) +

μ1

k + 2

(
1− 1

z1

)]
≥ λ1(1− |z1|) + μ1

k + 2

(
1−

∣∣∣ 1
z1

∣∣∣)
=

λ1

|z1|(|z1| − 1)
( 1

(k + 2)�1
− |z1|

)
≥ 0,

where equality does not occur simultaneously. Hence we have

Re
[
λ1(1− z1) +

μ1

k + 2

(
1− 1

z1

)]
> 0, z1 ∈ A. (6.19)

Assume now that there exists z∗∗
1 ∈ A such that |g(z∗∗

1 )| ≥ 1. Since A is connected it follows
from (6.17) that there exists z∗

1 ∈ A with |g(z∗
1)| = 1, too. From (6.19) we now find

Re
[
λ1(1− z∗

1) +
μ1

k + 2

(
1− 1

z∗
1

)
+ λ2(1− g(z∗

1)) +
μ2

k + 2

(
1− 1

g(z∗
1)

)]
>

(
λ2 +

μ2

k + 2

)
(1− Re g(z∗1)) ≥ 0,

contradicting (6.14). Thus we have |g(z1)| < 1 for z1 ∈ A. Hence we conclude from (6.14) and
(6.19) for z1 ∈ A

− μ2

k + 2
Re

(
1− 1

g(z1)

)
= Re

[
λ1(1− z1) +

μ1

k + 2

(
1− 1

z1

)]
+ λ2Re(1− g(z1)) > 0

which proves (6.18). �

Lemma 6.2 Let

γ(z1) :=
(k + 1)μ1(1− 1

z1
)− μ2(1− 1

g(z1)
)

μ1(1− 1
z1 )− (k + 1)μ2(1− 1

g(z1)
)
, z1 ∈ A. (6.20)

Then the branch of log γ(z1) with log γ( 1√
(k+2)�1

) ∈ IR is a holomorphic and bounded function

in A.

Proof. In view of Lemma 6.1 the real parts of the numerator and denominator of the right-hand
side of (6.20) are positive for z1 ∈ A.

Hence γ(z1) is holomorphic in A and does not vanish there. Further it holds |argγ1(z1)| < π for
z1 ∈ A. Hence log γ(z1) is holomorphic in A, too, and we have

| Im log γ(z1) | < π, z1 ∈ A . (6.21)
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The limits

g1 := lim
z1→1
z1∈A

g(z1), g2 := lim
z1→ 1

(k+2)�1
z1∈A

g(z1)

exist and lie in the interval [0, 1] and hence the limit

lim
z1→ 1

(k+2)�1
z1∈A

γ(z1)

exist and is non zero. From (6.14) it follows further

μ1

(
1− 1

z1

)
(1− (k + 2)�1z1) + μ2

(
1− 1

g(z1)

)
(1− (k + 2)�2g(z1)) = 0,

i.e.

μ2

(
1− 1

g(z1)

)
= −μ1

(1− 1
z1
)(1− (k + 2)�1z1)

1− (k + 2)�2g(z1)
.

According to (6.20) we therefore also have the following representation

γ(z1) =
(k + 1)[1− (k + 2)�2g(z1)] + [1− (k + 2)�1z1]

[1− (k + 2)�2g(z1)] + (k + 1)[1− (k + 2)�1z1]
.

Therefore and in view of g1 ∈ [0, 1] and the stability condition (6.1) the limit

lim
z1→1
z1∈A

γ(z1) =
1− (k + 1)�2g1 − �1
1− (k + 1)�1 − �2g1

exist and is non zero.

