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Abstract

This paper presents some connections between test sets and valid inequalities of integer
programs. The reason for establishing such relationships is the hope that information (even
partial) on one of these objects can be used to get information on the other and vice versa. We
approach this study from two directions: On the one hand we examine the geometric process by
which the secondary polytope associated with a matrixA transforms to the state polytope as we
pass from linear programs that have A as coefficient matrix to the associated integer programs.
The second direction establishes the notion of classes of augmentation vectors parallel to the
well known concept of classes of facet defining inequalities for integer programs. We show how
certain inequalities for integer programs can be derived from test sets for these programs.

1 Introduction

Test sets and their algorithmic construction play a central role in several branches of Mathematics,
like geometry of numbers, computational algebra and integer programming. We are concerned here
with test sets for integer programming problems.
Let A ∈ ZZm×n, b ∈ ZZm and c ∈ IRn be given. A test set T for the integer programming problem

(IP ) max cx : Ax ≤ b, x ∈ INn

is a set of vectors such that any feasible point x of the integer program, i.e., Ax ≤ b and x ∈ INn,
is not optimal if and only if there exists an element t ∈ T such that x+ t is feasible and ct > 0. By
a universal test set we mean a set of vectors that contains a test set for every c ∈ IRn.

On the other hand, when one is concerned with the solution of integer programming problems, one
often studies the geometry and combinatorics of the polyhedron

conv{x ∈ INn : Ax ≤ b}.

In particular, one is interested in inequalities that describe faces of the polyhedron. Our goal in
this paper is to present some connections between the elements of a minimal test set of an integer
program and inequalities that are valid for the associated polyhedron.
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In Section 2 we present basic properties of irreducible elements in a test set and the normal vectors
of facet-defining inequalities.

Section 3 examines the process by which the secondary polytope associated with the family of integer
programs with coefficient matrix A transforms to the state polytope associated with the associated
integer programs. The secondary polytope [GKZ94], [BFS90] of A is the Minkowski integral of
all feasible regions of linear programs with coefficient matrix A whereas the state polytope of A
[ST94] is the Minkowski integral of the convex hull of all feasible solutions of the associated integer
programs. This study sheds light on how the LP optimum refines to the IP optimum for programs
defined by a fixed matrix and cost function. The main tool used here are test sets while traditionally
this process is carried out via cutting planes.

Finally we illustrate, in the case of 0/1-integer programming, further links between the augmenta-
tion problem and the separation problem.

2 Basic properties of test set elements

There are two elementary properties of normal vectors of facet-defining inequalities and so-called
irreducible elements in a test set for an integer program that we introduce below. The following
notation is needed.

From the objective function c of the integer programming problem (IP ) we obtain a linear order
on ZZn as follows: we choose an arbitrary term order ≺0, (for example the lexicographic order
≺0=≺lex), and use it as a “tie breaker” on the points that have the same objective function value
under c; that is, we define

x ≺c y :⇐⇒
{
cTx < cTy, or
cTx = cTy and x ≺0 y.

Definition 2.1 A vector t ∈ ZZN , t �c 0 is called reducible by w ∈ ZZN , w �c 0 if v+ ≤ t+,
v− ≤ t− and (Av)+ ≤ (At)+. Otherwise, t is called irreducible.

Note that, if t ∈ ZZN is reducible by w ∈ ZZN , then, whenever x + t is feasible for (IP ), x + w is
feasible for (IP ), too.

For A ∈ ZZn, b ∈ ZZm and c ∈ IRn, let

(IP ) max{cx : Ax ≤ b, x ∈ INn}
denote an integer programming problem and

PI = conv{x ∈ INn : Ax ≤ b}
the polyhedron associated with the program. With an integer program (IP) we associate a graph
G = (V, E). V is the set of nodes where node i corresponds to variable i in the integer programming
formulation. Between nodes i and j we introduce an edge if there exists some row k ∈ M :=
{1, . . . , m} such that aki = akj �= 0. Using this graph G we can derive a condition that must be
satisfied by all normal vectors of facet-defining inequalities of PI and by all irreducible elements in
the test set.
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Lemma 2.2 Let t be an irreducible element in the test set for (IP ). The subgraph (S, E(S)) with
S := {i ∈ N := {1, . . . , n} : ti �= 0} is connected. Let dx ≤ d0 be a facet-defining inequality for PI .
The subgraph (S, E(S)) with S := {i ∈ N : di �= 0} is connected.