Hence γ1(z1) can be continued to Ā to a continuous non vanishing function.
Therefore Re log γ(z1) is bounded in A. �

In view of Lemma 6.1 and Lemma 6.2 there exists a domain A1 with A ⊂ A1 ⊂ IC such that
log γ(z1) is holomorphic in A1 and

|g(z1)| < 1, z1 ∈ A1. (6.22)

For z1 ∈ A1 ∩ ID it holds in view of (6.9) and (6.14)
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0 =
[ μ1

k + 2

(
1− 1

z1

)
− μ2

(k + 1)(k + 2)

(
1− 1

g(z1)

)]
H(g(z1))

+
[ μ2

k + 2

(
1− 1

g(z1)

)
− μ1

(k + 1)(k + 2)

(
1− 1

z1

)]
G(z1),

i.e. in view of (6.20)

G(z1) = γ(z1)H(g(z1)). (6.23)

As the right-hand side of (6.23) is holomorphic in A1 in view of (6.22), the function G(z1)
can be continued analytically to ID ∪ A1. In particular G(z1) is analytic in A2 \ {1}, where
A2 := {z1 ∈ IC : |z1| < 1/[(k+ 2)�1] }.
Since a closed Jordan curve in A2 \ {1} is topologically equivalent to a proper closed Jordan
curve in A and since the right-hand side of (6.23) is holomorphic in A, which means in particular
single-valued, G(z1) is single-valued in A2 \ {1}, too. Furthermore G(z1) is bounded in A2 \ {1}
since the right-hand side of (6.23) is bounded in A in view of Lemma 6.2. Therefore z1 = 1 is a
removable singularity of G(z1), i.e. G(z1) is holomorphic in A2.

6.2 Determination of G(z1) by solving a Riemann-Hilbert problem

Let

A0 :=
{
z1 ∈ IC : |z1| < 1√

(k + 2)�1

}
. (6.24)

We know that G(z1) is holomorphic in A0 ⊆ A2. For z1 ∈ ∂A0 it holds

λ1(1− z1) +
μ1

k + 2

(
1− 1

z1

)
= λ1(1− z1)

(
1− 1

(k + 2)�1z1

)
= λ1|1− z1|2 > 0.

Taking into account also (6.14) and (6.18) we therefore have g(z1) ∈ (0, 1) for z1 ∈ ∂A0. From
(6.7) we know that H(z2) is real-valued and positive for z2 ∈ (0, 1) and thus by (6.23)

argG(z1) = arg γ(z1), z1 ∈ ∂A0. (6.25)

Equation (6.25) is a Riemann-Hilbert problem for G(z1) with respect to the disk A0.

Lemma 6.2 implies that log γ(z1) is single-valued on ∂A0 ⊂ A and thus by (6.25) the argument
of G(z1) is single-valued on ∂A0, too. By the argument principle it follows that G(z1) has no
zeros in A0 and thus 1

i logG(z1) is a holomorphic function in A0. From (6.25) we obtain

Re
1

i
logG(z1) = arg γ(z1), z1 ∈ ∂A0. (6.26)
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The relation (6.26) represents a Dirichlet problem for 1
i logG(z1) with respect to the disk A0.

From Schwarz’s formula we get the solution of the Dirichlet problem

1

i
logG(z1) +

(1
i
logG(0)

)
=

1

2π

∫
∂A0

arg γ(ζ)
dζ

ζ − z1
, z1 ∈ A0.

Since G(0) is a positive real number, c.f. (6.7), finally it follows

G(z1) = G(0) exp
[ 1
π

∫
∂A0

arg γ(ζ)
dζ

ζ − z1

]
, z1 ∈ A0. (6.27)

From (6.12) we know G(1) and putting in (6.27) z1 = 1 we obtain G(0). Therefore G(z1) is
uniquely determined by (6.12) and (6.27).

The function H(z2) can be obtained as follows: let h(z2) be the local inverse of g(z1), which is
algebraic and satisfies

λ1(1− h(z2)) +
μ1

k + 2

(
1− 1

h(z2)

)
+ λ2(1− z2) +

μ2

k + 2

(
1− 1

z2

)
= 0

in view of (6.14). From (6.23) it follows by choosing an appropriate branch of h(z2) and taking
into account (6.20)

H(z2) =
μ1(1− 1

h(z2)
)− (k+ 1)μ2(1− 1

z2
)

(k + 1)μ1(1− 1
h(z2)

)− μ2(1− 1
z2 )

G(h(z2))

for z2 ∈ ID and h(z2) ∈ A0.

6.3 Mean sojourn times

From (6.10) it follows that F (z1, 1) is holomorphic in A2. Taking the first derivative on both
sides of (6.10) with respect to z1 at z1 = 1 and using the normalizing condition (6.5) we obtain

−(k + 2)�1 + [1− (k + 2)�1]F
′
z1(1, 1) = − 1

k + 1
G′(1). (6.28)

In view of (6.12) it follows from (6.28)

EX1 = F ′
z1(1, 1) =

(k+ 2)�1
1− (k + 2)�1

− 1− �1 − (k + 1)�2
k[1− (k + 2)�1]

d

dz1
logG(z1)|z1=1.
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Combining this, Little’s formula and (6.27) we get the following formula for the mean sojourn
times of type-1-customers in case k > 0:

EV1 =
(k+ 2)�1

λ1[1− (k + 2)�1]
− 1− �1 − (k + 1)�2

λ1[1− (k + 2)�1]

1

π

∫
∂A0

1

k
arg γ(ζ)

dζ

(ζ − 1)2
. (6.29)

Since

lim
k↓0

1

k
arg γ(ζ) = Im

⎡⎣μ1(1− 1
ζ ) + μ2(1− 1

g(ζ))

μ1(1− 1
ζ )− μ2(1− 1

g(ζ))

⎤⎦
holds uniformly on ∂A0 (in view of (6.20)), we find for the mean sojourn times in case of k = 0
from (6.29) by taking the limit k ↓ 0:

EV1 =
2�1

λ1(1− 2�1)
− 1− �1 − �2

λ1(1− 2�1)

1

π

∫
∂A0

Im

⎡⎣μ1(1− 1
ζ ) + μ2(1− 1

g(ζ))

μ1(1− 1
ζ )− μ2(1− 1

g(ζ))

⎤⎦ dζ

(ζ − 1)2
. (6.30)

The mean sojourn times EV2 can be computed from the pseudo conservation law (3.21) and
(6.29) rsp. (6.30).

Remark 6.3 As mentioned in the Introduction our model is a special case of the model treated
in Fayolle and Iasnogorodski [FI] by means of a Riemann-Hilbert problem. However, the trans-
formations used here are different and by exploiting the special structure of our problem we
received more explicit results.

Remark 6.4 The function g(ζ) can be expressed in terms of a rational function in ζ and of
a polynomial in ζ of degree four. Thus the integral in (6.30) is elliptic. The integral arising
in (6.29) can be transformed into an elliptic integral by partial integration. Hence the mean
sojourn times EVi can be expressed by elliptic integrals.

Remark 6.5 The mean sojourn times can be computed by a numerical integration of the
integrals arising in (6.29) and (6.30). This can be done very efficiently, cf. Section 7.

7 Numerical results

The heuristic approximations given in Section 4, the iterative numerical algorithm in Section 5
in case of n = 2, 3 and the integral-representation in Section 6 were implemented in C-programs.

In order to have a tool for testing the quality of the approximations EV
(j)
i,app, j = 1, 2 of Section

4 and for investigating the sensitivity of the mean sojourn times with respect to the service time
distributions, a simulation program has been written.

Iterative numerical algorithm given by (5.4), (5.5), (5.9), (5.10), (5.11). By means of (5.1) and
(5.10) approximations for the EVi can be computed. In the program these approximations will
be computed for five consecutive g values (e.g. in case n = 3 for g = 26, 27, . . . , 30). Then by
means of a two stage procedure for speeding up the convergence for each of the mean sojourn
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times new approximations will be computed. The idea of this procedure consists in fitting in
each stage three consecutive approximations by the corresponding terms of a sequence of the
form (a + bcg)g∈ZZ+, where |c| < 1, and choosing then its limit a as the new approxmation.
Besides others the following criterion has been implemented for checking numerical stability:
For the largest used g value the following quantity is computed:

( ∑
�∈XX

(|�|+ 1)
∣∣∣x(2g)(�)− 1

q(�)

∑
m∈XX\{�}

q(m, �)x(2g)(m)
∣∣∣ )

/(
∑

m∈XX
x(2g)(m)) .

If the value of this term is larger than a given small positive constant then numerical instability
will be indicated.