There is another property of facet-defining inequalities that can be expressed in terms of irreducible
elements in a test set. The linear subspace of the hyperplane defining the facet is composed of
irreducible elements in the universal test set.

Theorem 2.3 Let dx ≤ d0 be a facet-defining inequality for PI and denote by p the dimension of
PI . There exists a basis t1, . . . , tp−1 of the subspace S := {x ∈ IRn : dx = 0} such that t1, . . . , tp−1

are irreducible elements in a universal test set of (IP ).

For illustration, consider the matroid (E,M) defined on the ground set E = {1, . . . , n} with
{i} ∈ M for all i = 1, . . . , n and ei := χ{i}. The symbol �c denotes the order on the elements of E
that we associate with the objective function c by using the lexicographic order in order to break
ties. The convex hull of all incidence vectors of independent sets in the matroid is described by
the non-negativity inequalities and the set of all rank inequalities of the type x(F ) ≤ rank(F ) for
F ⊆ E [Ed71]. For the rank inequality x(F ) ≤ rank(F ), a basis of {x ∈ IRn : x(F ) = 0} is given
by the vectors ei, i ∈ E \F and by vectors of the type ei − ej for i, j ∈ F . For an inequality xi ≥ 0,
a basis of {x ∈ IRn : xi = 0} is given by the vectors ej, j ∈ E \ {i}. This fact is reflected in the
structure of the test set for the matroid optimization problem.

Lemma 2.4 For a matroid (E,M) and an objective function c : E → IR, the set

T := {ei, i ∈ E and i �c 0} ∪ {−ei, i ∈ E and i ≺c 0} ∪ {ei − ej : i, j ∈ E, i �= j, i �c j �c 0}

defines a test set for the matroid optimization problem max{cχM : M ∈ M}.

3 From the secondary polyhedron to the state polyhedron

For a fixed matrix A ∈ Zm×n of rank m and b ∈ posZ(A) = {Ap : p ∈ Nn}, let Pb = {x ∈ Rn
+ :

Ax = b} and P I
b = convex hull {x ∈ Nn : Ax = b}. We will assume that {x ∈ Rn

+ : Ax = 0} = {0}
which guarantees that both Pb and P I

b are polytopes for all b ∈ posZ(A). For a fixed cost vector
c and right hand side vector b ∈ posZ(A), let IPA,c(b) denote the integer program minimize cx :
Ax = b, x ∈ Nn and LPA,c(b) denote its linear relaxation minimize cx : Ax = b, x ∈ Rn

+. A number
of recent papers (see [CT91], [Th94], [ST94]) have established the existence and construction of the
reduced Gröbner basis Gc ⊂ kernel(A) ∩ Zn = kerZ(A) which is a unique minimal test set for the
family of integer programs IPA,c(·). The union of all reduced Gröbner bases associated with a fixed
matrix A is a finite set UGBA, called the universal Gröbner basis of A and is a universal test set
for the family IPA = {IPA,c(b), ∀b ∈ posZ(A), c ∈ Rn}. It can be established from the mechanics
of the simplex method that the circuits of A which are the primitive vectors of minimal support in
kerZ(A), constitute a minimal universal test set for LPA. Further, the circuits of A are contained
in UGBA. Associated with A, one can construct two n−m-dimensional polytopes : the secondary
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polytope Σ(A) which is the Minkowski integral
∫
b Pbdb ([GKZ94], [BiS92], [BFS90]) and the state

polytope St(A) =
∫
b P

I
b db (see [ST94]) where db is a suitable probability measure in both cases. In

fact, any polytope normally equivalent (having the same normal fan) as Σ(A) (respectively, St(A))
is called a secondary polytope of A (respectively, state polytope of A). Both Σ(A) and St(A) can be
constructed by taking a finite Minkowski sum of polytopes of the form Pb and P I