Numerical integration for n = 2. For n = 2 the integrals in (6.29) rsp. (6.30) are elliptic and
therefore can be computed by standard procedures. But a numerical integration over a circle
with equidistant points and equal weights is also very effective. This is justified by the fact
that the integrand can be continued analytically to a neighbourhood of this circle. Theoretical
considerations show that the error arising by this numerical integration can be estimated by
the members of a geometric zero-sequence, depending on the number of integration points. The
computation of the mean sojourn times via this numerical integration is much more accurate
and faster than by the numerical iteration method of Section 5.

Approximations EV
(j)
i,app for j = 1, 2 and simulation. The approximations EV

(j)
i,app and a simula-

tion of the system were implemented for exponential, Erlang 2 and deterministic service times
for the different types of customers in order to cover different coefficients of variation in [0, 1]:

c2Exp = 1, c2Erl 2 = 0.5, c2Det = 0. For non-exponential service times the approximations EV
(j)
i,app

will be computed by setting μi := 1/ESi, i.e. by fitting the first moment. Although the justi-
fication of the approximations needs the memoryloss property of the service time distribution
we found by our numerical studies (see below) that in many cases the approximations work well
even for non-exponential service times.

Since in case of exponential service times the pseudo conservation law (3.21) for the sojourn
times holds, the following quantity

Δ :=
∣∣∣ n∑
i=1

(
1− k�i − �

)
�iEVi,sim − (k+ 1)

n∑
i=1

�i
μi

∣∣∣ / [
(k + 1)

n∑
i=1

�i
μi

]
(7.1)

is a measure for checking the quality of the simulation. This quantity has been implemented. If
Δ is too large then the number of simulated events must be increased. If Δ ≈ 0 then one can
expect EVi,sim ≈ EVi. In case of non-exponential service times one can proceed in two steps:
1. Fit the non-exponential service times by exponential service times and find the necessary
simulation size such that Δ ≈ 0 .
2. Simulate the non-exponential system with the simulation size determined in 1.
For a sufficently long simulation we have EVi,sim ≈ EVi (for exponential and non-exponential
service times) and then the quantity

Error(j) := 100

√√√√√ 1

n

n∑
i=1

⎡⎣EVi,sim − EV
(j)
i,app

EVi,sim

⎤⎦2

, j = 1, 2 (7.2)
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is a measure (relative percentage error) for the goodness of the proposed approximations EV
(j)
i,app.

The quantity �+ k�max is a measure giving the distance to the stability bound 1. The following
examples illustrate the quality of the proposed algorithms and approximations and show that
the mean sojourn times increase dramatically in k. The EVi,sim were estimated from a simulated
trajectory of the system with 107 customer departures, after a starting phase of 105 departures.

In Tables 1–5 we consider the case of exponentially distributed service times. Examples for
non-exponential service times are given in Tables 6 and 7.

k �i (k + n)�i λi = 0.0003̄ λi = 0.002 λi = 0.01 λi = 0.1
1/μi = 300 1/μi = 50 1/μi = 10 1/μi = 1

0 0.1 0.3 428.57 71.429 14.286 1.4286
3 0.1 0.6 3000.00 500.000 100.000 10.0000
6 0.1 0.9 21000.00 3500.000 700.000 70.0000

k �i (k + n)�i λi = 0.0006̄ λi = 0.04 λi = 0.02 λi = 0.2
1/μi = 300 1/μi = 50 1/μi = 10 1/μi = 1

0 0.2 0.6 750 125 25 2.5
1 0.2 0.8 3000 500 100 10.0

Table 1: Complete symmetric system, n = 3, � = �i = 0.1 and � = �i = 0.2 .