b respectively. The
inner normal fan of Σ(A) is an n-dimensional complete fan called the secondary fan of A, denoted
N (Σ(A)) and the inner normal fan of St(A) is also a complete polyhedral fan in Rn, known as
the Gröbner fan of A, denoted N (St(A)). Construction methods for both fans can be found in
[BFS90] and [ST94]. A number of relationships between the secondary and state polytopes have
been established in [St91] and [ST94]. We state a few below:
1. The state polytope St(A) is a Minkowski summand of the secondary polytope Σ(A). Therefore
the Gröbner fan N (St(A)) is a refinement of the secondary fan N (Σ(A)).
2. The edge directions of Σ(A) and hence of all polytopes Pb, b ∈ posA are the circuits of A while
the edge directions of St(A) and hence of all polytopes PI

b , b ∈ posZ(A) are the elements in UGBA.
3. Let c ∈ Rn be a generic cost function for IPA, namely, c is optimized at a unique vertex in each
polytope P I

b , b ∈ posZ(A). Then c lies in the interior of an n-dimensional cell Sc in N (Σ(A)) and in
the interior of an n-dimensional cell Kc in N (Σ(A)). By property 1, Kc is contained in Sc. We say
that two cost functions c1 and c2 are equivalent with respect to IPA (respectively LPA) if IPA,c1(b)
and IPA,c2(b) (respectively LPA,c1(b) and LPA,c2(b)) have the same set of optimal solutions for all
b ∈ posZ(A) (respectively, for all b ∈ pos(A)). Then the interior of Kc is precisely the equivalence
class of c with respect to IPA and the interior of Sc is the equivalence class of c with respect to
LPA. In particular, every full dimensional cone in N (Σ(A)) either remains the same or partitions
(refines) into subcones when we pass from LPA to IPA. This refinement reinforces the fact that
integer programming is an arithmetic refinement of linear programming.

In this section we establish results that provide insight into how a fixed secondary cell partitions
(if it does) into its associated Gröbner cells. For a fixed right hand side vector b, the passage from
the optimal vertex of Pb with respect to a fixed cost vector c to the optimal vertex of PI

b with
respect to c is achieved by introducing cutting planes or “local” facets for PI

b . On the level of Σ(A)
and St(A), this study is done via Gröbner bases. Similarly, the Chvatal procedure (Chapter 23
in [Schr86]) shows how to iteratively use cutting planes to obtain PI

b from Pb. This procedure
requires the concept of TDI representations and its correctness can be proved via test sets. All
these point toward interconnections between valid inequalities for an integer program and test sets
for the program. Facets of P I

b are the faces of codimension one while the faces of dimension one
are elements in UGBA. All these point toward interconnections between valid inequalities for an
integer program and test sets for the program. Below we study these relationships from the point of
view of the secondary and state polytopes associated with A. Understanding how a fixed secondary
cell refines to its associated Gröbner cells completely explains how the secondary fan refines to the
Gröbner fan. We first examine some conditions under which the state and secondary polytopes of
a matrix coincide.

Definition 3.1 A matrix A of full row rank is called c-unimodular if each of its maximal minors
is one of −c, 0 or c, where c is a positive integral constant.
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It is known that if A is c-unimodular, then the circuits of A constitute UGBA and that St(A) =
Σ(A). The latter fact follows from the following theorem and some additional arguments.

Theorem 3.2 A matrix A is c-unimodular if and only if Pb = P I
b for all b ∈ posZ(A).

The above theorem is well known in the case of 1-unimodular matrices. When A is 1-unimodular,
posZ(A) = pos(A)∩Zm and hence the above theorem would say that A is 1-unimodular if and only
if Pb = P I

b for all integral b ∈ pos(A). This is precisely Theorem 19.2 in [Schr86] and the above
theorem is a generalization of this.

Remarks 3.3 If A is c-unimodular where c > 1, then pos(A)∩c·Zm ⊆ posZ(A). This containment
is often strict. For example, the incidence matrix A4 of the complete graph K4 is 2-unimodular.
However, A4 · (1, 1, 1, 1, 0, 0)t = (3, 2, 2, 1) �∈ 2 · Z4.

However, there are matrices that are not c-unimodular for which the state and secondary polytopes
coincide. For such matrices, it is no longer true that Pb = P I

b for all b ∈ posZ(A) and yet∫
b Pbdb =

∫
b P

I
b db. We establish a sufficient condition for the state and secondary polytopes to

coincide and a family of non-unimodular matrices that has this property.

A vector u ∈ kerZ(A) can be written uniquely as u = u+ − u− where u+, u− ∈ Nn. The polytope
PAu+ = PAu− is called the LP-fiber of u and PI

Au+ = P I
Au− is called the IP-fiber of u. In particular,

if u is a circuit of A, then PAu+ and P I
Au+ are called a LP- and IP-circuit fiber respectively, of A and

if u ∈ UGBA they are called the LP- and IP- Gröbner fiber respectively, of A. It is shown in [ST94]
that Σ(A) =

∑{PAu+ : u is a circuit of A } and St(A) =
∑{P I

Au+ : u ∈ UGBA }. These facts
imply the following sufficient condition for when the state and secondary polytopes of a matrix
coincide.

Lemma 3.4 For a matrix A, if the circuits of A constitute UGBA and all LP-circuit fibers of A
are integral, then Σ(A) = St(A).

Clearly, unimodular matrices satisfy the condition in the above lemma. The Lawrence lifting of a

given matrix A ∈ Zm×n, is defined to be the enlarged matrix Λ(A) =

(
A 0
1 1

)
where 0 is a m

by n matrix of zeroes and 1 denotes an identity matrix of size n. Lawrence matrices have many
special properties and can be used to compute the universal Gröbner basis of IPA. It was shown
in [ST94] that the IP Gröbner fibers of Λ(A) are one dimensional. We establish a similar result
below.

Proposition 3.5 Every LP circuit fibers of Λ(A) is one dimensional and integral.

Note that A and Λ(A) have isomorphic kernels: kerZ(Λ(A)) = {(u,−u) : u ∈ kerZ(A)}. In
particular, a vector u is a circuit of A if and only if the vector (u,−u) is a circuit of Λ(A). If x is
a point in the LP circuit fiber of Λ(A) corresponding to the circuit (u,−u), then it can be shown
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that x is in the affine span of the line segment [u+, u−] and hence the fiber is one dimensional.
Integrality of the fiber follows from the fact that the line segment [u+, u−] is an edge in this fiber.
This establishes Proposition 3.5. Using Lemma 3.4 and Proposition 3.5 we have the following.

Proposition 3.6 If the set of all circuits of Λ(A) equals UGBΛ(A) then Σ(Λ(A)) = St(Λ(A)).

The above result can also be infered from [ST94] using a different proof based on the notions of
circuit and Gröbner arrangements.

For a general matrix A, it is not true that if circuits(A) = UGBA then Σ(A) = St(A). An example

of such a matrix is

⎡
⎢⎣ 1 1 1 1 1

0 1 2 1 0
0 0 1 2 1

⎤
⎥⎦.

We saw above that for certain classes of matrices A, St(A) = Σ(A) which is equivalent to saying
that no cell in the secondary fan partitions into subcones while passing to the Gröbner fan. For
an arbitrary matrix A, some cells in the secondary fan partition into subcones while passing to the
Gröbner fan while other cells do not. We examine below properties of those secondary cells that
do not subdivide. This is related to the classical concept of TDI-ness.

Definition 3.7 [Schr86] A rational system yA ≤ c is TDI if the minimum in the LP duality
equation max{yb : yA ≤ c} = min{cx : Ax = b, x ≥ 0} has an integral optimal solution for every
b ∈ Zm for which the minimum is finite.