30



k �+ k�max n = 10 λ1 = 0.0002 λ1 = 0.0012 λ1 = 0.006 λ1 = 0.06
λ4 = 0.0001 λ4 = 0.0006 λ4 = 0.003 λ4 = 0.03

λ7 = 0.00003̄ λ7 = 0.0002 λ7 = 0.001 λ7 = 0.01
1/μi = 300 1/μi = 50 1/μi = 10 1/μi = 1

0 0.31 EV
(1)
1,app 437.610 72.934 14.587 1.459

EV
(2)
1,app 437.580 72.930 14.586 1.459

EV
(1)
4,app 432.000 72.000 14.400 1.440

EV
(2)
4,app 432.030 72.005 14.401 1.440

EV
(1)
7,app 428.340 71.390 14.278 1.428

EV
(2)
7,app 428.410 71.401 14.280 1.428

Error(1) 0.182 0.151 0.197 0.253

Error(2) 0.174 0.151 0.189 0.249
Δ 0.00036 0.00043 0.00115 0.00197

6 0.67 EV
(1)
1,app 6424.600 1070.800 214.150 21.415

EV
(2)
1,app 6418.900 1069.800 213.960 21.396

EV
(1)
4,app 4071.900 678.650 135.730 13.573

EV
(2)
4,app 4076.200 679.370 135.870 13.587

EV
(1)
7,app 3272.900 545.480 109.100 10.910

EV
(2)
7,app 3278.500 546.420 109.280 10.928

Error(1) 0.280 0.303 0.347 0.371

Error(2) 0.217 0.217 0.306 0.284
Δ 0.00067 0.00031 0.00058 0.00075

10 0.91 EV
(1)
1,app 37195.000 6199.200 1239.800 123.980

EV
(2)
1,app 37095.000 6182.500 1236.500 123.650

EV
(1)
4,app 8301.200 1383.500 276.710 27.671

EV
(2)
4,app 8331.600 1388.600 277.720 27.772

EV
(1)
7,app 5469.000 911.490 182.300 18.230

EV
(2)
7,app 5492.400 915.400 183.080 18.308

Error(1) 0.674 0.946 1.143 0.817

Error(2) 0.658 0.811 0.960 0.816
Δ 0.00575 0.00240 0.01010 0.00762

Table 2: System with n = 10 queues, equal service intensities and 3 groups of identical arrival
streams (traffic intensities): μ1 = . . . = μ10, λ1 = λ2 = λ3, λ4 = λ5 = λ6, λ7 = . . . = λ10,
�1 = �2 = �3 = 0.06, �4 = �5 = �6 = 0.03, �7 = . . . = �10 = 0.01 .
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k �+ k�max n = 10 λ1 = 0.0002 λ1 = 0.0012 λ1 = 0.006 λ1 = 0.06
λ6 = 0.0001 λ6 = 0.0006 λ6 = 0.003 λ6 = 0.03
1/μi = 300 1/μi = 50 1/μi = 10 1/μi = 1

3 0.63 EV
(1)
1,app 3275.200 545.860 109.170 10.917

EV
(2)
1,app 3274.100 545.690 109.140 10.914

EV
(1)
6,app 2557.400 426.230 85.245 8.524

EV
(2)
6,app 2559.000 426.500 85.301 8.530

Error(1) 0.228 0.384 0.224 0.215

Error(2) 0.225 0.357 0.206 0.194
Δ 0.00005 0.00117 0.00177 0.00142

8 0.93 EV
(1)
1,app 39263.000 6543.900 1308.800 130.880

EV
(2)
1,app 39182.000 6530.300 1306.100 130.610

EV
(1)
6,app 8397.200 1399.500 279.910 27.991

EV
(2)
6,app 8434.100 1405.700 281.140 28.114

Error(1) 0.727 0.958 1.008 1.093

Error(2) 0.686 0.850 1.061 1.024
Δ 0.00220 0.00519 0.00949 0.00299

Table 3: System with n = 10 queues, equal service intensities, two groups of identical arrival
streams and fixed traffic intensities: μ1 = . . . = μ10, λ1 = . . . = λ5, λ6 = . . . = λ10, �1 = . . . =
�5 = 0.06, �6 = . . . = �10 = 0.03 .
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k �+ k�max n = 10 λ1 = 0.060
λ6 = 0.003
1/μ1 = 1
1/μ6 = 10