In the terminology used so far, yA ≤ c is TDI if LPA,c(b) has an integral optimal solution for all
b ∈ posZ(A). This optimal solution is then also optimal for IPA,c(b). We say that a full dimensional,
simplicial, polyhedral, convex cone K ⊆ Rn with extreme rays generated by the primitive vectors
p1, . . . , pn is unimodular if the square matrix with columns p1, . . . , pn has determinant 1 or −1. The
monomial ideal generated by the unique leading terms of the elements in a reduced Gröbner basis
Gc is called the initial ideal with respect to c, denoted inc(IA) where IA is the underlying ideal
that depends on A used in the algebraic version of this theory. Also, associated with a generic cost
vector c we have a regular triangulation of the columns of A denoted Δc. See [GKZ94], [BFS90]
for details on regular triangulations. A regular triangulation Δc is said to be unimodular if all its
maximal simplices have unit normalised volume. The following algebraic result can be infered from
Theorem 5.3 in [KSZ92].

Proposition 3.8 The initial ideal inc(IA) is square-free if and only if the regular triangulation Δc

is unimodular.

We now relate certain properties discussed so far. Recall that the secondary cell of a generic cost
vector c is denoted Sc and the Gröbner cell is denoted Kc.

Theorem 3.9 Consider the following properties of A ∈ Zm×n and generic cost vector c ∈ Qn.
(i) The secondary cell Sc coincides with the Gröbner cell Kc.

6



(ii) The system yA ≤ c is TDI.
(iii) The optimal solution of LPA,c(b) is integral for all b ∈ posZ(A).
(iv) The initial ideal inc(IA) is square free.
(v) The secondary cell Sc modulo its lineality space is unimodular. Then

a) (ii)⇔ (iii)⇔ (iv),
b) (ii)⇒ (i) but (i) �⇒ (ii),
c) (i) �⇒ (v) and (v) �⇒ (i),
d) (ii) �⇒ (v) and (v) �⇒ (ii).

Therefore the TDI-ness of yA ≤ c is a sufficient condition for the secondary cell Sc to not subdivide
while passing to the Gröbner fan although the converse is false. Geometrically, the interior of Sc
is the set of all cost functions that select the same LP optimum as c in the polytopes Pb for all
b ∈ posZ(A) while the interior of Kc is the set of all cost vectors that select the same optimal vertex
as c in the polytopes PI

b for all b ∈ posZ(A). However since (i) �⇒ (ii), it follows that all cost
vectors in Sc = Kc can pick the same LP optimum for all b ∈ pos(A) and the same IP optimum for
all b ∈ posZ(A), although for a given b, the LP and IP optima may be different - the LP optimum
being fractional. This supports the fact that matrices that are not c-unimodular can have their
state and secondary polytopes coincide.

4 Augmentation vectors

Throughout this section we assume that the integer programming problem is a 0/1-program that
is given in the form

(IP ) max cx : Ax ≤ b, x ∈ {0, 1}n

with A ∈ ZZm×n, b ∈ ZZn and c ∈ IRn. By aj we mean column j ∈ M = {1, . . . , m}.
In polyhedral combinatorics one often tries to find classes of inequalities that are valid for the integer
polyhedron. Once such a class of inequalities is given, one derives a separation algorithm that, for
a given fractional point, finds an inequality that is violated by the fractional point, or proves that
no inequality in this class is violated by the fractional point. This dual approach is justified as
separation and optimization are equivalent in terms of computational complexity [GLS88].

The primal counterpart of these questions is to ask for a set of vectors and an algorithm that
either finds a vector (augmentation vector) in this set such that a current feasible point can be
improved, or asserts that there is no vector in this set that yields an improvement of the current
feasible solution. These questions are reasonable to ask, because for 0/1 integer programs the
augmentation problem, the irreducible augmentation problem and the optimization problem are
strongly polynomial time equivalent, see [SWZ95].

Below we present two examples. One shows that for a certain knapsack problem the augmentation
problem can be solved in time being polynomial in the size of the input data. The other example
illustrates how certain elements in a test set can be used to derive inequalities that are satisfied by
all optimal solutions (objective based cutting planes).
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4.1 Example: knapsack augmentation vectors

For a fixed number K ∈ IN and natural numbers d1 < . . . < dK , we consider the knapsack problem

P (d1, . . . , dK) max
∑
i∈N

cixi :
∑
i∈N

aixi ≤ a0, x ∈ {0, 1}n,

with ai ∈ IN, ci ∈ {d1, . . . , dK} for all i ∈ N and a0 ∈ IN. Let N1, . . . , NK be the subsets of
items in N of objective function coefficients d1, . . . , dK, respectively, and set nj := |Nj| for all
j ∈ {1, . . . , K}.