0 0.45 EV
(1)
1,app 1.8547

EV
(2)
1,app 1.8695

EV
(1)
6,app 18.1088

EV
(2)
6,app 18.0791

Error(1) 0.4992

Error(2) 0.1725
Δ 0.000599

3 0.63 EV
(1)
1,app 11.1223

EV
(2)
1,app 11.2371

EV
(1)
6,app 86.4554

EV
(2)
6,app 86.2707

Error(1) 0.6856

Error(2) 0.4998
Δ 0.001363

8 0.93 EV
(1)
1,app 141.6691

EV
(2)
1,app 143.0359

EV
(1)
6,app 284.4075

EV
(2)
6,app 283.7902

Error(1) 1.2919

Error(2) 1.1742
Δ 0.000815

Table 4: System with n = 10 queues, two groups of identical arrival streams and
equal service intensities: μ1 = . . . = μ5 = 1.0, μ6 = . . .= μ10 = 0.1, λ1 = . . .= λ5 =
0.06, λ6 = . . .= λ10 = 0.003, �1 = . . .= �5 = 0.06, �6 = . . .= �10 = 0.03 .
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�+ k�max n = 2 λ1 = 0.008 λ2 = 0.4
k = 0 1/μ1 = 50 1/μ2 = 1

0.8 EVi 248.324 6.676
EVi,sim 246.536 6.626

EV
(1)
i,app 250.000 5.000

EV
(2)
i,app 250.000 5.000

Error(1) 17.381

Error(2) 17.381
Δ 0.00721

�+ k�max n = 2 λ1 = 0.004 λ2 = 0.2
k = 0 1/μ1 = 50 1/μ2 = 1

0.4 EVi 83.241 1.759
EVi,sim 82.846 1.756

EV
(1)
i,app 83.333 1.667

EV
(2)
i,app 83.333 1.667

Error(1) 3.623

Error(2) 3.623
Δ 0.00468

�+ k�max n = 2 λ1 = 0.004 λ2 = 0.2
k = 2 1/μ1 = 50 1/μ2 = 1

0.8 EVi 748.649 16.351
EVi,sim 753.299 16.293

EV
(1)
i,app 750.000 15.000

EV
(2)
i,app 750.000 15.000

Error(1) 5.621

Error(2) 5.621
Δ 0.00600

Table 5: System with n = 2 different queues.
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a) k = 0 , Error(1) = 1.8978

�+ k�max = 0.31 , Error(2) = 1.8977
Δ = 0.017484

Typ Service time distribution λi EVi,sim EV
(1)
i,app EV

(2)
i,app

1 exponential 0.06 1.454090 1.458689 1.458590
2 Erlang 2 0.06 1.423768 1.458689 1.458590
3 deterministic 0.06 1.394614 1.458689 1.458590
4 exponential 0.03 1.442639 1.439995 1.440093
5 Erlang 2 0.03 1.424913 1.439995 1.440093
6 deterministic 0.03 1.405444 1.439995 1.440093
7 exponential 0.01 1.431084 1.427796 1.428019
8 Erlang 2 0.01 1.426269 1.427796 1.428019
9 deterministic 0.01 1.415180 1.427796 1.428019

10 deterministic 0.01 1.415657 1.427796 1.428019

b) k = 10 , Error(1) = 28.7318

�+ k�max = 0.91 , Error(2) = 28.6609
Δ = 0.170767

Typ Service time distribution λi EVi,sim EV
(1)
i,app EV

(2)
i,app

1 exponential 0.06 122.6463 123.9834 123.6505
2 Erlang 2 0.06 95.6508 123.9834 123.6505
3 deterministic 0.06 69.2290 123.9834 123.6505
4 exponential 0.03 27.7211 27.6708 27.7719
5 Erlang 2 0.03 24.6680 27.6708 27.7719
6 deterministic 0.03 21.4839 27.6708 27.7719
7 exponential 0.01 18.3013 18.2299 18.3080
8 Erlang 2 0.01 17.5656 18.2299 18.3080
9 deterministic 0.01 16.8822 18.2299 18.3080

10 deterministic 0.01 16.8665 18.2299 18.3080

Table 6: System with n = 10 queues and different service time distributions with
ESi = 1, i = 1, . . . , 10 .
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a) k = 0 , Error(1) = 1.8740

�+ k�max = 0.31 , Error(2) = 1.8741
Δ = 0.017445

Typ Service time distribution λi EVi,sim EV
(1)
i,app EV

(2)
i,app

1 exponential 0.00020 436.1633 437.6066 437.5771
2 Erlang 2 0.00020 426.9635 437.6066 437.5771
3 deterministic 0.00020 418.5261 437.6066 437.5771
4 exponential 0.00010 433.2965 431.9985 432.0278
5 Erlang 2 0.00010 427.0759 431.9985 432.0278
6 deterministic 0.00010 422.3306 431.9985 432.0278
7 exponential 0.00003̄ 427.8202 428.3389 428.4058
8 Erlang 2 0.00003̄ 427.4385 428.3389 428.4058
9 deterministic 0.00003̄ 424.7684 428.3389 428.4058

10 deterministic 0.00003̄ 425.0823 428.3389 428.4058

b) k = 10 , Error(1) = 28.0493

�+ k�max = 0.91 , Error(2) = 27.9827
Δ = 0.166138

Typ Service time distribution λi EVi,sim EV
(1)
i,app EV

(2)
i,app

1 exponential 0.00020 37345.46 37195.01 37095.14
2 Erlang 2 0.00020 28610.63 37195.01 37095.14
3 deterministic 0.00020 21075.46 37195.01 37095.14
4 exponential 0.00010 8354.20 8301.23 8331.58
5 Erlang 2 0.00010 7395.81 8301.23 8331.58
6 deterministic 0.00010 6448.56 8301.23 8331.58
7 exponential 0.00003̄ 5503.83 5468.97 5492.39
8 Erlang 2 0.00003̄ 5272.68 5468.97 5492.39
9 deterministic 0.00003̄ 5066.07 5468.97 5492.39

10 deterministic 0.00003̄ 5063.66 5468.97 5492.39

Table 7: System with n = 10 queues and different service time distributions with
ESi = 300, i = 1, . . . , 10 .
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In Table 1 examples for a complete symmetric system with n = 3 queues are given; the EVi
are given explicitely by (3.22). The results in Tables 2-5 – and further numerical experiences

not reported here – show that the proposed approximations EV
(1)
i,app, EV

(2)
i,app are very good over

a wide range of parameters. The relative errors Error(j) in Tables 2, 3, 4 are mostly smaller
than 0.5%; only in case of heavy traffic situations � + k�max ≥ 0.93 they increase up to 1.3%.
In general the second approximation is a little bit better than the first one, but for practical
purposes this can be neglected. In Table 5 an example with n = 2 queues is given, where the
EVi have been computed by numerical integration very precisely. It shows that in case of heavy
traffic, strong differences between the mean service times and small k, n the approximations get
worse.

In Tables 6 and 7 systems with n = 10 queues and different service time distributions (expo-
nential, Erlang 2, deterministic) are given. Setting μi := 1/ESi the quantity Δ in (7.1) can
be computed, although the conservation law (3.21) does not hold and hence Δ ≈ 0 cannot be
expected even for long simulations. The quantity Δ is a measure for violating (3.21). A closer
look at the Tables 6 and 7 shows that in normal traffic case it holds Δ ≤ 0.02 and the approx-
imations can be accepted although for the customers with non-exponential service times the
approximation is erroneously, whereas for the exponential customers the approximation gives
nearly the precise value, still. In case of heavy traffic, i.e. �+k�max ≥ 0.9, we have Δ ≥ 0.1 and
the relative errors Error(j) become larger. Note, that for the exponential customers the approxi-

mations EV
(j)
i,app are still very good whereas for the customers with non-exponential service times

they become more and more biased. Since for systems with exponentially and non-exponentially

distributed service times the approximations EV
(j)
i,app for the customers with exponential service

times are very good, the quantity Error(j) becomes smoother by these customer types. The
disadvantage of the aggregated error measure is that it reflects bad approximations of single/few
customer types in a smoother way. An alternative is to compute (7.2) only for the customer
types with non-exponential service times, or to use a different error measure, e.g. the maximum
of the relative errors instead of their quadratic mean.
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