Lemma 4.1 There exists a test set of P (d1, . . . , dK) of cardinality at most (
∏K

j=1 nj)3
K + n(n−1)

2 .

A test set T of P (d1, . . . , dK) with respect to �c that consists of irreducible elements can be
computed by the algorithm described in [UWZ94]. This set T can then be used as a set of candidates
to improve a current feasible point x of the given integer program (IP ) via the following scheme.

1 Sum up a subset S of the set of rows of the matrix A. This yields a problem of the type
max cx :

∑
i∈N (

∑
j∈S aji)xi ≤ ∑

j∈S bj, x ∈ {0, 1}n. By complementing a variable i if
(
∑

j∈S aji) < 0, we obtain a knapsack problem.

2 Choose K ∈ IN and natural numbers d1, . . . , dK and assign to every item i ∈ N a coefficient
c′i ∈ {d1, . . . , dK}, for instance: choose d1 < . . . < dK ∈ [mini∈N ci, . . . ,maxi∈N ci]. For every
i ∈ N set c′i := maxj=1...K{dj : dj ≤ ci}.

3 Compute a test set T of P (d1, . . . , dK).

4 For all v ∈ T check whether ct > 0 and x+ v is feasible for (IP ). In this case set x := x+ t.

Note that the knapsack relaxation that we derive in Step 1 of the scheme above can simultaneously
be used to derive valid inequalities for the integer programming problem (IP ), see [CJP83].

4.2 Example: Minimal cover vectors

There is a one subclass of irreducible elements in every test set of (IP ) that we want to introduce
now. With each such element - as we will see - we can associate an inequality that is satisfied by
all optimal points of the given instance. We call these elements minimal cover vectors and define
them as follows.

Definition 4.2 Let K,K′ ⊆ N be disjoint sets such that
∑

j∈K aj ≤∑
j∈K ′ aj , but

∑
j∈K∪{i} a

j �≤∑
j∈K ′ aj for every i �∈ K. If

∑
j∈K ej �c

∑
j∈K ′ ej , then the vector

∑
j∈K ej −∑

j∈K ′ ej is called
minimal cover vector.
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The name “minimal cover” reflects the fact that K′ is a minimal subset with respect to inclusion
such that

∑
j∈K ′ aj covers

∑
j∈K aj. From the definition follows that if a minimum cover vector

is reducible with respect to an objective function c ∈ INn, then the reduction vector is also a
minimum cover vector. Hence, for every objective function c ∈ INn there exists a subset of the set
of all minimal cover vectors that must be contained in every test set of (IP ). We did not succeed in
designing a polynomial time algorithm that solves the augmentation problem for the set of minimal
cover vectors. There is, however, a property of minimal cover vectors: they give rise to inequalities
that must be satisfied by every optimum solution of the given integer programming problem.

Lemma 4.3 If v =
∑

j∈K ej −∑j∈K ′ ej is a minimum cover vector, then every optimum solution
x satisfies the constraint ∑

j∈K
xj ≥

∑
j∈K ′

xj − (|K′| − 1).

This example shows that a test set contains elements that can be used to derive inequalities satisfied
by all optimal solutions. It can be further shown that the property of a minimum cover vector being
reducible is reflected by the property that the associated inequality is dominated by an inequality
that we derive from an irreducible vector. More precesily, if the minimal cover vector v :=

∑
j∈K ej−∑

j∈K ′ ej is reducible, then there exists K ⊆ K, K′ ⊆ K′ such that w :=
∑

j∈K ej −∑j∈K ′ ej �c 0
is a minimal cover vector. Under these assumptions the inequality∑

j∈K
xj ≥

∑
j∈K ′

xj − (|K′| − 1)

is weaker than the inequality ∑
j∈K

xj ≥
∑
j∈K ′

xj − (|K′| − 1).

In this sense, reducibility of augmentation vectors and domination of inequalities are at least in
special cases related subjects.
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